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Abstract

Prompt-based methods have achieved promis-001
ing results in most few-shot text classifica-002
tion tasks. However, for readability assess-003
ment tasks, traditional prompt methods lack004
crucial linguistic knowledge, which has already005
been proven to be essential. Moreover, previ-006
ous studies on utilizing linguistic features have007
shown non-robust performance in few-shot set-008
tings and may even impair model performance.009
To address these issues, we propose a novel010
prompt-based tuning framework that incorpo-011
rates rich linguistic knowledge, called Feature012
Prompt Tuning (FPT). Specifically, we extract013
linguistic features from the text and embed014
them into trainable soft prompts. Further, we015
devise a new loss function to calibrate the simi-016
larity ranking order between categories. Exper-017
imental results demonstrate that our proposed018
method FTP not only exhibits a significant019
performance improvement over the prior best020
prompt-based tuning approaches, but also sur-021
passes the previous leading methods that incor-022
porate linguistic features. Also, our proposed023
model significantly outperforms the large lan-024
guage model gpt-3.5-turbo-16k in most cases.025
Our proposed method establishes a new archi-026
tecture for prompt tuning that sheds light on027
how linguistic features can be easily adapted to028
linguistic-related tasks.029

1 Introduction030

Readability assessment (RA) is the task of eval-031

uating the reading difficulty of a given piece of032

text (Vajjala, 2022). It has wide applications, such033

as choosing appropriate reading materials for lan-034

guage teaching (Collins-Thompson and Callan,035

2004), supporting readers with learning disabili-036

ties (Rello et al., 2012), and ranking search results037

by their reading levels (Kim et al., 2012).038

Early works in RA mainly focused on designing039

handcrafted linguistic features such as word length040

(in characters/syllables), sentence length, and usage041

Figure 1: Comparison of previous prompt tuning frame-
works and our proposed Feature Prompt Tuning (FPT).
T (·) and verbalizer(·) denote the template and verbal-
izer function, respectively. FPT utilizes both hard and
soft tokens which are projected from the linguistic fea-
tures extracted from the input x.

of different difficulty-level words. In recent years, 042

RA has been dominated by neural network-based 043

architectures (Meng et al., 2021; Azpiazu and Pera, 044

2019). The key challenge of these methods is to 045

learn a better text representation that can capture 046

deep semantic features. Current research has also 047

explored different ways of combining linguistic 048

features with pretrained language models (PLMs), 049

achieving state-of-the-art results on numerous RA 050

datasets (Li et al., 2022; Lee et al., 2021). However, 051

these studies have mainly focused on fine-tuning 052

with a large amount of labelled data while only a 053

few studies have explored few-shot settings. 054

Prompt-based tuning, shown to be a powerful 055

method for the classification task in the few-shot 056

setting, makes full use of the information in PLMs 057

by reformulating classification tasks as cloze ques- 058

tions. Different prompt-based tuning strategies are 059

illustrated in Figure 1. The hard prompt tuning 060

applies a template with [MASK] token to the origi- 061
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nal input and maps the predicted label word to the062

corresponding class (Han et al., 2022; Shin et al.,063

2020). The performance is sensitive to the qual-064

ity of template, which introduces time-consuming065

and labor-intensive prompt design and optimiza-066

tion. To address this problem, researchers propose067

soft prompt strategies, where continuous embed-068

dings of trainable tokens replaces the hard template069

and are optimized by training (Liu et al., 2021;070

Lester et al., 2021).071

Despite the success in a range of text classifica-072

tion tasks, existing prompt-based tuning methods073

still suffer from inferior performance in RA. This074

might be attributed to the lack of linguistic knowl-075

edge which has been demonstrated to play a crucial076

role in RA (Vajjala, 2022; Qiu et al., 2021; Li et al.,077

2022). Meanwhile, RA differs from general classi-078

fication tasks in that there exists a notion of ranking079

order between classes. Our intuition behind the uti-080

lization of linguistic knowledge is that the learned081

representations of different levels should preserve082

the similarity relationship analogous to that of orig-083

inal linguistic features of different levels.084

Motivated by the above insights, in this paper,085

we propose a novel prompt-based tuning method086

that incorporates rich linguistic knowledge, called087

Feature Prompt Tuning (FPT), as shown in the088

bottom of Figure 1. Specifically, our methodology089

begins with extracting linguistic features from the090

text. These extracted features are subsequently em-091

bedded into feature prompts, functioning as train-092

able soft prompts. Contrary to the conventional093

prompt tuning frameworks, our model can explic-094

itly benefit from linguistic knowledge. Further-095

more, we devise a new loss function to calibrate096

the similarity relationships between the embedded097

features across different categories. Our approach098

is straightforward and effective, offering wide ap-099

plicability to other tasks where the importance of100

handcrafted features is emphasized.101

To verify the effectiveness of our proposed meth-102

ods, we conduct extensive experiments on three103

RA datasets, including one Chinese data (Li et al.,104

2022) and two English datasets, WeeBit (Vajjala105

and Meurers, 2012) and Cambridge (Xia et al.,106

2019). By incorporating linguistic knowledge, our107

proposed model FPT improves significantly over108

other prompt-based methods. For instance, in the109

2-shot setting, FPT brings a relative performance110

gain of 43.9% over the traditional soft prompt111

method on the Chinese dataset and 5.50% on En-112

glish Weebit. Moreover, compared to other feature113

fusion methods, FPT outperforms the previous best 114

method Projecting Feature (PF) (Li et al., 2022) by 115

43.19% on Chinese data and 11.55% on English 116

Weebit data. Also, we experiment on the Large 117

Language Model (LLM), demonstrating the superi- 118

ority of our approach on RA. 119

We summarize our contributions as follows: 120

• We propose a novel prompt-based tuning 121

framework, Feature Prompt Tuning (FPT), 122

which incorporates rich linguistic knowledge 123

for RA. 124

• We design a new calibration loss to ensure the 125

linguistic features retain their original similar- 126

ity information during optimization. 127

• Our experimental results show that our 128

method outperforms other prompt-based tun- 129

ing methods and effectively leverages linguis- 130

tic features, leading to better and more stable 131

performance improvements than previous ap- 132

proaches. 133

2 Related Works 134

2.1 Readability Assessment 135

Early works have explored a wide range of lin- 136

guistic features as measurements for readability. 137

Flesch (1948) performed regression over features 138

such as average word length in syllable; Schwarm 139

and Ostendorf (2005) trained an SVM over features 140

including LM perplexity and syntactic tree height; 141

Pitler and Nenkova (2008) illustrated that discourse 142

relations can be a good predictor of readability. 143

Recent works largely employ deep learning ap- 144

proaches for RA. Several deep architectures, in- 145

cluding BERT (Devlin et al., 2018), HAN (Yang 146

et al., 2016), and multi-attentive RNN were applied 147

to achieve strong performance without feature en- 148

gineering (Martinc et al., 2021; Azpiazu and Pera, 149

2019). However, the performance of neural models 150

tends to fluctuate a lot across different RA datasets 151

(Deutsch et al., 2020), suggesting that relying only 152

on neural networks might not be a robust solution 153

for RA. Meanwhile, later works has shown that 154

a hybrid approach combining transformer-based 155

encoders with linguistic features can achieve even 156

higher performance (Lee et al., 2021; Lee and Va- 157

jjala, 2022; Li et al., 2022). Lee and Lee (2023) 158

applied a prompt-based learning based on seq2seq 159

model, casting RA as a text-to-text task. Differ- 160

ent from the above deep learning approach, we 161
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explicitly incorporate linguistic knowledge into our162

framework to boost performance.163

2.2 Prompt-based Tuning164

Fine-tuning PLMs have shown their prevalence in165

various NLP tasks. PLMs, such as BERT (Devlin166

et al., 2018), GPT (Radford et al., 2018), XLNet167

(Xia et al., 2019), RoBERTa (Liu et al., 2019) and168

T5 (Raffel et al., 2020), have been proposed with169

varied self-supervised learning architectures. It170

has been demonstrated that larger models tend to171

perform better in many learning scenarios (Brown172

et al., 2020), which stimulated PLMs with billions173

of parameters to emerge.174

Fine-tuning large PLMs may be prohibitive,175

and there exist a significant gap between pretrain-176

ing tasks and downstream tasks. Prompt tuning177

addresses this challenge by reformulating down-178

stream tasks as a language modeling problem and179

optimizing the prompt. Prompts are used to probe180

PLM’s intrinsic knowledge to perform a task (Min181

et al., 2022), and various techniques of prompting182

have been explored to aid PLM better: hard prompt183

(Shin et al., 2020; Schick and Schütze, 2021), soft184

prompt (Lester et al., 2021; Li and Liang, 2021),185

verbalizer (Cui et al., 2022) and pretrained prompt186

tuning (Gu et al., 2021).187

The effectiveness of prompt tuning has been val-188

idated in various NLP tasks, including sentiment189

analysis (Wu and Shi, 2022), named entity recog-190

nition (Ma et al., 2022), relation extraction (Chen191

et al., 2022) and semantic parsing (Schucher et al.,192

2021). However, the potential of prompt tuning193

is less explored in RA. In this work, we focus on194

the effectiveness of linguistic features for modeling195

readability, and utilize linguistic features to guide196

prompt tuning.197

3 Background198

We model RA as a text classification task. For-199

mally, a RA dataset can be denoted as D = {X ,Y},200

where X is the text set and Y is the class set.201

Each instance x ∈ X consists of several tokens,202

x = {w1, w2, ..., w|x|}, and is annotated with a203

label y ∈ Y , indicating the reading difficulty.204

3.1 Fine-tuning PLMs for RA205

Given a PLM M for RA, fine-tuning methods first206

convert a text x = (w1, w2, ..., w|x|) into an in-207

put sequence ([CLS], w1, w2, ..., w|x|, [SEP]). The208

PLM encodes this sequence into the hidden vectors209

h = (h[CLS], h1, h2, ..., h|x|, h[SEP]).210

In the conventional fine-tuning, an additional
classifier FC is trained on top of the [CLS] embed-
ding h[CLS]. This classifier produces a probability
distribution over the class set Y through a softmax
function, which can be formulated as:

P (·|x) = Softmax(FC(h[CLS])),

The objective of fine-tuning is to minimize the
cross-entropy loss between the predicted probabil-
ity distribution P (·|x) and the ground-truth label
y:

Lclassfication = − 1

|X |
∑
x∈X

logP (y|x).

3.2 Prompt-based Tuning 211

Prompt-based tuning aims to bridge the gap be- 212

tween pretraining tasks and downstream tasks, as 213

illustrated in Figure 1. 214

Hard Prompt. It typically consists of a template 215

T (·), which transforms the input x into a prompt in- 216

put xprompt, and a set of label words V that are con- 217

nected to the label space through a mapping func- 218

tion Φ : V → Y , often referred to as the verbalizer. 219

The prompt input contains at least one [MASK] 220

token for the model to fill with label words. 221

Taking an example in RA, xprompt could take
the form of

xprompt = T (x) = "It is [MASK] to read: x".

In this case, the input embedding sequence of
xprompt is denoted as

(e("It is"), e([MASK]), e("to read: "), e(x)).

Soft Prompt. It replaces hard tokens in the tem-
plate with trainable soft tokens [h1, ..., hl], yielding
an input embedding sequence of

(h1, ..., hl, e([MASK]), e(x)).

Hybrid Prompt. It combines soft tokens with
hard prompt tokens T to form the input embedding
sequence:

(h1, ..., hl, e(T ), e([MASK]), e(x)).

By feeding the input embedding sequence of
xprompt into M, the probability distribution over
the class set Y is modeled by:

PM(y|x) = PM([MASK] = Φ(y)|xprompt)

The learning objective of prompt-based tuning is
to minimize the cross entropy loss:

Lclassification = − 1

|X |
∑
x∈X

logPM(y|x)
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Figure 2: The architecture of the proposed Feature Prompt Tuning. Column-wise ranking orders of similarity
matrices are denoted with numbers.

4 Feature Prompt Tuning222

In this section, we propose a novel method for RA223

with prompt-based tuning, named Feature Prompt224

Tuning (FPT). The architecture of our model is225

illustrated in Figure 2. Specifically, we extract lin-226

guistic features from the texts and embed them into227

soft prompts. Then, we employ a loss function to228

calibrate the similarity relationship between em-229

bedded features of different classes. We adopt an230

alternating procedure to optimize the model with231

respect to the classification loss and calibration232

loss.233

4.1 Feature Prompt Construction234

Feature Extraction Our approach for extract-235

ing linguistic features from text is consistent with236

previous works (Li et al., 2022; Lee et al., 2021).237

For English texts, the linguistic features are ex-238

tracted using the lingfeat toolkit (Lee et al., 2021),239

which includes discourse, syntactic, lexical, and240

shallow features. In terms of Chinese linguistic241

features, we directly utilize the zhfeat toolkit (Li242

et al., 2022) to extract character, word, sentence,243

and paragraph-level features. Specific details are244

provided in Appendix A. For an input text x, we245

denote the extracted features as fx, which is a α-246

dimensional vector with α representing the number247

of extracted features.248

Feature Embedding To incorporate linguistic
knowledge into prompt-based tuning, we trans-
form linguistic feature fx into l distinct vectors

{v1, ..., vl} which function as the embeddings of
soft tokens, as follows:

{v1, ..., vl} = MultiHeadMLP(fx).

Here, MultiHeadMLP is a multi-head MLP with l 249

output heads. Each head consists of a series of fully 250

connected layers followed by non-linear activation 251

functions. 252

The purpose of using a multi-head MLP is to 253

allow the model to map fx into separate vector 254

spaces and learn multiple aspects of the linguistic 255

features. This enables the model to better capture 256

the relationships between different features and 257

their contribution to RA. 258

Ultimately, we formulate the input embedding
sequence of xprompt as follows:

(v1, ..., vl, e(T ), e([MASK]), e(x)).

This input sequence is passed through the PLM 259

M to calculate Lclassification loss as described in 260

Section 3.2. 261

4.2 Inter-class Similarity Calibration 262

We denote F = {Fc1 , · · · , Fcn} as the collection
of linguistic features for the dataset D, which con-
sists of n classes. Here, Fci = {fxi1 , · · · , fxik

}
signifies the extracted features of k samples which
belong to i-th class. We apply average pooling
to the feature embeddings of each sample in F ,
resulting in a set of embedded linguistic features,
denoted as F ′ = {F ′

c1 , · · · , F
′
cn}. To gauge the
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similarity between any two classes Fcm and Fcn ,
we employ a pairwise approach based on cosine
similarity, expressed as:

smn =
1

k2

k∑
i=1

k∑
j=1

cos(fxmi , fxnj )

With the feature representation and similarity263

function in place, we can define our calibration264

objective. The fundamental intuition is that the265

distribution of extracted linguistic features should266

be preserved as much as possible. Namely, if the267

similarity between Fcm and Fcn is relatively low,268

the similarity between F ′
cm and F ′

cn should also269

be proportionately low, and vice versa. Therefore,270

during the training process, we devise an objective271

function based on a list-wise ranking loss function272

ListMLE (Xia et al., 2008), to maintain this initial273

ranking relationship.274

More specifically, we compute the similarity be-
tween each pair of classes within F to generate the
similarity matrix:

M =


s11 s12 · · · s1n
s21 s22 · · · s2n

...
...

. . .
...

sn1 sn2 · · · snn


Likewise, we can derive the similarity matrix M ′275

for F ′.276

We then use Π = {π1, π2, · · · , πn} to denote
the ranking order of the columns in M , where πi
represents the ranking order of the i-th column.
We obtain M̂ ′ by rearranging the columns of M ′

according to Π:

M̂ ′ =


s′π11

s′π12
· · · s′π1n

s′π21
s′π22

· · · s′π2n
...

...
. . .

...
s′πn1

s′πn2
· · · s′πnn


Finally, we aim to minimize the following loss

function for similarity calibration:

Lcalibration = −
n∑

k=1

log

n∏
i=1

exp(s′πik
)∑n

j=i exp(s
′
πjk

)

4.3 Training Procedure277

Training Objectives Given the dataset D and278

the linguistic feature set F , we establish two train-279

ing objectives. The primary objective is to mini-280

mize the classification loss Lclassification, which281

is computed based on the difference between the 282

predicted and actual class labels. The secondary ob- 283

jective is to calibrate the inter-class similarity of the 284

mapped features by minimizing the loss function 285

Lcalibration defined in Section 4.2. 286

Algorithm 1: Alternating Training Procedure for Feature
Prompt Learning

1: Initialize model parameters M and feature em-
beddings f

2: for each epoch do
3: Shuffle dataset D
4: for each batch b in D do
5: Compute Lclassification for b using M

and f
6: Update M by minimizing Lclassification

7: Compute Lcalibration for b using f
8: Update f by minimizing Lcalibration

9: end for
10: end for

Alternating Training Procedure For training 287

both loss functions, we adopt an alternating training 288

procedure, as encapsulated in Algorithm 1. This 289

procedure iteratively updates the model parame- 290

ters and feature embeddings by minimizing the 291

classification loss Lclassification and the similarity 292

calibration loss Lcalibration, respectively. 293

In each epoch, the dataset D is shuffled to en- 294

sure the model is not biased towards any particular 295

ordering of the data. For each batch b in D, the 296

classification loss Lclassification is computed us- 297

ing the current model parameters M and feature 298

embeddings f . The model parameters M are then 299

updated by minimizing this loss. Subsequently, the 300

similarity calibration loss Lcalibration is computed 301

using the updated feature embeddings f , and the 302

feature embeddings are updated by minimizing this 303

loss. This process is repeated for each batch in 304

the dataset, and for each epoch. The alternating 305

training procedure ensures that the model learns to 306

classify the data accurately while maintaining the 307

inter-class similarity structure of the feature space. 308

5 Experimental Setting 309

5.1 Datasets 310

To evaluate the effectiveness of our proposed 311

method, we conduct experiments on one Chinese 312

dataset and two English datasets, following the 313
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same data split as Li et al. (2022). The statistic dis-314

tribution of datasets can be found in Appendix B.315

ChineseLR (Li et al., 2022) is a Chinese dataset316

collected from textbooks of the middle and primary317

schools of more than ten publishers. Following318

the standards specified in the Chinese Curriculum319

Standards for Compulsory Education, all texts are320

divided into five difficulty levels.321

WeeBit (Vajjala and Meurers, 2012) is often322

considered as the benchmark data for English RA.323

It was initially created as an extension of the well-324

known Weekly Reader corpus.325

Cambridge (Xia et al., 2019) consists of read-326

ing passages from the five main suite Cambridge327

English Exams (KET, PET, FCE, CAE, CPE).328

5.2 Baselines 1: Prompt-based Methods329

For prompt-based methods, we compare with hard,330

soft, and hybrid prompts. To avoid the influence331

of verbalizers on experimental results, we adopt a332

soft verbalizer (Hambardzumyan et al., 2021) that333

employs a linear layer classifier across all prompt-334

based methods.335

Hard Prompt (HP): We implement four manu-336

ally defined templates for prompt tuning and select337

a template with the best performance on the devel-338

opment set. Details of the templates can be found339

in Appendix C.340

Soft Prompt (SP): It replaces manually defined341

prompts with trainable continuous prompts. We342

follow the same implementation as Lester et al.343

(2021) and use randomly sampled vocabulary to344

initialize the prompts.345

Hybrid Prompt (HBP): It concatenates train-346

able continuous prompts to the wrapped input em-347

beddings. We adopt the implementation from Gu348

et al. (2022).349

P-tuning: A hybrid prompt method, which re-350

places some tokens in manually designed prompts351

with soft prompts and only retains task-relevant an-352

chor words. The soft prompts are embedded with a353

bidirectional LSTM and a MLP (Liu et al., 2021).354

5.3 Baselines 2: Fusion Methods355

We also compare with the methods fusing linguistic356

features and PLMs from previous studies.357

SVM: Use the single numerical output of a neu-358

ral model (BERT) as a feature itself, joined with359

linguistic features, and then fed them into SVM360

(Lee et al., 2021; Deutsch et al., 2020).361

FT: Standard fine-tuning method without lin-362

guistic features, where the hidden representation of363

[CLS] token is used for classification. This base- 364

line is for validating whether the linguistic features 365

are indeed having a positive effect. 366

Concatenation (Con): Fine-tune with linguistic 367

features, in which the linguistic features are directly 368

concatenated to the hidden representation of the 369

[CLS] token (Meng et al., 2021; Qiu et al., 2021). 370

PF: Fuse linguistic features with hidden repre- 371

sentations of [CLS] through projection filtering (Li 372

et al., 2022). 373

5.4 Implementation Details 374

Under the few-shot setting, we randomly sample 375

k = 1, 2, 4, 8, 16 instances in each class from the 376

training and development set. For each k-shot ex- 377

periment, we sample 4 different training and dev 378

sets and repeat experiments on each training set 379

for 4 times. We select the best model checkpoint 380

based on the performance on the development set, 381

and evaluate the models on the entire test set. As 382

for the evaluation metric, we use accuracy in all 383

experiments and take the mean values as the final 384

results. 385

All our models and baselines are implemented 386

with the PyTorch (Paszke et al., 2019) framework 387

and Huggingface transformers (Wolf et al., 2020). 388

We use BERT (Devlin et al., 2018) as our PLM 389

backbone. During training, we employ the AdamW 390

optimizer (Loshchilov and Hutter, 2019) with a 391

weight decay of 0.01 and a warm-up ratio of 0.05. 392

We tune the model with the batch size of 8 for 30 393

epochs, and the learning rate is 1e-5. All experi- 394

ments are conducted with four NVIDIA GeForce 395

RTX 3090s. 396

6 Results and Analysis 397

6.1 Comparison with Prompt-based Methods 398

Table 1 shows the results of our proposed method 399

FPT and prompt-based baselines under the few- 400

shot setting. (1) Our method FPT significantly 401

outperforms nearly all baseline methods across all 402

three datasets under different shots, demonstrat- 403

ing that our method exhibits greater robustness 404

and adaptability to variations in data sizes and lan- 405

guages. (2) FTP particularly excels on the Chine- 406

seLR dataset, and it outperforms the soft prompt 407

(SP) method by 8.41, 14.1, 10.15, 9.94 and 7.9 408

points under 1, 2, 4, 8, 16 shots, respectively. (3) 409

In the task of RA, the soft prompt method gener- 410

ally outperforms the hard prompt. Interestingly, 411

the hybrid prompt, a combination of both, does 412
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k Methods ChineseLR Weebit Cambridge

1

HP 29.49(5.21) 41.83(4.72) 36.25(8.49)
SP 31.22(4.70) 46.61(3.63) 41.73(8.45)
HBP 33.51(5.19) 44.46(5.02) 42.04(9.12)
P-tuning 33.36(4.12) 41.23(4.11) 40.36(7.15)

FPT(ours) 39.63(6.38) 43.61(4.50) 44.17(7.12)

2

HP 28.38(8.14) 49.23(2.85) 46.88(9.31)
SP 32.14(5.54) 52.22(4.35) 49.13(8.38)
HBP 33.38(7.02) 52.52(2.66) 49.56(7.12)
P-tuning 35.12(4.20) 50.71(3.87) 48.97(8.47)

FPT(ours) 46.24(5.62) 55.10(4.04) 59.79(10.2)

4

HP 36.56(5.18) 53.41(4.50) 48.75(8.49)
SP 38.78(2.83) 54.96(3.89) 49.36(9.14)
HBP 39.81(2.67) 56.88(3.52) 50.13(8.77)
P-tuning 38.45(3.09) 54.35(3.21) 48.85(9.64)

FPT(ours) 48.93(3.21) 57.70(4.63) 53.54(7.21)

8

HP 41.21(4.83) 61.31(3.13) 55.42(6.86)
SP 42.72(2.82) 62.02(2.67) 56.75(6.89)
HBP 41.93(4.12) 63.37(2.02) 57.34(9.28)
P-tuning 42.81(4.04) 61.81(3.28) 56.90(7.23)

FPT(ours) 52.66(5.00) 64.92(2.75) 59.38(6.58)

16

HP 47.35(3.69) 63.75(5.41) 61.67(8.98)
SP 47.44(2.09) 67.54(4.56) 63.77(7.43)
HBP 47.08(3.11) 67.30(4.69) 63.98(7.34)
P-tuning 46.26(3.19) 65.52(3.84) 62.03(9.62)

FPT(ours) 55.25(2.93) 68.19(4.21) 65.00(4.25)

Table 1: Experimental results comparing with prompt-
based methods. We report mean performance and the
standard deviation in brackets. The best results are
in bold, and the best results of previous prompt-based
methods are underlined.

not always yield better results than the standalone413

soft prompt. This could be attributed to the inher-414

ent challenge in designing and selecting effective415

hard prompts for RA. Nevertheless, as a hybrid416

prompt approach that integrates linguistic knowl-417

edge, our proposed method continues to exhibit418

robust performance, demonstrating its adaptability419

and effectiveness.420

6.2 Comparison with Fusion Methods421

Table 2 reports the experimental results compar-422

ing with fusion methods under the few-shot set-423

ting. (1) Our proposed method FPT shows a stable424

and significant improvement compared to the pre-425

vious feature fusion methods. For instance, in the426

2-shot setting, FPT outperforms the best previous427

fusion methods by 11.28, 5.8 and 11.66 points on428

ChineseLR, Weebit and Cambridge, respectively.429

This demonstrates our method’s effectiveness in430

integrating linguistic features for RA. (2) Methods431

with linguistic features perform better than stan-432

dard fine-tuning on Chinese datasets. However, it433

may not necessarily lead to improvement on En-434

k Methods ChineseLR Weebit Cambridge

1

FT 28.59(4.88) 45.99(2.94) 34.17(4.33)
SVM 25.34(3.87) 44.82(3.14) 35.31(5.23)
Con 28.53(4.68) 43.81(3.88) 33.33(10.1)
PF 30.13(3.99) 44.01(2.91) 35.11(9.12)

FPT(ours) 33.29(4.80) 46.67(3.50) 43.96(7.09)

2

FT 22.87(7.19) 48.79(3.49) 44.17(10.4)
SVM 23.95(9.28) 49.55(3.78) 43.99(11.0)
Con 25.61(8.21) 49.29(2.88) 41.67(8.16)
PF 26.12(7.21) 50.23(2.81) 41.52(7.34)

FPT(ours) 37.40(4.77) 56.03(3.48) 55.83(6.72)

4

FT 36.64(5.37) 52.46(4.28) 47.50(6.29)
SVM 37.11(6.88) 53.03(5.65) 47.58(8.67)
Con 36.64(5.37) 52.46(4.28) 47.50(6.29)
PF 37.13(5.11) 53.18(2.99) 48.46(4.79)

FPT(ours) 44.88(3.27) 56.17(3.84) 55.00(4.86)

8

FT 40.45(2.91) 61.11(3.15) 61.46(7.81)
SVM 40.52(3.67) 60.98(5.78) 61.55(9.10)
Con 41.65(2.98) 58.41(3.31) 58.96(7.43)
PF 44.00(2.86) 59.32(2.97) 55.62(10.9)

FPT(ours) 47.60(3.66) 62.40(3.30) 64.17(5.95)

16

FT 45.73(4.11) 65.93(5.50) 71.04(7.97)
SVM 46.85(3.72) 63.72(4.98) 71.22(8.15)
Con 48.33(3.99) 64.52(4.73) 71.46(6.12)
PF 48.66(3.20) 65.08(4.60) 69.38(6.79)

FPT(ours) 53.94(3.16) 68.10(3.25) 69.17(7.77)

Table 2: Experimental results comparing with the fea-
ture fusion methods. Con means Concatenation. For
a fair comparison, here FPT concatenates the feature
embeddings to the original input embedding and outputs
the classification logits over [CLS] embedding instead
of [MASK].

glish datasets, especially when k is increased to 435

a sufficient amount, which indicates that simply 436

applying linguistic features to aid in English RA is 437

not consistently effective.

Dataset Methods k=2 k=4 k=8

ChineseLR
FPT 46.24 48.93 52.66
-SC 40.97 46.03 50.48
-SC and FP 25.45 36.56 40.57

Weebit
FPT 55.10 57.70 64.92
-SC 52.68 56.92 63.63
-SC and FP 48.65 53.41 61.31

Table 3: Ablation study of FPT on ChineseLR and
Weebit datasets. SC represents the similarity calibra-
tion and FP means utilizing linguistic features as soft
prompts.

438

6.3 Ablation Study 439

To validate the effectiveness of each component 440

in our proposed model, we conduct ablation ex- 441

periments on both English Weebit and ChineseLR 442

datastes. Table 3 lists the results. 443

Our full model yields the best performance on 444
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Figure 3: The comparison results of linguistic features,
randomly initialized vectors and pseudo tokens.

both datasets. When removing the similarity cali-445

bration (SC) module, the performance is markedly446

decreased, demonstrating the necessity of retaining447

the linguistic features’ original similarity informa-448

tion during optimization. We have also investi-449

gated the impact of SC by visualising the similarity450

difference matrix before and after applying SC,451

the results of which are presented in Appendix D.452

Moreover, further removal of the feature prompt453

(FP) shows a steep drop in performance (12.37454

points on ChieseLR and 4.29 points on Weebit455

when k = 4), validating the effectiveness of incor-456

porating linguistic features as soft prompts. We457

note that the improvement of SC and FP is more458

significant on the Chinese dataset compared to the459

English dataset, indicating that the Chinese RA460

task is more dependent on linguistic features.461

6.4 The Significance of Linguistic Features462

To further analyze whether linguistic features im-463

prove performance, in our model structure, we re-464

place the linguistic feature vectors with randomly465

initialized vectors. On the other hand, we re-466

implement the Hybrid Prompt Tuning by utilizing467

pseudo tokens as soft prompts. We conduct experi-468

ments on WeeBit and ChineseLR datasets, and the469

comparison results are shown in Figure 3.470

The performance on both datasets significantly471

decreases when the linguistic features are replaced472

with random vectors, especially on the ChineseLR473

dataset, where the decrease is up to 16.27%. The474

fewer the samples, the more severe the decline475

caused by the replacement, further indicating the476

beneficial role of linguistic features when data is477

insufficient. Moreover, compared to pseudo tokens,478

using vector-form embeddings as soft prompts re-479

quires the integration of linguistic knowledge to480

achieve better performance.481

k Dataset FPT LLM

0
Weebit - 30.79

Cambridge - 43.33
ChineseLR - 21.67

1
Weebit 43.61 31.75

Cambridge 44.17 48.33
ChineseLR 39.63 -

2
Weebit 55.10 33.17

Cambridge 59.79 54.16
ChineseLR 46.24 -

Table 4: Comparison between our model and LLM
(gpt-3.5-turbo-16k) on three datasets. k represents the
number of in-context examples. Due to the limitation
of context length, the experiments on Chinese dataset
cannot be carried out.

6.5 Comparison with the LLM 482

Large language model (LLM) excels at various 483

downstream tasks without the need for parame- 484

ter adjustment. We conduct experiments on LLM 485

utilizing the gpt-3.5-turbo-16k API, and the accu- 486

racy results are presented in Table 4. Our model 487

with 110M parameters significantly outperforms 488

the LLM model on the English dataset (except one 489

sample on Cambridge). Moreover, gpt-3.5-turbo- 490

16k is unable to perform 1-shot or 2-shot exper- 491

iments on ChineseLR due to its limited context 492

length. This underscores the necessity for research 493

on tasks related to longer textual information in RA 494

(Reading Comprehension and Answering). 495

7 Conclusion 496

Inspired by the solid performance of prompt tun- 497

ing on classification tasks and the importance of 498

linguistic features in the RA task, we empirically 499

investigated the effectiveness of incorporating lin- 500

guistic features into prompt tuning for RA. We con- 501

vert linguistic features of the input into soft tokens 502

and utilize the similarity calibration loss to preserve 503

similarity relationship between classes before and 504

after the transformation. The results show notice- 505

able improvements over previous fusion methods 506

and prompt-based approaches in the few-shot learn- 507

ing setting. The ablation study further illustrated 508

that the proposed model benefits from linguistic 509

features and additional similarity calibration. 510

Limitations 511

Our proposed method, which leverages the masked 512

language model (MLM) backbone such as BERT, 513

has demonstrated its efficacy across a variety of 514

8



natural language processing tasks. Despite its515

strengths, we acknowledge several limitations that516

warrant further investigation.517

Firstly, our approach exhibits constraints in pro-518

cessing long texts, a scenario frequently encoun-519

tered in Chinese readability evaluation datasets.520

The inherent architecture of MLMs like BERT is521

optimized for shorter sequences, leading to poten-522

tial performance degradation when dealing with523

extensive text inputs.524

Secondly, while MLM-based methods are profi-525

cient in classification tasks, they often fall short526

in terms of interpretability of the classification527

outcomes. The black-box nature of these models528

makes it challenging to trace and understand the529

decision-making process, which is crucial for ap-530

plications where justification of results is required.531

Lastly, the success of our method is significantly532

contingent upon the quality of linguistic features533

extracted from the text. However, the extraction534

of high-quality linguistic features is not always535

guaranteed, especially in languages with rich mor-536

phology or poor data resources.537

In conclusion, while our method stands as a ro-538

bust approach for several NLP tasks, addressing539

these limitations is imperative for advancing the540

field and extending the applicability of MLM-based541

models to a broader spectrum of text analysis chal-542

lenges.543

Ethics Statement544

Potential Risks Firstly, as a neural network-545

based method, the predictive outcomes of our ap-546

proach should not be applied in practical applica-547

tions without the involvement of human experts.548

This is a responsible practice for the actual benefi-549

ciaries, the learners. Secondly, as mentioned earlier,550

low-quality or even incorrect linguistic features can551

negatively impact our method. Therefore, evaluat-552

ing the quality of linguistic features is essential for553

the efficacy of our approach.554

About Computational Budget For each k-shot555

experiment, we conducted a total of 16 repetitions556

(refer to Section 5.4) for all baselines and FPT. The557

duration of a single experiment varies according to558

the size of k (approximately 20 seconds to 200 sec-559

onds), but the time consumed by different methods560

is almost identical.561

Use of Scientific Artifacts We utilize the lingfeat562

toolkit (Lee et al., 2021) to extract linguistic fea-563

tures from English texts; this toolkit is publicly 564

accessible under the CC-BY-SA-4.0 license. For 565

extracting Chinese linguistic features, we employ 566

the zhfeat toolkit (Li et al., 2022). 567

Use of AI Assistants We have employed Chat- 568

GPT as a writing assistant, primarily for polishing 569

the text after the initial composition. 570
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A Details of Linguistic Features 802

A.1 Chinese Linguistic Features 803

804
Idx Dim Feature description
1 1 Total number of characters
2 1 Number of character types
3 1 Type Token Ratio (TTR)
4 1 Average number of strokes
5 1 Weighted average number of strokes
6 25 Number of characters with different strokes
7 25 Proportion of characters with different strokes
8 1 Average character frequency
9 1 Weighted average character frequency
10 1 Number of single characters
11 1 Proportion of single characters
12 1 Number of common characters
13 1 Proportion of common characters
14 1 Number of unregistered characters
15 1 Proportion of unregistered characters
16 1 Number of first-level characters
17 1 Proportion of first-level characters
18 1 Number of second-level characters
19 1 Proportion of second-level characters
20 1 Number of third-level characters
21 1 Proportion of third-level characters
22 1 Number of fourth-level characters
23 1 Proportion of fourth-level characters
24 1 Average character level

805

Table 5: Character features description.
806

Idx Dim Feature description
1 1 Total number of words
2 1 Number of word types
3 1 Type Token Ratio (TTR)
4 1 Average word length
5 1 Weighted average word length
6 1 Average word frequency
7 1 Weighted average word frequency

807
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Idx Dim Feature description
8 1 Number of single-character words
9 1 Proportion of single-character words
10 1 Number of two-character words
11 1 Proportion of two-character words
12 1 Number of three-character words
13 1 Proportion of three-character words
14 1 Number of four-character words
15 1 Proportion of four-character words
16 1 Number of multi-character words
17 1 Proportion of multi-character words
18 1 Number of idioms
19 1 Number of single words
20 1 Proportion of single words
21 1 Number of unregistered words
22 1 Proportion of unregistered words
23 1 Number of first-level words
24 1 Proportion of first-level words
25 1 Number of second-level words
26 1 Proportion of second-level words
27 1 Number of third-level words
28 1 Proportion of third-level words
29 1 Number of fourth-level words
30 1 Proportion of fourth-level words
31 1 Average word level
32 57 Number of words with different POS
33 57 Proportion of words with different POS

808

Table 6: Word features description.
809

Idx Dim Feature description
1 1 Total number of sentences
2 1 Average characters in a sentence
3 1 Average words in a sentence
4 1 Maximum characters in a sentence
5 1 Maximum words in a sentence
6 1 Number of clauses
7 1 Average characters in a clause
8 1 Average words in a clause
9 1 Maximum characters in a clause
10 1 Maximum words in a clause
11 30 Sentence length distribution
12 1 Average syntax tree height
13 1 Maximum syntax tree height
14 1 Syntax tree height <= 5 ratio
15 1 Syntax tree height <= 10 ratio
16 1 Syntax tree height <= 15 ratio
17 1 Syntax tree height >= 16 ratio
18 14 Dependency distribution

810

Table 7: Sentence features description.
811

Idx Dim Feature description
1 1 Total number of paragraphs
2 1 Average characters in a paragraph
3 1 Average words in a paragraph
4 1 Maximum characters in a paragraph
5 1 Maximum words in a paragraph

812

Table 8: Paragraph features description.

A.2 English Linguistic Features813

814

Idx Dim Feature description
1 1 Total number of Entities Mentions counts
2 1 Average number of Entities Mentions counts per

sentence
3 1 Average number of Entities Mentions counts per

token (word)
4 1 Total number of unique Entities
5 1 Average number of unique Entities per sentence
6 1 Average number of Entities Mentions counts per

token (word)s
7 1 Total number of unique Entities
8 1 Ratio of ss transitions to total
9 1 Ratio of so transitions to total
10 1 Ratio of sx transitions to total
11 1 Ratio of sn transitions to total
12 1 Ratio of os transitions to total
13 1 Ratio of oo transitions to total
14 1 Ratio of ox transitions to total
15 1 Ratio of on transitions to total
16 1 Ratio of xs transitions to total
17 1 Ratio of xo transitions to total
18 1 Ratio of xx transitions to total
19 1 Ratio of xn transitions to total
20 1 Ratio of ns transitions to total
21 1 Ratio of no transitions to total
22 1 Ratio of nx transitions to total
23 1 Ratio of nn transitions to total
24 1 Local Coherence for PA score
25 1 Local Coherence for PW score
26 1 Local Coherence for PU score
27 1 Local Coherence distance for PA score
28 1 Local Coherence distance for PW score
29 1 Local Coherence distance for PU score

815

Table 9: Discourse features description.
816

Idx Dim Feature description
1 1 Total count of Noun phrases
2 1 Average count of Noun phrases per sentence
3 1 Average count of Noun phrases per token
4 1 Ratio of Noun phrases count to Verb phrases

count
5 1 Ratio of Noun phrases count to Subordinate

Clauses count
6 1 Ratio of Noun phrases count to Prep phrases

count
7 1 Ratio of Noun phrases count to Adj phrases

count
8 1 Ratio of Noun phrases count to Adv phrases

count
9 1 Total count of Verb phrases
10 1 Average count of Verb phrases per sentence
11 1 Average count of Verb phrases per token
12 1 Ratio of Verb phrases count to Noun phrases

count
13 1 Ratio of Verb phrases count to Subordinate

Clauses count
14 1 Ratio of Verb phrases count to Prep phrases

count
15 1 Ratio of Verb phrases count to Adj phrases count
16 1 Ratio of Verb phrases count to Adv phrases

count
17 1 Total count of Subordinate Clauses
18 1 Average count of Subordinate Clauses per sen-

tence

817
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Idx Dim Feature description
19 1 Average count of Subordinate Clauses per token
20 1 Ratio of Subordinate Clauses count to Noun

phrases count
21 1 Ratio of Subordinate Clauses count to Verb

phrases count
22 1 Ratio of Subordinate Clauses count to Prep

phrases count
23 1 Ratio of Subordinate Clauses count to Adj

phrases count
24 1 Ratio of Subordinate Clauses count to Adv

phrases count
25 1 Total count of prepositional phrases
26 1 Average count of prepositional phrases per sen-

tence
27 1 Average count of prepositional phrases per token
28 1 Ratio of Prep phrases count to Noun phrases

count
29 1 Ratio of Prep phrases count to Verb phrases

count
30 1 Ratio of Prep phrases count to Subordinate

Clauses count
31 1 Ratio of Prep phrases count to Adj phrases count
32 1 Ratio of Prep phrases count to Adv phrases count
33 1 Total count of Adjective phrases
34 1 Average count of Adjective phrases per sentence
35 1 Average count of Adjective phrases per token
36 1 Ratio of Adj phrases count to Noun phrases

count
37 1 Ratio of Adj phrases count to Verb phrases count
38 1 Ratio of Adj phrases count to Subordinate

Clauses count
39 1 Ratio of Adj phrases count to Prep phrases count
40 1 Ratio of Adj phrases count to Adv phrases count
41 1 Total count of Adverb phrases
42 1 Average count of Adverb phrases per sentence
43 1 Average count of Adverb phrases per token
44 1 Ratio of Adv phrases count to Noun phrases

count
45 1 Ratio of Adv phrases count to Verb phrases

count
46 1 Ratio of Adv phrases count to Subordinate

Clauses count
47 1 Ratio of Adv phrases count to Prep phrases count
48 1 Ratio of Adv phrases count to Adj phrases count
49 1 Total Tree height of all sentences
50 1 Average Tree height per sentence
51 1 Average Tree height per token (word)
52 1 Total length of flattened Trees
53 1 Average length of flattened Trees per sentence
54 1 Average length of flattened Trees per token

(word)
55 1 Total count of Noun POS tags
56 1 Average count of Noun POS tags per sentence
57 1 Average count of Noun POS tags per token
58 1 Ratio of Noun POS count to Adjective POS

count
59 1 Ratio of Noun POS count to Verb POS count
60 1 Ratio of Noun POS count to Adverb POS count
61 1 Ratio of Noun POS count to Subordinating Con-

junction count
62 1 Ratio of Noun POS count to Coordinating Con-

junction count
63 1 Total count of Verb POS tags
64 1 Average count of Verb POS tags per sentence
65 1 Average count of Verb POS tags per token

818

Idx Dim Feature description
66 1 Ratio of Verb POS count to Adjective POS count
67 1 Ratio of Verb POS count to Noun POS count
68 1 Ratio of Verb POS count to Adverb POS count
69 1 Ratio of Verb POS count to Subordinating Con-

junction count
70 1 Ratio of Verb POS count to Coordinating Con-

junction count
71 1 Total count of Adjective POS tags
72 1 Average count of Adjective POS tags per sen-

tence
73 1 Average count of Adjective POS tags per token
74 1 Ratio of Adjective POS count to Noun POS

count
75 1 Ratio of Adjective POS count to Verb POS count
76 1 Ratio of Adjective POS count to Adverb POS

count
77 1 Ratio of Adjective POS count to Subordinating

Conjunction count
78 1 Ratio of Adjective POS count to Coordinating

Conjunction count
79 1 Total count of Adverb POS tags
80 1 Average count of Adverb POS tags per sentence
81 1 Average count of Adverb POS tags per token
82 1 Ratio of Adverb POS count to Adjective POS

count
83 1 Ratio of Adverb POS count to Noun POS count
84 1 Ratio of Adverb POS count to Verb POS count
85 1 Ratio of Adverb POS count to Subordinating

Conjunction count
86 1 Ratio of Adverb POS count to Coordinating Con-

junction count
87 1 Total count of Subordinating Conjunction POS

tags
88 1 Average count of Subordinating Conjunction

POS tags per sentence
89 1 Average count of Subordinating Conjunction

POS tags per token
90 1 Ratio of Subordinating Conjunction POS count

to Adjective POS count
91 1 Ratio of Subordinating Conjunction POS count

to Noun POS count
92 1 Ratio of Subordinating Conjunction POS count

to Verb POS count
93 1 Ratio of Subordinating Conjunction POS count

to Adverb POS count
94 1 Ratio of Subordinating Conjunction POS count

to Coordinating Conjunction count
95 1 Total count of Coordinating Conjunction POS

tags
96 1 Average count of Coordinating Conjunction POS

tags per sentence
97 1 Average count of Coordinating Conjunction POS

tags per token
98 1 Ratio of Coordinating Conjunction POS count

to Adjective POS count
99 1 Ratio of Coordinating Conjunction POS count

to Noun POS count
100 1 Ratio of Coordinating Conjunction POS count

to Verb POS count
101 1 Ratio of Coordinating Conjunction POS count

to Adverb POS count
102 1 Ratio of Coordinating Conjunction POS count

to Subordinating Conjunction count
103 1 Total count of Content words
104 1 Average count of Content words per sentence

819
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Idx Dim Feature description
105 1 Average count of Content words per token
106 1 Total count of Function words
107 1 Average count of Function words per sentence
108 1 Average count of Function words per token
109 1 Ratio of Content words to Function words

820

Table 10: Syntactic features description.
821

Idx Dim Feature description
1 1 Unique Nouns/total Nouns (Noun Variation-1)
2 1 (Unique Nouns**2)/total Nouns (Squared Noun

Variation-1)
3 1 Unique Nouns/sqrt(2*total Nouns) (Corrected

Noun Variation-1)
4 1 Unique Verbs/total Verbs (Verb Variation-1)
5 1 (Unique Verbs**2)/total Verbs (Squared Verb

Variation-1)
6 1 Unique Verbs/sqrt(2*total Verbs) (Corrected

Verb Variation-1)
7 1 Unique Adjectives/total Adjectives (Adjective

Variation-1)
8 1 (Unique Adjectives**2)/total Adjectives

(Squared Adjective Variation-1)
9 1 Unique Adjectives/sqrt(2*total Adjectives) (Cor-

rected Adjective Variation-1)
10 1 Unique Adverbs/total Adverbs (AdVerb

Variation-1)
11 1 (Unique Adverbs**2)/total Adverbs (Squared

AdVerb Variation-1)
12 1 Unique Adverbs/sqrt(2*total Adverbs) (Cor-

rected AdVerb Variation-1)
13 1 Unique tokens/total tokens (TTR)
14 1 Unique tokens/sqrt(2*total tokens) (Corrected

TTR)
15 1 Log(unique tokens)/log(total tokens) (Bi-

Logarithmic TTR)
16 1 (Log(unique tokens))**2/log(total to-

kens/unique tokens) (Uber Index)
17 1 Measure of Textual Lexical Diversity (default

TTR = 0.72)
18 1 Total AoA (Age of Acquisition) of words
19 1 Average AoA of words per sentence
20 1 Average AoA of words per token
21 1 Total lemmas AoA of lemmas
22 1 Average lemmas AoA of lemmas per sentence
23 1 Average lemmas AoA of lemmas per token
24 1 Total lemmas AoA of lemmas, Bird norm
25 1 Average lemmas AoA of lemmas, Bird norm per

sentence
26 1 Average lemmas AoA of lemmas, Bird norm per

token
27 1 Total lemmas AoA of lemmas, Bristol norm
28 1 Average lemmas AoA of lemmas, Bristol norm

per sentence
29 1 Average lemmas AoA of lemmas, Bristol norm

per token
30 1 Total AoA of lemmas, Cortese and Khanna norm
31 1 Average AoA of lemmas, Cortese and Khanna

norm per sentence
32 1 Average AoA of lemmas, Cortese and Khanna

norm per token
33 1 Total SubtlexUS FREQcount value
34 1 Average SubtlexUS FREQcount value per sen-

tenc

822

Idx Dim Feature description
35 1 Average SubtlexUS FREQcount value per token
36 1 Total SubtlexUS CDcount value
37 1 Average SubtlexUS CDcount value per sentence
38 1 Average SubtlexUS CDcount value per token
39 1 Total SubtlexUS FREQlow value
40 1 Average SubtlexUS FREQlow value per sen-

tence
41 1 Average SubtlexUS FREQlow value per token
42 1 Total SubtlexUS CDlow value
43 1 Average SubtlexUS CDlow value per sentence
44 1 Average SubtlexUS CDlow value per token
45 1 Total SubtlexUS SUBTLWF value
46 1 Average SubtlexUS SUBTLWF value per sen-

tence
47 1 Average SubtlexUS SUBTLWF value per token
48 1 Total SubtlexUS Lg10WF value
49 1 Average SubtlexUS Lg10WF value per sentence
50 1 Average SubtlexUS Lg10WF value per token
51 1 Total SubtlexUS SUBTLCD value
52 1 Average SubtlexUS SUBTLCD value per sen-

tence
53 1 Average SubtlexUS SUBTLCD value per token
54 1 Total SubtlexUS Lg10CD value
55 1 Average SubtlexUS Lg10CD value per sentence
56 1 Average SubtlexUS Lg10CD value per token

823

Table 11: Lexico Semantic features description.

824
Idx Dim Feature description
1 1 Total count of tokens x total count of sentence
2 1 Sqrt(total count of tokens x total count of sen-

tence)
3 1 Log(total count of tokens)/log(total count of sen-

tence)
4 1 Average count of tokens per sentence
5 1 Average count of syllables per sentence
6 1 Average count of syllables per token
7 1 Average count of characters per sentence
8 1 Average count of characters per token
9 1 Smog Index
10 1 Coleman Liau Readability Score
11 1 Gunning Fog Count Score
12 1 New Automated Readability Index
13 1 Flesch Kincaid Grade Level
14 1 Linsear Write Formula Score

825

Table 12: Shallow Traditional features description.

B The statistic distribution of datasets 826

Dataset WeeBit Cambridge ChineseLR
Level Passages Avg.Length Passages Avg.Length Passages Avg.Length

1 625 152 60 141 814 266
2 625 189 60 271 1063 679
3 625 295 60 617 1104 1140
4 625 242 60 763 762 2165
5 625 347 60 751 417 3299

All 3125 245 300 509 4160 1255

Table 13: Statistics of datasets for readability assess-
ment. Avg.Length means the average tokens per pas-
sage.
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C Templates827

Chinese Dataset Based on the Chinese Curricu-828

lum Standards for Compulsory Education, we de-829

vise the following templates:830

• T1(·) =一篇第[MASK]学段的文章:831

• T2(·) =这是一篇第[MASK]学段的课文:832

• T3(·) =一篇第[MASK]学段的课文:833

• T4(·) =一篇阅读难度为[MASK]的课文:834

English Dataset Based on (Vajjala and Meurers,835

2012), we use the following templates:836

• T1(·) = A [MASK] article to understand:837

• T2(·) = A [MASK] text to understand:838

• T3(·) = This is a [MASK] article to under-839

stand:840

• T4(·) = A [MASK] article to read:841

D The Impact of Similarity Calibration842

To investigate the impact of Similarity Calibration843

(SC), we plot the similarity difference matrices be-844

fore and after linguistic feature embedding on two845

datasets, both with and without SC. Specifically,846

we calculate the similarity of linguistic features be-847

tween each category before and after embedding to848

obtain two similarity matrices. Then we subtract849

the former from the latter to obtain the difference850

matrix. The results are shown in Figure 4, where851

the diagonal of the matrix represents the similarity852

of the linguistic features from the same category.853

On both datasets, SC can effectively increase the854

similarity between the same and analogous cate-855

gories (represented by warm colors), while reduc-856

ing the similarity between distance categories (rep-857

resented by cool colors). This can provide effective858

assistance for classification tasks.859
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Figure 4: Similarity difference matrices. We plot the
difference matrices of similarity before and after linguis-
tic feature embedding, both with and without SC. The
horizontal and vertical coordinates represent the level
of linguistic features. By comparing the diagonal of the
matrix before and after the similarity calibration (that
is, the similarity between linguistic features of the same
level), the similarity between analogous categories is
drawn closer.
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