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ABSTRACT

In the era of exceptionally data-hungry models, careful selection of the training
data is essential to mitigate the extensive costs of deep learning. Data pruning
offers a solution by removing redundant or uninformative samples from the dataset,
which yields faster convergence and improved neural scaling laws. However,
little is known about its impact on classification bias of the trained models. We
conduct the first systematic study of this effect and reveal that existing data pruning
algorithms can produce highly biased classifiers. We present theoretical analysis of
the classification risk in a mixture of Gaussians to argue that choosing appropriate
class pruning ratios, coupled with random pruning within classes has potential to
improve worst-class performance. We thus propose DRoP, a distributionally robust
approach to pruning and empirically demonstrate its performance on standard
computer vision benchmarks. In sharp contrast to existing algorithms, our proposed
method continues improving distributional robustness at a tolerable drop of average
performance as we prune more from the datasets.

1 INTRODUCTION

The ever-increasing state-of-the-art performance of deep learning models requires exponentially
larger volumes of training data according to neural scaling laws (Hestness et al., 2017; Kaplan et al.,
2020; Rosenfeld et al., 2020; Gordon et al., 2021). However, not all collected data is equally important
for learning as it contains noisy, repetitive, or uninformative samples. A recent research thread on
data pruning is concerned with removing those unnecessary data, resulting in improved convergence
speed, scaling, and resource efficiency (Toneva et al., 2019; Paul et al., 2021; He et al., 2023). These
methods design scoring mechanisms to assess the utility of each sample, often measured by its
difficulty or uncertainty as approximated during a preliminary training round, that guides pruning.
Sorscher et al. (2022) report that selecting high-quality data using these techniques can trace a Pareto
optimal frontier, beating the notorious power scaling laws; Kolossov et al. (2024) demonstrate that
data selection can improve training.

A recent study by (Pote et al., 2023) hints that data pruning may mitigate distributional bias in trained
models, which is a well-established issue in AI systems concerning the performance disparity across
classes (Dwork et al., 2012; Hardt et al., 2016b) or protected, minority groups of the population
(e.g., race or gender). In Section 3, we conduct the first systematic evaluation of various pruning
algorithms with respect to classification bias—a phenomenon characterized by highly disparate
model performance across different classes—on a variety of benchmarks and conclude otherwise.
For example, we find that Dynamic Uncertainty He et al. (2023) achieves superior average test
performance with VGG-19 on CIFAR-100 and ResNet-50 on ImageNet but fails miserably in terms
of worst-class accuracy. Thus, we argue that it is imperative to benchmark pruning algorithms using
a more comprehensive suite of metrics that reflect classification bias, and to develop solutions that
address distributional robustness directly.

To understand the fundamental principles that exacerbate classification bias for various pruning
methods, we present a theoretical analysis of linear decision rules for a mixture of two isotropic
Gaussians in Section 4. It also illustrates how simple random subsampling with difficulty-aware
class-wise pruning quotas may yield better worst-class performance compared to existing, finer
pruning algorithms that operate on a sample level. Based on these observations, we design a first
“robustness-aware” data pruning protocol, coined Distributionally Robust Pruning (DRoP). It selects
target class proportions based on the corresponding class-wise error rates computed on a hold-out
validation set after a preliminary training round on the full dataset. While these target quotas already
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improve robustness when combined with existing pruning algorithms, they particularly shine when
applied together with random pruning in accordance with our theoretical analysis. Pruning with
DRoP substantially reduces the classification bias of models even compared to training on the full
dataset while offering enhanced data efficiency. We further verified the effectiveness of our method
for initially imbalanced datasets and in the context of group robustness.

In hindsight, DRoP carries some analogies with distributionally robust optimization methods that
address class/group bias, such as subsampling (Barua et al., 2012; Cui et al., 2019; Tan et al., 2020)
or cost-sensitive learning that constructs error-based importance scores to reweigh the training loss,
emphasizing data from the more difficult or minority classes (Sinha et al., 2022; Sagawa* et al., 2020;
Liu et al., 2021; Idrissi et al., 2022; Wang et al., 2023; Lukasik et al., 2022; Chen et al., 2017). DRoP
emulates this behavior with data pruning, retaining more samples from the more difficult classes. We
discuss these similarities and compare DRoP to a prototypical cost-sensitive method, CDB-W (Sinha
et al., 2022), on a variety of dataset types to further illustrate the effectiveness of our method.

The summary of our contributions and the structure of the remainder of the paper are as follows.

• In Section 3, using a standard computer vision testbed, we conduct the first comprehensive
evaluation of existing data pruning algorithms through the lens of classification bias for a
variety of datasets and architectures;

• In Section 4, we provide our theoretical analysis in the Gaussian mixture model to illustrate
increased bias of current pruning methods, show how to optimize for worst-class risk and
thus motivate our proposed solution;

• In Section 5, we propose a random pruning procedure with error-based class ratios coined
DRoP, and verify its effectiveness in drastically reducing the classification bias. We also
provide ablations to illustrate the strength of DRoP as a pruning method, which in some
range is even able to improve over full-dataset cost-sensitive learning.

2 RELATED WORK

In the era where the training corpora of contemporary models are of web-scale size, improving
data efficiency has become the focus of practitioners and researchers alike. The corresponding
literature is exceptionally rich, with a few fruitful and relevant research threads. Dataset distillation
replaces the original samples with synthetically generated ones that bear compressed, albeit not as
much interpretable, training signal (Sucholutsky & Schonlau, 2021; Cazenavette et al., 2022; Such
et al., 2020; Zhao & Bilen, 2023; Nguyen et al., 2021; Feng et al., 2024). CoreSet methods select
representative samples that jointly capture the entire data manifold (Sener & Savarese, 2018; Guo
et al., 2022; Zheng et al., 2023; Agarwal et al., 2020; Mirzasoleiman et al., 2020; Welling, 2009); they
yield weak generalization guarantees for non-convex problems and are not too effective in practice,
especially on larger datasets (Feldman, 2020; Paul et al., 2021). Active learning iteratively selects
an informative subset of a larger pool of unlabeled data for annotation, which is ultimately used for
supervised learning (Tharwat & Schenck, 2023; Ren et al., 2021; Beluch et al., 2018; Kirsch et al.,
2019). Subsampling deletes instances of certain groups or classes when datasets are imbalanced,
aiming to reduce bias and improve robustness of the downstream classifiers (Chawla et al., 2002;
Barua et al., 2012; Chaudhuri et al., 2023).

Data Pruning. More recently, data pruning emerged as a new research direction that simply
removes parts of the dataset while maintaining strong model performance. In contrast to previous
techniques, data pruning selects a subset of the original, fully labeled, and not necessarily imbalanced
dataset, all while enjoying strong results in deep learning applications. Data pruning algorithms
use the entire dataset D = {Xi, yi}Ni=1 to optimize a preliminary query model ψθ parameterized
by θ that most often assigns “utility” scores A(ψ,X) to each training sample X; then, the desired
fraction s of the least useful instances is pruned from the dataset, yielding a sparse subset Ds =
{X : A(ψ,X) ≥ quantile[A(ψ,D), s]}. In their seminal work, Toneva et al. (2019) let A(ψ,X) be
the number of times (X, y) is both learned and forgotten while training the query model. Paul et al.
(2021) design a “difficulty” measure A(ψ,X) = ∥σ[ψ(X)] − y∥2 where σ denotes the softmax
function and y is one-hot. These scores, coined EL2N, are designed to approximate the GraNd
metric A(ψθ, X) = ∥∇θL[ψ(X), y]∥2, which is simply the ℓ2-norm of the parameter gradient of
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the loss L computed at (X, y). Both EL2N and GraNd scores require only a short training round
(e.g., 10 epochs) of the query model. He et al. (2023) propose to select samples according to
their dynamic uncertainty throughout training of the query model. For each training epoch k, they
estimate the variance of the target probability σy[ψ(X)] across a fixed window of J previous epochs,
and finally average those scores across k. Since CoreSet approaches are highly relevant for data
pruning, we also consider one such label-agnostic procedure that greedily selects training samples
that best jointly cover the data embeddings extracted from the penultimate layer of the trained query
model ψ (Sener & Savarese, 2018). While all these methods come from various contexts and with
different motivations, several studies show that the scores computed by many of them exhibit high
cross-correlation (Sorscher et al., 2022; Kwok et al., 2024).

Robustness & Evaluation Metrics. Distributional robustness in machine learning concerns the
issue of non-uniform accuracy over the data distribution (Sagawa* et al., 2020). The majority of
the vast research in this area focuses on group robustness where certain, often under-represented
or sensitive, groups of the population have worse predictive performance (Hashimoto et al., 2018;
Thomas McCoy et al., 2020). In general, groups can be subsets of classes, and worst-group accuracy
is a standard optimization criterion in this domain (Sagawa* et al., 2020; Kirichenko et al., 2023;
Rudner et al., 2024). As a special case, fairness in machine learning aims to mitigate disparity of
model performance across society and demographic groups and uses specific criteria such as equal
opportunity and equalized odds (Hardt et al., 2016a; Caton & Haas, 2023). Many well-established
algorithms in the space of distributional robustness apply importance weighting to effectively re-
balance the long-tailed data distributions (cf. cost-sensitive learning (Elkan, 2001)). Thus, Sagawa*
et al. (2020) optimize an approximate minimax DRO (distributionally robust optimization) objective
using a weighted sum of group-wise losses, putting higher mass on high-loss groups; Sinha et al.
(2022) weigh samples by the current class-wise misclassification rates measured on a holdout
validation set; Liu et al. (2021) pre-train a reference model to estimate the importance factors of
groups for subsequent re-training. Similar cost-weighting strategies are adopted for robust knowledge
distillation (Wang et al., 2023; Lukasik et al., 2022) and online batch selection (Kawaguchi & Lu,
2020; Mindermann et al., 2022). Note that these techniques compute weights at the level of classes
or sensitive groups and not for individual training samples. The focus of our study is a special
case of group robustness, classification bias, where groups are directly defined by class attributions.
Classification bias commonly arises in the context of imbalanced datasets where tail classes require
upsampling or reweighting to produce models with strong worst-class performance (Cui et al., 2019;
Barua et al., 2012; Tan et al., 2020; Chaudhuri et al., 2023). However, classification bias is also
studied for balanced datasets, and is found to be exacerbated by adversarial training (Li & Liu, 2023;
Benz et al., 2021; Xu et al., 2021; Nanda et al., 2021; Ma et al., 2022) and network parameter pruning
(Paganini, 2020; Joseph et al., 2020; Tran et al., 2022; Good et al., 2022). Following mainstream
prior work Li & Liu (2023); Zayed et al. (2023), we will use a natural suite of metrics to measure
classification bias. Given accuracy (recall) rk for each class k ∈ [K], we report (1) worst-class
accuracy mink rk, (2) difference between the maximum and the minimum recall, maxk rk −mink rk
(Joseph et al., 2020), and (3) standard deviation of recalls stdkrk (Ma et al., 2022).

Data Pruning Meets Robustness. Although existing data pruning techniques have proven to
achieve strong average generalization performance, to our knowledge, our work contains the first
comprehensive comparative study to call to the extensive worsening of classification bias of state-of-
the-art data pruning methods. Among related works, Pote et al. (2023) studied how EL2N pruning
affects the class-wise performance and found that, at high data density levels (e.g., 80–90% remaining
data), under-performing classes improve their accuracy compared to training on the full dataset.
Zayed et al. (2023) propose a modification of EL2N to achieve robustness across protected groups
with two attributes (e.g., male and female) in datasets with counterfactual augmentation, which is a
rather specific context. In this study, we eliminate this blind spot in the data pruning literature and
analyze the trade-off between the average performance and classification bias exhibited by some of
the most common data pruning methods: EL2N and GraNd (Paul et al., 2021), Forgetting (Toneva
et al., 2019), Dynamic Uncertainty (He et al., 2023), and CoreSet (Sener & Savarese, 2018). We also
benchmark random pruning (Random), which is regarded as a notoriously strong baseline in active
learning and data pruning, especially when pruning large fractions of data.
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3 DATA PRUNING IS NOT ROBUST

Figure 1: Pruning Exacerbates Bias: Dynamic Un-
certainty applied to CIFAR-100. See Appendix G for
similar plots for other pruning methods and models.
Left: Sorted class densities at different dataset density
levels. We also report the minimum number of sam-
ples per class (SPC) at 10% dataset density. Right:
Full dataset test class-wise accuracy against dataset
density. We also report the correlation coefficient be-
tween these two quantities across classes, averaged
over 5 dataset densities.

Figure 2 illustrates our evaluation of data prun-
ing through the lens of class-wise robustness for
two vision benchmarks, CIFAR-100 and TinyIm-
ageNet (additional plots for other metrics can be
found in Appendix C). We present the experimen-
tal details and hyperparameters in Appendix A.
First, we note that no pruning method is uniformly
state-of-the-art, and the results vary considerably
across model-dataset pairs. Among all algorithms,
Dynamic Uncertainty with VGG-19 on CIFAR-
100 and ResNet-50 on ImageNet presents a partic-
ularly interesting and instructive case. While it is
arguably the best with respect to the average test
performance, it fails miserably across all robust-
ness metrics. Figure 1 left reveals that it actually
removes entire classes already at 10% of CIFAR-
100. Therefore, it seems plausible that Dynamic
Uncertainty simply sacrifices the most difficult
classes to retain strong performance on the eas-
ier ones. Figure 16 confirms our hypothesis: in
contrast to other algorithms, at low density levels,
Dynamic Uncertainty tends to prune classes with lower baseline accuracy (obtained from training on
the full dataset) more aggressively, which entails a catastrophic classification bias hidden underneath
a deceptively strong average accuracy. This observation presents a compelling argument for using
criteria beyond average test performance for data pruning algorithms, particularly emphasizing
classification bias.

Figure 2: The average test performance of various data pruning algorithms against dataset density (fraction of
samples remaining after pruning) and worst-class accuracy. All results averaged over 3 random seeds. Error
bands represent min/max. Additional plots can be found in Appendix C.

Overall, all studied algorithms exhibit poor robustness to bias, although several of them improve ever
so slightly over the full dataset. In particular, EL2N and GraNd achieve a relatively low classification
bias, closely followed by Forgetting. At the same time, Forgetting has a substantially stronger average
test accuracy compared to these three methods, falling short of Random only after pruning more
than 60% from CIFAR-100. As seen from additional plots in Appendix G, Forgetting produces more
balanced datasets than EL2N and GraNd at low densities (Figure 17), and tends to prune “easier”
classes more aggressively compared to all other methods (Figure 16). These two properties seem to
be beneficial, especially when the available training data is scarce.
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Figure 3: The effect of different pruning procedures on the solution mixture of Gaussians problem with µ0 = −1,
µ1 = 1, σ0 = 0.5, σ1 = 1, and ϕ0 = ϕ1. Pruning to dataset density d = 50%. Left: Random pruning with the
optimal class-wise densities that satisfy d1ϕ1σ0 = d0ϕ0σ1. Middle: SSP. Right: Random pruning with respect
to class ratios provided by the SSP algorithm. All results averaged across 10 datasets {Di}10i=1 each with 400

points. The average ERM is T = 1
10

∑10
i=1 T (D

′
i) fitted to pruned datasets D′

i. The class risks of the average
and worst-class optimal decisions for this Gaussian mixture are R0[t

∗(1)] = 4.8%, R1[t
∗(1)] = 12.1%, and

R0(t̂) = R1(t̂) = 9.1%.

4 THEORETICAL ANALYSIS

In this section, we derive analytical results for data pruning in a toy model of binary classification for a
mixture of two univariate Gaussians with linear classifiers. Perhaps surprisingly, in this framework we
can derive worst-class optimal densities as well as demonstrate how prototypical pruning algorithms
fail with respect to class robustness.

Let M be a mixture of two univariate Gaussians with conditional density functions p(x|y = 0) =
N (µ0, σ

2
0) and p(x|y = 1) = N (µ1, σ

2
1), priors ϕ0 = P(y = 0) and ϕ1 = P(y = 1) (ϕ0 + ϕ1 = 1),

and σ0 < σ1. Without loss of generality, we assume µ0 < µ1. Consider linear decision rules
t ∈ R ∪ {±∞} with a prediction function ŷt(x) = 1{x > t}. The statistical 0-1 risks of the two
classes are

R0(t) = Φ

(
µ0 − t

σ0

)
, R1(t) = Φ

(
t− µ1

σ1

)
, (1)

where Φ is the standard normal cumulative distribution function. Under some reasonable but nuanced
conditions on the means, variances, and priors discussed in Appendix B.1, the optimal decision rule
minimizing the average risk

R(t) = ϕ0R0(t) + ϕ1R1(t) (2)

is computed by taking the larger of the two solutions to a quadratic equation ∂R/∂t = 0, which we
denote by

t∗
(
ϕ0
ϕ1

)
=
µ0σ

2
1 − µ1σ

2
0 + σ0σ1

√
(µ0 − µ1)2 − 2(σ2

0 − σ2
1) log

ϕ0σ1

ϕ1σ0

σ2
1 − σ2

0

. (3)

Note that t∗(ϕ0/ϕ1) is the rightmost intersection point of ϕ0f0(t) and ϕ1f1(t) where f0 and f1
are the corresponding probability density functions (Cavalli, 1945). Note that in the balanced case
(ϕ0 = ϕ1) the heavier-tailed class is more difficult and R1[t

∗(1)] > R0[t
∗(1)].

We now turn to the standard (class-) distributionally robust objective: minimizing worst-class
statistical risk gives rise to the decision threshold denoted by t̂ = argmint max{R0(t), R1(t)}. As
we show in Appendix B.2, t̂ satisfies R0(t̂) = R1(t̂), and Equation 1 then immediately yields

t̂ = (µ0σ1 + µ1σ0)/(σ0 + σ1). (4)

Note that t̂ < t∗(1). This means that in the balanced case t̂ is closer to µ0, the mean of the “easier”
class. To understand how we should prune to achieve optimal worst-class accuracy, we compute class
priors ϕ0 and ϕ1 that guarantee that the average risk minimization (Equation 2) achieves the best
worst-class risk. These priors can be seen as the optimal class proportions in a “robustness-aware”
dataset. Observe that, from Equation 3, t∗(σ0/σ1) = t̂ because the logarithm in the discriminant
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vanishes and we obtain Equation 4. Therefore, the optimal average risk minimizer coincides with the
solution to the worst-case error over classes, and is achieved when the class priors ϕ0, ϕ1 satisfy

ϕ0/ϕ1 = σ0/σ1. (5)
Intuitively, sufficiently large datasets sampled from M with class-conditionally independent samples
mixed in proportions N0 and N1 should have their empirical 0-1 risk minimizers close to t∗(N0/N1).
That is, randomly retaining dk fraction of samples in class k = 0, 1 where d0N0σ1 = d1N1σ0 (see
Equation 5) yields robust solutions with equal statistical risk across classes and, hence, optimal
worst-class error. Figure 3 (left) confirms our analysis: the average empirical risk minimizer (ERM)
T fitted to datasets pruned in this fashion lands near t̂.

The class-conditional independence assumption we made above is crucial. While it is respected when
subsampling randomly within each class, it clearly does not hold for existing, more sophisticated, data
pruning algorithms. Therefore, even though they tend to prune easier classes more aggressively as
evident from Figure 16, they rarely enjoy any improvement of the worst-class performance compared
to the original dataset. We further illustrate this observation by replicating a supervised variant of the
Self-Supervised Pruning (SSP) developed by Sorscher et al. (2022) for ImageNet. In this algorithm,
we remove samples globally (i.e., irrespective of their class membership) located within a certain
margin M > 0 of their class means. Intuitively, this algorithm discards the easiest or the most
representative samples from the most densely populated regions of the distribution. As illustrated in
Figure 3 (middle), this method fortuitously prunes the easier class more aggressively; indeed, the
amount of samples removed from a class with mean µ and variance σ2 is proportional to the area
under the probability density function over the pruning interval [µ−M,µ+M ], which is larger for
smaller values of σ. Nevertheless, if the original dataset has classes mixed in proportions N0 and
N1, the solution remains close to t∗(N0/N1) even after pruning, as we show formally in Appendix
B.3. On the other hand, random subsampling according to class-wise pruning proportions defined by
SSP does improve worst-class accuracy, as illustrated in the right plots of Figure 3. This corresponds
to our observation in Figure 5 that random pruning respecting the class proportions discovered by
GraNd and Forgetting often improves robustness compared to these methods themselves.

(a) (b)

Figure 4: (a): Class-wise risk ratios of the optimal solution t∗ = t∗(ϕ0/ϕ1) vs. optimal ratios based on Equation
5 computed for various σ0 < σ1 drawn uniformly from [10−2, 102] and ϕ0 ∼ U [0, 1] and ϕ1 = 1− ϕ0. The
results are independent of µ0, µ1. (b): Random pruning with DRoP. Left: d = 75%; Right: d = 50%.

A priori, it is unclear how exactly the variance-based worst-case optimal pruning quotas in Equation
5 generalize to deep learning, and in particular how they can lead to practical pruning algorithms.
One could connect our theory to the feature distribution in the penultimate layer of neural networks
and determine class densities from cluster variances around class means. In fact, SSP (Sorscher
et al., 2022) uses such metrics to determine pruning scores for samples, using a pretrained model.
However, such variances are noisy, especially for smaller class sizes, and hard to connect to class
accuracies. Therefore, instead, we propose to use class errors as a proxy for these variances
in our DRoP method introduced in Section 5. More formally, given a dataset originally with
class sizes N0 and N1, we replace the worst-class optimal condition d0N0σ1 = d1N1σ0 with
d0R1[t

∗(N0/N1)] = d1R0[t
∗(N0/N1)]. To motivate this practical approach, Figure 4a shows

that these new error-based class densities approximate the optimal variance-based ones fairly well,
especially when σ1/σ0 is small. Figure 4b demonstrates that random pruning according to DRoP
class proportions lands the average ERM near the worst-class optimal value. Thus, even though
error-based class quotas do not enjoy simple theoretical guarantees, they still operate near-optimally
in this toy setup.
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5 DROP: DISTRIBUTIONALLY ROBUST PRUNING

We are ready to propose our “robustness-aware” data pruning method, which consists in random
subsampling according to carefully selected target class-wise sizes, incorporating lessons learned
from our theoretical analysis. We propose to select the pruning fraction of each class based on its
validation performance given a preliminary model ψ trained on the whole dataset. Such a query
model is still required by all existing data pruning algorithms to compute scores, so we introduce no
additional resource overhead (see Appendix E for more discussion).

Algorithm 1: DRoP
Input: Target dataset density d ∈ [0, 1].

For each class k ∈ [K]: original size Nk,
validation recall rk ∈ [0, 1].

Initialize: Unsaturated set of classes
U ← [K], excess E ← dN , class
densities dk ← 0 ∀k ∈ [K].

while E > 0 do
Z ← 1

E

∑
k∈U Nk(1− rk);

for k ∈ U do
d′k ← (1− rk)/Z;
dk ← dk + d′k;
E ← E −Nkd

′
k;

if dk > 1 then
U ← U \ {k};
E ← E +Nk(dk − 1);
dk ← 1

end
end

end
Return :{dk}Kk=1.

Consider pruning a K-way classification dataset origi-
nally with N samples down to density 0 ≤ d ≤ 1, so
the target dataset size is dN (prior literature sometimes
refers to 1 − d as the pruning fraction). Likewise, for
each class k ∈ [K], define Nk to be the original number
of samples so N =

∑K
k=1Nk, and let 0 < dk ≤ 1 be

the desired density of that class after pruning. Then, we
set dk ∝ 1 − rk where rk denotes recall (accuracy) of
class k computed by ψ on a hold-out validation set. In
particular, we define DRoP quotas as dk = d(1− rk)/Z
where Z =

∑K
k=1(1− rk)Nk

/
N is a normalizing fac-

tor to ensure that the target density is respected, i.e.,
dN =

∑K
k=1 dkNk. Alas, not all dataset densities

d ∈ [0, 1] can be associated with a valid DRoP col-
lection; indeed, for large enough d, the required class
proportions may demand dk > 1 for some k ∈ [K].
In such a case, we do not prune such classes and redis-
tribute the excess density across unsaturated (dk < 1)
classes according to their DRoP proportions. The full
procedure is described in Algorithm 1. This algorithm is
guaranteed to terminate as the excess decreases in each
iteration of the outer loop.

Evaluation. To validate the effectiveness of random pruning with DRoP (Random+DRoP) in
reducing classification bias, we compare it to various baselines derived from the strongest pruning
algorithms: EL2N (Paul et al., 2021) (for CIFAR-10 and ImageNet), GraNd (Paul et al., 2021)
and Forgetting (Toneva et al., 2019) (for CIFAR-100 and TinyImageNet). In addition to plain
random pruning (Random)—removing a random subset of all training samples—for each of these two
strategies, we consider (1) random pruning that respects class-wise ratios automatically determined by
the strategy (Random+StrategyQ), (2) applying the strategy for pruning within classes but distributing
sample quotas across classes according to DRoP (Strategy+DRoP), and (3) the strategy itself. The
motivation for (1) is the anecdotal observation that existing pruning algorithms automatically balance
classes according to their validation errors fairly well (Figure 16), while their overly scrupulous
filtering within classes may be suboptimal. In support of this view, Ayed & Hayou (2023) formally
show that integrating random sampling into score-based pruning procedures improves their average
performance. Next, (2) serves as a reasonable ablation, while (3) is the benchmark we compare to.
The implementation details are listed in Appendix A.

Results. Figure 5 presents our empirical results (additional plots showcasing other robustness
metrics can be found in Appendix D). Overall, DRoP with random pruning consistently exhibits a
significant improvement in distributional robustness of the trained models. In contrast to all other
baselines that arguably achieve their highest worst-class accuracy at high dataset densities (80–90%),
our method reduces classification bias induced by the datasets as pruning continues, e.g., up to
30–40% dataset density of TinyImageNet. Notably, Random+DRoP improves all robustness metrics
compared to the full dataset on all model-dataset pairs, offering both robustness and data efficiency
at the same time. For example, when pruning half of CIFAR-100, we achieve an increase in the
worst-class accuracy of VGG-19 from 35.8% to 45.4%—an almost 10% change at a price of under
6% of the average performance. The leftmost plots in Figure 5 reveal that Random+DRoP does suffer
a slightly larger degradation of the average accuracy as dataset density decreases compared to global
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Figure 5: The average test performance of various data pruning protocols against dataset density and worst-class
accuracy. All results averaged over 3 random seeds. Error bands represent min/max.

random pruning, which is unavoidable given the natural trade-off between robustness and average
performance. Yet at these low densities, the average accuracy of Random+DRoP exceeds that of all
other pruning algorithms.

As demonstrated in Figure 6, DRoP produces exceptionally imbalanced datasets unless the density d
is too low by heavily pruning easy classes while leaving the more difficult ones intact. As expected
from its design, the negative correlation between the full-dataset accuracy and density of each
class is much more pronounced for DRoP compared to existing pruning methods (cf. Figure 16).

Figure 6: DRoP. Left: Sorted class densities at different
dataset density levels. We report the minimum number of
samples per class (SPC) at 10% dataset density. Right: Full
dataset test class-wise accuracy against dataset density. We
also report the correlation coefficient between these two quan-
tities across classes, averaged over 5 dataset densities.

Based on our examination of these meth-
ods in Section 3, we conjectured that these
two properties are associated with smaller
classification bias, which is well-supported
by DRoP. Not only does it achieve unpar-
alleled performance with random pruning,
but it also enhances robustness of GraNd
and Forgetting: Strategy+DRoP curves of-
ten trace a much better trade-off between
the average and worst-class accuracies than
their original counterparts (Strategy). At
the same time, Random+StrategyQ fares
similarly well, surpassing the vanilla algo-
rithms, too. This indicates that robustness
is achieved not only from the appropriate
class ratios but also from pruning randomly
as opposed to cherry-picking hard samples.

A DRO baseline. The results in Figure 5 provide solid evidence that Random+DRoP is by far
the state-of-the-art data pruning algorithm in the robustness framework. Not only is it superior to
prior pruning baselines, it in fact produces significantly more robust models compared to the full
dataset, too. Thus, we go further and test our method against one representative cost-sensitive learning
method from the DRO literature, Class-wise Difficulty Based Weighted loss (CDB-W) (Sinha et al.,
2022). In its simplest form adopted in this study, CDB-W dynamically updates class-specific weights
wk,t = 1 − rk,t at every epoch t by computing recalls rk,t on a holdout validation set, which is
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Figure 7: The average test performance of data pruning protocols against data density and measures of class
robustness (VGG-19 on CIFAR-100). All results averaged over 3 random seeds. Error bands represent min/max.

precisely the proportions used by DRoP. Throughout training, CDB-W uses these weights to upweigh
the per-sample losses based on the corresponding class labels. As part of the evaluation, we test
if the robustness-driven optimization of CDB-W can help data pruning (for these experiments, we
use EL2N). To this end, we consider two scenarios: training the final model with CDB-W on the
EL2N-pruned dataset (EL2N+CDB-W), and using a robust query model trained by CDB-W to
generate EL2N scores (CDB-W+EL2N).

Having access to the full dataset for training, CDB-W improves the worst-class accuracy of VGG-19
on CIFAR-100 by 5.7% compared to standard optimization, which is almost twice as short of the
increase obtained by removing 50% of the dataset with Random+DRoP (Figure 5). When applied
to EL2N-pruned datasets, CDB-W maintains that original bias across sparsities, which is clearly
inferior not only to Random+DRoP but also to EL2N+DRoP. Perhaps surprisingly, EL2N with scores
computed by a query model trained with CDB-W fails spectacularly, inducing one of the worst bias
observed in this study. Thus, DRoP can compete with other existing methods that directly optimize
for worst-class accuracy.

Imbalanced datasets. In the literature, robustness almost exclusively arises in the context of
long-tailed distributions where certain classes or groups appear far less often than others; for example,
CDB-W was evaluated in this setting. While dataset imbalance may indeed exacerbate implicit
bias of the trained models towards more prevalent classes, our study demonstrates that the key to
robustness lies in the appropriate, difficulty-based class proportions rather than class balance per
se. Even though the overall dataset size decreases, pruning with DRoP can produce far more robust
models compared to full but balanced datasets (Figure 6). Still, to promote consistency in evaluation
and to further validate our algorithm, we consider long-tailed classification scenarios. We follow the
approach used by Cui et al. (2019) to inject imbalance into the originally balanced TinyImageNet. In
particular, we subsample each class k ∈ [K] and retain µk−1 of its original size for some µ ∈ (0, 1).
For an initially balanced dataset, the size ratio between the largest (k = 1) and the smallest (k = K)
classes then becomes µ1−K , which is called the imbalance factor denoted by I . Figure 8 reveals that
Random+DRoP consistently beats EL2N in terms of both average and robust performance across a
range of imbalance factors (I = 2, 5, 20). Likewise, it almost always reduces bias of the unpruned
imbalanced TinyImageNet even when training with a robustness-aware CDB-W procedure.

Figure 8: The average test performance of Random+DRoP (red-toned curves) and EL2N (blue-toned curves)
against dataset density and measures of class robustness across dataset imbalance factors I = 2, 5, 20. ResNet-18
on imbalanced TinyImageNet. Results averaged over 3 random seeds. Error bands represent min/max.
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Group Distributional Robustness: Waterbirds. While we scoped our study around robustness to
classification bias, a vast majority of research is concerned with strong model performance across
sensitive or minority groups within the distribution. One common benchmark dataset in this area
is Waterbirds, which is a binary image classification of bird types where ground truth is spuriously
correlated with image background (forest/water) for the majority of samples Sagawa* et al. (2020).
Thus, standard optimization techniques produce models that often make predictions based on the
background type rather than bird features, yielding poor accuracy for images from waterbird+forest
or landbird+water groups. We use the original learning setup introduced by Sagawa* et al. (2020) to
evaluate DRoP against other pruning baselines as well as CDB-W. Figure 9 shows that Random+DRoP
and EL2N+DRoP achieve a significant improvement of the worst-group accuracy and other metrics.
For worst-class accuracy, we adopt a handful of prior art including Just Train Twice (Liu et al.,
2021), Learning from Failure (Nam et al., 2020), Learning to Split (Bao & Barzilay, 2022), and
Bias Amplification (Li et al., 2023); the performance of these algorithms in this setup is reported by
Pezeshki et al. (2024), which we copied verbatim. As evident from Figure 9, Random+DroP is well
on par with these more sophisticated techniques that operate on full datasets. Therefore, as expected,
our algorithm applies not only to reduce classification bias but also to improve group-wise robustness.

Figure 9: The average test performance of data pruning protocols and existing baselines against measures of
group-wise robustness (ResNet-50 on Waterbirds). The results of data pruning and CDB-W averaged over 3
random seeds. Error bands represent min/max. To conform with Sagawa* et al. (2020), for this dataset, we
compute average accuracy as a sum of group accuracies weighted by the original training group proportions. This
explains the sharp degradation of the average performance of DRoP-backed pruning at low densities (d ≤ 0.4):
these datasets are skewed towards minority groups that weigh much less than severely pruned majority groups.
Please see Appendix F for an extended discussion.

6 DISCUSSION

Data pruning—removal of uninformative samples from the training dataset—offers much needed
efficiency in deep learning. However, all existing pruning algorithms are currently evaluated exclu-
sively on their average performance, ignoring their potentially disparate impact on model predictions
across data distribution. Through a systematic study of the classification bias, we reveal that current
methods often exacerbate the performance disparity across classes, which can deceptively co-occur
with high average performance. This leads us to formulate error-based class-wise pruning quotas
coined DRoP. At the same time, we find value in pruning randomly within classes, as opposed to
cherry-picking individual samples, which is inherent to the existing data pruning techniques. We
confirm the effectiveness of our method on a series of standard computer vision benchmarks; our
simple pruning protocol traces the best trade-off between average and worst-class performance
among all existing data pruning algorithms and related baselines. Additionally, we find theoretical
justification for the phenomenal success of this simple strategy in a toy classification model.

Limitations & Future Work. In this study, we focused our empirical evaluation primarily on
classification bias. Thus, we only scratched the surface of robustness in deep learning, which is often
concerned with group-wise model performance. Further research may attempt to understand the effect
of DRoP and data pruning at large on worst-group accuracy and spurious correlations more deeply.
Finally, we attribute our contributions mostly to research on data pruning and, therefore, present
limited cross-evaluation with a broad spectrum of distributionally robust optimization methods. Thus,
future research is warranted to perform a more detailed comparative study between these approaches.
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A IMPLEMENTATION DETAILS

Our empirical work encompasses three standard computer vision benchmarks (Table 1). All code is
implemented in PyTorch (Paszke et al., 2017) and run on an internal cluster equipped with NVIDIA
RTX8000 GPUs. The total runtime of the empirical work presented in this paper is approximately
45, 000 GPU hours.

Data Pruning. Data pruning methods require different procedures for training the query model and
extracting scores for the training data. For EL2N and GraNd, we use 10% of the full training length
reported in Table 1 before calculating the importance scores, which is more than the minimum of 10
epochs recommended by Paul et al. (2021). To improve the score estimates, we repeat the procedure
across 5 random seeds and average the scores before pruning. Forgetting and Dynamic Uncertainty
operate during training, so we execute a full optimization cycle of the query model but only do so
once. Likewise, CoreSet is applied once on the fully trained embeddings. We use the greedy k-center
variant of CoreSet. Since some of the methods require a hold-out validation set (e.g., DRoP, CDB-W),
we reserve 50% of the test set for this purpose. This split is never used when reporting the final model
performance.

Data Augmentation. We employ data augmentation only when optimizing the final model. The
same augmentation strategy is used for all datasets except for Waterbirds where we used none. In
particular, we normalize examples per-channel and randomly apply shifts by at most 4 pixels in any
direction and horizontal flips.

Models & Datasets. As shown in Table 1, we use the following model-dataset pairs: VGG-16
and VGG-19 (Simonyan & Zisserman, 2015) on CIFAR-10 and CIFAR-100 (Krizhevsky, 2009),
respectively, ResNet-18 (He et al., 2016) on TinyImageNet (MIT License) (Le & Yang, 2015),
ImageNet pre-trained ResNet-50 on Waterbirds (Sagawa* et al., 2020) (MIT License), and ResNet-50
on ImageNet (Deng et al., 2009). We also use a slight adaptation of Wide-ResNet-101 (Zagoruyko,
2016) on CIFAR-100 with a few downsampling layers removed.

Model Dataset Epochs Drop Epochs Batch LR Decay

VGG-16 CIFAR-10 160 80/120 128 0.1 1e-4
VGG-19 CIFAR-100 160 80/120 128 0.1 5e-4

ResNet-18 TinyImageNet 200 100/150 256 0.2 1e-4
ResNet-50 ImageNet 90 30/60 512 0.2 1e-4
ResNet-50 Waterbirds 300 None 128 0.0001 1e-4

Wide-ResNet-101 CIFAR-100 200 60/120/160 128 0.1 1e-4

Table 1: Summary of experimental work and hyperparameters. All architectures include batch
normalization (Ioffe & Szegedy, 2015) layers followed by ReLU activations. Models are initialized
with Kaiming normal (He et al., 2015) and optimized by SGD (momentum 0.9) with a stepwise LR
schedule (0.2× drop factor applied on specified Drop Epochs) and categorical cross-entropy. These
hyperparameters are adopted from prior studies (Frankle et al., 2021; Wang et al., 2020; Sagawa*
et al., 2020; Cai et al., 2022).

B THEORETICAL ANALYSIS FOR A MIXTURE OF GAUSSIANS

Consider the Gaussian mixture model and the hypothesis class of linear decision rules introduced in
Section 4. Here we give a more formal treatment of the assumptions and claims made in that section.

B.1 AVERAGE RISK MINIMIZATION

Recall that we consider the average risk of the linear decision ŷt(x) = 1{x > t} as R(t) =
Ex,y[ℓ(ŷt(x), y)], where the expectation is over (x, y) ∼ p(x, y) and class-conditional risk as
Ry(t) = Ex|y[ℓ(ŷt(x)), y)], where the expectation is over x ∼ p(x|y) for y ∈ {0, 1}. If ℓ is
the 0-1 loss, we thus obtain Equations 1 and 2. Recall that we have assumed σ0 < σ1 and µ0 < µ1.
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We now give the precise conditions under which the average risk minimizer takes the form of
t∗(ϕ0/ϕ1) from Equation 3—the larger intersection point between the graphs of scaled probability
density functions ϕ0f0(t) and ϕ1f1(t).

First, we make an assumption that this intersection exists, i.e., the expression under the square root in
Equation 3 is non-negative. That is, we require

ϕ0
ϕ1

≥ σ0
σ1

exp
[
−1

2

(µ0 − µ1)
2

σ2
1 − σ2

0

]
. (6)

This assumption simply guarantees the existence of intersection points of the two scaled density
functions; provided this holds, we establish an additional condition on priors necessary for t∗(ϕ0/ϕ1)
to be the average risk minimizer.
Theorem B.1. If Equation 6 holds, define t∗(ϕ0/ϕ1) as in Equation 3. Then, t∗(ϕ0/ϕ1) is the
statistical risk minimizer for the Gaussian mixture model if

ϕ0
ϕ1

> Φ

(
t∗(ϕ0/ϕ1)− µ1

σ1

)/
Φ

(
t∗(ϕ0/ϕ1)− µ0

σ0

)
. (7)

Proof. For a decision rule t ∈ R ∪ {±∞}, the statistical risk in the given Gaussian mixture model is
given in Equation 1. The global minimum is achieved either at ±∞ or on R. In the latter case, the
minimizer is a solution to ∂R(t)/∂t = 0:

0 =
∂R(t)

∂t
= − ϕ0√

2πσ0
exp

[
−1

2

(
µ0 − t

σ0

)2
]
+

ϕ1√
2πσ1

exp

[
−1

2

(
t− µ1

σ1

)2
]
.

Rearranging and taking the logarithm on both sides yields

0 = −2 log

[
ϕ0σ1
ϕ1σ0

]
−
(
t− µ1

σ1

)2

+

(
µ0 − t

σ0

)2

, (8)

which is a quadratic equation in t with solutions

t± =
µ0σ

2
1 − µ1σ

2
0 ± σ0σ1

√
(µ0 − µ1)2 + 2(σ2

1 − σ2
0) log

ϕ0σ1

ϕ1σ0

σ2
1 − σ2

0

. (9)

By repeating the same steps for an inequality rather than equality, we conclude that 0 < ∂R(t)/∂t if
and only if

0 < −2 log

[
ϕ0σ1
ϕ1σ0

]
−
(
t− µ1

σ1

)2

+

(
µ0 − t

σ0

)2

(10)

similarly to Equation 8. This identity holds because the logarithm is a monotonically increasing
function, preserving the inequality. Further expanding the right-hand side of Equation 10 and
collecting similar terms, we arrive at a quadratic equation in t with the leading (quadratic) coefficient
σ−2
0 − σ−2

1 > 0. Hence, the right-hand side defines an upward-branching parabola with zeros given
in Equation 9 when they exist (we assume they do owing to assumption in Equation 6). The derivative
of the statistical risk is positive whenever the right-hand side of Equation 10 is, i.e., on intervals
(−∞, t−) and (t+,∞). Hence, the risk R(t) must be increasing on the interval (−∞, t−), and so
t− can never be a global minimizer. Likewise, the risk is increasing on the interval (t+,∞), which
rules out {+∞}. Therefore, we just need to establish that R(−∞) ≥ R(t+), which is equivalent to
Equation 7 since t∗(ϕ0/ϕ1) = t+.

Remark. We have considered unequal variances σ2
0 < σ2

1 as a natural way to model classes with
different difficulty. Yet note that our analysis still holds with slight modifications when σ0 = σ1 = σ.
The difference in this case is that for any choice of priors, there is exactly one solution to Equation 8
(and exactly one intersection point of the scaled density functions), given by

t∗(ϕ0/ϕ1) =
2σ2 log

[
ϕ0

ϕ1

]
+ (µ2

1 − µ2
0)

2(µ1 − µ0)
.
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In particular, no additional assumptions as in Equation 6 to guarantee the existence of an intersection
point need to be made. Furthermore, a similar derivative analysis as above implies that the risk is
decreasing on the interval (−∞, t∗(ϕ0/ϕ1)) and increasing on the interval (t∗(ϕ0/ϕ1),+∞), so that
t∗(ϕ0/ϕ1) must be the statistical risk minimizer and the assumption in Equation 7 is, in fact, always
satisfied. With these simplifications, the rest of the analysis presented in this section and in Section 4
holds for σ0 = σ1.

B.2 WORST-CLASS OPTIMAL PRIORS

We wish to formally establish that t∗(σ0/σ1) as defined in Equation 4 minimizes both the average
and worst-class risks when ϕ0 ∝ σ0 and ϕ1 ∝ σ1. For the first part, as we argued in Section B.1,
these priors must satisfy the assumption in Equation 7 (Equation 6 is trivially satisfied). In this case,
we can equivalently rewrite it as

σ0
σ1

> Φ

(
µ0σ1 + µ1σ0 − µ1σ0 − µ1σ1

σ1(σ0 + σ1)

)/
Φ

(
µ0σ1 + µ1σ0 − µ0σ0 − µ0σ1

σ1(σ0 + σ1)

)

= Φ

(
µ0 − µ1

σ0 + σ1

)/
Φ

(
µ1 − µ0

σ0 + σ1

)
=

[
1− Φ

(
µ1 − µ0

σ0 + σ1

)]/
Φ

(
µ1 − µ0

σ0 + σ1

)
,

Defining z = Φ
(

µ1−µ0

σ0+σ1

)
, we arrive at σ0z > σ1(1 − z). By rearranging and collecting similar

terms, we get z > σ1

σ0+σ1
, which is equivalent to

µ1 − µ0 > (σ0 + σ1)Φ
−1

(
σ1

σ0 + σ1

)
(11)

since Φ−1 is monotonically increasing. Hence, the assumption in Equation 7 can be interpreted
as a lower bound on the separation between the two means µ0 and µ1. When this condition holds,
t∗(σ0/σ1) minimizes the average statistical risk, as desired.

For the second part, we start by proving the following lemma.

Lemma B.2. Suppose f : R → [0, 1] is a strictly increasing continuous function and g : R → [0, 1]
is a strictly decreasing continuous function, satisfying{

limx→−∞ f(x) = limx→+∞ g(x) = 0

limx→+∞ f(x) = limx→−∞ g(x) = 1
(12)

The solution x∗ to minx max{f(x), g(x)} is unique and satisfies f(x∗) = g(x∗).

Proof. Define h(x) = f(x)− g(x). Observe that h(x) is a strictly increasing continuous function
as f and −g are strictly increasing. Also, limx→−∞ h(x) = −1 and limx→∞ h(x) = 1. From the
Intermediate Value Theorem, there exists a point x∗, where h(x∗) = 0, i.e., f(x∗) = g(x∗). Observe
that x < x∗ implies maxx{f(x), g(x)} = g(x) and x ≥ x∗ implies maxx{f(x), g(x)} = f(x).
Therefore, the objective function decreases up to x∗ and then increases. Hence, x∗ is the minimizer
of the objective minx max{f(x), g(x)}.

Since f(t) = R1(t) and g(t) = R0(t) meet the conditions of Lemma B.2, the minimizer of the
worst-class risk t̂ satisfies R0(t̂) = R1(t̂). Equating the risks in Equation 1 then immediately proves
the formula for t̂ (Equation 4). Finally, note that t∗(σ0/σ1) = t̂ because of the vanishing logarithm.
Therefore, t∗(σ0/σ1) minimizes both the average and worst-class statistical risks for a mixture with
priors ϕ0 = σ0

σ0+σ1
and ϕ1 = σ1

σ0+σ1
provided that Equation 11 (reformulated assumption in Equation

7 for the given choice of priors) holds.

Finally, note that if σ0 = σ1, t̂ = t∗(ϕ0/ϕ1) = (µ0 + µ1)/2 for the optimal priors ϕ0 = ϕ1, as
expected.
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B.3 THE EFFECT OF SSP

Our setting allows us to adapt and analyze a state-of-the-art baseline pruning algorithm, Self-
Supervised Pruning (SSP) (Sorscher et al., 2022). Recall that, in Section 4, we adopted a variant
of SSP that removes samples within a margin M > 0 of their class means. SSP performs k-means
clustering in the embedding space of an ImageNet pre-trained self-supervised model and defines the
difficulty of each data point by the cosine distance to its nearest cluster centroid, or prototype. In
the case of two univariate Gaussians, this score corresponds to measuring the distance to the closest
mean.

We claimed and demonstrated in Figure 3 that the optimal risk minimizer remains around t∗(ϕ0/ϕ1)
even after pruning. In this section, we make these claims more precise. To this end, note that, for a
Gaussian variable with variance σ2, the removed probability mass is

Φ

(
M + µ− µ

σ

)
− Φ

(
µ− (µ−M)

σ

)
= 2Φ

(
M

σ

)
− 1. (13)

Now, for sufficiently small M , we can assume that the average risk minimizer lies within the interval
(µ0 +M,µ1 −M) (recall that the average risk minimizer of the original mixture lies between µ0

and µ1 owing to the assumption in Equation 7). In this case, the right tail of the easier class and the
left tail of the more difficult class (these tails are misclassified for the two classes) are unaffected by
pruning and, hence, the average risk after SSP R′(t) should remain proportional to the original risk
R(t). More formally, consider the class-wise risks after SSP:

R′
0(t) =

Φ
(

µ0−t
σ0

)
2− 2Φ (M/σ0)

=
R0(t)

2− 2Φ (M/σ0)
,

R′
1(t) =

Φ
(

t−µ1

σ1

)
2− 2Φ (M/σ1)

=
R1(t)

2− 2Φ (M/σ1)
.

where the denominators are the normalizing factors based on Equation 13. To compute the average
risk R′(t) = ϕ′0R

′
0(t) + ϕ′1R

′
1(t), we shall identify the modified class priors ϕ′0 and ϕ′1 after pruning.

Again, from Equation 13, we obtain

ϕ′0 ≡ ϕ0

[
2− 2Φ

(
M

σ0

)]
, ϕ′1 ≡ ϕ1

[
2− 2Φ

(
M

σ1

)]
(14)

up to a global normalizing constant that ensures ϕ′0 + ϕ′1 = 1. Therefore, the average risk is indeed
proportional to ϕ0R0(t) + ϕ1R1(t) = R(t), as desired, so the average risk minimizer after pruning
coincides with the original one.

B.4 MULTIVARIATE ISOTROPIC GAUSSIANS

While the analysis of general multivariate Gaussians is beyond the scope of this paper, we show
here that in the case of two isotropic multivariate Gaussians (i.e., Var(x|y) = σ2

yI for y = 0, 1), the
arguments in Sections B.1–B.3 apply. In particular, we demonstrate that this scenario reduces to a
univariate case.

For simplicity, assume that the means of the two Gaussians are located at −µ and µ for some µ ∈ Rd

for classes y = 0 and y = 1, respectively, which can always be achieved by a distance-preserving
transformation (translation and/or rotation). Generalizing the linear classifier from Section 4, we now
consider a hyperplane defined by a vector w ∈ Rd of unit ℓ2-norm and a threshold t ∈ R ∪ {±∞},
classifying a point x ∈ Rd as 1{w⊤x ≤ t}. Note that for a fixed vectorw ∈ Rd and x ∼ N (µ, σ2Id),
we have (w⊤x− w⊤µ)/σ ∼ N (0, 1) as a linear transformation of the isotropic Gaussian. We can
now compute the class risks as

R1(w, t) = P (w⊤x ≤ t|y = 1)

= P

(
w⊤x− w⊤µ

σ1
≤ t− w⊤µ

σ1

∣∣∣∣y = 1

)
= Φ

(
t− w⊤µ

σ1

)
,

R0(w, t) = P (w⊤x ≥ t|y = 0)

= P

(
w⊤x+ w⊤µ

σ0
≥ t+ w⊤µ

σ0

∣∣∣∣y = 1

)
= Φ

(
−t− w⊤µ

σ0

)
.
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The average risk given the class priors is thus

R(w, t) = ϕ1Φ

(
t− w⊤µ

σ1

)
+ ϕ0Φ

(
−t− w⊤µ

σ0

)
.

We will now show that for all the risk minimization problems we have considered in our theoretical
analysis, we can equivalently minimize over a one-dimensional problem. It suffices to observe
that for a fixed t ∈ R, both R0(w, t) and R1(w, t) are minimized when w (with ∥w∥2 = 1)
coincides with µ/∥µ∥ because of monotonicity of Φ. This leads to the expressions in Equation 1
with µ1,0 = ±µ/∥µ∥. Thus, to compute the minimum of R(w, t) with respect to w and t, we can
equivalently minimize R(µ/∥µ∥2, t) with respect to t. For the worst-class optimization

min
∥w∥=1,t

max{R1(w, t), R0(w, t)}

observe that

min
t

min
∥w∥=1

max{R1(w, t), R0(w, t)} = min
t

max{R1(µ/∥µ∥, t), R0(µ/∥µ∥, t)}

Therefore, this problem also reduces to the minimization in the univariate case from Section B.2.

C DATA PRUNING: FULL RESULTS

Figure 10: The average test performance of various data pruning algorithms against dataset density (fraction
of samples remaining after pruning) and metrics of class robustness. Top to Bottom: VGG-16 on CIFAR-10;
VGG-19 on CIFAR-100; ResNet-18 on TinyImageNet; ResNet-50 on ImageNet. All results averaged over 3
random seeds. Error bands represent min/max.
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D DROP: FULL RESULTS

(a) VGG-16 on CIFAR-10

(b) VGG-19 on CIFAR-100

(c) ResNet-18 on TinyImageNet

Figure 11: The average test performance of various data pruning protocols against dataset density and measures
of class robustness. Random+DroP consistently outperforms all baselines with respect to these additional
measures of distributional robustness besides worst-class accuracy reported in Figure 5, too, confirming its
effectiveness in reducing bias. All results averaged over 3 random seeds. Error bands represent min/max.
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Figure 12: The average test performance of various data pruning protocols against dataset density and measures
of class robustness. ResNet-50 on ImageNet with EL2N as Strategy. All results averaged over 3 random seeds.
Error bands represent min/max.

Table 2: Average and worst-class accuracy (in %) when pruning datasets to d = 0.3, 0.5, 0.8 by
various methods with or without DRoP. For each column, we boldface the best worst-class accuracy
across all three methods. In all cases, DRoP achieves superior worst-class accuracy, especially so
when used together with Random. Furthermore, Random+DRoP always improves robustness of full
datasets when halving them (d = 0.5).

Method DRoP Acc. CIFAR-10 CIFAR-100 TinyImageNet

0.3 0.5 0.8 0.3 0.5 0.8 0.3 0.5 0.8

Random
✗

avg 86.8 89.6 91.7 59.1 64.8 68.2 47.8 53.6 59.7
worst 75.5 80.1 82.2 24.7 30.1 33.0 8.7 10.0 17.3

✓
avg 86.5 89.5 91.8 57.2 63.7 68.0 45.8 51.3 58.1

worst 82.1 85.9 84.9 34.3 45.3 40.3 16.2 20.0 16.9

GraNd
✗

avg 87.6 91.9 92.7 40.4 58.5 69.3 30.4 48.7 60.0
worst 77.0 83.6 85.1 12.3 31.7 39.0 1.0 12.4 15.8

✓
avg 85.9 91.6 92.6 35.5 55.9 68.7 29.9 48.6 59.4

worst 78.0 83.8 84.7 15.0 30.1 36.3 4.7 10.7 16.7

Forgetting
✗

avg 87.2 91.5 92.4 56.1 65.2 69.4 25.9 48.1 60.2
worst 79.1 84.2 85.0 26.3 34.0 33.3 1.0 9.5 15.2

✓
avg 85.7 91.4 92.6 58.2 64.8 68.9 22.1 42.8 58.2

worst 78.7 84.6 85.1 32.0 34.0 38.3 1.3 12.7 18.0

Average
✗

avg 87.2 91.0 92.3 51.9 62.8 69.0 34.7 50.1 60.0
worst 77.2 82.6 84.1 21.1 31.9 35.1 3.6 10.6 16.1

✓
avg 86.0 90.8 92.3 50.3 61.5 68.5 32.6 47.6 58.6

worst 79.6 84.8 84.9 27.1 36.5 38.3 7.4 14.5 17.2

Full Dataset avg 92.8 70.0 61.6
worst 84.8 35.8 17.8

Figure 13: The average test performance of various data pruning protocols against dataset density and measures
of class robustness. Wide-ResNet-101 on CIFAR-100 with EL2N as Strategy. All results averaged over 3 random
seeds. Error bands represent min/max.
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Larger Models. Some previous studies argue that larger models enjoy better distributional robust-
ness compared to smaller ones (Andreassen et al., 2022; Feuer et al., 2023). To see how model size
could affect the applicability and effectiveness of DRoP, we train a Wide-ResNet-101 (Zagoruyko,
2016) with expansion factor of 2 on CIFAR-100, which is an unusually high caliber architecture for
such a relatively small dataset. In fact, we had to remove a few early downsampling layers from the
original implementation of this model to account for the resolution of CIFAR-100. On full dataset,
Wide-ResNet-101 with 125M parameters achieves a 4% higher average and almost a 10% higher
worst-class accuracy compared to a VGG-19 with just 20M parameters (see Figures 11b and 13).
Even in this more competitive setup, Random+DRoP continues to show considerable improvement in
all robustness metrics over other pruning baselines as well as the full dataset (Figure 13).

E DROP ABLATION: PRE-TRAINING LENGTH

As mentioned in Section 5, DRoP requires a pre-trained query model to compute class-wise validation
errors. All existing data pruning methods also require pre-training to compute sample-wise pruning
scores. However, as Paul et al. (2021) shows, it suffices to run optimization for as little as 10 epochs to
achieve accurate enough scores for EL2N. In our experimental work, we used 10% of the full training
cycle to train the query model for EL2N, GraNd, and DRoP, which is at least the recommended 10
epochs for all model-dataset pairs tested in this study. In this section, we verify that DRoP reaches
its full performance with this much pre-training and, hence, it does not introduce any additional
computational overhead already needed by the current data pruning algorithms. Indeed, Figure 14
shows that the downstream performance of DRoP saturates at 10 pre-training epochs or earlier, with
lower pruning ratios allowing even less training than more aggressive ones.

Figure 14: Final model performance after DRoP with different lengths of the query model training.
Top: VGG-19 on CIFAR-100, Bottom: ResNet-18 on TinyImageNet. Repeated over 3 random
seeds and three dataset densities (d = 0.4, 0.5, 0.8). In our study, we use 16 and 9 pre-training
epochs for VGG-19 on CIFAR-100 and ResNet-18 on TinyImageNet (10% of the full training cycle),
respectively.

F RESNET-50 ON WATERBIRDS

As stated in the caption of Figure 9, Sagawa* et al. (2020) compute average accuracy on Waterbirds
as sum of group accuracy weighted by the group proportions in the training dataset, which is highly
skewed towards majority classes (landbird+forest and waterbird+water, see Figure 15b). We adhere
to this strategy in Figure 9 to ensure fair comparison with prior algorithms. Note, however, that this
places DRoP at a disadvantage since it is designed to prune easier groups more aggressively and
protect underperforming minority groups (see left barplots for each method in Figure 15b). Ultimately,
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this leads to a rapid degradation of the average accuracy at low dataset densities, which we observed in
Figure 9 (left). In Figure 15a (bottom) we switch to a more standard accuracy computation as fraction
of correctly classified samples regardless of group identities. In this framework, Random+DRoP
remains strong relative to other methods. We should note that the test split is also slightly imbalanced
with landbird+forest and landbird+water represented by 2255 images each, and waterbird+forest and
waterbird+water—by 642.

(a) (b)

Figure 15: (a): Average test accuracy against dataset density across different pruning methods. Top: Average
accuracy computed as a weighted sum of group-wise accuracies according to training proportions. Bottom:
Average accuracy is computed as a fraction of correctly classified samples of the test set. (b): Group sizes and
group accuracy for all four groups in Waterbirds at d = 0.1 for different pruning methods, as well as on the full
dataset (bottom right barplots).

G DATA PRUNING: CLASS-WISE ANALYSIS

Figure 16: Full dataset test accuracy against density, across all classes, after pruning with different
methods. We use the full dataset accuracy to capture the baseline “difficulty” of each class. On each
plot, we report the correlation coefficient between these two quantities across classes, averaged over
5 data density levels (0.1, 0.3, 0.5, 0.7, 0.9). Top: VGG-16 on CIFAR-10, Center: VGG-19 on
CIFAR-100, Bottom: ResNet-18 on TinyImageNet. Experiments repeated over 3 random seeds.
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Figure 17: Sorted class densities in the training dataset pruned by various algorithms to different
density levels. On each plot, we report the minimum number of samples per class (SPC) at 10%
dataset density. Top: VGG-16 on CIFAR-10, Center: VGG-19 on CIFAR-100, Bottom: ResNet-18
on TinyImageNet. Repeated over 3 random seeds.
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