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Abstract

Determining the meaning of customer utterances is an important part of fulfilling1

customer requests in task-oriented dialogue. Natural Language Understanding2

(NLU) models can determine this meaning, but typically require many customer3

utterances that are hand-annotated with meaning representations, which are difficult4

to obtain and must be repeated for each new target domain. One way to reduce5

the labor involved in hand annotation is to have the human annotate a meaning6

representation (a “semantic frame” representation) separate from the corresponding7

utterance. In this work, we investigate the use of this approach in conjunction8

with several simple natural language generation (NLG) approaches in order to9

train shallow parsers to extract phrase structure representations from customer10

utterances. Our results show the effectivness of this approach for training NLU11

models.12

1 Introduction13

Task oriented spoken dialog systems enable automation of many activities such as question answering,14

home automation, and customer service. A problem with creating these systems is that typically15

large amount of training data must be prepared by hand in order to obtain models that achieve high16

performance. This problem is exacerbated if the system is supposed to handle complex tasks, because17

in this case the annotations of natural language understanding (NLU) data become more complex.18

In this paper, we investigate the use of training a NLU model for a complex task requiring hierar-19

chically structured annotations, where the training data is obtained through humans creating the20

hierarchical structure in real time as a dialogue progresses. Because of the real time constraint, the21

hierarchical structures that they produce are standoff from the words in the spoken utterance, rather22

than inline. Also because of this constraint, they are not required to produce any kind of speech23

transcription. Given that a set of these hierarchical structures are available, we investigate using24

as training data for NLU models the results of applying several different kinds of natural language25

generation (NLG) techniques on these structures.26

This paper is structured as follows. First, we describe our human in the loop spoken dialog system,27

including the means in which a human can create a hierarchical annotation after listening to a user28

utterance. Second, we describe our target NLU models and then several NLG approaches that we use29

to generate training data for NLU from standoff hierarchical structures. Third, we provide details30

about the corpora that we use in our experiments before delving into the experimental procedures31

themselves and their results. Finally, we discuss related work and our conclusions.32
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2 Target Spoken Dialog System33

In this section, we discuss the architecture of our spoken dialog system, including the human in the34

loop. We then discuss in greater depth the NLU component of the system, including the hierarchical35

structures that our NLU model produces. Subsequently, we discuss how the human integrates into the36

architecture. Rather than producing hierarchical structures that are aligned with phrases in the user37

utterance, if it is required, the human produces standoff hierarchical structures which we also discuss.38

The architecture of our spoken dialogue system is shown in Figure 1. A customer interacts with our39

system by phone. The speech signal of the customer’s utterance is converted to a NLU representation40

via a pipeline consisting of automatic speech recognition (ASR) and NLU. This pipeline also returns41

a confidence score. If this score does not reach a certain threshold, the part of our system called the42

virtual assistant (VA) platform routes the same audio to a human domain expert (DE). Subsequently,43

through interacting with a graphical user interface, the DE constructs a semantic frame representation44

roughly equivalent to the NLU representation, which is sent back to the VA platform. Once the VA45

platform receives a representation, it routes it to the dialog manager (DM).46

 

Figure 1: NLU outputs a structured representation given ASR output. Audio corresponding to low
confidence NLU outputs are sent to a human domain expert (DE) for semantic frame annotation.

NLU receives as input from ASR an unpunctuated word sequence. It converts that into a structured47

representation consisting of entities, attributes, and intents. Entities and attributes correspond to48

noun heads and their modifiers, respectively. Simple head modifier relationships can be grouped49

into simple noun phrases called attribute phrases. In turn, entities, attribute, or attribute phrases50

themselves be composed into complex noun phrases called items. Finally, they can be grouped as51

arguments of a specific intent. An utterance may have one or more intents.52

An example of the structured representation corresponding to the utterance “can i get two root beers53

oh and do you carry orange fanta” is shown in Figure 2. The various labels shown in the figure54

correspond to specific words or phrases in the utterance. The labels corresponding to entities/attributes,55

items, and intents are highlighted in red, green, and blue, respectively. The representation has a tree56

structure. It is able to represent hierarchical meanings that are necessary for the system to carry out57

the user request. There can be more than one intent in the same utterance; in this example, there are58

two intents.59

 

Figure 2: Hierarchical structured NLU representation for the utterance: can i get two root beers oh
and do you carry orange fanta

Note that each entity or attribute has a gnd or “grounding” feature. The system maintains a catalog60

of orderable menu items. After NLU detects phrases in the input utterances corresponding to entities61
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Figure 3: Human domain expert uses a point, click, and type user interface, namely the Domain
Expert Desktop (DED), in order to capture the structured intent corresponding to the utterance Can I
have two cheese pizzas and a coke?

and attributes, a grounding component uses these phrases to link entities and attributes to specific62

entries in the catalog. For example, in the example sentence, the phrase “root beers” is linked to the63

catalog entry ROOT_BEER.64

If called upon by the VA platform, the DE listens to the audio of the customer utterance. The DE65

enters the customer’s intent using a graphical interface called the Domain Expert Desktop (DED). See66

Figure 3. The DED contains a set of buttons corresponding to intents. Clicking some of these buttons,67

such as “yes” or “no,” are sufficient to completely specify the corresponding intents. Clicking other68

buttons, such as “add” and “remove,” specify intents taking entities or attributes as arguments. The69

action of clicking intent buttons results in the associated intents being listed in an DED window pane70

called “Order.” Entities or attributes are specified using a text bar in conjunction with a clickable71

drop-down menu of entity and attribute names. They are attached to a particular intent by first72

highlighting that intent in the Order pane before clicking on an entity or attribute. The entries in the73

drop-down menu correspond to entries in the catalog.74

The representation that the DE prepares by listening to the user audio and then using the DED is one75

or more semantic frames. Specifically, a semantic frame is a tree structure with the root being one76

intent, and its descendants being zero or more entities or attributes, corresponding to arguments of the77

intent, along with any substructure of each argument, if any. Example of semantic frames are shown78

in Table 1. There is one semantic frame corresponding to the add-item intent, having one argument79

manifested by the entity grounded as ROOT_BEER which itself contains an attribute reflecting the80

quantity 2. In a similar manner, The other semantic frame corresponds to the request-availability-item81

intent. It can be seen that it corresponds to the labeled structure in Figure 2, except for the absence of82

links from the representation to words and phrases in the utterance.83

3 Natural Language Understanding84

For each customer utterance, the natural language understanding (NLU) representation captures85

(a) one or more customer intents (b) entity heads, corresponding to noun heads of menu items, (c)86

attributes corresponding to modifiers of menu items, (d) attribute phrases and items corresponding to87

noun phrases with attribute and entity heads, respectively.88

The NLU representation is predicted using a shallow parsing approach. In particular, four sequence89

taggers are used, each one predicting a different level in the NLU representation: (a) a head tagger90
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<add-item>
<entity-item>
<num-qty ground=2>
<entity-head ground=“ROOT_BEER”>

</entity-item>
</add-item>
<request-availability-item>
<entity-item>
<entity-head ground=“ORANGE_FANTAS”>

</entity-item>
</request-availability-item>

Table 1: Example of semantic frames corresponding to the utterance: can i get two root beers oh and
do you carry orange fanta

that tags entity heads and attributes, (b) an attribute phrase tagger that tags noun phrases with91

attribute heads, (c) an item tagger that tags noun phrases with entity heads, (d) an intent tagger that92

groups carrier phrases and their associate noun phrases together. Each tagger is implemented as a93

BiLSTM-CRF [1] with the input being the sequence of input words of the utterance.94

Semantic frames are insufficient to train our NLU models. Although semantic frames do have95

semantic categories which our NLU models are trained to predict, they do not associate these96

categories with phrases in the customer utterance. In order to create this association, we experiment97

with several basic NLG approaches.98

4 Natural Language Generation99

Natural language generation (NLG) in this work performs surface realization on semantic frames. We100

experiment with several kinds of NLG. In Basic NLG, leaf nodes in the semantic frame corresponding101

to menu items or their optional components are replaced with word phrases representing their102

canonical names. See Figure 4 for an example of how Basic NLG operates on a sample semantic103

frame. In CF NLG, a context-free grammar is induced from a seed set of utterances that are hand-104

annotated with correct NLU outputs. The grammar is then employed as follows to perform surface105

realization.106

CF NLG presupposes a context free grammar (CFG) 〈N,T,R, S〉 of nonterminals N , terminals T ,107

rules R where each rule r ∈ R is of the form N0 → α where α ∈ (N ∪ T )∗. Here, N consists of all108

of our intent, item, phrasal, entity, and attribute labels. For example, N includes intent label ADD109

and item label ENTITY_ITEM. Each entity label type also encodes the grounding annotation, e.g.110

“ENTITY_HEAD ground=’PIZZA’” instead of “ENTITY_HEAD.”111

CF NLG takes as input a rooted tree consisting only of nonterminals. It processes these nonterminals112

one by one. For each nonterminal, the nonterminal and all of its children are used as a key into a113

dictionary whose value is the same children interspersed with zero or more sequences of terminals.114

The original children in the tree are replaced with the value from the dictionary. See Table 2 for115

pseudocode of CF NLG and Figure 5 for an example of running CFG NLG on a sample semantic116

frame, in the form of a tree of nonterminals.117

The value of the dictionary also includes a natural number weight. The same dictionary key can map118

to more than one value. In that case, the value selected for a particular key is determined stochastically119

according to the various values’ weights.120

CF-NLG performs generation given a grammar G and an NLU representation N as follows. For each121

tree T ∈ N , starting from the root node S ∈ T , a breadth-first search of nonterminal nodes in T is122

performed. At each node N with children C1, C2, . . . Cm, the key N,C1, C2, .., Cm is formed, and a123

value is chosen from the dictionary at random, proportional to the weights of key value pairs in the124

dictionary. The chosen dictionary value is a rule N ′ that replaces the rule N in the tree.125

4



Notation:
N nonterminals
T terminals
D dictionary, each entry of the form:
A0A1A2 . . . Am → { 〈β1

0A1β
1
1A2β

1
2 . . . Amβ

1
m;w1〉,

〈β2
0A1β

2
1A2β

2
2 . . . Amβ

2
m;w2〉,

. . . ,
〈βs

0A1β
s
1A2β

s
2 . . . Amβ

s
m;ws〉}

where
m ∈ N
s ∈ N
Aj

i ∈ N, 0 ≤ i ≤ m, 1 ≤ j ≤ s
βj
i ∈ T ∗, 0 ≤ i ≤ m, 1 ≤ j ≤ s
w ∈ N

Input: Tree X of nonterminals B1, B2, . . . , Bn

Algorithm:
for i← 1 to n do

Let C1, C2, . . . , Cq, q ∈ N be the children of Bi in tree X .
Find values 〈α1, w1〉, 〈α2, w2〉, . . . , 〈αr, wr〉

in dictionary D whose key is Bi, C1, C2, . . . , Cq .
where αk = β0C1β1C2β2 . . . Cq, 1 ≤ k ≤ r and βl ∈ T ∗, 0 ≤ l ≤ q

Randomly choose j from 1, . . . , r according to weights w1, . . . , wr.
Replace children C1, C2, . . . , Cq of node Bi in X with αj .

done

Output: Tree X augmented with nonterminals

Table 2: Pseudocode for CF NLG. Input is a tree of nonterminals only. Output is the same tree
augmented with terminals.

5 Data126

Our main target dataset includes a set of food ordering dialogues that occur between an agent and127

a customer. We perform most of our experiments on this dataset. The dialogues in this dataset are128

extracted from customer call logs from pizza restaurants. Out of all the utterances in these logs, only129

customer utterances that are relevant for food ordering have been selected. Therefore, utterances130

having to do with providing the customer name and address or having to do with specifying the131

payment method have been removed. After being hand transcribed, the chosen utterances were hand132

annotated with hierarchical NLU structures. The data is divided into a seed set, a development set,133

and a test set. They contain 632, 2240, and 795 utterances, respectively.134

Besides the main dataset, there is a small subsidiary dataset of food ordering dialogues. There are 12135

of these dialogues. Most of them involve pre-defined scenarios where the user tries to order several136

menu items. They were used to test the interaction between our DED and DM, exclusive of our ASR137

or NLU. This dataset contains 44 utterances, which is the subset of all of the utterances in these138

dialogues that correspond only to food ordering.139

6 Experimental Design140

Our main experiments involve comparing NLU models trained with hand-transcribed, hand-annotated141

corpora against those trained with semantic frames and various types of NLG. One baseline involves142

training on only the hand-transcribed, hand-annotated seed set (Gold Small) and testing on the test set.143

An upper bound involves training on hand-transcribed, hand-annotated development set in addition to144

the seed set (Gold Large). Another experiment involves training on seed set plus development set145

semantic frames after Basic NLG is applied (Gold Small + Basic NLG). The last experiment is the146

same, except CF NLG is applied to the semantic frame (Gold Small + CF NLG).147
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Figure 4: Example of operation of Basic NLG. The input semantic frame (a) is transformed into an
output phrase structure representation (b).

 

Figure 5: Example of operation of CF NLG. The input semantic frame (a) is transformed into an
output phrase structure representation (b).

The experimental results exhibit a stochastic nature at several different points. First, applying NLG148

to semantic frames is probabilistic in its output. Second, training the BiLSTM-CRF multiple times149

results in model parameterizations with slight differences. In order to increase the reliability of our150

results, experiments were performed on five applications of NLG, and for each experimental setting,151

training of BiLSTM-CRF was repeated seven times. Results that are given below are averages over152

these repetitions.153

We also performed another set of experiments in order to compare the amount of time it takes for154

a human to hand annotate text with NLU annotations versus the amount of time taken for a DE to155

produce semantic frames after listening to user audio. The human annotators were timed after a156

few month’s experience with the domain dialogs and the type of annotation to be performed. They157

were timed for annotating our user utterances, which have been previously hand-transcribed from158

audio, comprising our main target dataset. The human DE was timed after a week or so of experience159

with the DED on this domain. The DE was timed for producing semantic frames for our subsidiary160

dialogs.161
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7 Results162

7.1 Accuracy of NLU Models Trained with Different Kinds of Training Data163

Results showing the accuracy of NLU models trained with different kinds of training data are shown164

in Table 3. The base model, trained on the Gold Small data set, achieves a labeled, bracketed F165

measure accuracy of 62.70%. When we add the Basic NLG version of the development set to the166

training data, the accuracy of the resulting model actually decreases by 1.5%. In contrast, if instead167

we add the CFG NLG version to the training data, the accuracy increases by 3.2% over baseline.168

Looking at the results across different levels of tagging, we see that the addition of Basic NLG data is169

most effective at the lower levels of head and item tagging. Attribute phrase level results do not show170

improvement, but generally this level’s results are not reliable because they occur quite infrequently171

in the data. As for the intent level, a regression in accuracy is seen, perhaps unsurprising because172

the Basic NLG data is devoid of carrier phrase intents. Switching focus to CF NLG data results,173

we see improvements at all levels of tagging. It is interesting that intent tagging should show an174

improvement, because CF NLG is not sophisticated enough to generate carrier phrases for intents175

that differ from those already found in the seed set (Gold Small). The improvement seems to have176

come from the new information that the semantic frames in the development set do provide, which177

includes information about possible placements of already known intents in multi-intent utterances178

and also information about how entities and items may be distributed inside an intent.179

Eval Type Training Data Type
Gold Small Gold Large Gold Small Gold Small
(base) (upper bound) + Basic NLG + CF NLG

Head 0.6904 0.7667 0.7101 0.7348
Attribute Phrase 0.0000 0.2784 0.0000 0.1097
Item 0.5923 0.6696 0.6047 0.6283
Intent 0.5846 0.6687 0.5142 0.6043
TOTAL 0.6270 0.7065 0.6111 0.6593

Table 3: Labeled, Bracketed F measure for NLU models trained with different types of training data.
Up to 3% improvement in accuracy over baseline Gold Small is observed with Gold Small + CF
NLG.

7.2 Speed of Hand Annotating Hierarchical Phrase Structures Versus Semantic Frames180

The results of measuring the relative speed of hand annotating the data with either hierarchical NLU181

structures or semantic frames are as follows. On our subsidiary dialog dataset, a DE with minimal182

experience handling these types of dialogs took about 15 seconds to process each utterance. In183

contrast, a team of four people with a few months of experience with this dialog set took about184

30 seconds to hand annotate each utterance. Because these measurements do not even take into185

account the time cost of hand transcribing the audio for the case of annotation with hierarchical NLU186

structures (unnecessary in the case of human annotating semantic frames after listening to audio) we187

find human semantic frame tagging to be much more efficient.188

8 Related Work189

Much previous work in training NLU models involves learning from a labeled corpus of utterances190

with inline NLU annotations. For example, [2] implement a CNN-CRF that performs joint intent191

detection and slot filling that is trained over a version of the ATIS corpus [3] that is tagged with192

intents and slots. [4] also train on hand-annotated data to obtain bi-directional RNNs that perform not193

only intent detection and slot filing, but also domain classification. [5] use a hand-annotated data set194

to extract hierarchical intent representations that are unlike the flat slot fillers used in ATIS but are195

more similar to our hierarchical representations.196

There is also work in training NLU models that learn from a corpus of utterances where each197

utterance is paired with meaning representation that is not mapped to words or phrases in the198

utterance. They differ from our work in that the meaning representation is always some kind of199
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logical form representation, whereas our representation are nested labeled brackets, each associated200

with a particular phrase in the input utterance. [6] train an NL parser that maps natural language201

utterances to a logical form representation using a log-linear model. [7] do the same using a202

hierarchical seq2seq modeling approach.203

[8] jointly train an NLU model and an NLG model on data from the E2E Challenge [9]. Their model204

is not directly applicable to our task because our target semantic space is more structured, and because205

we are more interested in optimizing NLU performance rather than joint optimization of NLU and206

NLG performance.207

Data augmentation is an approach where a model is created using a small hand annotated training208

set, and it is subsequently used to generate more data. Basic Seq2Seq [10], Seq2Seq that is aware of209

neighboring data samples [11], or extensions of variational autoencoders [12] can be used to for this210

kind of modeling. These works differ from ours in that their only input is a small hand annotated set,211

whereas we focus on how semantic frames can be leveraged for training improved models. Also, they212

assume simpler NLU representations than the ones we investigate.213

Our semantic frame is a meaning representation where elements of the representation are not214

aligned to any words or phrases of its corresponding user utterance. [13] describes work on similar215

representations that pair natural language sentences with logical form queries. This is used to216

induce a parser via inductive logical programming that is capable of parsing sentences into queries217

that can be executed on a database of geographic information. Similarly, [14] describes work on218

representations pairing natural language sentences with lambda calculus expressions. From such219

pairs, they induce a CCG parser that is capable of parsing sentences into queries on geographic220

or jobs databases. While both [13] and [14] deal with limited domains, [15] describes work on221

creating Abstract Meaning Representation (AMR) corpora, which they term as “sembanking.” The222

AMR corpus pairs natural language sentences from broad domains with AMRs. The aforementioned223

work talk about the advantages in speed of annotation of sentences with meaning representations224

where pairing representation elements with specific words or phrases is not required, but they do225

not present concrete timings as we do here that show how much more efficient this approach is over226

the alternative. Also, while [13] and [14] describe parsers built upon their meaning representations,227

their approaches are orthogonal to ours in that only we experiment with NLG approaches to create228

training data for parsers. Finally, none of their approaches discuss integration of human semantic229

frame annotation into any kind of human in the loop architecture, not to mention one that is used in a230

virtual assistant scenario.231

9 Conclusions232

We experiment with training NLU models with semantic frame meaning representations, as an labor233

saving alternative to training with inline representations. We experiment with training the NLU234

models by using as training data the results of applying NLG to the semantic frames. We find that by235

training with these semantic frames along with a simple NLG component (Basic NLG), we were able236

to obtain some improvement at the lower levels of the NLU output representation. By applying a237

slightly more sophisticated NLG (CF NLG) to a CFG component to the semantic frames, we obtained238

substantial increases in accuracy for all levels of NLU output. The impoverished nature of the NLG239

approaches suggests that increases in accuracy were due in part to the purely semantic information240

in the semantic frames and in part to the NLG linking semantic categories in the frames to specific241

phrases in utterances.242

There are many avenues for future work. One possibility is to apply more sophisticated NLG243

approaches to the existing framework in order to examine the effect on the accuracy of the resulting244

NLU model. Another is to train NLU and NLG models in concert. A third possibility is to use online245

machine learning to incrementally train new NLU models as soon as new semantic frames are tagged246

by the DE.247

Broader Impact248

Insofar as this work will increase automation of tasks traditionally handled by human human dialog, a249

negative outcome would be that it may increase unemployment by decreasing the number of available250

service jobs. This must be balanced by the fact that service jobs are typically seen as undesirable251
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because they are low wage jobs. Therefore, this work may have the positive outcome of increasing252

the proportion of desirable jobs out of all available jobs in an economy.253
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