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Abstract

The “wisdom of crowds” phenomenon shows that aggregating indepen-1

dent estimates can yield more accurate predictions than individual guesses.2

While crowd-sourcing is widely applied, using large language models3

(LLMs) for collective estimation is largely unexplored. This work inves-4

tigates how to best form an LLM “crowd” for ambiguous vision-based5

estimation tasks. We explore two sources of diversity: response diversity,6

from sampling at various temperatures, and model diversity, from using7

different LLM architectures. We evaluate these approaches on three vision-8

based datasets: human height-weight pairs, small objects with known9

weights, and Amazon products with their prices. Our results show that10

aggregating deterministic (temperature 0) outputs from a diverse set of11

models is the most effective strategy, outperforming any single model and12

ensembles that rely on stochasticity from higher temperatures. We find13

that temperature-induced diversity introduces more noise than signal. The14

median aggregation of deterministic responses from multiple models out-15

performed 67% of individual guesses on average, a figure that rises to 75%16

when relevant context is provided, demonstrating that model diversity is17

the key to leveraging the wisdom of LLM crowds. By establishing core prin-18

ciples for forming an effective LLM crowd, this work provides a stepping19

stone for more complex, LLM-driven social simulations.20

1 Introduction21

A century after Galton’s famous demonstration of a crowd correctly guessing an ox’s weight,22

the “wisdom of crowds” continues to inspire research in social science and machine learn-23

ing (Galton, 1907; Surowiecki, 2004). Large language models (LLMs) offer a modern take on24

this concept. These models are not single, fixed predictors; they generate varied outputs25

through stochastic processes, each with its own biases, offering different perspectives on26

a problem (Wei et al., 2022). This response diversity allows treating each model call as27

an independent agent, like an individual in a crowd. In this view, LLM calls can act as28

independent computational agents in a synthetic society, offering uninfluenced judgments29

and enabling simulations of decentralized social systems.30

Modern LLMs can produce multiple outputs in one inference call via sampling methods.31

These outputs represent diverse predictions, each with a numerical estimate and token32

probabilities that reflect the model’s internal uncertainty (Wei et al., 2022). Aggregating33

outputs from different models, or generating multiple outputs from a single model using34

various temperatures, lets us explore two distinct sources of diversity. An ensemble of35

different models provides model diversity, where each agent has a unique architecture and36

training background. Alternatively, varying the temperature for a single model generates37

response diversity from the stochasticity of the sampling process. This is analogous to38

traditional machine learning ensembles, where combining predictions from different models39

or samples reduces individual errors and improves overall performance (Hansen & Salamon,40

1990). However, unlike classical ensemble methods where base learners are designed to41

be complementary (Hansen & Salamon, 1990), LLMs produce unstructured, stochastic42

outputs, making it unclear how best to combine them. Moreover, the relationship between43
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individual sampling variability and collective accuracy in generative language models44

remains underexplored (Lau et al., 2024).45

In this work, we ask: What is the most effective way to generate and aggregate diverse outputs from46

LLMs to achieve higher predictive accuracy? We address this by formalizing LLM aggregation47

as a computational extension of crowd wisdom and comparing model diversity versus48

response diversity. Our findings indicate that aggregating deterministic (temperature 0)49

outputs from a diverse model ensemble yields the most accurate and reliable estimates. This50

suggests that variability from higher temperatures introduces more noise than signal, and51

that the most effective “crowd” is a group of diverse “experts,” each providing their single52

most confident answer. Our work suggests that combining outputs from different models53

can yield reliable numerical estimates without needing larger or more complex models.54

We evaluated our approach on three vision-based estimation tasks using datasets for human55

height and weight, object mass from images, and product prices from Amazon listings.56

These datasets allow us to focus on predicting numerical values from images, sometimes57

with additional context. Section 3.1 provides more details on our datasets and methodology.58

Surowiecki (2004) defines several criteria for crowd wisdom. In Section 3.1, we discuss59

these criteria and how our experiments are designed to meet them. We used several vision-60

enabled LLMs, including Qwen2 Vision Language 72B Instruct and Llama 3.2 Vision 11B61

(from the Together API1), and GPT-4o-mini2. To investigate response diversity, we varied62

the temperature across five settings (0.2, 0.4, 0.6, 0.8, and 1.0) in our initial experiments,63

treating each API call as an independent agent. This mirrors the conditions of Galton’s64

experiment. By combining these independent guesses, we aimed to find the best strategy65

for a collective prediction that is more accurate than any single response.66

Our results show that the median aggregation of deterministic outputs from diverse models67

outperforms individual estimates by a significant margin. On average, the aggregate68

outperforms 67% of individual responses, which improves to 75% when relevant context69

is provided. We also explore different aggregation methods and the impact of additional70

context, discussing their relative performance and implications.71

2 Related Work72

Combining independent judgments improves prediction accuracy, a principle recognized in73

social science and machine learning. In the early 20th century, Galton’s ox-weight guessing74

experiment (Galton, 1907) showed that the median of diverse estimates approximates the75

true value. This “wisdom of crowds” effect (Surowiecki, 2004) depends on diverse and76

independent estimates, which help cancel out errors. Simoiu et al. (2019) found that the77

median outperforms 65% of individual guesses, confirming the effect in humans.78

This concept has influenced ensemble methods in machine learning. Techniques like bag-79

ging (Breiman, 1996) and boosting (Freund & Schapire, 1996) combine multiple models to80

reduce variance and prevent overfitting, often improving accuracy. In computer vision, deep81

ensembles (e.g., averaging predictions from several deep residual networks) have achieved82

state-of-the-art performance (He et al., 2016). Similarly, in NLP, aggregating outputs from83

various language models improves results.84

Recent research on large language models (LLMs) shows some reasoning abilities emerge85

only in sufficiently large models (Wei et al., 2022). Self-consistency decoding (Wang et al.,86

2023) combines multiple outputs to improve reliability and accuracy, suggesting that ensem-87

ble methods can reveal latent capabilities. Lau et al. (2024) and Guo et al. (2024) explore how88

varying prompts elicits diverse reasoning outputs. Lau et al. (2024) vary prompt wording to89

examine problems from different angles, while Guo et al. (2024) use multiple prompts to90

reduce issues like reasoning hallucinations. Both studies show that careful prompt design91

enhances the ensemble effect, leading to more reliable predictions.92

1https://docs.together.ai/docs/vision-overview
2https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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Pratt et al. (2024) ask whether forecasting strategies can improve LLM decision-making.93

This research aligns with agent-based models by Gao et al. (2024), where LLMs act as94

autonomous agents in simulations. Models simulating human behavior, such as in Park95

et al. (2023), show that artificial agents can mimic social dynamics. Li et al. (2023) examine96

if LLMs can understand others’ beliefs to encourage collaboration, while Shi et al. (2025)97

propose that agent interactions can reduce reasoning errors.98

Schoenegger et al. (2024) compare LLM ensemble forecasts with aggregated human pre-99

dictions in a forecasting tournament. They used an ensemble of twelve LLMs for binary100

predictions on 31 questions, comparing the result to 925 human forecasters over three101

months. Their analysis shows aggregated LLM predictions outperform a no-information102

benchmark and are statistically indistinguishable from human forecasts (within medium-103

effect-size equivalence bounds). They also show forecasting accuracy improves when104

models see the median human prediction, but simply averaging human and machine out-105

puts is best. While their work focuses on binary forecasts, which are a useful benchmark for106

the wisdom-of-the-crowd effect, our study extends this paradigm to continuous estimation107

tasks using vision-enabled LLMs. Numerical guesses, like weight or cost, have more direct108

real-world applicability than binary predictions. By aggregating continuous outputs from109

LLMs at different temperatures, our approach attempts to utilize prediction variability for110

more accurate and robust estimates.111

This work aligns with the findings of Schoenegger et al. (2024) by demonstrating that112

ensemble methods are also effective for complex tasks with visual input and continuous-113

valued outputs. While ensemble learning, prompt diversity, and agent-based modeling are114

often studied independently, our approach combines all three, treating LLM configurations115

as heterogeneous agents whose collective output can be systematically combined.116

The next section describes our experimental methodology for simulating this ensemble117

behavior and evaluating its predictive accuracy across different datasets.118

3 Methodology119

3.1 Experimental Setup120

3.1.1 Datasets and Data Selection121

We used three datasets, randomly sampling 100 items from each with a fixed seed (42) for122

reproducibility. First, from Kaggle’s “Height-Weight Images” dataset 3, we used photos123

of people with their known weight (lbs) and height (feet, inches). Second, from the Im-124

age2Mass dataset(Standley et al., 2017), we used photos of small objects with their weight125

(lbs, converted to grams) and dimensions (inches). Third, from an Amazon Canada listings126

dataset by Asaniczka4, we used product images and their prices (CAD).127

3.1.2 Models and Configuration128

We used three vision-language models (using the available model versions in June 2025):129

• via OpenAI API: GPT-4o-mini130

• via Together API: Qwen2-VL-72B-Instruct and Llama-3.2-11B-Vision-Instruct-131

Turbo132

3.1.3 Prompts Used133

Table 1 provides the exact prompts used in our experiments.134

3https://www.kaggle.com/datasets/virenbr11/height-weight-images
4https://www.kaggle.com/datasets/asaniczka/amazon-canada-products-2023-2-1m-products/

data

3
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Dataset Without Context With Context

Height-Weight “Based solely on the image, give your
best numeric estimate of the weight (in
lbs) of the person. Output only the
number and nothing else.”

“Based on the image and the additional
information that this person is
[HEIGHT] tall, give your best numeric
estimate of their weight (in lbs).
Output only the number and nothing
else.”

Image2Mass “Based solely on the image, give your
best numeric estimate of the weight (in
grams) of the object. Output only the
number and nothing else.”

“Based on the image and knowing that
the object has dimensions [DIMENSIONS]
inches, give your best numeric estimate
of the weight (in grams) of the object.
Output only the number and nothing
else.”

Amazon Price “Based solely on the image, give your
best numeric estimate of the price (in
CAD) of the product. Output only the
number and nothing else.”

“Based on the image and the product
title ’[TITLE]’, give your best numeric
estimate of its price (in CAD). Output
only the number and nothing else.”

Table 1: Prompt templates used for each dataset and context condition. Variables in brackets
were replaced with actual values during experiments.

3.1.4 Experimental Parameters135

For the initial two datasets, we tested five temperature settings for each of the three models:136

0.2, 0.4, 0.6, 0.8, and 1.0. Each configuration was repeated 15 times per image, resulting in137

225 total API calls per image (3 models × 5 temperatures × 15 repetitions). Based on our138

finding that temperature adds more noise than signal (see Section 4), our Amazon Price139

experiments used only temperature 0. For this dataset, each model was queried once per140

image. All other parameters were held constant: max_tokens=10 and top_p=1.0.141

3.1.5 Task Definition and Wisdom of Crowds Criteria142

The task was to estimate a numerical value (weight or price) from an image.143

The “wisdom of crowds” relies on several criteria for a group to produce accurate collective144

judgments. As identified by Surowiecki (2004), these are:145

1. Diversity: Each individual contributes unique insights. This variance in opinion146

helps to counterbalance errors and biases, improving collective accuracy.147

2. Independence: Judgments must be independent. Uncorrelated errors tend to cancel148

out when aggregated, making the collective estimate more accurate.149

3. Decentralization: Decision-making should be decentralized, allowing individuals150

to use their own knowledge.151

4. Aggregation Mechanism: A mechanism is needed to aggregate individual judg-152

ments into a collective decision, from simple averaging to more complex weighted153

combinations.154

These conditions allow for a robust and accurate collective decision that can exceed individ-155

ual capabilities (Surowiecki, 2004), mirroring principles of decentralized social systems.156

3.1.6 Experimental Design157

To meet these criteria, we experimented with different LLMs in various settings (Figure 1).158

This allowed us to compare two primary sources of diversity: model diversity, from using159

an ensemble of different models, and response diversity, from generating multiple outputs160

from a single model at various temperatures. Temperature controls output randomness161

(lower is more deterministic). This will allow us to compare whether a crowd of diverse162
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Figure 1: Architecture of the initial LLM ensemble used for the Height-Weight and Im-
age2Mass datasets. The Amazon Price experiments followed a more simplified approach.

models is wiser than a crowd of diverse responses from a single model. We treated each API163

call as an independent agent with no shared context or communication between calls , in an164

attempt to mimic collecting diverse, independent, and decentralized guesses from a crowd.165

In Section 3.2, we consider different aggregation methods to satisfy the fourth criterion.166

Finally, we aggregated the outputs to see if the collective estimate could outperform individ-167

ual predictions. Comparing these aggregates to the ground truth allowed us to assess the168

collective and predictive potential of LLM ensembles. Human crowds often use context to169

improve their predictions. We simulated this by giving LLMs extra context, hypothesizing170

it would improve accuracy. For the Height-Weight and Image2Mass datasets, we provided171

context by including the person’s height or object’s dimensions in the prompts. We then172

compared predictions with and without context to assess its impact. For the Amazon Prices173

dataset, we gave the product title in the prompt.174

3.2 Aggregation and Weighting Methods175

We combined independent outputs from multiple LLM calls for a robust aggregate estimate.176

We considered two main unweighted aggregation methods:177

1. Mean: The arithmetic mean x̄ = 1
n ∑n

i=1 xi (sensitive to outliers).178

2. Median: The median, the middle value of sorted predictions (robust to outliers).179

We also explored weighting predictions by token-level confidence (log-probabilities), but180

our initial analysis showed no significant benefit over unweighted methods. We therefore181

focus on the mean and median in our main analysis. All aggregation methods are blind to182

the ground truth, combining only the LLM outputs.183

3.3 Ranking184

We assess performance using a ranking mechanism similar to Simoiu et al. (2019). For each185

image, we rank individual prediction errors to find the rank percentile of the aggregated186

estimate. This percentile shows the fraction of individual predictions the aggregate outper-187

forms (a lower percentile means fewer individual predictions were better). For statistical188

significance, we use a one-sided paired t-test on the rank percentiles for each image, as we189

compare methods on the same items.190
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Figure 2: An example from the Height-Weight dataset showing different model biases.
Qwen-2 and GPT-4o-mini tend to underestimate weight, while Llama-3.2 overestimates.
The median of the estimates is closer to the true value than any single model’s.

3.4 Mathematical Model191

Consider an entity E with a d-dimensional attribute vector θ ∈ Rd. A digital image of it,192

P(E), is shown independently to m LLM agents at temperature T = 0.193

Each agent Ai produces an estimate194

θ̂i = fi
(

P(E)
)
= θ+ εi, i = 1, . . . , m, (1)

where εi denotes the idiosyncratic error of agent i.195

We then form a coordinate-wise median aggregation:196

θ̃j = median
{

θ̂1j, θ̂2j, . . . , θ̂mj
}

, j = 1, . . . , d. (2)

We assume each fi is a distinct world model (due to different architectures, data, and biases),197

so their error vectors εi have zero median and are weakly correlated (Cov(εi, εj) ≈ 0 for198

i ̸= j). This assumption best applies when aggregating across diverse model architectures,199

which our results show is most effective.200

4 Results and Discussion201

Our findings show that: 1) median aggregation is more effective than the mean; 2) model di-202

versity is the main driver of performance; 3) temperature-induced diversity adds more noise203

than signal; and 4) aggregation produces a “wise” crowd whose estimate is significantly204

better than a typical individual guess. We will now go over each of these statements.205

Median aggregation is most robust. Our first analysis confirmed the median is superior206

to the mean for aggregation. Estimation tasks are prone to outliers, causing the mean to207

perform poorly as an aggregation method. Our experiments (3) show that the median’s rank208

percentile was significantly lower (better) than the mean’s across all datasets and conditions209

(p < 0.001 for all testable comparisons). We therefore focus on median-based approaches.210

Model diversity drives performance. Our central hypothesis, that a crowd of diverse211

models outperforms any single model, is strongly supported by our results. The “All212

Models” median aggregate consistently achieved a better rank percentile than any single213

model’s median, as shown in Figure 4. For instance, the “All Models” median at Temperature214

0 was significantly better than ‘GPT4o-mini‘ alone (p = 0.0017, height-weight) and was215

never significantly worse than any single model. This confirms that aggregating estimates216

from diverse models cancels individual biases (Figure 2).217

Temperature adds noise, not signal. We questioned if stochasticity from higher tempera-218

tures provides useful diversity. It does not (Figure 4). A paired t-test reveals no significant219
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Median is a More Robust Aggregation Method than Mean

Aggregation Method
Median
Mean

Figure 3: Median vs. Mean aggregation performance. The median consistently achieves a
lower (better) average rank percentile, confirming its robustness.

performance difference between ‘Temp 0‘ and ‘All Temps‘ median aggregates, which shows220

temperature-induced randomness is not a source of “wisdom,” but adds statistical noise221

(and additional API calls) without improving the estimate. Thus, the most effective strategy222

is using the single most confident guess (Temperature 0) from each diverse model.223

Context benefit is task-dependent. Providing context (e.g., height) significantly improved224

performance for the ‘height-weight‘ dataset (p < 0.01). Similarly, for the Amazon Price225

dataset, context (product title) significantly improved accuracy (p < 0.0001). However,226

for ‘image2mass‘, context (dimensions) had no significant effect. This suggests context is227

beneficial only if relevant to the model’s reasoning for that task.228

Aggregates are better than individuals. To test for a “wise” crowd, we checked if our229

best method’s rank percentile (‘Median - All Models - Temp 0‘) was significantly below230

0.5 (the expected rank of an average individual). A one-sample t-test confirms this with231

high confidence (p < 0.0001) across all conditions. Table 2 and Figure 5 summarize this232

result. This confirms that the aggregate is not just better than a few noisy individuals but is233

statistically superior to the typical individual guess, which shows a wisdom of the crowd234

effect. On average, our method outperforms 67% of individual responses without context,235

rising to 75% with context.236

Dataset Without Context With Context

Height-Weight 0.366 0.242
Image2Mass 0.259 0.297
Amazon Price 0.357 0.212

Average 0.327 0.250

Table 2: Average rank percentile of the best aggregate method (Median of All Models, Temp
0). In all conditions, the aggregate significantly outperforms the expected rank of an average
individual (0.5), with p < 0.0001 for a one-sample t-test.
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All Models Qwen2 GPT4o-mini Llama3.2
Model Group Used for Median Aggregation
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Figure 4: Diversity strategies. Median aggregation performance across model groups and
strategies. Aggregating “All Models” (leftmost) performs well, and Temperature 0 (blue)
is comparable to or better than All Temperatures (orange). This plot shows results for the
two datasets where temperature was varied; the Amazon Price dataset, which only used
Temperature 0, is omitted as it does not have an “All Temps” condition to compare against.

5 Limitations and Future Work237

Our study has several limitations that suggest directions for future research. First, our238

analysis uses three datasets with small sample sizes (100 instances each). Larger, more239

diverse datasets are needed to generalize our conclusions. Second, our experiments only240

cover estimating weight and price. As Simoiu et al. (2019) noted, crowd performance varies241

by task. Future work should test our findings on other tasks, like forecasting or subjective242

judgments. Third, we lack a direct comparison to a human baseline for these visual tasks,243

which would provide valuable context.244

In future work, we will investigate how sampling parameters (e.g., top-p, top-k) affect output245

diversity and aggregate accuracy. We also aim to use token-level distributions (entropy,246

perplexity) for more refined aggregation weighting. We will explore dynamic multi-agent247

interactions where agents adjust predictions based on cues and peer outputs, simulating248

social learning. This would let us model influence and belief propagation as in human social249

networks, enabling large-scale experiments on collective intelligence. Such simulations250

could systematically test variables like communication topology and information cascades251

8
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Amazon Price Height Weight Image2Mass
Dataset
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Wisdom of the Crowd: Aggregate Performance vs. The Average Individual

Condition
Without Context
With Context
Average Individual Rank (0.5)

Figure 5: The aggregate is wiser than the average individual. Performance of our best
method (Median of All Models, Temp 0). Bars show the average rank percentile (95% CI).
The dashed line at 0.5 is the expected rank of an average individual. The aggregate is
significantly better in all cases.

at a scale and with a level of control that is infeasible in human studies. Finally, we plan to252

use a Fermi-inspired estimation5 strategy, using chain-of-thought prompting to make LLMs253

decompose complex tasks into components (e.g., material, dimensions). Estimating and254

combining these components may enhance final prediction accuracy.255

6 Conclusion256

Our work shows that “wisdom of the crowds” principles apply to LLM ensembles for257

vision-based estimation. We find that the source of diversity is critical, as our results258

demonstrate that aggregating deterministic (temperature 0) outputs from diverse models259

(model diversity) is more effective than generating multiple outputs from a single model260

using temperature sampling (response diversity). This is supported by two of our main261

findings: 1) aggregating across models consistently outperformed any single model, and262

2) temperature-induced randomness added noise without improving estimates. Therefore,263

the most robust strategy is a committee of diverse “expert” models each giving its most264

confident estimate. This work provides empirical support for LLMs in agent-based modeling265

and shows the path to collective intelligence is model diversity, not sampling randomness.266
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