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Abstract

Large language models (LLMs) built on exist-001
ing reinforcement learning with human feed-002
back (RLHF) frameworks typically optimize re-003
sponses based on immediate turn-level human004
preferences. However, this approach falls short005
in multi-turn dialogue settings, such as online006
math tutoring. We propose a method to enhance007
LLM-based tutors by representing the dialogue008
history with a lower-dimensional latent state009
representation of a student and optimizing a010
long-term policy to determine high-level ac-011
tions based on the latent state. The goal is to012
better align the tutor’s behavior with the long-013
term objective of guiding the student towards014
solving a target math problem on their own.015
Our model is lightweight, requiring less com-016
putational resources than prior work of training017
the tutor policy end-to-end to directly output018
the tutor’s next utterance. Our experiment re-019
sults demonstrate that these modifications lead020
to improved long-term outcomes compared to021
prompting in LLM-simulated tutoring tasks.022

1 Introduction023

Large language models (LLMs) have achieved re-024

markable success in complex tasks, such as solving025

math problems (Trinh et al., 2024), summarization026

(Stiennon et al., 2022), and code generation (Chen027

et al., 2021). These models can interact with hu-028

mans through open-ended text outputs and have029

been explored across a wide range of domains, in-030

cluding education (Wang et al., 2024a) and health-031

care (Clusmann et al., 2023). This widespread ap-032

plication is largely due to their easily leveraged033

capabilities, including in-context learning from034

user-provided demonstrations (Dong et al., 2024),035

instruction-tuning (Liu et al., 2021), as well as rea-036

soning (Zelikman et al., 2022). A major area of037

research focuses on aligning the behavior of lan-038

guage models with human preferences, a process039

referred to as reinforcement learning with human040

feedback (RLHF) (Ouyang et al., 2022).041

Figure 1: The default tutor trained with existing RLHF
algorithms responds to the student’s response with an op-
timal turn-level response, as the preference label is pro-
vided per turn. However, a better tutor should respond
with the conversation-level outcome in mind, which
may include asking a follow-up question to assess the
student’s background knowledge about the problem. We
propose a three-step approach to optimizing conversa-
tion level outcomes with LLM-based tutor.

However, one main limitation of the existing 042

RLHF framework (Ouyang et al., 2022; Rafailov 043

et al., 2024) is that LLMs are optimized only to 044

generate the most preferred single-turn responses, 045

rather than optimizing for conversation-level out- 046

comes. This is surprising given that many common 047

use cases of LLMs involve multi-turn interactions, 048

as discussed in prior work (Hong et al., 2023; Zhou 049

et al., 2024; Shani et al., 2024; Chen et al., 2025). 050

In particular, Hong et al. (2023) highlights that the 051

default LLM’s response tends to be generic and ver- 052

bose, which is sub-optimal in many goal-directed 053

conversations, such as teaching a new concept, or 054

personalizing a travel itinerary to specific user’s 055

interests. 056

In this work, we focus on online math tutor- 057

ing as an example of complex, goal-directed di- 058

alogue, where short-term and long-term optimal 059

behaviors differ substantially. For example, imag- 060

ine a scenario in which a sixth-grade student, strug- 061

gling with a math problem, asks an online tutor 062

for help. In a multi-turn conversation, the tutor 063
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can ask follow-up questions to assess the student’s064

background knowledge, provide scaffolds to help065

the student solve the problem independently, and066

even encourage the student to try again. However,067

if the tutor expects no further interaction with the068

student, the tutor may instead give the solution069

directly, thereby, hurting the student’s chance of070

solving the problem on their own. In order to help071

the student solve the problem independently, the072

tutor needs to leverage long-term optimal strate-073

gies based on the student’s anticipated response074

and future dialogue turns.075

Customized prompts may help mitigate this is-076

sue, but as pointed out by Wang et al. (2024a),077

prompt engineering often fails to produce peda-078

gogically meaningful behaviors from LLM tutors.079

Other works train language models with reinforce-080

ment learning (RL) objectives using long-term out-081

comes, rather than turn-level preferences, as the082

reward signal (Hong et al., 2023; Snell et al., 2023;083

Hong et al., 2024; Zhou et al., 2024; Shani et al.,084

2024). However, these policies are trained at the085

token level, which lacks interpretability of the gen-086

erated response and requires substantial computa-087

tional resources and training data.088

To improve on the existing methods, we propose089

a novel decomposition of this problem into four090

parts:091

1. Inferring the student’s internal state based on092

dialogue history using an LLM,093

2. Choosing an optimal high-level action based094

on the inferred state and the long-term goal,095

3. Few-shot instruction-tuning of an LLM to gen-096

erate the tutor’s response conditioned on the097

selected high-level action,098

4. Collecting exploratory data to improve the099

quality of the policy learned in (2).100

Our method draws on ideas from Reinforcement101

Learning, an area of research focused on planning102

optimal actions for long-term rewards (Sutton and103

Barto, 2018). Specifically, we define long-term104

rewards based on whether the student solves the105

target math problem correctly within the maximum106

number of dialogue turns. Unlike prompt engineer-107

ing, we provide a principled framework grounded108

in RL for optimizing future outcomes. In contrast109

to prior work using RL, we reduce the computa-110

tional burden of learning a tutor policy by defining111

the policy over substantially smaller state and ac- 112

tion spaces. By inferring a low-dimensional student 113

state from a longer conversation history, we keep 114

the state space small and fixed-sized, even as the 115

conversation length increases. The policy selects 116

an optimal high-level action, which is interpretable, 117

and the tutor’s intent is clear to the system designer. 118

Contributions Tutoring middle-school students 119

on math problems requires planning for long hori- 120

zons. Strategies like probing the student’s math 121

level and encouraging them to make another at- 122

tempt are important, but they do not naturally 123

emerge in chat-bots optimized for single-turn re- 124

sponses. In order to optimize for conversation-level 125

outcomes, we focus on the following key aspects: 126

• Extracting a compact representation of the stu- 127

dent’s states from long conversation history, 128

• Learning a long-term optimal RL policy that 129

maps student’s state representation to a high- 130

level action, 131

• Introducing a new exploratory data collection 132

strategy to simulate diverse tutoring scenarios, 133

which are ultimately used for policy optimiza- 134

tion. 135

Our experiment results with the simulated stu- 136

dent based on Claude 3 Sonnet (Anthropic, 2024) 137

show that our proposed method substantially im- 138

proves the student’s problem-solving success rate 139

compared to prompt engineering. 140

While we use online math tutoring as a concrete 141

example, our framework is broadly applicable to 142

other multi-turn dialogue settings where greedily 143

optimizing each turn’s response may not align with 144

overall conversation-level outcomes. 145

2 Related Work 146

RL for multi-turn dialogue optimization Prior 147

works apply RL to optimize LLM-based chat-bots 148

for long-term outcomes. Verma et al. (2022) pro- 149

pose sampling a set of candidate responses from a 150

base LLM and selecting the most optimal response 151

based on the Q-value estimates. Similarly, Yu et al. 152

(2023); Chen et al. (2025) use Monte Carlo Tree 153

Search to simulate or predict the future outcomes 154

of each candidate response and select the highest 155

scoring response. In contrast to sampling based 156

methods, Snell et al. (2023) train a transformer- 157

based value function and policy using offline RL. 158
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Hong et al. (2023, 2024) build on the work by159

Snell et al. (2023) by improving data generation160

for downstream RL policy optimization. They first161

generate synthetic data using an LLM and improve162

on the existing scenarios using an LLM-based critic163

(Hong et al., 2023) or a hindsight controller (Hong164

et al., 2024) to suggest new, improved, responses165

compared to the ones already observed in the data.166

While their work relies on hand-designed prompts167

to propose alternative responses, we provide an168

optimism-guided approach, based on Q-value func-169

tions in RL, for identifying alternative moves that170

can improve long-term outcomes.171

Zhou et al. (2024) frame multi-turn dialogue172

generation as a hierarchical RL problem and learn173

a value function per turn. Shani et al. (2024) study174

multi-turn RL using preference data based on the175

Bradley-Terry reward model. A key distinction176

between existing work and our work is that instead177

of learning a token-level policy, we abstract the178

policy to operate over a set of discrete actions, thus179

making policy learning more efficient and feasible180

without GPU training.181

Use of Generative AI & LLMs in Education182

The use of LLMs in K-12 math education can183

be broadly categorized into two types: human-184

AI hybrid approaches and AI-based approaches185

(Sahlman and Grandjean, 2023). The former cat-186

egory focuses on providing and improving LLM-187

based tools for human teachers to use, for example,188

through real-time assistance during tutoring ses-189

sions (Wang et al., 2024a,b), and educational con-190

tent evaluation (He-Yueya et al., 2024). Notably,191

Wang et al. (2024b) provide a system for tutors to192

select from a set of strategies, such as “ask student193

to retry,” “encourage student,” and “prompt student194

to explain,” and review LLM-generated responses195

appropriate for the current conversation context and196

the selected strategy.197

The other line of work focuses on building LLM-198

based chatbots for directly interfacing with stu-199

dents. For example, Khanmigo (Shetye, 2024)200

is an online tutor powered by GPT-4 (OpenAI201

et al., 2024), and LearnLM (Team et al., 2024)202

is another LLM-based tutor leveraging the model’s203

instruction-following capabilities. Within the ef-204

fort of designing LLM tutors, Kumar et al. (2023)205

measure the student’s learning outcomes across dif-206

ferent dimensions of LLM tutors, such as types and207

quality of generated explanation.208

3 Setup 209

Following the notations of Cai et al. (2022), 210

we denote the conversation between a teacher 211

X and a student Y as a sequence of turns 212

C = {UX
1 , UY

1 , ..., UX
N , UY

N }, where N repre- 213

sents the number of dialogue turns (we set the 214

maximum dialogue length as 20). Additionally, 215

we include RY
n , an indicator of whether the stu- 216

dent in the n-th turn has solved the problem 217

correctly or not, so the resulting C becomes 218

{UX
1 , UY

1 , RY
1 , ..., U

X
N , UY

N , RY
N}. If the student 219

has failed to solve the problem correctly within the 220

maximum dialogue turn, a penalty of -1 is given. 221

The session ends when the student solves the prob- 222

lem correctly. 223

The value of a conversation (i.e., conversation- 224

level outcome) is measured by the discounted sum 225

of per-turn rewards,
∑N

n=1 γ
nRY

n . Note that with 226

any γ < 1, the value is higher if the student solves 227

the problem faster due to the smaller discounting 228

amount. 229

At each turn, the teacher generates UX
n 230

given the conversation history so far, HY
n−1 = 231

{UX
1 , UY

1 , ..., UY
n−1}. The student responds to the 232

teacher with UY
n . We use πθ (“tutor policy") to 233

denote this mapping from HY
n−1 to UX

n . The tutor 234

policy is parameterized by a neural network, and 235

the goal is to learn a good πθ such that the expected 236

value of the conversation can be maximized. 237

4 Synthetic Dialogue Generation 238

We follow the data generation protocol used by 239

prior work (Hong et al., 2023; Shani et al., 2024), 240

where a single LLM is prompted to generate the 241

entire conversation between a teacher and a student 242

on a particular topic. Specifically, we use Claude 243

3 Sonnet (Anthropic, 2024) to simulate 3,000 con- 244

versation scenarios on a SAT-level math problem 245

on average speed from Kumar et al. (2023). Ap- 246

pendix:A.1 has the prompt and the math prob- 247

lem used for data generation. To make the gener- 248

ated scenarios more realistic, we include conversa- 249

tions examples of a human student and an AI tutor 250

from the algebra-level subset of Khan Academy’s 251

CoMTA dataset (Miller and DiCerbo, 2024)1 in 252

1This dataset contains 188 dialogues between an LLM
tutor and a student, where each example is anonymized to
remove any association with a specific individual, and is in-
tended to assess an “LLM’s ability to evaluate math in the tu-
toring context" (Miller and DiCerbo, 2024). Khan Academy’s
dataset license restricts the use of this dataset to “internal non-
commercial evaluation of models." The authors were approved
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Algorithm 1 Optimizing a tutor policy using RL

1: Input: conversation dataset D
2: Dπ = ∅
3: for C ∈ D do
4: for n = 1 to max turn -1 do
5: Map HY

n 7→ SY
n .

6: Map UX
n 7→ AX

n .
7: Assign reward RY

n based on UY
n .

8: Add (SY
n , AX

n , RY
n , S

Y
n+1) to Dπ.

9: end for
10: end for
11: Run an offline RL algorithm on Dπ with a

discount factor γ.
12: Return: the optimized tutor policy πθ.

the prompt. A successful conversation is rewarded253

by +1 if the student solves the problem correctly254

within the maximum dialogue length. We penalize255

an unsuccessful dialogue by -1 at the last conversa-256

tion turn, and any intermediate turns get 0 rewards.257

5 Approach258

Our key distinction from prior work using RL259

for multi-turn dialogue optimization is due to:260

mapping a conversation history to a smaller-261

dimensional representation of hand-designed fea-262

tures representing the student’s latent state; and263

selecting a high-level action among the following264

choices: (1) instruct, (2) encourage, (3) bring the265

student’s focus back to the session, and (4) ask a266

question. Finally, the LLM tutor responds condi-267

tioned on the selected high-level action.268

Notations The student’s latent feature in the n-269

th conversation turn, extracted from HY
n , is de-270

noted by SY
n , and the teacher’s high-level action,271

extracted from UX
n , is denoted by AX

n . Since272

SY
n and RY

n are always defined for the student,273

and AX
n always refers to the tutor’s action, we274

drop the superscripts X and Y hereafter for sim-275

plicity. The conversation is now represented as276

C = {S1, A1, R1, ..., Sn, An, Rn}.277

Our proposed tutor policy πθ is a mapping from278

Sn to An. Unlike the enormous space of possible279

tokens for HY
n and UX

n , the spaces of Sn and An280

have substantially smaller dimensionality, which281

makes RL-based policy optimization more efficient282

even without GPUs and a large amount of data.283

to use the data for this purpose by the dataset owners.

5.1 Mapping dialogue history to student state 284

representation 285

One challenge of training a tutor policy is that the 286

input length varies as the conversation continues. 287

A transformer architecture (Vaswani et al., 2023) 288

can handle this issue but is computationally expen- 289

sive. In order to learn a lightweight model, we use 290

a lower-dimensional representation of the conver- 291

sation history and define the tutor policy over this 292

reduced state space. 293

Specifically, we prompt Claude 3 Sonnet (An- 294

thropic, 2024) with the current dialogue and a list 295

of questions to transform the dialogue history into a 296

compact representation given by Sn. The questions 297

include: 298

1. Did the tutor ask a question to the student in 299

the most recent turn? 300

2. Is the student explicitly asking the tutor a ques- 301

tion? 302

3. Is the student expressing positive sentiment? 303

The full list is given in Appendix:C. In addition 304

to our own hand-designed questions, we use the 305

models by Wang and Demszky (2024), which are 306

specifically designed for K-12 math classroom dis- 307

course data to analyze the amount of mathematical 308

contributions made by students. 309

As a result, every dialogue history ending with 310

the student’s response HY
n is mapped to a 25- 311

dimensional vector Sn. While the length of HY
n 312

grows with n as the dialogue continues, Sn has a 313

fixed size, so the input to our policy πθ is always a 314

25-dimensional vector. 315

Figure 2: RL policy training is preceded by data gen-
eration, processing, and augmentation. The tuples of
(student’s state, tutor’s action, reward) are used for op-
timizing the tutor policy, and the optimized tutor is
deployed to interact with students.
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5.2 Inferring high-level action from tutor’s316

utterance317

Similar to our motivation for using compact student318

state representation, we define a set of discrete319

actions from which the tutor policy can choose.320

Before using RL to train the policy, we categorize321

the tutor’s utterance into one of the four high-level322

actions: (1) instruct, (2) encourage, (3) bring the323

(distracted) student’s focus back to the session, and324

(4) ask a question, which are adapted from the high325

and low-quality teaching strategies in Wang et al.326

(2024b). We add refocusing as a new category,327

as the student simulator is prompted to be easily328

distracted, and therefore, ensuring that the student329

stays on topic is a feature of effective tutoring.330

We set up another evaluator LLM using Claude 3331

Sonnet to infer the high-level action underlying the332

teacher’s utterance. The prompt used for inferring333

the high-level action is in Appendix:D.334

To assign a per-turn reward to the student, we use335

another LLM to extract the student’s most likely336

answer based on their utterance and check whether337

the extracted value matches the solution.338

5.3 Optimizing a tutor policy with RL339

To make our setting more realistic, we make it an340

offline RL task, where some conversation data is341

collected from a potentially sub-optimal (baseline)342

tutor, and the goal is to improve the baseline pol-343

icy. In contrast to online RL settings, intermediate344

policies cannot be tested and therefore, policy op-345

timization is done purely based on the static data.346

This condition is natural for building LLM tutors:347

the system designer has access to conversation dia-348

logues between students and (AI or human) tutors,349

optimizes the policy, and deploys it.350

One might ask: What’s the advantage of RL351

compared to fine-tuning (or behavioral cloning)?352

Even if we had access to actual student and teacher353

dialogue, the effectiveness of teaching may vary354

significantly between expert and beginner teachers355

(Stockero et al., 2017), so we cannot guarantee356

that the data is always optimal. Moreover, our357

synthetic data is generated using the baseline LLM358

as the tutor, which is likely sub-optimal. In fact, our359

experiment results show that RL-optimized policy360

outperforms behavioral cloning.361

Given the conversation dataset C, we optimize362

the tutor’s policy πθ based on the actions most363

likely to yield higher expected rewards. Impor-364

tantly, rather than optimizing the tutor for a single-365

step reward, we aim to maximize the overall 366

conversation-level outcome. This requires consid- 367

ering the value of future student states, not just the 368

current one. RL provides a computational frame- 369

work for optimizing long-term outcomes through 370

the Q-value, which is defined as: 371

Q(sn, an) = Eπθ

[
N∑

t=n+1

γtRt | Sn = sn, An = an

]
(1)

372

This represents the expected rewards of following 373

the tutor policy prescribed by πθ from the n-th turn. 374

This Q-value is parameterized by µ and learned to 375

minimize the following loss over the data points: 376

L(µ) =
∑

(sn,an,rn,sn+1)∈D

377

[(
rn + γmax

a
Qµ(sn+1, a)

)
−Qµ(sn, an)

]2
(2)

378

This process is called Q-iteration (Ernst 379

et al., 2005). The resulting πθ greedily chooses 380

argmaxaQµ(sn, a) for each student state. 381

Offline RL often encounters challenges due to 382

out-of-distribution states and actions, as the opti- 383

mized new policy may take unseen actions resulting 384

in previously unseen states outside the existing data 385

distribution. This is a well-studied topic in offline 386

RL, and successful algorithms (Kumar et al., 2022; 387

Trabucco et al., 2021; Kumar et al., 2019) exist to 388

address this challenge. We choose Conservative 389

Q-learning (CQL) by Kumar et al. (2020), but our 390

framework can work with any choice of algorithm. 391

5.4 Tutor’s response conditioned on the 392

selected high-level action 393

For each tutor’s turn, the policy πθ chooses an opti- 394

mal high-level action which guides how the tutor 395

should respond to the student. Given this high-level 396

guidance, the teacher LLM is prompted to gener- 397

ate an appropriate response UX
n conditioned on 398

(HY
n−1, A

X
n ) and a few-shot examples queried from 399

the data. Specifically we sample uniformly at ran- 400

dom from D, where the tutor’s inferred high-level 401

action matches the selected action. The prompt for 402

conditional generation is in Appendix:B.2. 403

Fig. 3 shows how the conditional generation 404

may affect the tutor’s response. When the selected 405

action is ‘encourage,’ the tutor LLM responds with 406
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Figure 3: The tutor follows the policy’s mapping to a
high-level action and generates response conditioned on
the selected action. These are two possible responses
generated by Claude 3 Sonnet (Anthropic, 2024) for the
same dialogue history, conditioned on different actions.

“You’ve got the key information – well done!"407

whereas if the target action is ‘ask a question,’ the408

tutor asks the student whether they have worked on409

similar problems before. We leverage instruction-410

following capabilities of LLMs to transform the se-411

lected high-level action into a context-appropriate412

response.413

5.5 Exploratory data generation to improve414

tutor’s policy415

As highlighted by Hong et al. (2023, 2024), data416

augmentation is crucial for improving the quality of417

RL policy. While prior work largely rely on hand-418

designed prompts, we propose a data collection419

method based on optimism in RL.420

We first identify student states from the existing421

dataset D, where a different high-level action than422

the one chosen by the baseline policy has a higher423

Q-value estimate (i.e., higher expected future re-424

wards). We use the Q-value function Qµ
2 learned425

by minimizing the loss in Eq. (2). We can use the426

Q-value for each tuple of (s, a) in the dataset to427

assess whether there exists a better alternative a∗428

to the observed action a, and if so, estimate the429

expected value of a∗ over a, as shown in Alg. 2.430

We select 500 tuples of (s, a, a∗) with the high-431

est expected value. For each tuple, we find ex-432

amples from D, where the student’s state in the433

example matches the state in the tuple. We gen-434

erate the tutor’s next response conditioned on the435

selected action a∗ and complete the dialogue be-436

2Instead of CQL, we use fitted Q-iteration because the
offline RL algorithm relies on pessimism to handle out-
of-distribution data, and is therefore, less suitable for our
optimism-guided search.

Algorithm 2 Exploratory data collection

1: Input: annotated dataset Dπ, N budget for
data collection.

2: Dcandidate = ∅
3: Fitted Q-iteration using Dπ to obtain Qµ.
4: Behavioral cloning with Dπ to get πbc.
5: for (sn, an) ∈ Dπ do
6: val = maxaQµ(sn, a)−Qµ(sn, πbc(sn))
7: a∗n = argmaxaQµ(sn, a))
8: Add (val, sna∗n) to Dcandidate.
9: end for

10: for (sn, a
∗
n) ∈ Dcandidate[: top N] do

11: Query D with the matching student state sn
12: Generate tutors’ response conditioned on

a∗n and the retrieved scenario from L11.
13: Continue generating the rest of the

conversation.
14: Add this example to D.
15: end for

tween the student and the tutor using the default 437

LLM. The prompt used for exploratory data collec- 438

tion is in Appendix:A.2. We generate 5 scenarios 439

for each tuple and augment additional 2,500 ex- 440

amples from optimism-guided exploration to the 441

original dataset. 442

To measure the benefit of exploratory data col- 443

lection, we evaluate the tutor learned from both the 444

original and the augmented data. To distinguish the 445

two types, we use D to denote the original dataset 446

and D+ to denote the augmented one. 447

6 Evaluation 448

We evaluate the proposed tutor’s conversation-level 449

performance using a student simulator set up by 450

Claude 3 Sonnet (Anthropic, 2024). We have one 451

LLM as the tutor (following either a specific policy 452

or prompt engineering) and another LLM as the 453

student. Each tutor is tested over 300 conversation 454

samples and assessed based on the average success 455

rate of the student correctly solving the problem 456

within the maximum dialogue length. 457

The baseline models used for comparison are: 458

(1) Prompt engineering (details in Appendix:B.1), 459

(2) Supervised learning (also known as behavioral 460

cloning), (3) Fitted Q-iteration, and (4) Conserva- 461

tive Q-learning. We test four models on both the 462

original and the augmented data, resulting in seven 463

different tutors – since prompt engineering does 464

not require any training. Behavioral cloning is our 465
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version of supervised fine-tuning. Instead of match-466

ing the output token distribution, the behavioral467

cloning policy is trained to match the high-level468

action distribution.469

7 Student Simulator Results470

Our experiments are designed to answer two key471

questions: which tutor policies achieve better472

conversation-level outcomes, and how much im-473

provement is made in the tutor’s policy through474

exploratory data augmentation. Overall, we are475

interested in whether our proposed method (using476

Conservative Q-learning, known as CQL, with the477

augmented data) outperforms other baselines.478

7.1 Does our method improve the (simulated)479

student’s problem-solving success rate?480

Our experiment results with the simulated student481

show that our method – embedding the dialogue his-482

tory into a latent state representation and learning483

to select a long-term optimal action – outperforms484

prompt engineering. This holds true for both CQL485

policies, whether trained on the original data or the486

augmented data. Figure 4 shows that CQL (D) and487

CQL (D+) both achieve substantially higher aver-488

age success rates than prompt engineering. Fitted489

Q-iteration on both D and D+ also outperform the490

non-RL baselines, such as behavioral cloning and491

prompt engineering, but the benefits are smaller492

than CQL.493

Figure 4: We compare the average success rates of
three policies based on: prompt engineering, behavioral
cloning (BC), fitted Q-iteration (Q), and Conservative
Q-learning (CQL) on two different datasets: D (in blue)
and D+ (in orange) over 300 conversation samples. Er-
ror bars show 95% confidence intervals. Our proposed
method is CQL with D+.

Interestingly, behavioral cloning on D under-494

performs, but the same model trained on D+ out-495

performs prompt engineering. The benefit of data496

Dataset Success Diversity
Original D 74.64 38.53
Augmented D+ 82.83 39.35

Table 1: D contains 3,000 dialogues, and D+ contains
the same 3,000 combined with 2,500 additional samples
based on optimism.

augmentation will be further discussed in the fol- 497

lowing section. We believe the main reason for 498

this improvement is that the augmented data in- 499

cludes more successful conversation examples. By 500

intervening with promising tutor actions, data aug- 501

mentation effectively changes the baseline policy 502

represented by the dataset. Since the goal of be- 503

havioral cloning is to mimic the baseline policy’s 504

action distribution, improving the baseline policy 505

naturally leads to better performance. 506

One might expect behavioral cloning on D to 507

match the performance of prompt engineering 508

since D is also generated using prompt engineer- 509

ing (and therefore, the baseline policies should 510

match). Therefore, the baseline tutor policy should 511

be the same in both settings. However, Fig. 4 512

shows that behavioral cloning on D performs worse. 513

We suspect this gap is due to information loss 514

when projecting the dialogue history into a lower- 515

dimensional latent state representation. We learn a 516

deterministic behavioral policy that maps each la- 517

tent state to the most likely high-level action based 518

on the action frequency observed in D. However, 519

if two different dialogue histories are mapped to 520

the same latent state and are therefore, treated iden- 521

tically by the learned policy, this could create a 522

mismatch between the behavioral policy’s output 523

and prompt engineering behavior. Additionally, 524

prompt engineering has the advantage of select- 525

ing actions non-deterministically based on the full 526

dialogue history. 527

Despite the potential loss introduced by com- 528

pact state representation, RL-optimized policies 529

achieve better outcomes than prompt engineering. 530

This supports our hypothesis that the baseline pol- 531

icy from prompt engineering is not optimized for 532

conversation-level outcomes. The results further 533

show that our proposed tutor (CQL+) achieves the 534

highest average success rate across 300 conversa- 535

tion examples compared to other tutor models. 536

7.2 Does data augmentation help? 537

One of our main contributions is optimism-based 538

data collection for exploring promising tutor ac- 539
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tions. Fig. 4 is designed to compare the policies540

trained on the original data (blue) and those trained541

on the augmented data (orange). Across all poli-542

cies, from behavioral cloning to CQL, we observe543

that using the augmented data improves the tutor’s544

performance.545

Data augmentation improves the tutor in two546

ways: first, by increasing the coverage of states and547

actions, and second, by leading to more successful548

conversation examples, where the student correctly549

solves the problem on their own. In Table 1, we550

compare the average success rate in the original and551

augmented data based on number of successful examples
total number of examples552

(as before, success is determined by whether the553

student solves the problem correctly within the554

maximum dialogue length). We also measure the555

diversity of states and actions covered in both556

datasets by calculating the ratio of unique states557

and actions to the total number of dialogue turns.558

We expect the augmented data to have higher559

diversity because we design the data augmentation560

process to explore student states and tutor actions561

not already observed in the existing data. However,562

this does not guarantee higher success rates. If563

the Q-value function learned from the original data564

is mis-specified or biased, the promising actions565

under the incorrect Q-function may result in worse566

outcomes.567

Promisingly, we observe that the augmented data568

also yields a higher average success rate. This569

suggests that the Q-function learned from D is al-570

ready an improvement to the baseline policy. This571

aligns with our previous observation about the per-572

formance of Q-iteration in Fig. 4 (Q versus BC and573

Prompt). Since the augmented data includes more574

successful dialogue examples, behavioral cloning575

on the new data also achieves a higher success rate576

than the original behavioral cloning.577

7.3 Ablation: Can the tutor learn a578

generalizable strategy from a single579

problem to many new problems?580

In most cases, we do not expect RL policies to gen-581

eralize across tasks, as the generated conversations582

may look substantially different for different math583

problems. However, learning a policy from the584

latent student representation to high-level actions585

may help mitigate this challenge. For example, if586

both students working on two different problems587

are disengaged and start going off-topic, the op-588

timal tutor’s action in both scenarios may be to589

redirect the student’s attention. 590

To test this hypothesis, we evaluate our tutor 591

on seven new problems from the GSM8K dataset 592

(Cobbe et al., 2021). The success of generalization 593

relies on whether dialogue histories from different 594

problems are mapped to the same latent state, and 595

if so, whether the transition dynamics of these la- 596

tent states also match. If the transition dynamics 597

are very different for different problems, the tutor 598

cannot perform optimally in unseen settings. 599

We observe that naively generalizing the tutor 600

to new problems does not work. CQL with D+ 601

achieves a marginal performance gain compared to 602

prompt engineering, but the difference is insignif- 603

icant to conclude that our tutor can generalize to 604

new problems (see Table 2). Surprisingly, behav- 605

ioral cloning on only the exploratory data achieves 606

higher performance than either prompt engineering 607

or CQL+. More details about the ablation and our 608

hypotheses about why behavioral cloning may out- 609

perform CQL+ are discussed in Appendix: F, but 610

our results suggest that the current method is inade- 611

quate for learning a generalizable strategy. Another 612

possible direction for generalization may include 613

training with a small set of problems and evaluat- 614

ing the learned tutor on a new set of problems with 615

similar difficulty levels, rather than going directly 616

from one to many problems. 617

8 Conclusion 618

One limitation of RLHF is that the resulting model 619

is optimized for a single turn. However, in many 620

realistic settings, such as tutoring, conversations 621

between an LLM and a user or student span mul- 622

tiple turns. Greedy optimization based on turn- 623

level preferences fails to account for future out- 624

comes. There are settings where turn-level optimal 625

responses (e.g., providing a solution) don’t align 626

with the overall objective (e.g., helping the student 627

solve the problem on their own). To overcome this, 628

we propose an efficient, lightweight RL approach 629

for designing a long-term optimal LLM tutor. 630

Our framework is applicable to many other multi- 631

turn dialogue settings beyond tutoring. For exam- 632

ple, analysis by Zheng et al. (2024) on 100K conver- 633

sations across 25 state-of-the-art LLMs shows that 634

queries about technology and software are among 635

the most frequent topics users ask LLMs. When an- 636

swering these questions, chat-bots can adopt long- 637

term strategies for engaging with users over long 638

conversations. 639
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Limitations640

One potential limitation of our work is that the tu-641

tor’s policy considers only four possible high-level642

actions: instruct, encourage, refocus the student,643

and ask a question. These may not fully capture644

the diverse pedagogical strategies used by human645

tutors that we want LLM-based tutors to be able to646

leverage. We can consider using more fine-grained647

taxonomy of strategies in Wang et al. (2024b).648

Consulting with education experts can help us re-649

fine the high-level action space.650

Additionally, our experimental results rely on651

a student simulator rather than real students, so652

there may be discrepancies between AI-simulated653

and real students’ behaviors. A more robust eval-654

uation would involve deploying the proposed tu-655

tor in actual online tutoring sessions with human656

students (assuming that our system is sufficiently657

tested and evaluated to be safe against potential658

students’ jailbreaking attempts) and conducting a659

thorough qualitative assessment of the LLM tutor’s660

strategies. This would also require collaborating661

with domain experts, like math teachers and educa-662

tion researchers.663

Ethical Considerations664

Concerns have been raised about using large lan-665

guage models to simulate students. To mitigate666

potential biases in simulated students’ behaviors,667

we exclude demographic information from the stu-668

dent profile and include only the potential mistakes669

a student might make while solving the target math670

problem.671

We understand that human teachers provide672

value to classrooms and individual students that673

is irreplaceable by LLM-based tutors. While we674

believe in the potential of LLMs and Generative675

AI to improve students’ learning experiences and676

outcomes, we are also mindful of potential risks677

associated with deploying such systems to directly678

interface with students. In this work, we focus679

on online math tutoring as a concrete example of680

multi-turn dialogue and propose a computationally681

efficient approach based on RL that can be broadly682

applied to non-education-related contexts.683
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A Data generation961

For the reviewer’s easier parsing, we highlight parts962

of the prompts relevant to the student’s mistake,963

the math problem description, and a few-shot dia-964

logue examples from CoMTA dataset (Miller and965

DiCerbo, 2024) in yellow, high-level actions in966

magenta, and generated tutor and student dialogue967

snippets in lime.968

A.1 Prompt for data generation969

We use the following prompt to generate the full970

dialogue trajectory of a student and a tutor dis-971

cussing a target math problem. We use one LM972

to act as both the tutor and the student. Gener-973

ate a dialogue between an AI tutor and a sixth-974

grade student where the sixth-grade student asks975

the tutor for an explanation of a math problem.976

The student is not good at math, so the student977

struggles with the problem and makes a mistake.978

Insert a sampled student mistake. The tutor979

should perform information-gathering to figure out980

the sixth-grade student’s math background knowl-981

edge, by asking questions and engaging in dia-982

logue with the sixth-grade student. In the dialogue,983

the tutor’s utterances are prefaced by “Tutor:"984

and the sixth-grade student’s utterances are pref-985

aced by “Student:". The student is asking about986

the following problem: Insert the target math987

problem. Below are some examples of the student988

asking the tutor about math concepts. Insert ex989

amples of student-tutor dialogue from Khan990

Academy’s CoMTA dataset. Make sure the dia-991

logue ends when the student gives the correct an-992

swer. The tutor should not give the solution ex-993

plicitly but correct the student‘s mistake if the stu-994

dent makes any mistakes. The student is easily995

distracted and may lose interest in solving the prob-996

lem, but the tutor needs to help the student focus997

on the problem.998

A.2 Prompt for exploratory data generation999

based on Q-value optimism1000

For exploratory data collection and augmentation,1001

(for example, we want to collect trajectories of exe-1002

cuting a new action an from a latent state sn), we1003

first look in the existing dataset for a dialogue ex-1004

ample that includes the matching latent state sn but1005

with a different action than the identified optimal1006

action, a∗n. Next, we use the prompt in B.2 for a1007

single turn intervention conditioned on the desired1008

action a∗n. Then, we continue generating the rest1009

of the dialogue using the following prompt with a 1010

single LLM: 1011

Generate a dialogue between an AI tutor and 1012

a sixth-grade student where the sixth-grade stu- 1013

dent asks the tutor for an explanation of a math 1014

problem. The student is not good at math, so the 1015

student struggles with the problem and makes a 1016

mistake. The tutor should perform information- 1017

gathering to figure out the sixth-grade student’s 1018

math background knowledge, by asking questions 1019

and engaging in dialogue with the sixth-grade stu- 1020

dent. In the dialogue, the tutor’s utterances are 1021

prefaced by “Tutor:" and the sixth-grade student’s 1022

utterances are prefaced by “Student:". The stu- 1023

dent is asking about the following problem: In 1024

sert the math problem. Below are some exam- 1025

ples of the student asking the tutor about math 1026

concepts. Insert examples of student-tutor 1027

dialogue from Khan Academy’s CoMTA dataset. 1028

Make sure the dialogue ends when the student gives 1029

the correct answer. The tutor should not give the 1030

solution explicitly but correct the student‘s mistake 1031

if the student makes any mistakes. The student is 1032

easily distracted and may lose interest in solving 1033

the problem, but the tutor needs to help the stu- 1034

dent focus on the problem. Note (d/30) + (d/50), 1035

d/30 + d/50, and d/(30) + d/(50) are equivalent 1036

expressions, so the tutor need not correct the stu- 1037

dent if the student gives any of these expressions. 1038

Also remember that the total distance traveled is 1039

2d. Here’s the dialogue you need to continue writ- 1040

ing: Insert the partial dialogue generated 1041

so far. Begin your response directly with “Stu- 1042

dent:" and continue writing the rest of the dialogue 1043

until the student solves the problem. 1044

B Prompts for generating LM tutors 1045

B.1 Prompt engineering only tutor 1046

You’re an online math tutor working with a 1047

sixth-grade student. Continue the following 1048

dialogue as the tutor. You should perform 1049

information-gathering to figure out the sixth-grade 1050

student’s math background knowledge, by asking 1051

questions and engaging in dialogue with the sixth- 1052

grade student. You should not give the solution 1053

explicitly but correct the student’s mistakes if the 1054

student makes any mistakes. The student is easily 1055

distracted and may lose interest in solving the 1056

problem, but the tutor needs to help the student 1057

focus on the problem. In the dialogue below, the 1058

tutor’s utterances are prefaced by Tutor:” and the 1059
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sixth-grade student’s utterances are prefaced by1060

Student:” Insert the dialogue here. Begin1061

your generation with “[Generation] Tutor:”1062

and make sure to respond to the student’s last1063

utterance, which is Insert student’s response.1064

Keep your response concise."1065

1066

1067

B.2 High-level action conditioned tutor1068

You’re an online math tutor working with a1069

sixth-grade student. Continue the following1070

dialogue with the goal of Insert the selected1071

high-level action. In the dialogue below, the1072

tutor’s utterances are prefaced by Tutor:” and the1073

sixth-grade student’s utterances are prefaced by1074

Student:”. Insert the dialogue here.1075

Here are some examples of solving a different1076

problem, but demonstrating the desired tutor’s1077

action: 5 examples of different student-tu1078

tor dialogues and the demonstration of the1079

selected action.1080

Now it’s your turn. Begin your generation with1081

“[Generation] Tutor:" and respond to the1082

student’s utterance by {Insert the selected1083

action}. Make sure to respond to the student’s1084

last utterance, which is Insert student’s1085

response. Keep your response concise.1086

1087

The action-conditioned prompt is used for1088

both the behaviorally cloned tutor from the1089

original data and the optimistic Q-function-based1090

tutor, as well as our proposed tutor based on1091

Conservative Q-learning on the augmented data.1092

For the behavioral cloned tutor, the actions are not1093

optimized with reinforcement learning, but instead1094

selected based on supervised learning.1095

C Latent student state representation1096

One key idea is to map dialogue histories in natural1097

language to low-dimensional vectors representing1098

the student states. Each element in the vector rep-1099

resents the following item. Most items are binary1100

responses (taking on either 1 for yes or 0 for no)1101

to a single question, but some items use majority1102

votes from multiple questions to get the values.1103

1. Is the student producing math-related content?1104

2. Has the student solved the problem correctly?1105

3. Is the student asking the tutor to re-explain1106

a concept or clarify what the tutor has said 1107

already? 1108

4. Is the student repeating or emphasizing what 1109

the tutor has already said? 1110

5. Is the student going off-topic? 1111

6. Is the student’s utterance unrelated to the math 1112

problem? 1113

7. Is the student explicitly asking the tutor a ques- 1114

tion? 1115

8. Is the student describing what they are stuck 1116

on or which part of the problem they are con- 1117

fused about? 1118

9. Has the student asked diagnostic questions to 1119

assess the student’s mathematical knowledge 1120

or level? 1121

10. Is the student expressing frustration? 1122

11. Is the student expressing uncertainty or lack 1123

of confidence about their ability to solve the 1124

problem? 1125

12. Is the student expressing positive sentiment? 1126

13. Is the student asking the tutor for a break from 1127

the tutoring session? 1128

14. Is the student talking about the problem at 1129

hand? 1130

15. Is the student talking about their general math- 1131

ematical background? 1132

16. Is the student talking about other math con- 1133

cepts related to the problem at hand? 1134

17. Has the student written down an equation for 1135

the problem? 1136

18. Is the tutor asking a question to the student? 1137

19. Did the student make a mistake in the cur- 1138

rent turn? (Based on the majority vote from 1139

answers to the following three questions): 1140

(a) Did the student make any calculation 1141

mistake in the most recent utterance? 1142

(b) Did the student make any mistake solv- 1143

ing the problem? (Followed by examples 1144

of student mistakes that are marked as 1145

“possible mistakes" students may make.) 1146
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(c) Did the student make any mistake solv-1147

ing the problem? (Followed by examples1148

of successful student solutions that are1149

marked as “correct solutions.")1150

20. Has the tutor tried to bring the student’s fo-1151

cus back to the problem after the student is1152

distracted? (Based on whether any previous1153

time steps has answered yes to the following1154

question: )1155

21. How many questions did the tutor ask the stu-1156

dent so far? (Based on the cumulative count1157

of yes to Q18 from all previous time steps)1158

22. How many questions did the student ask the1159

tutor so far? (Based on the cumulative count1160

of yes to Q7 from all previous time steps)1161

23. What is the current turn in the conversation?1162

(Integer value between 1 and maximum dia-1163

logue length)1164

24. Output of the classifier by Wang and Demszky1165

(2024) representing ‘math density’1166

25. Output of the classifier by Wang and Demszky1167

(2024) representing the amount of student’s1168

mathematical reasoning1169

D Inferring the high-level action from the1170

tutor’s utterance1171

In order to create a dataset used for reinforcement1172

learning, we need to turn the conversation data into1173

tuples of latent states sn and high-level actions an.1174

Appendix C describes how sn is mapped from the1175

dialogue history. Here we describe how the high-1176

level action sn is inferred from the tutor’s utterance1177

in natural language. For each tutor’s utterance in1178

the conversation, we turn into one of the high-level1179

actions an by asking an LM the following prompt:1180

We are evaluating a dialogue between an online1181

tutor and a sixth-grade student. In the dialogue,1182

the tutor’s utterances are prefaced by “Tutor:" and1183

the student’s utterances are prefaced by “Student:".1184

Insert the dialogue here. Based on this dia-1185

logue, can you label the tutor’s utterance as one1186

of the following action types? The action types1187

to choose from are: «1» teaching, «2» encourag-1188

ing the student, «3» assessing the student’s back-1189

ground knowledge, and «4» bringing the student’s1190

focus back to the lesson. Here are some examples.1191

Insert one example of each action formatted1192

as: Example #: Dialogue example. Label: «i 1193

corresponding description for Label i. Now 1194

it’s your turn to label this dialogue. Insert the 1195

dialogue here. 1196

E Details about evaluation using 1197

simulated student 1198

We set up a sixth-grade student with the follow- 1199

ing prompt: “You are easily distracted and may 1200

lose interest in solving the problem, but the tutor 1201

needs to help you focus. You might get distracted, 1202

ask questions, request more help from the tutor, or 1203

solve the problem correctly on your own if you un- 1204

derstand it. Keep your responses short and respond 1205

like a sixth-grader.", and also sample a potential 1206

mistake, which is chosen uniformly at random from 1207

a candidate of 10 mistakes. The candidate mistakes 1208

are the output to the prompt: We are designing a 1209

task where an AI agent needs to teach a human stu- 1210

dent how to solve this problem. Problem: Insert 1211

the target math problem. The student may make 1212

different mistakes that require the agent to person- 1213

alize their instruction. Can you provide a list of 1214

10 different problems that the student makes where 1215

the agent needs to change their teaching content 1216

for different mistakes? Begin your generation with 1217

‘List:‘.". 1218

Then we sample one of the mistakes uniformly at 1219

random when initializing the student simulator as 1220

follows: You are not good at math, so you struggle 1221

with the problem and make a mistake. One common 1222

mistake a student like you might make is: sampled 1223

student mistake. 1224

The reward is assigned based on whether the stu- 1225

dent correctly solves the problem or not. The tutor 1226

and the student take turns producing a sequence of 1227

tokens, continuing until the student correctly solves 1228

the problem – achieving the maximum reward of 1 1229

– or until the maximum dialogue length is reached – 1230

receiving a penalty of -1. Specifically, we take the 1231

student’s utterance at each dialogue turn, extract 1232

the solution (if no solution is extracted, the reward 1233

is immediately 0), and check if the extracted value 1234

matches the correct solution. To avoid giving a pos- 1235

itive reward when the student expresses confusion 1236

about the solution, even after correctly solving it, 1237

we also check whether the student expresses confu- 1238

sion in their response. If so, the reward is nullified 1239

to 0. 1240
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F Generalizability of the tutor: Can the1241

tutor trained on a single problem teach1242

new, unseen math problems?1243

Another interesting question to explore is whether1244

the same tutor policy, trained on a single math1245

problem, can generalize to many unseen problems.1246

We generally do not expect policies to generalize1247

across tasks because the dialogue histories may dif-1248

fer significantly between problems. However, a1249

low-dimensional policy may still generalize across1250

problems, as two different dialogue histories from1251

different problem contexts could be mapped to the1252

same latent state representation. For example, sup-1253

pose there are two different problems, x and y, and1254

two students working on each problem. Let Hx1255

represent the dialogue from problem x and Hy rep-1256

resent the dialogue from problem y. The policy1257

mapping from the dialogue history to the tutor’s1258

utterance, π : H 7→ U , is likely to view Hx and1259

Hy as different inputs. On the other hand, the low-1260

dimensional policy, πθ : S 7→ A, may receive the1261

same low-dimensional latent state inputs mapped1262

from Hx 7→ s and Hy 7→ s. Intuitively, if s rep-1263

resents a distracted student in both scenarios, then1264

the optimal policy might be to choose the action1265

“bring the student’s focus back to the1266

lesson" and therefore, is applicable to both stu-1267

dents. The tutor’s utterance, generated conditioned1268

on the high-level action, may still differ for the1269

two scenarios since the generator LLM also takes1270

into account the full dialogue history including the1271

problem contexts. Therefore, having the same high-1272

level action a does not necessarily imply the same1273

tutor’s responses are generated as long as different1274

contents are present in the conversation window.1275

To test this hypothesis, we evaluate our tutor on1276

seven new problems from the GSM8K test-dataset1277

(Cobbe et al., 2021). The full list of problems used1278

for evaluation is included in the next section. The1279

success of generalization relies on the key assump-1280

tion that dialogue histories from different problems1281

are mapped to the same latent state, and that the la-1282

tent state transition dynamics are problem-agnostic.1283

Even if the latent state representations are the same;1284

if the same high-level action leads to two different1285

future (latent) states, then the optimal policy for1286

one problem is likely not also optimal for the other1287

problem.1288

We observe that naively generalizing the tutor1289

to new problems does not work in most cases. As1290

shown in Fig. 5, our tutor based on CQL on the1291

Figure 5: Each tutor is evaluated on 300 conversations
about each target math problem. The error bars show
95% confidence intervals. BC* is only trained on the
exploratory data.

Tutor Success
Behavioral cloning with D∗ 36.23 ± 20.80
CQL with D+ 27.38± 17.35
Prompt engineering 26.90± 22.78

Table 2: Evaluation of different tutors across 7 GSM8K
test problems. 300 tutoring trajectories are sampled for
evaluation of each problem. This table shows the mean
and the standard deviation of the average success rates
across 7 math problems.

augmented data (dark blue) outperforms prompt en- 1292

gineering (green) on some problems, but not consis- 1293

tently across all problems. Overall, across the 7 dif- 1294

ferent problems (each evaluated with 300 dialogue 1295

samples), our tutor achieves a mean success rate of 1296

27.48 with a standard deviation of 17.35. Prompt 1297

engineering-based tutor achieves a slightly lower 1298

success rate of 26.90, but with a larger standard 1299

deviation of 22.78. These results are not significant 1300

to conclude that our proposed method has general- 1301

izable performance, better than prompt engineer- 1302

ing, on unseen math problems from the GSM8K 1303

benchmark dataset. It is possible that each problem 1304

has its own latent state transition dynamics, which 1305

would make generalization across new problems 1306

inherently difficult. In such a case, learning an opti- 1307

mal tutor policy tailored to one problem’s transition 1308

dynamics would not transfer to new problems with 1309

different dynamics. 1310

Surprisingly, we observe that instead of using 1311

the augmented data, performing behavioral cloning 1312

with the exploratory data D∗ results in a tutor 1313

that outperforms both the RL-optimized tutor and 1314
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prompt engineering. As shown in Table 2, behav-1315

ioral cloning with D∗ achieves an average success1316

rate of 36.23±20.80. The performance breakdown1317

of each problem is shown in Fig. 5, where the light1318

blue represents behavioral cloning with D∗, and the1319

dark blue represents our proposed tutor based on1320

conservative Q-learning with the augmented data1321

D+.1322

Figure 6: We compare the ratio of each high-level action
observed in the tutoring conversations when following
different policies to solve the GSM8K problems #20
and #46 to analyze how the overall actions selected by
BC and CQL policies differ. Notably, BC relies on a
significantly higher amount of “instruction" than CQL.

On problems 20 and 46, behavioral cloning us-1323

ing the exploratory data performs especially well1324

compared to both prompt engineering and CQL.1325

To understand the relative advantage of behavioral1326

cloning to the other methods, we compare the ac-1327

tions selected by each policy in the observed trajec-1328

tories. For both problems 20 and 46, the trajectories1329

under the behavioral cloning policy contain signifi-1330

cantly more instances of instruction, while the CQL1331

policy selects more evenly across the four available1332

actions: instruction, encouragement, questioning,1333

and refocusing (Fig. 6). It is important to note that 1334

although behavioral cloning leads to the best per- 1335

formance on some of the new tasks, it relies heavily 1336

on giving instructions, which may be sub-optimal 1337

from pedagogical perspectives. 1338

An alternative approach to testing generalization 1339

would be to train on a smaller set of problems and 1340

then evaluate the learned tutor on new problems 1341

that differ from the training set. This would help 1342

determine whether the inconsistent performance of 1343

CQL+ observed in Fig. 5 is due to the current train- 1344

ing data having too narrow coverage of the state 1345

and action tuples – which could be addressed by 1346

including dialogue samples from a broader range of 1347

problem contexts and collecting more samples – or 1348

whether each problem has its own latent transition 1349

dynamics that cannot be shared across different 1350

problems. If the latter hypothesis is true, then we 1351

would need to learn a distinct tutor policy for each 1352

problem, as one tutor policy will not generalize to 1353

other unseen problems that induce different transi- 1354

tion dynamics of student’s states. 1355

G Problems from the GSM8K 1356

benchmark for evaluation of the tutor’s 1357

teaching strategy 1358

We include new problems from the GSM8K dataset 1359

(Cobbe et al., 2021) as shown below, to evaluate 1360

the generalization capabilities of the tutor trained 1361

with a single training problem given by Kumar et al. 1362

(2023). 1363

• Question 7: Carla is downloading a 200 GB 1364

file. Normally she can download 2 GB/minute, 1365

but 40% of the way through the download, 1366

Windows forces a restart to install updates, 1367

which takes 20 minutes. Then Carla has to 1368

restart the download from the beginning. How 1369

load does it take to download the file? An- 1370

swer: 160. 1371

• Question 12: Carlos is planting a lemon tree. 1372

The tree will cost $90 to plant. Each year it 1373

will grow 7 lemons, which he can sell for $1.5 1374

each. It costs $3 a year to water and feed 1375

the tree. How many years will it take before 1376

he starts earning money on the lemon tree? 1377

Answer: 13. 1378

• Question 13: Melanie is a door-to-door 1379

saleswoman. She sold a third of her vacuum 1380

cleaners at the green house, 2 more to the red 1381
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house, and half of what was left at the orange1382

house. If Melanie has 5 vacuum cleaners left,1383

how many did she start with? Answer: 181384

• Question 15: A merchant wants to make a1385

choice of purchase between 2 purchase plans:1386

jewelry worth $5,000 or electronic gadgets1387

worth $8,000. His financial advisor specu-1388

lates that the jewelry market will go up 2.5%1389

while the electronic gadgets market will rise1390

1.2% within the same month. If the merchant1391

is looking to maximize profit at the end of this1392

month by making a choice, how much profit1393

would this be? Answer: 125.1394

• Question 20: I have 10 liters of orange drink1395

that are two-thirds water and I wish to add1396

it to 15 liters of pineapple drink that is three-1397

fifths water. But as I pour it, I spill one liter of1398

the orange drink. How much water is in the1399

remaining 24 liters? Answer: 15.1400

• Question 37: John plans to sell all his toys1401

and use the money to buy video games. He has1402

13 lego sets and he sells them for $15 each.1403

He ends up buying 8 video games for $20 each1404

and has $5 left. How many lego sets does he1405

still have? Answer: 21406

• Question 46: Candice put 80 post-it notes in1407

her purse before she headed out to her job at1408

the coffee shop. On her way, she stopped off1409

at the store and purchased a package of Post-1410

it notes; At work, she placed a single Post-it1411

note on each of 220 different cups of coffee.1412

If she had 23 post-it notes remaining overall,1413

how many Post-it notes were in the package1414

that she purchased? Answer: 163.1415

.1416

H Training tutor policy using offline RL1417

We used d3rlpy library for conservative Q-1418

learning d3rlpy.algos.DiscreteCQL implemen-1419

tation with the following hyper-parameter set:1420

• learning rate: 5e− 5,1421

• Adam optimizer with epsilon: 1e− 2/321422

• Batch size: 321423

• Alpha: 4.01424

• Gamma: 0.91425

• Q function n quantiles: 200 1426

• Target update interval: 2000 1427

• Reward scaler to clip the reward values be- 1428

tween -1 and 1 (our dataset already returns 1429

rewards in this range) 1430

• Model fitted with n steps = 1000000, and n 1431

steps per epoch = 10000. 1432

We also experimented with Batch-constrained Q 1433

learning (Fujimoto et al., 2019) as an alterna- 1434

tive algorithm for offline RL, implemented us- 1435

ing d3rlpy.algos.DiscreteBCQ, using the same 1436

hyper-parameters as CQL but observed better per- 1437

formance with CQL. These offline RL algorithms 1438

available through d3rlpy can be trained without 1439

GPU requirements. 1440

I Training Q function for exploratory 1441

data augmentation 1442

Our proposal for data augmentation requires learn- 1443

ing a behavioral cloning policy (to model the ac- 1444

tion distribution captured in the existing dataset 1445

D or D+), as well as a Q-value function (to opti- 1446

mistically select latent student states and high-level 1447

actions that could be tried for exploratory data col- 1448

lection). 1449

Behavioral cloning learns a policy mapping from 1450

SY
n to AX

n , and is parameterized by a 2-layer neural 1451

network implemented with pytorch. Additional 1452

training details include: 1453

• Hidden dimensions: [128, 128] with ReLU 1454

activation 1455

• Adam optimizer with learning rate 1e-3 and 1456

weight decay 1e-1 1457

• Trained on cross entropy loss to predict AX
n 1458

in the existing dataset (either D or D+) 1459

• Used 1:9 random split for validation and train- 1460

ing. 1461

• Max training epochs = 1000, and selected a 1462

model from the lowest validation loss. 1463

Q-value function is parameterized by 1464

sklearn.ensemble.ExtraTreesRegressor 1465

with the following hyper-parameters: 1466

• n estimators: 25, 1467

• Minimum sample split: 2. 1468
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High-level actions are one-hot-encoded via1469

sklearn.preprocessing OneHotEncoder and1470

concatenated with the 25-dimensional state vectors1471

as inputs to the Q-function network. Q-function1472

is trained to minimize the loss in Eq. 5.3 over the1473

entire training dataset with the following hyper-1474

parameters:1475

• Gamma: 0.9.1476

• Number of iterations over the entire dataset:1477

501478
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