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Abstract

Many complex networks have partially observed or evolving connectivity, making
link prediction a fundamental task. Topological link prediction infers missing
links using only network topology, with applications in social, biological, and
technological systems. The Cannistraci-Hebb (CH) theory provides a topological
formulation of Hebbian learning, grounded on two pillars: (1) the minimization
of external links within local communities, and (2) the path-based definition
of local communities that capture homophilic (similarity-driven) interactions via
paths of length 2 and synergetic (diversity-driven) interactions via paths of length
3. Building on this, we introduce the Cannistraci-Hebb Adaptive (CHA) network
automata, an adaptive learning machine that automatically selects the optimal CH
rule and path length to model each network. CHA unifies theoretical interpretability
and data-driven adaptivity, bridging physics-inspired network science and machine
intelligence. Across 1,269 networks from 14 domains, CHA consistently surpasses
state-of-the-art methods—including SPM, SBM, graph embedding methods, and
message-passing graph neural networks—while revealing the mechanistic princi-
ples governing link formation. Our code is available at https://github.com/
biomedical-cybernetics/Cannistraci_Hebb_network_automata.

1 Introduction

Many complex networks have a connectivity that might be only partially detected or that tends to grow
over time, hence the prediction of non-observed links is a fundamental problem in network science.
The aim of topological link prediction is to forecast these non-observed links by only exploiting
features intrinsic to the network topology. It has a wide range of real applications, like suggesting
friendships in social networks or predicting interactions in biological networks [1–3]. A plethora of
methods based on different methodological principles have been developed in recent years, and in this
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study we will consider for reference the state-of-the-art algorithms. The first is Structural Perturbation
Method (SPM), a model-free global approach that relies on a theory derived from the first-order
perturbation in quantum mechanics [4]. The second represents a class of generative models named
Stochastic Block Models (SBM), whose general idea is that the nodes are partitioned into groups and
the probability that two nodes are connected depends on the groups to which they belong [5]. The
third class of methods is model-free and includes machine learning algorithms for graph embedding.
Such methods convert the graph data into a low dimensional space in which certain graph structural
information and properties are preserved. Different graph embedding variants have been developed
aiming to preserve different information in the embedded space, some examples are: HOPE [6],
node2vec [7], NetSMF [8], ProNE [9]. A fourth category comprises neural message-passing models
tailored for link prediction. Neural Common Neighbor with Completion (NCNC) [10] integrates
structural features with message passing under an MPNN-then-SF architecture and corrects for
graph incompleteness by completing missing common-neighbor structures. Finally, the Message
Passing Link Predictor (MPLP) [11] approximates structural heuristics such as Common Neighbor
via quasi-orthogonal vector propagation within a pure message-passing framework.

While the aforementioned approaches have been shown to be competitive link predictors, they do not
offer a clear interpretability of the mechanisms behind the network growth. This property, instead,
can be fulfilled for example by mechanistic models based on the Cannistraci-Hebb theory [3, 12–16],
since each of them is based on an explicit deterministic mathematical formulation. Each model in the
Cannistraci-Hebb theory represents a specific rule of self-organization which is associated to explicit
principles that drive the growth’s dynamics of the underlying complex networked physical system.

The concept of network automata, like other forms of automata, is rooted in AI research [17–
19], where they model adaptive, decentralized, and emergent intelligence mechanisms in complex
networks. The Cannistraci-Hebb theory is a recent achievement in network science [16, 20] that
includes a theoretical framework to understand local-based link prediction on paths of length n under
the lens of predictive network automata theory. CH theory goes beyond any type of classical local
link predictor heuristic on paths of length two such common neighbors (CN) [21], resource allocation
(RA) [22], Jaccard [23] and preferential attachment (PA) [21]; and link predictor on paths of length
three of Kovács et al. [24], which triggered a fundamental discovery on the organization of protein
interaction networks (PPI). Following the discovery of a previous article of Daminelli et al. [12]
that stressed the importance of paths of length three for link prediction in bipartite networks, on the
same line Kovács et al. suggested that proteins interact according to an underlying bipartite scheme.
Indeed, proteins interact not if they are similar to each other, but if one of them is similar to the other’s
partners. This principle, such as the one proposed by Daminelli et al. [12], mathematically relies
on network paths of length three (L3) [24], whereas most of the deterministic local based models
previously developed were based on paths of length two (L2) [3]. These findings lead to a change of
perspective in the field, highlighting the existence of different classes of networks whose patterns
of interactions are organized either as L2 or L3. However, a conceptual limitation of the studies of
Daminelli et al. [12] and Kovács et al. is that the L3-based link predictors developed [24] were not
properly connected to already known principles of modelling, which prompted us to formulate and
introduce a generalized theory.

In this study, we introduce four key innovations in the field of topological link prediction:

• Minimization of external connectivity (CH paradigm). We formalize a new principle
within the Cannistraci-Hebb (CH) framework that emphasizes minimizing external local-
community links (eLCL), leading to the introduction of two new models, CH3 and CH3.1.

• Engineering the adaptive network automata learning machine CHA. We design an
adaptive intelligent machine CHA, that automatically learns from the network topology the
most suitable CH rule and path length to model each network, using internal validation to
guide selection. This adaptive modeling is the central innovation of the study. Crucially,
our framework infers the physical principle that governs link formation: L2-based rules
reflect homophilic interactions (similarity-driven), while L3-based rules capture synergistic
interactions (diversity-driven cooperation). Thus, CHA is not a black-box scorer but an
interpretable, mechanistic machine that recovers the effective rule explaining the prediction
and governing the topological evolution directly from data. This bridges AI and network
science, enabling both predictive power and scientific insights across physics domains.
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Figure 1: Illustration of the Cannistraci-Hebb Adaptive (CHA) network automaton framework.
CHA is designed to automatically adapt to the structural characteristics of the input network by
selecting the most suitable Cannistraci-Hebb (CH) model and path length for link prediction. For
a given network, multiple CH models (e.g., CH2, CH3) and path lengths (e.g., L2, L3) are applied
independently to assign likelihood scores to both observed and non-observed links. For each model-
path combination, a performance metric, such as Area Under the Precision-Recall Curve (AUPR),
Precision, or NDCG, is computed using observed links as positives. The combination achieving the
highest value under the selected metric is chosen, and the corresponding scores for the non-observed
links are used as the final prediction. To further refine the ranking among node pairs receiving
identical CH scores, a sub-ranking strategy based on Spearman correlation of shortest-path profiles is
applied. This adaptive procedure ensures that CHA selects the rule best aligned with the underlying
connectivity pattern of the network under analysis.

Empirically, on a benchmark of over 1000 networks, CHA achieves more than twice the
win rate of the best-performing baseline.

• Comprehensive static and temporal benchmark. We construct a large-scale benchmark
ATLAS, consisting 1269 real-world networks (ATLAS-static) and 14 time-evolving networks
(ATLAS-temporal).

• Multi-metric evaluation. We adopt three complementary evaluation metrics, Precision,
NDCG, and AUPR, to capture diverse aspects of link prediction performance. Across all
three metrics, our adaptive model consistently outperforms all baselines, demonstrating its
robustness and general superiority under different evaluation criteria.

2 Preliminaries and Methods

2.1 Physical Modelling

2.1.1 Network Automata

CH and CHA are network automata rules for approximating the likelihood of a non-observed link
to appear in the network. These rules are categorized as network automata because they adopt only
local information to infer the score of a link in the network without need of pre-training of the
rule. Note that CH and CHA are predictive network automata that differ from generative network
automata which are rules created to generate artificial networks [25–27]. Network automata as for any
type of automata are part of AI research [17–19]. Network automata were originally introduced by
Wolfram [28] and later formally defined by Smith et al. [29] as a general framework for modeling the
evolution of network topology. Given an unweighted and undirected adjacency matrix X(t) at time t,
in a network automaton the states of links evolve over time according to a rule that depends only on
local topological properties computable from a portion of the adjacency matrix X̃(t) ⊂ X(t):

X̃(t+ 1) = F (X̃(t)) (1)
The ruleset may depend on any property of the nodes or links and might be deterministic or stochastic.
In contrast to cellular automata on a network [28, 30], in which the states of nodes evolve and
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whose neighborhoods are defined by the network, in network automata the states of links evolve, and
therefore the topology itself changes over time.

Smith et al. [29] provide an example in which the state update of a link Xu,v(t+ 1) is determined by
a simple topological property such as the sum of the node degrees:

fu,v(t) = du(t) + dv(t) (2)

If the link exists, Xu,v(t) = 1, and the property exceeds a survival threshold fu,v(t) > xS , then
the link survives; otherwise, it is removed. If the link does not exist, Xu,v(t) = 0, and the property
exceeds a birth threshold fu,v(t) > xB , then the link is created; otherwise, it remains absent. In
this example, the computation of the topological property and the link update based on the survival
and birth thresholds constitute the F operation. This basic ruleset fully describes the evolution of a
network automaton.

We note that if we focus on the topological property fu,v(t), we could replace the sum of node degrees
with any of several mathematical models developed for link prediction, such as common neighbors
(CN) [21], resource allocation (RA) [22], Jaccard [23], and preferential attachment (PA) [21]. Al-
though these models are often referred to as heuristics, the definition and example above clearly show
that such local and deterministic models are in fact network automata.

As a final remark, in this link prediction study we specifically use these algorithms to predict the non-
observed links that are more likely to be created at the next step of network evolution. Therefore, we
do not consider the survival and birth thresholds in further detail, and focus solely on the topological
property fu,v(t). For simplicity, we will also omit the time variable t in the following discussion.

2.1.2 Network Automata on Paths of Length n

After having recalled the framework of network automata defined by Smith et al. [29], we now
introduce a particular subclass named network automata on paths of length n. These automata
evaluate the topological property between two nodes based on the topological information contained
along the paths of length n between them. In mathematical terms, we can express the topological
property as follows:

f(u, v) =
∑

z1,...,zn−1∈Ln

f ′(z1, . . . , zn−1) (3)

where u and v are the two seed nodes of the candidate interaction; the summation is executed
over all paths of length n; z1, . . . , zn−1 are the intermediate nodes on each path of length n; and
f ′(z1, . . . , zn−1) is some function dependent on the intermediate nodes.

A simple example is represented by the resource allocation (RA) model developed by Zhou et al. [22],
which is a network automaton on paths of length two (L2), using as function f ′(z) the inverse of the
degree of the intermediate node (common neighbour in the L2 case). The mathematical formula is:

RA-L2(u, v) =
∑
z∈L2

1

dz
(4)

where the summation is over all paths of length two; z is the intermediate node on each path; and dz
is the degree of node z.

To generalize this to paths of length n > 2, we need an operator that merges the individual topological
contributions of the intermediate nodes on a path of length n. Without loss of generality, if we use
the geometric mean as the merging operator, we derive the following generalized formula for RA on
paths of length n:

RA-Ln(u, v) =
∑

z1,...,zn−1∈Ln

1(
dz1dz2 · · · dzn−1

) 1
n−1

(5)

where the summation is executed over all paths of length n; z1, . . . , zn−1 are the intermediate nodes;
and dz1 , . . . , dzn−1

are their respective degrees.

We note that for paths of length three (L3), the above formula becomes equivalent to the one
proposed by Kovács et al. [24], which extends the resource allocation principle to paths of length
three—although this connection was not properly clarified in their study, but was subsequently
explained in [16] supporting the present one. From here onward, we will refer to this method as
RA-L3.
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2.1.3 Cannistraci-Hebb Network Automata on Paths of Length n

In this section, we introduce a new rule of self-organization that can be modeled using different
network automata on paths of length n. Let us first recall some theoretical background.

In 1949, Donald Olding Hebb proposed a local learning rule in neuronal networks, often summarized
as: neurons that fire together wire together [31]. However, the concept of "wiring together" was not
fully specified and can be interpreted in two ways. The first interpretation is that existing connectivity
between co-firing neurons is reinforced. The second is that new connections form between co-firing
neurons not yet directly connected but already integrated within the same interacting cohort.

In 2013, Cannistraci et al. [3] termed the second interpretation epitopological learning, noting that it
could be formalized as a topological link prediction problem in complex networks. The rationale is
that, in networks with local-community organization, cohorts of neurons tend to be co-activated (fire
together) and to learn by forming new connections (wire together), because they are topologically
isolated within the same local community.

Cannistraci et al. [3] postulated that epitopological learning in neuronal networks is a special case of
a more general rule of local learning, valid for topological link prediction in any complex network
exhibiting a local-community-paradigm (LCP) architecture. Based on this idea, they introduced a new
class of link predictors which outperformed state-of-the-art predictors in both monopartite [3, 32–38]
and bipartite topologies [12, 13], across various domains such as brain networks, social networks,
biological systems, and economic structures.

A study by Narula et al. [39] also highlighted that LCP and epitopological learning enhance the
understanding of local brain connectivity in processing, learning, and memorizing chronic pain.

Previous formulations of the LCP theory emphasized the contribution of common neighbor nodes
complemented by the interactions among them, termed internal local-community links (iLCL).
This was a limitation, as shown by Cannistraci [14], who demonstrated that the local isolation of
common neighbors, minimizing their interactions external to the local community (external local-
community links, eLCL), is equally important to carve the LCP architecture. This minimization
forms a topological energy barrier that confines information processing within the community.

Here, we introduce the Cannistraci-Hebb (CH) theory, a revised mathematical formalization of the
LCP theory. The Cannistraci-Hebb (CH) theory provides a topological formulation of Hebbian learn-
ing, grounded on two pillars: (1) the minimization of external links (eLCL) within local communities,
and (2) the path-based definition of local communities that capture homophilic (similarity-driven)
interactions via paths of length 2 and synergetic (diversity-driven) interactions via paths of length 3.
For any network automata rule, the necessary condition to be a CH rule is that explicitly incorporates
the minimization of eLCL. We define Cannistraci-Hebb network automata on paths of length n as
any network automaton in which the function f ′(z1, . . . , zn−1) follows the CH rule.

The first CH model, introduced by Cannistraci et al. [3] and originally named Cannistraci-Resource-
Allocation (CRA), is renamed here as CH1. Its formula for L2 is:

CH1-L2(u, v) =
∑
z∈L2

diz
dz

(6)

where diz is the internal degree (number of iLCL) of the intermediate node z, and dz = 2 + iLCL +
eLCL is the total degree. This model encourages minimization of eLCL, but only when diz > 0,
otherwise the node does not contribute to the sum.

To address this, Cannistraci et al. [16] proposed the second CH model:

CH2-L2(u, v) =
∑
z∈L2

1 + diz
1 + dez

(7)

where diz and dez are the internal and external degrees (iLCL and eLCL) of node z, respectively.
The unitary terms in the numerator and denominator prevent saturation when either value is zero.

Next, we introduce CH3, a novel model proposed for the first time in this study, which mathematically
represents the basic principle of being a CH rule. Indeed, CH3 is based solely on eLCL minimization:

CH3-L2(u, v) =
∑
z∈L2

1

1 + dez
(8)
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CH3 departs from earlier formulations by fully discarding the internal degree component and focusing
purely on penalizing external connectivity, providing a clean and principled expression of the CH
paradigm.

Finally, we propose CH3.1, which embodies an adaptive mechanism: it accounts for the reward of
internal links diz when the node z follows the CH principle (because its number of external links
dez is low), and progressively neglects the reward diz for larger values of external links dez , which
indicates a violation of the CH principle:

CH3.1-L2(u, v) =
∑
z∈L2

1 + diz

(1 + dez)
1+ dez

1+dez

(9)

We note that the RA model is also a CH network automaton, while CN is not. In this study, we focus
on five CH models: RA, CH1, CH2, CH3 and CH3.1. We do not consider non-CH models, including
those studied by Kovács et al. [24], as they were shown to underperform.

Similar to RA, the CH models can be generalized to paths of length n (Ln). Their formulas for L2,
L3, and Ln are summarized in Figure 4. In the generalized case, the local community is the set of
all intermediate nodes in any path of length n between the seed nodes. iLCL are the internal links
among those nodes; eLCL are the links between any intermediate node and external nodes (excluding
the seed nodes).

2.1.4 CH Model Sub-Ranking Strategy

Here we describe the sub-ranking strategy adopted by the CH model to internally sub-rank all node
pairs that receive the same CH score. The goal is to refine link prediction by reducing the ranking
uncertainty among node pairs that are tied-ranked.

Given a network and a set of CH scores CHi,j computed for all node pairs (i, j) according to a given
CH model, the sub-ranking procedure proceeds as follows:

1. Assign to each link (i, j) in the network a weight wi,j = 1/CHi,j to transform similarity
into dissimilarity.

2. Compute the shortest paths (SP) between all node pairs in the resulting weighted network.

3. For each node pair (i, j), compute the prediction score SPcorri,j as the Spearman’s rank
correlation between the two vectors of all shortest paths from node i and from node j to
every other node in the network.

4. Generate a final ranking of node pairs such that pairs are first ranked by CHi,j , and any ties
are sub-ranked using SPcorri,j . If both scores are tied, then the node pairs receive the same
final rank.

5. (Optional) Map the final ranking back to a likelihood score if a numerical prediction score is
required by downstream applications (see details in Appendix F).

Although the SPcorr score could be replaced by other link predictors, we chose this approach for its
neurobiological grounding, which aligns with the CH model’s conceptual framework. Specifically,
based on one interpretation of Peters’ rule, the probability of two neurons being connected is
proportional to the spatial apposition of their respective axonal and dendritic arbors [40]. In other
words, connectivity depends on the geometrical proximity of neurons.

This biological principle resonates with the SPcorr score within the CH modelling framework: a
high correlation implies that two nodes share similar shortest-path distances to all other nodes, which
suggests, within the network topology, that they are spatially proximate due to their network-geometric
closeness.

2.2 Engineering the Adaptive Network Automata Machine

Different types of complex networks exhibit distinct structural patterns, some are better captured by
L2 connectivity, others by L3, making it unlikely that a single network automaton rule can perform
optimally across all domains (see Figure 3). For instance, L2-based rules may suit social networks,
whereas protein–protein interaction (PPI) networks often favor L3-based approaches.
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Here, we aim to go a step further from the engineering perspective and design a computational
machine that is adaptive to the network under investigation and is capable of automatically selecting
the model that is most likely to provide the best prediction.

To achieve this, we exploit a particular property of the network automata models discussed in Section
2.1. These deterministic rules for link prediction assign scores to both observed and non-observed
links in a way that is directly comparable; that is, the scores of observed links are not inherently
biased to be higher or lower than those of non-observed links. This is because the mathematical
formulation used to compute the score between two nodes is independent of the existence of the link
in the current topology.

Specifically, given a set of candidate models and a network, we compute a metric (e.g., AUPR,
Precision, or NDCG) based on how well each model separates observed from non-observed links.
The assumption is that, if the model tends to assign higher scores to observed links than to non-
observed links, it is likely more effective at predicting missing or future links.

This mechanism enables CHA to self-adapt to a wide range of network topologies. The time
complexity and runtime details are provided in Appendix E.

3 Experiments

3.1 Datasets and Baselines

Table 1: Number of real-world networks tested for the link
prediction task in related literature.

Algorithm Field Year Networks Ref.

SBM Statistical Physics 2014 8 [41]

SBM-DC Statistical Physics 2014 5 [42]

SBM-N, SBM-DC-N Statistical Physics 2014 33 [5]

SPM Quantum Physics 2015 13 [4]

HOPE Computer Science 2016 4 [6]

node2vec Computer Science 2016 3 [7]

ProNE, ProNE-SMF Computer Science 2019 5 [9]

NetSMF Computer Science 2019 5 [8]

MPLP, MPLP+ Computer Science 2024 15 [11]

CHA Physics & CS 2025 1283 Ours

Datasets. We evaluate our meth-
ods on a comprehensive collection of
real-world networks drawn from two
benchmark sets:

• ATLAS-static includes
1269 undirected static
networks from 14 domains
such as biological, social,
and economic systems (see
Appendix for full details).

• ATLAS-temporal consists
of 14 real-world networks
with temporal snapshots rep-
resenting dynamic evolution
across time (see Supplemen-
tary material for details).

For static networks, we adopt a 10%
link removal evaluation protocol: 10% of existing edges are randomly removed from the original
network and used as positives in a held-out test set, while the remaining links form the input to the
prediction algorithm. The evaluation is repeated 10 times with different random splits, and the average
metric is reported. For temporal networks, we evaluate predictions across successive snapshots: links
that appear at future time steps are used as positives, while links absent at prediction time are ranked
and scored. The average performance across all time pairs is reported. Full evaluation protocols are
described in Appendix B.

Baselines. We compare the proposed CHA framework against four categories of state-of-the-art
link prediction methods:

• SPM (Structural Perturbation Method) [4]: a model-free global approach based on spectral
perturbation.

• SBM variants [5, 41, 42]: including SBM, degree-corrected SBM, and nested extensions.

• Graph Embedding Methods: including HOPE [6], node2vec [7], NetSMF [8], and
ProNE [9].

7



• Message-Passing Graph Neural Networks: including NCNC [10], MPLP [11], MPLP+,
and MPLP+A. NCNC combines message passing with structural features under the MPNN-
then-SF architecture and performs graph completion to mitigate incompleteness. MPLP
and MPLP+ approximate classical heuristics such as Common Neighbor through quasi-
orthogonal message propagation. The new variant MPLP+A adaptively selects between
the L2-based (homophilic) and L3-based (synergetic) versions of MPLP+ according to
validation performance.

Detailed descriptions of all baseline methods, including their underlying principles, implementation
details, and hyperparameter settings, as well as complete evaluation procedures, are provided in the
Appendix A.

Scale of Evaluation. Unlike prior work that typically evaluates on a limited number of networks
(often fewer than 20), our study conducts large-scale benchmarking on a total of 1283 real-world
networks (1269 static and 14 temporal). This represents the most extensive evaluation to date for
the link prediction task. Table 1 summarizes the number of networks used in related literature,
highlighting the comprehensiveness of our experimental setup.

3.2 Link Prediction on ATLAS-static

To evaluate robustness across network scales, we define three nested subsets of the ATLAS-static
dataset: ATLAS-small (N ≤ 100, 900 networks), ATLAS-medium (N ≤ 2500, 1126 networks),
and ATLAS-large (N ≤ 10000, 1269 networks). As shown in Figures 2, CHA consistently achieves
both the highest win rate and the best average rank across all three settings, outperforming SPM, all
SBM variants, graph embedding methods (HOPE, node2vec, NetSMF, ProNE), and message-passing
models (NCNC, MPLP and MPLP+). Notably, CHA achieves more than twice the win rate of other
baselines under AUPR, underscoring the strength of its adaptive mechanism. These results highlight
CHA’s superiority not only in winning the top position more frequently but also in maintaining
consistently strong performance across networks of varying size and structure.

Additional mean-rank and win-rate comparisons based on NDCG and Precision are also reported in
Figures 6 and 7, confirming the consistency of CHA’s superiority under multiple evaluation metrics.

Notably, the adaptive variant MPLP+A achieved better average rank and higher win rate than MPLP+,
confirming that adaptivity between L2 (homophilic) and L3 (synergetic) path rules can also benefit
message-passing models. This observation supports the generality of the Cannistraci-Hebb theory
beyond the CHA framework.

3.3 Temporal Link Prediction

We further evaluate the generalization of CHA in time-evolving settings using 14 real-world temporal
networks from the ATLAS-temporal collection. Figures 2g and 2h report the performance of CHA
compared to baseline methods in terms of mean rank and win rate based on AUPR, respectively.
CHA ranks among the top-performing methods and achieves the best mean rank and highest win
rate. These results indicate that CHA is well-suited for modeling dynamic connectivity in temporal
networks, offering stable and competitive predictions across diverse time-evolving settings.

3.4 Path Length Preference Across Network Classes

To better understand the need for adaptivity in CHA, we analyze how different network classes prefer
different path lengths. For each network in the ATLAS-static dataset (N ≤ 10000), and for each CH
model (RA, CH1, CH2, CH3, CH3.1), we apply the 10% link removal protocol and compute AUPR
on both L2 and L3 paths. For each network and path length, we record the maximum AUPR across
all CH models.

Figure 3 reports, for each network class, the win rate of L2 versus L3, i.e. how often one path length
outperforms the other within the class. The results clearly show that no single path length dominates
across all classes: some network types (e.g., coauthorship or connectome) are better captured by L2
structures, while others (e.g., PPI or transcription) favor L3.
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(h) ATLAS-temporal win rate
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Figure 2: Comparison of CHA with baseline methods across network categories using AUPR.
Each pair of subplots compares the performance of CHA and baselines in terms of (left) mean rank
and (right) win rate across: (a, b) ATLAS-small (N ≤ 100, 900 networks), (c, d) ATLAS-medium
(N ≤ 2500, 1126 networks), (e, f) ATLAS-large (N ≤ 10000, 1269 networks), and (g, h) ATLAS-
temporal (14 time-evolving networks). CHA consistently achieves the best mean rank and highest
win rate across all categories.

This observation provides empirical motivation for using an adaptive mechanism that automatically
selects the most suitable path length and CH model for each network, rather than relying on a fixed
configuration. Similar trends are observed when using Precision and NDCG as evaluation metrics (see
Appendix Figures 8 and 9). A related experiment on ogbl-collab (Appendix G) further confirms that
other message-passing models such as MPLP+ exhibit a similar L2–L3 preference pattern, consistent
with the adaptive principles of CH theory.

3.5 Validation of the CH Adaptive Strategy

The CHA framework operates by adaptively selecting, for each network, the CH model and path
length combination that achieves the best predictive performance on observed links. In this study,
we instantiate CHA using the CH3 and CH3.1 models, as they best capture the core CH principle of
minimizing external links (eLCL).

To directly assess the value of the adaptive mechanism in CHA, we compare its performance with all
individual CH variants (RA, CH1, CH2, CH3, CH3.1) under the same 10% link removal evaluation
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Figure 3: For each network of the ATLAS (considering N ≤ 10000, 1269 networks) and for each
CH model (RA, CH1, CH2, CH3, CH3.1) of path lengths L2-L3, we applied the 10% link removal
evaluation, obtaining the AUPR as measure of performance . For each path length L2-L3, we assigned
as performance on a network the maximum AUPR over the CH models. The barplots report for each
network class and for each path length the win rate over the networks of that class. For each class,
the number of networks is shown in brackets.

on the full ATLAS-static dataset (N ≤ 10000, 1269 networks). For each network, we identify the
winning method per metric, and report the average win rate across the 14 network classes.

Figure 5 shows results under three metrics: AUPR, Precision, and NDCG. In all cases, CHA
outperforms every individual CH variant, consistently achieving the highest win rate. This confirms
the effectiveness of the adaptive design in CHA, which dynamically selects the best CH model and
path length combination for each network rather than relying on a fixed configuration.

We also compare this choice against other combinations of CH models and report the win rate of each
configuration on the ATLAS-static dataset. As shown in Table 2, the {CH3, CH3.1} setting achieves
the highest win rate, confirming its effectiveness as the optimal rule set for CHA.

4 Conclusion and Discussion

We proposed Cannistraci-Hebb Adaptive (CHA), an adaptive network automata machine that
exploits principles of network topological self-organization for link prediction. CHA is based
on the CH theory, a topological formulation of Hebbian learning, grounded on two pillars: (1)
the minimization of external links within local communities, and (2) the path-based definition of
local communities that capture homophilic (similarity-driven) interactions via paths of length 2 and
synergetic (diversity-driven) interactions via paths of length 3. CHA leverages two models, CH3
and CH3.1, and adaptively selects the optimal path length per network to capture local community
Cannistraci-Hebbian driven topological dynamics and organization. Experiments on more than 1000
real networks, static and temporal, show that CHA consistently outperforms state-of-the-art baselines
across multiple metrics. Bridging the physics of complex networks and artificial intelligence via
adaptive network automata, this study confirms the effectiveness of combining theoretical grounding
with adaptive engineering design.

While CHA is deterministic and interpretable, it does not leverage node attributes, which may be
crucial in some domains. Future extensions could integrate topological and feature-based signals.
CHA can support applications such as recommender systems or biological discovery, but its use on
sensitive data should be carefully monitored to avoid unintended inferences.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Assets used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We construct a large-scale benchmark ATLAS, consisting 1269 real-world
networks (ATLAS-static) and 14 time-evolving networks (ATLAS-temporal).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


Appendix

?

eLCL

iLCL

seed

CN

L2 paths

?

L2
local
community

L3
local
community

L3 paths

nLCL

u v u v

Model L2 L3 Ln

RA RA-L2(u, v) =
∑
z∈L2

1

dz
RA-L3(u, v) =

∑
z1,z2∈L3

1√
dz1dz2

RA-Ln(u, v) =
∑

z1,...,zn−1∈Ln

1(∏n−1
k=1 dzk

)1/(n−1)

CH1 CH1-L2(u, v) =
∑
z∈L2

diz
dz

CH1-L3(u, v) =
∑

z1,z2∈L3

√
diz1diz2√
dz1dz2

CH1-Ln(u, v) =
∑

z1,...,zn−1∈Ln

(∏n−1
k=1 dizk

)1/(n−1)

(∏n−1
k=1 dzk

)1/(n−1)

CH2 CH2-L2(u, v) =
∑
z∈L2

di∗z
de∗z

CH2-L3(u, v) =
∑

z1,z2∈L3

√
di∗z1di

∗
z2√

de∗z1de
∗
z2

CH2-Ln(u, v) =
∑

z1,...,zn−1∈Ln

(∏n−1
k=1 di

∗
zk

)1/(n−1)

(∏n−1
k=1 de

∗
zk

)1/(n−1)

CH3 CH3-L2(u, v) =
∑
z∈L2

1

de∗z
CH3-L3(u, v) =

∑
z1,z2∈L3

1√
de∗z1de

∗
z2

CH3-Ln(u, v) =
∑

z1,...,zn−1∈Ln

1(∏n−1
k=1 de

∗
zk

)1/(n−1)

CH3.1 CH3.1-L2(u, v) =
∑
z∈L2

di∗z

de∗z
1+dez/de∗z

CH3.1-L3(u, v) =
∑

z1,z2∈L3

√
di∗z1di

∗
z2√

de∗z1
1+dez1/de

∗
z1de∗z2

1+dez2/de
∗
z2

CH3.1-Ln(u, v) =
∑

z1,...,zn−1∈Ln

(∏n−1
k=1 di

∗
zk

)1/(n−1)

(∏n−1
k=1 de

∗
zk

1+dezk/de
∗
zk

)1/(n−1)

Figure 4: Cannistraci-Hebb epitopological rationale. The figure shows an explanatory example
for the topological link prediction performed using the L2 or L3 Cannistraci-Hebb epitopological
rationale. The two black nodes represent the seed nodes whose non-observed interaction should be
scored with a likelihood. The white nodes are the L2 or L3 common-neighbours (CNs) of the seed
nodes, further neighbours are not shown for simplicity. The cohort of common-neighbours and the
iLCL form the local community. The different types of links are reported with different colours:
non-LCL (green), external-LCL (red), internal-LCL (white). The set of L2 and L3 paths related to the
given examples of local communities are shown. At the bottom, the mathematical description of the
L2, L3 and Ln methods considered in this study are reported. Notation: u,v are the seed nodes; z is
the intermediate node (CN) in the L2 path; dz is the degree of z; diz is the internal degree (number of
iLCL) of z; dez is the external degree (number of eLCL) of z. For any degree it is valid the following:
d∗ = 1 + d. For L3 and Ln paths the definitions are analogous.
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Figure 5: Comparison of CHA and CH variants across evaluation metrics. For each network in
ATLAS-static (N ≤ 10000, 1269 networks), we apply the 10% link removal evaluation and compute
both mean rank (top row) and win rate (bottom row) across three metrics: (a, d) AUPR, (b, e)
Precision, and (c, f) NDCG. Bars report average values over the 14 network classes. In all cases,
CHA achieves the best mean rank and highest win rate, consistently outperforming all individual CH
variants.

A Link Prediction Methods

A.1 Structural Perturbation Method (SPM)

The Structural Perturbation Method (SPM) is based on a theory analogous to the first-order per-
turbation technique in quantum mechanics [4]. A high-level description of the procedure is as
follows:

1. Randomly remove 10% of the links from the network adjacency matrix X , obtaining a
reduced network X ′ = X −R, where R is the set of removed links.

2. Compute the eigenvalues and eigenvectors of X ′.

3. Considering the set of links R as a perturbation to X ′, construct the perturbed matrix XP

via a first-order approximation that allows the eigenvalues to change while keeping the
eigenvectors fixed.

4. Repeat steps 1–3 for 10 independent iterations and take the average of the resulting perturbed
matrices XP .

The link prediction result is given by the values in the averaged perturbed matrix, which represent
the scores assigned to the non-observed links. A higher score indicates a higher likelihood that the
corresponding interaction exists.

The rationale behind the method is that a missing portion of the network is predictable if its absence
does not significantly alter the structural characteristics of the observable part, as captured by the
eigenvectors of the adjacency matrix. If this condition holds, the perturbed matrices should serve as
good approximations of the original network [4].

A.2 Stochastic Block Model (SBM)

The general idea behind the Stochastic Block Model (SBM) is that the nodes of a network are
partitioned into B blocks, and a B ×B matrix specifies the probabilities of links existing between
nodes belonging to each pair of blocks. SBM provides a general framework for statistical analysis and
inference in networks, particularly for tasks such as community detection and link prediction [41].

The concept of degree-corrected (DC) SBM was introduced for community detection [43] and for
predicting spurious and missing links [42], in order to keep into account the variations in node
degree typically observed in real networks. A nested (N) version of SBM has been introduced [5] to
overcome two major limitations: the inability to separate true structures from noise, and the difficulty
in detecting smaller yet well-defined clusters as network size increases.
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Figure 6: Comparison of CHA with baseline methods across network categories using NDCG.

All four tested variants (SBM, SBM-DC, SBM-N, SBM-DC-N) require finding an appropri-
ate partitioning of the network to perform inference. We used the implementation provided in
Graph-tool [44], which uses an optimized Markov Chain Monte Carlo (MCMC) algorithm
to sample the space of possible partitions [41]. Graph-tool is a Python module available at:
http://graph-tool.skewed.de/.

As suggested in [45], predictive performance is generally higher when averaging over multiple
partitions rather than relying on a single most plausible partition, since the latter approach can lead to
overfitting. Therefore, for each network, we sampled P partitions, computed the likelihood scores for
the non-observed links in each partition, and averaged the scores across all partitions to obtain the
final link prediction result. We set P = 100 for ATLAS networks with N ≤ 100, and P = 50 for
connectomes with N > 100.

A.3 HOPE

High-Order Proximity preserved Embedding (HOPE) is a graph embedding algorithm designed to
preserve high-order proximities in graphs and to capture asymmetric transitivity [6]. Asymmetric
transitivity depicts the correlation among directed edges, making HOPE particularly suitable for
embedding directed networks, although it can also be used for undirected networks.

Many high-order proximity measures can reflect asymmetric transitivity in graphs, such as the Katz
index [46]. Many of these measures share a common algebraic structure. Instead of computing the
proximity matrix and then applying singular value decomposition (SVD), HOPE leverages this shared
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Figure 7: Comparison of CHA with baseline methods across network categories using Precision.

structure to transform the standard SVD problem into a generalized SVD problem. This formulation
allows for the direct computation of embedding vectors, thereby avoiding explicit construction of the
proximity matrix [6].

However, for the purpose of link prediction, an approximation of the proximity matrix can be
reconstructed from the learned embedding. In this context, HOPE provides a scalable solution for
approximating the Katz index through graph embedding. The entries of the approximated Katz
proximity matrix represent the link prediction scores: the higher the proximity, the more likely the
existence of the interaction.

The implementation of HOPE is available at: https://github.com/ZW-ZHANG/HOPE. For our
experiments, we set the embedding dimension to min(128, N), where N is the number of nodes, and
used the default values for all other parameters.

A.4 node2vec

node2vec is a graph embedding algorithm that maps nodes to a low-dimensional feature space by
maximizing the likelihood of preserving the network neighborhoods of nodes [7]. The maximization
is performed on a custom graph-based objective function using stochastic gradient descent, inspired
by prior work in natural language processing and related to the Skip-gram model [7].

To define node neighborhoods flexibly, node2vec employs a second-order random walk strategy to
sample node neighborhoods. The behavior of the random walk is governed by two parameters: p
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Figure 8: Path length preference across network classes based on Precision. For each network
in ATLAS-static (N ≤ 10000) and each CH model (RA, CH1, CH2, CH3, CH3.1), we compute
Precision under 10% link removal. For each path length (L2, L3), we retain the best-performing CH
model per network. Bar plots report the win rate of L2 versus L3 across networks in each class (class
size in brackets).
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Figure 9: Path length preference across network classes based on NDCG. For each network in
ATLAS-static (N ≤ 10000) and each CH model (RA, CH1, CH2, CH3, CH3.1), we compute NDCG
under 10% link removal. For each path length (L2, L3), we retain the best-performing CH model per
network. Bar plots report the win rate of L2 versus L3 across networks in each class (class size in
brackets).

(return parameter) and q (in-out parameter), which bias the walk towards different network exploration
strategies (e.g., breadth-first vs. depth-first search).

After computing the node embeddings, we generate feature vectors for node pairs by applying the
Hadamard (element-wise) product to the embedding vectors of each node in the pair, as suggested
in the original node2vec study [7]. These node-pair feature vectors are then used to train a logistic
regression classifier, which outputs likelihood scores for the non-observed links in the network.

The implementation of the node2vec embedding method is available at: https://github.com/
snap-stanford/snap/. We set the embedding dimension to min(128, N − 1), where N is the
number of nodes, and discarded node features that were constant across all nodes.

We tested the parameters p and q using three configurations: (p = 0.5, q = 2); (p = 1, q = 1); and
(p = 2, q = 0.5). The best configuration was selected via cross-validation. All other parameters were
kept at their default values.

A.5 ProNE and ProNE-SMF

ProNE has been proposed as a fast and scalable graph embedding algorithm that maps nodes to a
low-dimensional feature space using a two-step procedure [9].
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Table 2: Results of CHA variants on ATLAS-static. We evaluate several CHA variants on path
lengths L2–L3, each using a different combination of CH models. For every network in ATLAS-
static, we apply the 10% link removal evaluation and compute AUPR as the performance metric. For
each network class, we report the win rate and mean AUPR of each algorithm across the networks
in that class. The table shows the average of these values over all 14 classes. Algorithms are sorted by
decreasing win rate. The upper bound indicates the performance that would be achieved by selecting
the best CH model and path length per network.

Method Win rate AUPR

upper bound 1.00 0.30

CH3-CH3.1 0.72 0.29
CH2-CH3-CH3.1 0.72 0.29
RA-CH2-CH3-CH3.1 0.70 0.29
RA-CH3-CH3.1 0.69 0.29
CH2-CH3.1 0.67 0.28
CH3.1 0.65 0.28
RA-CH2-CH3.1 0.62 0.28
RA-CH3.1 0.60 0.28
CH1-CH3-CH3.1 0.56 0.27
CH1-CH2-CH3-CH3.1 0.56 0.27
CH1-CH2-CH3.1 0.54 0.26
RA-CH1-CH3-CH3.1 0.53 0.27
RA-CH1-CH2-CH3-CH3.1 0.53 0.27
CH1-CH3.1 0.52 0.26
RA-CH1-CH2-CH3.1 0.48 0.26
RA-CH1-CH3.1 0.47 0.26
CH3 0.41 0.28
CH2-CH3 0.41 0.28
RA-CH3 0.38 0.28
RA-CH2-CH3 0.38 0.28
CH2 0.26 0.27
RA-CH2 0.26 0.27
CH1-CH2-CH3 0.26 0.26
RA 0.25 0.26
CH1-CH3 0.25 0.26
RA-CH1-CH2-CH3 0.23 0.25
RA-CH1-CH3 0.22 0.25
CH1-CH2 0.16 0.25
RA-CH1-CH2 0.12 0.25
RA-CH1 0.12 0.24
CH1 0.10 0.23

The first step initializes the network embedding using sparse matrix factorization (SMF), which effi-
ciently provides an initial node representation via randomized truncated singular value decomposition.
The second step, inspired by the higher-order Cheeger’s inequality, performs spectral propagation to
enhance the initial embedding [9].

In our analysis, we considered both the embeddings obtained after the first step (ProNE-SMF) and
those obtained after the second step (ProNE).

After computing the embeddings, we generated feature vectors for node pairs by applying the
Hadamard product to the corresponding node embeddings. These node-pair features were then used
to train a logistic regression classifier to produce likelihood scores for the non-observed links in the
network.

The implementation of the ProNE and ProNE-SMF embedding methods is available at: https:
//github.com/THUDM/ProNE/. We set the embedding dimension to min(128, N − 1), where N is
the number of nodes, and discarded node features that were constant across all nodes. Default values
were used for all other parameters.

A.6 NetSMF

NetSMF is a graph embedding algorithm that maps nodes to a low-dimensional feature space [8]. It
is based on the observation that several network embedding algorithms implicitly factorize a specific
closed-form matrix, and that explicitly factorizing this matrix can lead to improved performance.
However, the matrix in question is typically dense, making it computationally expensive to handle for
large networks.
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NetSMF addresses this limitation by proposing a scalable solution that first applies spectral graph
sparsification techniques to construct a sparse matrix that is spectrally close to the original dense
matrix. It then performs randomized singular value decomposition (SVD) on the sparse matrix to
efficiently obtain the node embeddings [8].

After generating the embeddings, we compute feature vectors for node pairs using the Hadamard
product of their corresponding node embeddings. These pairwise feature vectors are then used to
train a logistic regression classifier that produces likelihood scores for the non-observed links in the
network.

The implementation of the NetSMF method is available at: https://github.com/xptree/
NetSMF/. We set the embedding dimension to min(128, N − 1), where N is the number of nodes,
and discarded node features with constant values across all nodes. We set rounds = 10000 and used
default values for all other parameters.

A.7 Logistic Regression Classifier

After obtaining feature vectors for each node pair from the network embeddings generated by
node2vec, ProNE, ProNE-SMF, and NetSMF, we trained a logistic regression classifier to compute
likelihood scores for the non-observed links in the network.

In particular, we performed a repeated 5-fold cross-validation 10 times. For each repetition i ∈ [1, 10],
the following steps were executed:

1. Create a learning set consisting of all the observed links and an equal number of non-
observed links (if available; otherwise, include all non-observed links).

2. Split the learning set into 5 folds for cross-validation.
3. For each cross-validation iteration j ∈ [1, 5]:

(a) Train: Train a logistic regression classifier using 4 folds and obtain the coefficient
estimates Bi,j .

(b) Validation: Using the coefficients Bi,j , obtain the likelihood scores for the remaining
fold and compute the prediction performance using AUPRi,j .

After completing the 10 repetitions, we compute the mean coefficient estimates B̄ across all (i, j)
pairs. These coefficients B̄ are then used to compute the final likelihood scores for the non-observed
links, which constitute the link prediction result.

In the case of node2vec, where multiple parameter configurations are tested, we also compute the
mean validation performance AUPR over the 10 repetitions and 5 cross-validation iterations for
each configuration. The final link prediction result corresponds to the configuration with the highest
AUPR.

In contrast, for ProNE, ProNE-SMF, and NetSMF, which use a single parameter configuration, step
3.(b) (validation) is not necessary.

We used the MATLAB implementation of the logistic regression classifier, specifically the mnrfit
and mnrval functions, to perform model training and scoring.

A.8 MPLP and MPLP+

Message Passing Link Predictor (MPLP) is a graph neural model specifically designed for the
link prediction task [11]. Unlike general-purpose graph embedding methods that focus on node-
level representations, MPLP explicitly estimates link-level structural features such as the Common
Neighbor (CN) score. It achieves this by propagating quasi-orthogonal vectors through message-
passing layers and leveraging their inner products to approximate structural similarities between node
pairs.

To improve scalability, MPLP+ introduces a more efficient variant that avoids expensive multi-hop
preprocessing. Instead, it computes approximated structural signals using only one-hop neighbor-
hoods, making it suitable for large-scale graphs with limited memory or time constraints.

The official implementation is available at: https://github.com/Barcavin/
efficient-node-labelling. In this study, we followed the original MPLP experimental
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settings, with the exception of the early stopping strategy. The original implementation used
Hits@100 on a validation set with a 1:1 positive-to-negative ratio, which is not consistent with our
evaluation metric, AUPR, where positives are ranked among all missing links. This misalignment
could result in suboptimal model selection. To address this, we modified MPLP’s early stopping
criterion to monitor the AUPR on the validation set and stop training when it no longer improves,
ensuring better alignment with our evaluation framework.

Hyperparameter search for MPLP / MPLP+. To ensure a fair comparison, we performed a targeted
hyperparameter search on MPLP and MPLP+ varying the batch size B ∈ {128, 256, 512} (other
settings kept as in the official code). This follows the hyperparameter sensitivity emphasized in the
original study.

MPLP+A. To further align with CHA’s adaptive design, we introduce an additional baseline,
MPLP+A, which automatically selects between the L2-only and L3-only versions of MPLP+ based
on validation performance.

A.9 NCNC

Neural Common Neighbor with Completion (NCNC) [10] is a recent neural link predictor that
combines message passing with structural features under the MPNN-then-SF architecture. It enhances
the original Neural Common Neighbor (NCN) model by completing missing common-neighbor
structures to mitigate graph incompleteness before applying NCN on the completed graph. In our
experiments NCNC failed to run on a small subset of networks (about 10%), and repeated runs
consistently crashed; these failed cases were assigned the lowest rank in evaluation. For fairness, we
also conducted a hyperparameter search over the batch size B ∈ {128, 256, 512}, selecting the best
configuration for each dataset.

B Link Prediction Evaluation

B.1 10% Link Removal Evaluation

The 10% link removal evaluation framework is employed when there is no information available
about missing links or links that may appear in the future relative to the current state of the network.

Given a network X , 10% of its links are randomly removed, resulting in a reduced network X ′ =
X −R, where R is the set of removed links. To evaluate a given algorithm, the reduced network X ′

is provided as input, and the algorithm outputs likelihood scores for the non-observed links in X ′.

These non-observed links are ranked in descending order of their predicted scores. The removed
links R are treated as positives, and the remaining non-links as negatives. Evaluation metrics such as
area under the precision-recall curve (AUPR), Precision, and normalized discounted cumulative gain
(NDCG) are computed to assess the ranking quality.

Because the link removal is random, the procedure is repeated 10 times with different train/test splits.
The final performance on network X is reported as the average metric over these repetitions.

B.2 Temporal Evaluation

The temporal evaluation framework is employed when information is available regarding links that
will appear in the future relative to the current time point of the network under consideration.

For a given network, a sequence of T snapshots is available, each corresponding to a different time
point. For each snapshot at time i ∈ [1, T − 1], the snapshot is provided as input to the algorithm
being evaluated, which outputs likelihood scores for the non-observed links at time i.

For each pair of time points (i, j) with i ∈ [1, T − 1] and j ∈ [i+ 1, T ], the non-observed links at
time i are ranked by their predicted scores, and the links that actually appear at time j are treated as
positives. Non-observed links at time i involving nodes that no longer exist at time j are excluded
from the evaluation.

Multiple ranking-based metrics are computed for each (i, j) pair, including area under the precision-
recall curve (AUPR), Precision, and normalized discounted cumulative gain (NDCG). The final
performance for the network is reported as the average of each metric over all valid time pairs.
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C Datasets

C.1 ATLAS

We have collected a dataset of 1269 real-world networks, either downloaded from publicly available
online sources or provided directly by the authors of prior scientific studies. The networks have been
categorized into 14 distinct classes, with the number of networks in each class

Table 3: Number of networks per class.
Class Count
Collaboration 18
Contact 32
Covert 86
Friendship 16
PPI 14
Connectome 529
Foodweb 71
Trade 200
Transcription 8
Coauthorship 20
Flightmap 36
Internet 162
Socialnetwork 68
Software 9
Total 1269

For a complete list of the networks along with their basic properties (such as number of nodes and
edges), references, data sources, and descriptions, please refer to Supplementary Material.

C.2 Temporal Networks

We have collected a dataset of 14 real networks with temporal information, downloaded from publicly
available online sources. For each network, a certain number of snapshots are available, corresponding
to different time points.

For a complete list of the networks along with their basic properties (such as number of nodes and
edges), references, data sources, and descriptions, please refer to Supplementary Material.

D Compute Resources

All experiments were conducted on a high-performance computing server equipped with 256 logical
CPUs and 2 TB of RAM. The machine supports 64-bit architecture with 256 MiB of L3 cache and a
base frequency of 1.5 GHz (boost up to 2.6 GHz). No GPUs were used, as CHA is CPU-based.

We estimate that running all 1269 networks required approximately 72 CPU hours.

E Time Complexity and Runtime Analysis

E.1 Time Complexity of CHA

The time complexity of CHA is determined by the number of length-ℓ paths in the network and the
cost of computing iLCL and eLCL statistics for the intermediate nodes along those paths.

Let n and m denote the number of nodes and edges, respectively. d̄ = 2m/n is the average degree.

For ℓ = 2.
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• Path count. Each length-2 path u → z → v is defined by an intermediate node z connected
to both u and v. The total number of such paths is given by:

#L2_path =

n∑
z=1

(
dz
2

)
=

n∑
z=1

dz(dz − 1)

2
= O

(
n∑

z=1

d2z

)
where dz is the degree of node z. This represents the number of unique unordered two-hop
paths in the network.

• Computation per path. For each length-2 path, CHA computes a score based on the iLCL
and eLCL of the intermediate node z. This requires checking the neighbors of z against the
local community associated with the pair (u, v), which takes O(dz) time per path.

• Overall time complexity. Multiplying the path count and per-path cost gives the total time
complexity:

O

(
n∑

z=1

d2z · dz

)
= O

(
n∑

z=1

d3z

)

We now analyze this quantity under three typical network regimes:

• Sparse, degree-homogeneous: If the graph is Sparse (i.e. d̄ = 2m/n = O(1)) with relatively
uniform degrees (i.e., dz = O(1) for all z), then:

O

(
n∑

z=1

d3z

)
= O(n)

So the overall time complexity of O(n).

• Sparse, degree-heterogeneous: If the graph is sparse (i.e., d̄ = O(1)), but has a skewed
degree distribution (e.g., power law), we can no longer assume dz = O(1) for all nodes.
To handle this case, we apply a relaxation via Hölder’s inequality [47] to upper-bound the
root-mean-cube degree

(
1
n

∑
z d

3
z

)1/3
in terms of the average degree:(

1

n

n∑
z=1

d3z

)1/3

≤ n2/3 ·

(
1

n

n∑
z=1

dz

)
= n2/3 · d̄ = O(n2/3)

This relaxation allows us to express the cubic-degree term in the overall complexity as:

O

(
n∑

z=1

d3z

)
= O

(
n ·

(
1

n

n∑
z=1

d3z

))
= O

(
n ·
(
n2/3

)3)
= O(n3)

Thus, the overall time complexity in this case is O(n3).

• Dense graphs: In the worst-case scenario of dense graphs, where dz = O(n) for all nodes,
we obtain:

n∑
z=1

d3z = O(n4)

leading to an overall time complexity of O(n4).

For ℓ = 3.

• Path count. Each length-3 path u → i → j → v passes through a central edge (i, j) ∈ E.
The number of such paths using (i, j) as the central segment is (di − 1)(dj − 1), where di
and dj are the degrees of i and j, respectively. The total number of such paths is:

#L3_path =
∑

(i,j)∈E

(di − 1)(dj − 1) = O

 ∑
(i,j)∈E

didj


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• Computation per path. For each length-3 path u → i → j → v, CHA computes the iLCL
and eLCL of intermediate nodes i and j with respect to the seed pair (u, v).
Each such computation, i.e., evaluating the iLCL/eLCL of node i with respect to (u, v),
requires scanning the neighborhood of i and takes O(di) time. However, this computation
is performed only once for each triplet (u, v, i), and the result is reused across all paths in
which (u, v, i) appears.
Since each such triplet (u, v, i) is associated with O(di) paths on average, the total cost is
distributed across multiple paths. Thus, the amortized cost per path remains O(1).

• Overall time complexity. For compact notation, we define the RMS degree–degree product
over edges:

d̃edge =

√√√√ 1

m

∑
(i,j)∈E

didj

and upper bound the total complexity as:

O
(
m · d̃2edge

)
We now analyze this quantity under three typical network regimes:

• Sparse, degree-homogeneous: If the graph is sparse (i.e., d̄ = O(1)) with relatively uniform
degrees (i.e., di = O(1) for all nodes), then didj = O(1) for all edges and m = O(n).
This yields:

O
(
m · d̃2edge

)
= O(n)

So the overall time complexity of O(n).
• Sparse, degree-heterogeneous: If the graph is sparse (i.e., d̄ = O(1)), but has a skewed

degree distribution (e.g., power law), we upper bound:

d̃2edge =
1

m

∑
(i,j)∈E

didj ≤ max
(i,j)

didj

In the worst case, this maximum can scale as O(n2). Since the total number of edges is
m = n·d̄

2 , it follows that m = O(n). This leads to an overall complexity:

O(m · d̃2edge) = O(n · n2) = O(n3)

• Dense networks: If the network is dense (m = O(n2) and degrees are O(n)), then d̃edge =
O(n) and:

O(m · d̃2edge) = O(n4)

Summary. The overall time complexity of CHA depends on the path length ℓ (only when l ≥ 4)
and the structural characteristics of the network. For both ℓ = 2 and ℓ = 3, we observe the following
regimes:

• Sparse, degree-homogeneous: When the average degree is O(1) and degree distribution is
uniform, the complexity is: O(n)

• Sparse, degree-heterogeneous: When the average degree is O(1) but degree distribution is
skewed (e.g., power-law), the complexity is higher due to hubs: O(n3)

• Dense networks: When the average degree is O(n), the worst-case complexity becomes
O(n4)

Although CHA internally evaluates multiple CH models and path lengths, all models operate on the
same set of intermediate-node statistics (iLCL and eLCL), which are computed only once. Therefore,
evaluating multiple models does not increase the overall asymptotic complexity.

Subranking Complexity. The subranking step based on Spearman correlation requires computing
all-pairs shortest paths, which has a worst-case time complexity of O(n3).
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Figure 10: Average edge density across different network sizes in ATLAS-static. We report the
average edge density, defined as the ratio between average degree and N − 1, for three subsets of
the ATLAS-static dataset: all networks (N = 1269, density = 0.1946), networks with N > 100
(n = 369, density = 0.0391), and networks with N > 2500 (n = 143, density = 0.0058). The results
show that large networks in ATLAS-static are extremely sparse, which makes CHA extremely fast to
compute on such networks. (see Figure 11).

E.2 Running Time of CHA

We empirically evaluate the running time of CHA under different graph conditions to validate its
efficiency in practice.

Figure 10 reports the average edge density across networks of increasing size in the ATLAS-static
dataset. While the overall dataset has moderately low density (0.1946), the average density for larger
networks (N > 2500) drops sharply to 0.0058. This confirms that large real-world networks in
ATLAS are typically sparse.

To further explore CHA’s computational behavior under varying sparsity levels, Figure 11 shows its
running time on synthetic networks with 500 nodes and increasing edge densities. The edge density
is defined as the average degree divided by N − 1. As predicted by theoretical analysis, computation
time increases steeply with density. For sparse graphs, CHA is significantly faster.

Together, these results indicate that CHA benefits from the inherent sparsity of real-world networks
and achieves high scalability across the ATLAS benchmark.

E.3 Time Complexity Comparison

We summarize here the computational complexity of CHA compared with major baselines, consider-
ing both all-missing-links and subset prediction settings.
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Figure 11: Runtime of CHA on artificial networks with increasing density. We generate synthetic
networks with N = 500 nodes and vary the density, defined as average degree divided by (N − 1).
The plot shows that CHA runs extremely fast on sparse networks, while its runtime increases rapidly
as density grows. This highlights the efficiency of CHA in low-density regimes, which are common
in many real-world networks.

All-missing-links evaluation. In this setting, positives are ranked against all non-observed links
(O(n2)). CHA requires only one pass to compute its local community statistics (iLCL/eLCL) and
reuse them across all CH variants, giving the following asymptotic costs:

Table 4: Asymptotic time complexity of CHA and baselines for all-missing-links evaluation. All
costs refer to the sparse-network regime and include both training and scoring over all non-observed
links.

Method Time Complexity
CHA (degree-homogeneous) O(n)
CHA (degree-heterogeneous) O(n3)
SBM variants O(M(n+B2))
SPM O(n3)
Graph embedding methods O(K n2)
Message passing methods O(F n2+r)

Here, r ≥ 2 is the hop count, F the node-signature dimension, and K the embedding dimension.
Note that these complexities include both training and scoring over all non-observed links (for
several methods, the scoring step dominates). M is the number of missing links in the network, and
B represents the number of blocks in the SBM family of models. For SBM-based models, the primary
computational cost arises from fitting the network using MCMC equilibration and the posterior edge
probability estimation. The listed complexity corresponds to the sparse version; for denser networks,
the complexity increases to O(M(n2 +B2)).

Subset prediction. When only a subset of missing links is evaluated (t ≪ n2), the complexity of
MPLP follows the same analysis as in the original paper, O(td rF ), where d is the maximum degree,
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r the hop count, and F the node-signature dimension. For CHA, the per-link complexity can be
derived explicitly as follows.

• L2 paths.
(1) Compute the common-neighbor set N (u) ∩N (v) in O(d).
(2) For each of the O(d) common neighbors z, scan N (z) once to accumulate its

iLCL/eLCL counts, each scan being O(d).

Total work per link: O(d)×O(d) = O(d2).

• L3 paths.
(1) Enumerate length-3 paths u → i → j → v by intersecting N (u) with the two-hop

neighborhood of v, costing O(d2).
(2) Each discovered path contributes one iLCL for i and j; while enumerating, these

counters are updated in place without an additional pass.

Total work per link: still O(d2).

Therefore, CHA (without sub-ranking) runs in overall O(td2), which is asymptotically lower than
MPLP+’s O(td rF ) with r = 2 (as used in the MPLP article). Empirically, this theoretical difference
is reflected in practice: on ogbl-collab (Table 5), CHA completes inference in about 6 seconds,
whereas MPLP+ requires roughly 6 minutes per run on a single A100 GPU.

Adaptive overhead. Although CHA adaptively evaluates multiple CH variants and path lengths,
all candidates reuse the same precomputed iLCL/eLCL statistics, computed once per graph, so the
adaptive overhead is negligible in practice.

F Mapping Subranking to Likelihood Score

The CH sub-ranking mechanism refines the ordering of node pairs with tied CH scores by leveraging
secondary scores (e.g., SPcorr). In some applications, it is desirable to map this refined ranking back
to continuous likelihood scores.

To achieve this, we provide two interpolation-based strategies that preserve the original CH ranking
while assigning distinct values to previously tied scores:

• Score-guided interpolation. Tied scores are adjusted based on the actual SPcorr values,
preserving their relative magnitudes within the group. This results in a smooth, value-aware
distribution of scores.

• Rank-based interpolation. Tied scores are redistributed uniformly according to their
sub-rank positions, regardless of the SPcorr values. This maintains only the order but not
the magnitude.

Both strategies are optional and not used during the main CHA evaluation, but are supported for
downstream scenarios requiring continuous-valued outputs.

G Experiment on ogbl-collab

The ogbl-collab dataset [48] is a large-scale author collaboration graph with about 200K nodes,
where each node represents an author and edges indicate co-authorships. The task is to predict
future collaborations given the past, evaluated by Hits@50, ranking positive edges among randomly-
sampled negative edges, following the standard metric used in previous link-prediction literature and
the official OGB leaderboard protocol.

MPLP+ results are averaged over 10 runs, whereas CHA is deterministic and reported from a single
run. For efficiency, we use MPLP+, the faster variant of MPLP, and run all models on a single
A100 GPU. For fairness, CHA is evaluated without its sub-ranking step, mirroring the approximation
trade-off used by MPLP+.
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We also introduce MPLP+L2 and MPLP+L3, which restrict structural feature to paths of length 2
and 3, respectively, corresponding to the homophilic and synergetic regimes described by Cannistraci-
Hebb theory. To account for potential hyperparameter sensitivity, we conducted a small search on
batch size B ∈ {8192, 16384, 32768} and report the best configuration for each variant.

Table 5: Results on ogbl-collab. CHA outperforms all MPLP+ variants in accuracy while being much
faster. Each MPLP+ run takes about 6 minutes on a single A100 GPU, whereas CHA completes
inference in approximately 6 seconds.

Method Test Hits@50 (%)
MPLP+ (with feature) 66.47 ± 0.94

MPLP+ (without feature) 64.84 ± 1.21
MPLP+L2 (without feature) 63.97 ± 1.10
MPLP+L3 (without feature) 65.01 ± 0.43

CHA (CH3_L3) 66.85

As shown in Table 5, CHA achieves higher accuracy than all MPLP+ variants, even surpasses MPLP+
using node features, despite relying solely on topology. Each MPLP+ run takes about 6 minutes on
a single A100 GPU, whereas CHA completes inference in approximately 6 seconds. The superior
performance of MPLP+L3 over MPLP+L2 further mirrors CHA’s adaptive preference for L3-based
(synergetic) rules, confirming the broader relevance of the Cannistraci-Hebb theory beyond CHA.

H Evaluation on Classical Non-Attributed Networks

We further evaluate CHA on the eight non-attributed networks used in the original MPLP paper [11]:
USAir, NS, PB, Yeast, Celegans, Power, Router, and Ecoli. For a fair comparison, both MPLP
and MPLP+ are run using the official hyperparameters provided for each network in the authors’
repository. All results are reported under the all-missing-links evaluation protocol, where positives
are ranked against all non-observed links rather than a 1:1 sampled subset. This protocol offers a
more realistic assessment, since in real-world applications (e.g., protein–protein interactions) the true
fraction of missing links is unknown, and 1:1 sampling tends to simplify the task artificially.

Table 6: Comparison on the 8 additional non-attributed networks. Evaluation metric is AUPR
(higher is better).

Network MPLP+ MPLP CHA
USAir 0.4948 0.4708 0.4795
NS 0.5259 0.3363 0.6823
PB 0.2093 0.1723 0.1984
Yeast 0.5105 0.4251 0.4652
Celegans 0.1315 0.1350 0.1285
Power 0.0069 0.0055 0.0092
Router 0.0673 0.0573 0.0960
Ecoli 0.5615 0.5603 0.5876

Average 0.3135 0.2703 0.3308

As shown in Table 6, CHA achieves the highest average AUPR, demonstrating better performance
than both MPLP and MPLP+ across the classical non-attributed benchmarks.

I CH Theory for Prediction of Complex Network Connectivity

The Cannistraci-Hebb (CH) framework represents a theory, not a heuristic. Heuristics provide
practical shortcuts without explanatory rigor, whereas a theory offers a systematic, empirically
grounded framework capable of explaining and predicting phenomena. Over more than a decade of
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studies, CH has demonstrated both predictive power and mechanistic interpretability in modeling
link formation across complex systems. It unifies homophilic (similarity-driven) and synergetic
(diversity-driven) principles of connectivity, forming a coherent explanation for self-organization in
networks.

J On the Importance of Distinguishing Internal and External Connectivity in
CH Theory

CH theory distinguishes between internal and external connectivity, describing how local commu-
nities emerge from the balance between intra- and inter-community links. Our experiments reveal
that external-link minimization alone often achieves comparable or superior performance to full
internal–external formulations. As shown in Figure 5, CH3 and CH3.1—based solely on external-link
minimization—match or exceed CH2, suggesting that “external-link minimization is all you need” to
drive the emergence of local-community structures essential for link prediction.

K Path-Length Extension Study

To examine whether longer paths provide additional predictive benefit, we extended CHA to evaluate
path lengths L2–L6 on the ATLAS dataset. Table 7 reports the average AUPR win rates. Results
show that performance peaks at L3, while longer paths (L4–L6) contribute negligibly, confirming
that L2/L3 capture the essential topological scales for link prediction.

Table 7: Average AUPR win rate of CHA with different path lengths on ATLAS.

Path length Avg. AUPR win rate
L2 0.48
L3 0.53
L4 0.02
L5 0.05
L6 0.03

Accordingly, the main analysis focuses on L2 and L3, as they substantially outperform longer path
configurations.

L Comparison with Variants of SBM

To assess the relationship between CHA and recent statistical models for missing-link prediction
under the stochastic block model (SBM), we directly compare CHA with three SBM estimators [49].
We use the authors’ official R implementation on the coauthorship network (Section 4.2.2 of the
original paper). We then evaluate AUPR, NDCG, and Precision by ranking test positives among all
missing links. As shown in Table 8, CHA substantially outperforms all SBM estimators across all
metrics.

Table 8: Comparison with SBM estimators from Gaucher & Klopp (2021) on the coauthorship
network. Evaluation metrics: AUPR, NDCG, and Precision (higher is better).

Method AUPR NDCG Precision
SBM-VAR 0.1102 0.6910 0.2128
SBM-missSBM 0.1215 0.7046 0.2126
SBM-softImpute 0.1766 0.7030 0.2797
CHA (CH3_L2) 0.4567 0.8481 0.5073
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