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Abstract
Self-supervised learning (SSL) learns high-
quality representations from large pools of un-
labeled training data. As datasets grow larger, it
becomes crucial to identify the examples that con-
tribute the most to learning such representations.
This enables efficient SSL by reducing the volume
of data required. Nevertheless, quantifying the
value of examples for SSL has remained an open
question. In this work, we address this problem
for the first time, by proving that examples that
contribute the most to contrastive SSL are those
that have the most similar augmentations to other
examples, in expectation. We provide rigorous
guarantees for the generalization performance of
contrastive learning on such subsets. Through ex-
tensive experiments, we show that we can safely
exclude 20% of examples from CIFAR100 and
40% from STL10 and TinyImageNet, without af-
fecting downstream task performance. In general,
subsets selected by our method outperform ran-
dom subsets by over 3% across these datasets. In-
terestingly, we also discover the subsets that con-
tribute the most to contrastive learning are those
that contribute the least to supervised learning.1

1. Introduction
Large datasets power modern machine learning models.
However, a key question is: what data points are essential
for learning and whether more data will always yield better
performance? Answering this question is crucial as it can re-
duce the substantial costs of training on large datasets, boost
performance of the trained models and guide data collection.
This has motivated a body of recent research on finding the
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most essential subsets for supervised learning (Toneva et al.,
2019; Paul et al., 2021; Mirzasoleiman et al., 2020; Min-
dermann et al., 2022; Sorscher et al., 2022; Swayamdipta
et al., 2020). However, as datasets grow larger, obtaining
high-quality labels for them becomes prohibitively expen-
sive. As a result, there has been a surge in self-supervised
(SSL) pretraining on large un-labeled dataset (Chen et al.,
2020; Grill et al., 2020a; Chen & He, 2021; Zbontar et al.,
2021). Nevertheless, finding the most important data points
for SSL has remained an open question.

Finding the examples that contribute the most to SSL is in-
deed very challenging. When labels are available, the value
of every example for learning can be quantified based on
its loss (or confidence of the prediction) or gradient norm.
Effectively, difficult-to-learn examples i.e. those with high
loss or large gradient norm during training are the ones that
contribute the most to minimizing the training loss. How-
ever, in the absence of labels, SSL methods cluster examples
based on their similarity to the other data points. Therefore,
the SSL loss and gradient of every example is tightly cou-
pled with that of the other examples in the dataset. Hence,
dropping an example affects the loss and gradient of all the
other examples. This makes data selection inherently more
challenging for SSL as compared to supervised learning.

In this work, we address the above challenge for the first
time and find examples that provably contribute the most
to SSL. In particular, we focus on contrastive SSL which
learns representations by maximizing the alignment between
augmented views of the same examples and minimizing
the similarity between augmented views of different exam-
ples (Chen et al., 2020; Zbontar et al., 2021; Oord et al.,
2018). We prove that examples that contribute the most
to contrastive learning are those that have the highest ex-
pected similarity between their augmented views and the
augmented views of other examples in their latent class.
Effectively, such examples pull different groups of exam-
ples in a class together and enable the contrastive loss to
maximally push away representations of examples in differ-
ent classes. We show that such examples (1) ensure a high
alignment between augmented views of examples in every
class, and (2) preserve the centers of class representations
learned by contrastive learning on the full data. We leverage
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the above properties to provide a generalization guarantee
for a linear classifier trained on the representations obtained
by applying contrastive learning to the subset.

We observe that, perhaps surprisingly, examples that con-
tribute the most to contrastive learning contribute the least to
supervised learning. In particular, we quantify the difficulty
of examples for supervised learning using confidence of the
predictions as well as the forgetting score (Toneva et al.,
2019), i.e. the number of times an examples is misclassified
after being correctly classified during the training. We show
that examples that contribute the most to contrastive learn-
ing are the easy examples with a high confidence and low
forgetting score for supervised learning. Such examples can
be safely excluded from a supervised learning pipeline, with-
out harming the accuracy (Toneva et al., 2019). In contrast,
difficult-to-learn examples that contribute the most to su-
pervised learning can significantly hurt contrastive learning
performance.

We extensively evaluate the performance of our method,
SAS, which selects Subsets that maximize Augmentation
Similarity to the full data, on various datasets and using
different contrastive learning methods. We first apply SAS
to CIFAR10, CIFAR100 (Krizhevsky et al., 2009), STL10
(Coates et al., 2011a) and TinyImageNet (Le & Yang, 2015),
with ResNet50 using SimCLR (Chen et al., 2020). We show
that using SAS, up to 20% of examples from CIFAR100 and
40% from STL10 and TinyImageNet (Deng et al., 2009),
can be safely excluded without harming the downstream per-
formance. Similarly, for BYOL, using SAS to discard 20%
of examples from STL10 can even outperform downstream
performance of the full data by 2%. In general, SAS subsets
outperform random subsets by over 3% across these datasets
and methods including SimSiam (Chen & He, 2021), MoCo
(He et al., 2020) and BYOL (Grill et al., 2020a). We also
demonstrate that the subsets that contribute the most to
SSL can be efficiently extracted can be efficiently extracted
early-in-training or using a smaller proxy model.

2. Related Work
Contrastive Learning. Contrastive learning has recently
emerged as a performant self-supervised framework to learn
representations that capture semantically relevant informa-
tion from the data. The key idea behind this family of algo-
rithms is learning representations by maximizing agreement
between augmented views of the same example (positive
pairs) and minimizing agreement between augmented views
of different examples (negative pairs) (Chen et al., 2020;
Zbontar et al., 2021; Grill et al., 2020a; Chen & He, 2021;
He et al., 2020). To improve the performance of contrastive
learning, re-weighting the negative pairs in the contrastive
loss (Chuang et al., 2020) or re-weighting the loss to em-
phasize the hard negatives (Robinson et al., 2020) has been

recently explored. Here, we aim to find subsets of examples
that contribute the most to contrastive learning. The above
reweighting strategies are orthogonal to our work and can
be applied to the subsets found by our method.

Contrastive Learning Theory. A recent line of theoretical
works has studied contrastive learning. In particular, under
conditional independence between positive pairs given
the label, representations learned by contrastive learning
algorithms can achieve small errors in the downstream
linear classification task (Arora et al., 2019; Saunshi et al.,
2019; Tosh et al., 2021). The independence assumption
was relaxed by (HaoChen et al., 2021), which showed that
minimizing spectral-based contrastive loss results in spec-
tral clustering on the augmented distribution and provides
generalization guarantee for linear evaluation. Wang &
Isola (2020) proved that asymptotically, the contrastive
loss optimizes alignment (similarity) of positive pairs
and uniformity of the representations on the hypersphere,
relating them to positive effects on downstream tasks.
The recent result of (Huang et al., 2021) showed that
contrastive learning using the more general InfoNCE (Oord
et al., 2018) or cross-correlation loss (Zbontar et al., 2021)
maximizes alignment of positive pairs as well as divergence
of centers of the latent class representations. Here, we
build on this work and show that subsets that contribute the
most to contrastive learning introduce minimal error on the
alignment and divergence of centers of class representations
learned on the full data. Leveraging the above properties,
we provide generalization guarantees for downstream
performance of representations learned on such subsets.

Essential Subsets for Supervised Learning. There has
been a recent body of efforts on finding the most important
subsets for supervised learning. Empirical methods com-
monly rank examples from easiest to hardest—based on
confidence, loss or gradient—and curate subsets preserving
the hardest examples. Coleman et al. (2020) used a smaller
trained proxy model to find the most uncertain examples to
train a larger model. Toneva et al. (2019) selects examples
with highest forgetting score, i.e., the number of times they
transition from being classified correctly to incorrectly dur-
ing training. Swayamdipta et al. (2020) selects examples
with the highest variance of predictions during training. Paul
et al. (2021) selects examples with the lowest expected gra-
dient norm over multiple initializations. More theoretically
motivated approaches iteratively select subsets by impor-
tance sampling based on gradient norm (Katharopoulos &
Fleuret, 2018) or select weighted subset of examples which
closely capture the full gradient (Mirzasoleiman et al., 2020;
Pooladzandi et al., 2022; Killamsetty et al., 2021).

In contrast, we show, for the first time, that easy-to-learn
examples with highest confidence and lowest forgetting
score that contribute the least to supervised learning are the
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most beneficial for unsupervised contrastive learning.

3. Problem Formulation
Assume we have a dataset XXX={xxxi}i∈V of n= |V | training
examples drawn i.i.d. from an unknown distribution. Each
example belongs to one of the K latent classes i.e. V =
{V1 ∪ · · · ∪ VK}, but the corresponding class labels are not
known at training time.

Contrastive Learning learns representations of examples
in the training data, by learning an encoder f that max-
imizes agreement between representations of differently
augmented views of the same example (i.e. positive pairs)
and minimizes agreement between representations of aug-
mented views of different examples (i.e. negative pairs).
This is achieved by minimizing the following InfoNCE loss
(Oord et al., 2018):

Lcl(V )=− E
i,j∈V

E
xxx1,xxx2∈A(xxxi)

xxx−∈A(xxxj)

log
ef(xxx1)

T f(xxx2)

ef(xxx1)T f(xxx2)+ef(xxx1)T f(xxx−)
,

(1)
where A(xxx) is the set of augmented views of example xxx.

The performance of contrastive learning is evaluated by
training a linear classifier on the learned representation using
labels:

glf (xxx) = argmax
k∈[K]

(WWWf(xxx) + bbb)k (2)

However, to simplify the theoretical analysis, we follow
(Huang et al., 2021) and consider a non-parametric nearest
neighbor (NN) classifier:

gf (xxx) = argmin
k∈[K]

∥f(xxx)−µµµk∥, (3)

where µµµk:=Ei∈Vk
Exxx′∈A(xxxi)[f(xxx

′)] is the center of class Vk.

The linear classifier learned on the labels glf is guaranteed
to perform at least as well as the NN classifier gf (Huang
et al., 2021). Therefore, we use the classification error rate
of the NN classifier to bound the worst-case performance of
the linear classifier:

ξ(gf (V )) =

K∑
k=1

P[gf (xxxi) ̸= k, ∀i ∈ Vk]. (4)

We note that in our experiments, we evaluate our method
using the downstream accuracy of the linear classifier, and
our theoretical guarantees on the NN classifier also upper-
bound the error of the linear classifier.

Our goal is to find a subset S ⊆ V of at most r training
examples, such that the encoder fS = argminf Lcl(S)
obtained by minimizing the contrastive loss on the subset,
allows the NN classifier to obtain a similar error on the full
data. Formally, we aim to solve the following problem:

S∗ = argmin
S⊆V,|S|≤r

[|ξ(gfS (V ))− ξ(gf (V ))|]. (5)

4. The Most Important Subsets for SSL
We start by investigating which properties the subset S∗

must satisfy, such that the learned representations on the
subset provide small downstream classification error. To
do so, we rely on recent theoretical results on optimiza-
tion and generalization of contrastive learning. In particu-
lar, the recent results of Huang et al. (2021) showed that
the generalization performance of representations obtained
with contrastive learning dependents on: (1) alignment of
positive pairs, (2) divergence of class centers and (3) con-
centration of the augmented data. Alignment captures the
similarity between representations of augmented views of
examples, in expectation. Good alignment requires all aug-
mented views of an example to have similar representa-
tions. Divergence of class centers captures how distant class
centers µµµl and µµµk are. Good divergence results in large
enough distance between all pairs of class centers, i.e., small
µµµT
l µµµk ∀l, k ∈ [K]. Concentration of augmented data is de-

termined by the data distribution and augmentation pipeline.
Specifically, let V 0

k ⊆ Vk be the subset of examples in every
class k ∈ K that share at least one very similar augmented
view: supxxx1,xxx2∈Vk

minxxx′
1∈A(xxx1),xxx′

2∈A(xxx2)∥xxx1 − xxx2∥≤δ for
small δ > 0. If for every latent class k ∈ [K], V 0

k is large
enough (|V 0

k | ≥ σ|Vk| for large σ ∈ (0, 1]), then the classes
have sharp concentration of augmented data. In this case,
good alignment and divergence guarantee good generaliza-
tion performance for the downstream NN classifier.

While concentration of the augmentations is independent
of the contrastive loss, minimizing the contrastive loss
effectively aligns the augmented views of the examples and
results in good divergence of the class centers. Formally,
for a normalized encoder ∥f∥=1, the InfoNCE loss in Eq.
(1) can be written as:

Lcl(V )=
1

2
[ E
i∈V

E
xxx1,xxx2∈A(xxxi)

∥f(xxx1)−f(xxx2)∥2]︸ ︷︷ ︸
Lalign(V ): Related to Alignment

−1 (6)

+ E
i,j∈V

E
xxx1,xxx2∈A(xxxi)

xxx−∈A(xxxj)

log
(
ef(xxx1)

T f(xxx2) + ef(xxx1)
T f(xxx−)︸ ︷︷ ︸

Related to Divergence

)
.

The first term in the RHS of Eq. (6) is closely related to
the alignment and the second term in the RHS is related
to the divergence of class centers.

Alignment. Minimizing the first term in the RHS of Eq. (6)
aligns augmented views of the training examples in expecta-
tion, and results in a small probability Rϵ(V ) for examples
to still have non-aligned augmented views, i.e, the largest
distance between their augmented views is larger than ϵ:

Rϵ(V ) = P
[
i ∈ V : sup

xxx1,xxx2∈A(xxxi)

∥f(xxx1)− f(xxx2)∥ > ϵ
]
. (7)

In particular, for a L-Lipschitz continuous encoder f , we
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Figure 1. Visualizing Expected Augmentation Distance dx,x′ . Pair of examples on left shows two examples that are semantically very
similar as seen by their augmentations being very similar to each other, thus the expected augmentation distance between them is small. In
contrast, pair of examples on the right are not as semantically similar, thus have augmentations that are very dissimilar to each other.

have that (Huang et al., 2021):

Rϵ(V ) ≤ η(ϵ)·
√
Lalign(V ), (8)

whereLalign(V ) =Ei∈V Exxx1,xxx2∈A(xxxi)∥f(xxx1)−f(xxx2)∥2 is
the alignment loss; η(ϵ) =O( 1ϵ ) is a function of ϵ and the
transformations used for data augmentations.

Divergence. Minimizing the second term in RHS of Eq. (6)
pushes away the class centers, i.e., expected representation
of examples in a class, and yields a small µµµT

kµµµl for all
k, l ∈ [K]. Effectively, it maximizes the distance between
different class representations.

Minimizing the InfoNCE loss in Eq. (6) minimizes both
terms in the RHS, thus ensuring good alignment and di-
vergence. With good alignment (small Rϵ) and good di-
vergence (small µµµT

kµµµl), the NN classifier gf can correctly
classify all the examples in the main part of every class that
have concentrated and aligned augmented views. If the ma-
jority of examples in every class have a high concentration
of augmented data is large (large σ), good generalization is
guaranteed. Formally,

Theorem 4.1 (Huang et al. 2021). For any l, k ∈ [K], if

µµµk
Tµµµl < ϕ(σ, δ, ϵ), (9)

then the downstream error rate of NN classifier is

ξ(gf (V )) ≤ (1− σ) +Rϵ(V ). (10)

Exact form of ϕ(σ, δ, ϵ) is discussed in Appendix B.

4.1. Subsets that Preserve Alignment and Divergence

We rely on the above observations to find a subset that, when
used to learn representations, provides similar generalization
performance to that of the full data, for the downstream
NN classifier. The key idea of our approach is to find a
subset, such that minimizing the contrastive loss on this
subset: (1) results in good alignment for all the examples,
and (2) preserves the class centers of full data. In doing

so, we ensure that the divergence of the class centers is
preserved. If such a subset can be found, minimizing the
contrastive loss in Eq. (1) on the subset results in good
alignment and divergence on the full data, hence guarantees
similar generalization performance for the downstream NN
classifier.

Next, we introduce the notion of expected augmentation
distance and discuss how it can be leveraged to find a subset
that satisfies the above two conditions.

We start by defining the expected augmentation distance:

Definition 4.2 (Expected augmentation distance). We de-
fine the expected augmentation distance between examples
i, j ∈ V as the expected l2 norm between all pairs (xxx,xxx′) of
augmented examples, such that xxx ∈ A(xxxi) and xxx′ ∈ A(xxxj).
Formally, for every pair of examples i, j ∈ V we have:

di,j = E
xxx∈A(xxxi),xxx

′∈A(xxxj)
∥xxx− xxx′∥. (11)

Intuitively, expected augmentation distance captures the se-
mantic dissimilarity between every pair of examples. That is,
two examples that are semantically similar have a small ex-
pected augmentation distance. We visualize examples with
small and large expected augmentation distance in Fig. 1.

4.2. Ensuring Good Alignment

First, we address finding a subset that, when used to min-
imize the contrastive loss, aligns the augmented views of
all the training examples. From Eq. (8), we know that min-
imizing the alignment loss Lalign, directly minimizes the
probability Rϵ(V ) of examples with non-aligned augmented
views. That is Rϵ(V ) ≤ η(ϵ)·

√
Lalign(V ).

Here, we find a subset Sk ⊆ Vk of examples from ev-
ery latent class k that ensures small Rϵ(Vk), i.e., proba-
bility that examples in Vk are not well-aligned. For ev-
ery (arbitrary) subset Sk ⊆ Vk of size rk = |Sk| se-
lected from class k with nk = |Vk| examples, we can
upper-bound the probability Rϵ(Vk) based on the align-
ment loss of the subset i.e. Lalign(Sk). In particular, using
Rϵ(Vk) ≤ η(ϵ) ·Ei∈Vk

Exxx1,xxx2∈A(xxxi) ∥f(xxx1)− f(xxx2)∥ ≤
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η(ϵ)
√
Lalign(V ) (Huang et al., 2021), we can write:

Rϵ(Vk)

≤ η(ϵ)· E
i∈Vk

E
xxx1,xxx2∈A(xxxi)

∥f(xxx1)− f(xxx2)∥ (12)

=
η(ϵ)

nk
·

(∑
i∈Sk

E
xxx1,xxx2∈A(xxxi)

∥f(xxx1)− f(xxx2)∥

+
∑

i∈Vk\Sk

E
xxx1,xxx2∈A(xxxi)

∥f(xxx1)− f(xxx2)∥

)
(13)

≤ η(ϵ)

nk
·

(∑
i∈Sk

E
xxx1,xxx2∈A(xxxi)

∥f(xxx1)− f(xxx2)∥

+
∑

i∈Vk\Sk

[2 min
j∈Sk

E
xxx1∈A(xxxi),
xxx2∈A(xxxj)

∥f(xxx1)−f(xxx2)∥]

)
, (14)

Detailed steps of getting Eq. (14) from Eq. (13) can
be found in the Appendix C. Note that the first term in
Eq. (14) is exactly η(ϵ)

nk

√
Lalign(Sk). Hence, for a L-

Lipschitz continuous encoder f , where ∥f(xxx)− f(xxx′)∥ ≤
L ∥xxx− xxx′∥ ∀xxx,xxx′, we have:

Rϵ(Vk) ≤
η(ϵ)

nk

(
rk

√
Lalign(Sk) + 2L

∑
i∈Vk\Sk

min
j∈Sk

di,j

)
.

The alignment loss on the subset Lalign(Sk) can be effec-
tively minimized by contrastive learning on the subset using
the InfoNCE loss. We also empirically show in Appendix A
Fig. 8(a) that alignment loss on the subsets we find for con-
trastive learning is smaller than the alignment loss on the full
data, i.e., Lalign(Sk) ≤ Lalign(Vk). Therefore, training on
a subset Sk ⊆ Vk introduces at most the following error on
Rϵ(Vk), i.e., the probability for any example in Vk to have
a distance larger than ϵ between its augmented views:

νkR ≤
2Lη(ϵ)

nk

∑
i∈Vk\Sk

min
j∈Sk

di,j , (15)

Therefore, the subset Sk ⊆ Vk with smallest expected
augmentation distance di,j (semantic similarity) to the
rest of the examples in the class Vk \ Sk can best align
augmentations of all the examples in the class Vk.

Remark. Eq. (15) shows that the subset Sk that aligns
augmented views of all the examples in a class Vk should
have an element that is sufficiently similar to any other
example in the class. In other words, the subset should
contain examples that are representative of every group of
examples in the class.

4.3. Preserving the Class Centers

Next, we discuss finding a subset that captures the center of
every latent class µµµk.

Figure 2. Most representative examples: examples in top row are
each representative of their group (e.g. breed) in class dog.

For every (arbitrary) subset Sk ⊆ Vk of size rk = |Sk|
selected from class k with nk = |Vk| examples, we can
write:

µµµk= E
ı∈Vk,

xxx′∈A(xxxi)

[f(xxx′)]

= E
i∈Vk,

xxx′∈A(xxxi)

[f(xxx′)] − E
j∈Sk,

xxx′′∈A(xxxj)

[f(xxx′′)] + E
j∈Sk,

xxx′′∈A(xxxj)

[f(xxx′′)]

=
1

nk

∑
i∈Vk

E
xxx′∈A(xxxi)

[f(xxx′)]− 1

rk

∑
j∈Sk

E
xxx′′∈A(xxxj)

[f(xxx′′)] +µµµS
k

=
1

nk ·rk

[
rk
∑
i∈Vk

E
xxx′∈A(xxxi)

[f(xxx′)]−nk

∑
j∈Sk

E
xxx′′∈A(xxxj)

[f(xxx′′)]
]
+µµµS

k

=
1

nk ·rk

∑
i∈Vk

∑
j∈Sk

[
E

xxx′∈A(xxxi)
[f(xxx′)]− E

xxx′′∈A(xxxj)
[f(xxx′′)]

]
+µµµS

k

=
1

nk ·rk

∑
i∈Vk

∑
j∈Sk

E
xxx′∈A(xxxi),
xxx′′∈A(xxxj)

[f(xxx′)−f(xxx′′)] +µµµS
k (16)

Hence, for a L-Lipschitz continuous encoder f , where
∥f(xxx)− f(xxx′)∥ ≤ L ∥xxx− xxx′∥ ∀xxx,xxx′, we can upper-bound
the normed difference between the center of class Vk and
subset Sk as follows:

νkµ = ∥µµµk −µµµS
k ∥≤ L · E

i∈Vk,
j∈Sk

[di,j ]. (17)

That is, the subset that preserves the center of class k, can
be found by minimizing the expectation of expected augmen-
tation distances (semantic similarity) between examples in
the subset Sk and all the data points Vk in class k.

Remark. Eq. (17) implies that a subset Sk that captures the
centre of class k, should be similar to all the examples in
the class, in expectation. Such a subset contains examples
from dense regions with sharp concentration of augmented
data. Such examples best represent the entire class.

4.4. Minimizing the Alignment and Divergence Error

Based on Eq. (15) and (17), we find the subset that ensures
alignment of all data points in class k and closely captures
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the center of the class, by solving the following problem:

S∗
k = argmin

S⊆Vk,|S|≤rk

E
i∈Vk,
j∈Sk

[di,j ]

︸ ︷︷ ︸
Captures class center

s.t. min
j∈Sk

di,j≤δ ∀i∈Vk︸ ︷︷ ︸
Ensures alignment

.

(18)
Problem (18) is NP-hard as it involves calculating the value
of the objective over an exponential number of subsets. To
efficiently find a subset that captures the class center and
contains representatives from different groups of examples
in a class, we rely on the following objective which
minimizes the sum of expected augmentation distance
between examples in the subset j ∈ Sk and the rest of
examples in the class Vk \ Sk:

S∗
k = argmin

S⊆Vk,|S|≤rk

∑
i∈Vk\Sk

∑
j∈Sk

di,j . (19)

By minimizing the sum of distances (dissimilarities)
between the subset and the rest of examples, Eq. (19) finds
examples that are similar to many other examples in their
class. In doing so, it finds a subset that ensure alignment.
At the same time, the selected examples are selected from
dense regions with sharp concentration of augmented data.
Hence, the subset closely preserves the class center.

The above minimization problem can be turned into maxi-
mizing the following monotone submodular2 cover problem:

S∗
k = argmax

S⊆Vk,|S|≤rk

∑
i∈Vk\Sk

∑
j∈Sk

C − di,j , (20)

where C is a big constant. C − di,j captures the sim-
ilarity between i and j. For maximizing a monotone
submodular function F , the greedy algorithm provides a
(1 − 1/e) approximation guarantee (Wolsey, 1982). The
greedy algorithm starts with the empty set Sk0 = ∅, and
at each iteration l, chooses an element e ∈ V such that
Skl

= Skl−1
∪{argmaxe∈V F (e|Skl−1

)}. The greedy algo-
rithm finds a near-optimal solution of size rk inO(|Vk| · rk)
time. This complexity can be reduced toO(|Vk|) by stochas-
tic evaluation (Mirzasoleiman et al., 2015) and accelerated
further by lazy evaluations (Minoux, 1978). Thus, the subset
can be found very efficiently.

Remark. Intuitively, as the subsets selected from different
classes have a small expected augmentation distance to
all the different groups in the class, they pull together all
the examples in a class during contrastive learning and let
the representations of a class to cluster closely. At the
same time, as they preserve the class centers, they allow the
representations of different classes to be effectively pushed
away from each other. In doing so, the subsets effectively

2A set function F : 2V → R+ is submodular if F (e|S) =
F (S∪{e})−F (S) ≥ F (T ∪{e})−F (T ), for any S ⊆ T ⊆ V
and e ∈ V \ T . F is monotone if F (e|S) ≥ 0 for any e∈V \S
and S ⊆ V .

Algorithm 1 SAS: finding Subsets that maximize the ex-
pected Augmentation Similarity

1: Input: Subset size B, proxy model fp
2: Output: Subset S
3: {V1, ..., VK} ← approximate latent classes (Sec. 4.5)
4: for all Vk ∈ {V1, · · · , VK} do
5: for all i, j ∈ Vk do
6: si,j = ⟨fp(xxxi), fp(xxxj)⟩
7: end for
8: Sk ← {}
9: rk ← |Vk|

|V | ·B
10: F (Sk) =

∑
i∈Vk\Sk

∑
j∈Sk

si,j
11: while |Sk| ≤ rk do
12: e← argmaxe∈Vk\Sk

F (e|Sk)
13: Sk ← Sk ∪ {e}
14: end while
15: end for
16: return S = {S1 ∪ · · · ∪ SK}

minimize the contrastive loss on the full data. Note that as
di,j is a property of the data in the input space, the subset
found by solving Problem (20) ensures good alignment and
divergence throughout contrastive learning.

Fig. 2 presents a visualization of examples in the dog class.
The examples found by Eq. (20) resemble those in the top
row, i.e., they contain the core features of the class (e.g.
the head and the paws of the puppies) with minimal noise
(e.g. the non-standard poses of the puppies in the bottom
row). Due to the standard and clear presentation of the
core features of their respective groups, the examples in top
row have smaller expected augmentation distance to many
examples than examples in the bottom row, where some
core features may be occluded (e.g. paws not visible) and/or
presented in non-standard ways (e.g. open mouth).

Next, we provide a generalization guarantee for contrastive
learning from the subset. The following theorem shows that
if contrastive learning on the subset provides a small extra
divergence on the center of examples selected from different
classes compared to that of full data, the downstream NN
classifier will have a similar generalization performance to
that of contrastive learning from full data.

Theorem 4.3. Assume f is a normalized encoder and the
subset Sk selected by Eq. (20) has νkR error (Eq. 15) in cap-
turing Rϵ(f, Vk) and νkµ error (Eq. 17) in capturing the cen-
ter of class k. If for any pair of classes k, l∈ [K], we have:

µµµS
k

T
µµµS
l <ϕ(σ, δ, ϵ)− (21)(

CνkR + 2(max{νkµ, νlµ})2 + 4max{νkµ, νlµ})
)
.

where ϕ(σ, δ, ϵ) is the requirement on divergence of full
data class centers in Theorem 4.1 and C is a constant, then

6



Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised Learning Contribute the Least

the generalization error of the model trained on the subset
can be bounded by:

ξ(gfS (V )) ≤ (1− σ) +Rϵ + νR. (22)

Theorem 4.3 shows that if the subset captures the class cen-
ters and alignment closely (i.e. νR and νµ are small), then
minimizing the contrastive loss on the subset provides a
similar divergence to that of full data, and thus a similar
downstream generalization performance for the NN classi-
fier is guaranteed.

The proof can be found in Appendix B, where we also dis-
cuss that CνR is generally small. Fig. 8(b) in Appendix A
confirms that divergence of full data class centers when train-
ing on sufficiently large subsets found by Eq. (20) is in fact
better than that of training on the full data. This explains the
similar or even superior generalization performance of mod-
els trained on SAS subsets to models trained on the full data.

4.5. SAS: Finding the Subset in Practice

Finally, we present our method, SAS, which finds subsets
that minimize expected augmentation distance or equiva-
lently maximize expected augmentation similarity, by ap-
proximately finding the latent classes and estimating the
expected augmentation distance, without having the labels.

Approximately Finding the Latent Classes. Problem (20)
requires selecting a subset from every class separately. With-
out the labels, we need to approximately find the latent
classes. In practice, one can find latent classes by clustering
the representations of a model trained with contrastive SSL.
This approach requires no extra information and thus can
generalize to contrastive learning in all domains. However,
if an extra small subset of labeled data and a proxy model is
available, we can find latent classes much more accurately.
Specifically, if a small subset of labels are available, a proxy
model can be used to approximately find the latent classes.
In our experiments, we show that having as small as 1%
of the labels, the pretrained CLIP (Radford et al., 2021)
image encoder can be used to find the latent classes more
accurately. Crucially, even without having access to any
downstream labels, the pretrained CLIP can be used to find
the latent classes. In our experiments, we show that using
CLIP’s image and text encoders, we can match image em-
beddings from STL10 to the closest text embeddings from
ImageNet labels to obtain approximate latent classes for
STL10. In practice, any fine-grained relevant set of labels
provide a superior performance. This is because linearly sep-
arable representations for the fine-grained task will ensure
linearly separable representations for the coarser-grained
task. This is a practical way to use SAS for vision tasks as
well as other domains with pretrained foundational models.

Estimating the Expected Augmentation Similarity.

Expected augmentation distance captures similarity of
examples in the input space. However, as pixel space is
extremely high-dimensional, nearly all expected augmen-
tation distances will be very large and extremely sensitive
to small noise. Instead, using a proxy model can better
capture the semantic similarities in practice. Note that
the proxy model does not necessarily have to be the same
as the model being trained with SSL. Indeed, the proxy
model can be much smaller than the model being trained or
can be partially trained with similar augmentations, as we
confirm experimentally. Having a proxy model fp, for all
xxxi,xxxj ∈ Vk, we estimate expected augmentation similarity,
i.e., C − di,j in Eq. (20) by si,j = ⟨fp(xxxi), fp(xxxj)⟩. The
pseudocode of SAS is illustrated in Alg. 1.

5. Experiments
In this section, we first evaluate the downstream general-
ization performance of the models trained by contrastive
learning on the subsets found by SAS vs. random subsets, on
CIFAR10, CIFAR100 (Krizhevsky & Hinton, 2009), STL10
(Coates et al., 2011b) and TinyImageNet (Deng et al., 2009).
Then, we do an extensive ablation study on the effect of
the approximate latent classes, and the proxy model used
to estimate expected augmentation distance. Finally, we
investigate the relation of these subsets to subsets that are
important for supervised learning.

Training Setup We use SimCLR (Chen et al., 2020) as the
contrastive learning method to train ResNet-50 (He et al.,
2016) as the encoder architecture and a 2-layer MLP to
project the representation to a 128-dimensional latent space.
We use InfoNCE with temperature as our loss. Following the
standard training pipeline in (Chuang et al., 2020; Robinson
et al., 2020) we train for 400 epochs using the Adam opti-
mizer with a learning rate of 0.001. Due to computational
constraints, we use ResNet-18 as the encoder architecture
for TinyImageNet and only have a single run per subset size.
We also evaluate SAS on other contrastive learning methods,
namely BYOL (Grill et al., 2020a), SimSiam (Chen & He,
2020) and MoCo (He et al., 2020), using ResNet-18 as the
encoder architecture.

Data Augmentation For data augmentations, we use ran-
dom crop, random resizing, random horizontal flips and
color distortion, as is done in (Chen et al., 2020).

Evaluation. For evaluation, we use the widely used linear
evaluation protocol (Chen et al., 2020; Chuang et al.,
2020). That is, we train a linear classifier using the learned
representations of the training examples and their labels.
Then, we evaluate the performance of the linear classifier on
the test set representations and their corresponding labels.
To ensure fair comparison, we compare SAS subsets with
random subsets of the same size sampled from the same
approximate latent classes.
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(d) TinyImageNet (ResNet-18)
Figure 3. Downstream Classification Accuracy of SAS Subsets vs. Random Subsets (reporting mean and std over 3 runs).
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(a) BYOL (STL10)
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(b) SimSiam (CIFAR100)
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(c) MoCo (CIFAR100)

Figure 4. Evaluating SAS on other contrastive learning methods (training a ResNet-18).

5.1. Downstream Generalization Performance

First, we evaluate the downstream generalization perfor-
mance of the model pre-trained on subsets of different sizes
found by SAS vs. random subsets of the same size. Here,
we use a pre-trained ResNet-50 as the proxy to calculate
sij , as discussed in Sec. 4.5. For CIFAR100 and STL10,
we consider all si,j > 0 and for CIFAR10 we consider all
si,j > 0.5. As examples in CIFAR10 are generally more
similar to each other, a larger threshold helps identifying
representative examples better. To approximately find
the latent classes, we train a linear classifier on the
CLIP representations of the training data with a small
randomly selected subset of training labels. In particular,
for CIFAR10 and CIFAR100, we use 1% of the labels
of training examples selected at random, and for STL10,
we use all the labels (< 5%) available labels. We use the
trained linear classifiers to predict the latent class for all
the training examples. In our ablation studies, we evaluate
the performance when finding latent classes in other ways.

SimCLR Fig. 3 shows that training with SimCLR on sub-
sets of various sizes found by SAS allows outperform ran-
dom subsets by over 3% on CIFAR100 and STL10, and
by up to 2% on CIFAR10. Critically, comparing the perfor-
mance of the subsets with that of the full data, we can see
that for CIFAR100, 20% of examples and for STL10 and
TinyImageNet, 40% of examples, can be safely discarded
without affecting downstream accuracy.

Other Contrastive Learning Methods. We validate that
SAS can effectively find examples that contribute the most
to contrastive learning across variety of contrastive learning

methods. For these experiments, we train a ResNet-18 using
BYOL (Grill et al., 2020b), MoCo (He et al., 2020) and Sim-
Siam (Chen & He, 2020). Fig. 4(a) shows that training with
BYOL on subsets of various sizes found by SAS from STL10
outperforms random subsets by more than 3%. Interestingly,
with BYOL, subsets of size 80% outperform training on the
full data by 2%. We also show that SAS allows us to discard
20% of examples on CIFAR100 when using SimSiam (Fig.
4(b)) and to achieve nearly 2% improvement over random
subsets when using MoCo. (Fig. 4(c)).

5.2. Ablation Study

Next, we conduct an extensive ablation study on the effect
of the approximate latent classes, and the proxy model used
to estimate expected augmentation distance.

Finding Approximate Latent Classes. Fig. 5(a) compares
the downstream performance on CIFAR100 when latent
classes are obtained by training a linear classifier using 1%
labeled training data on CLIP representations, to that of
using the ground-truth class labels, and k-means clustering
on the representations of a pretrained model. We see that
approximately finding the latent classes using 1% of the
labels works nearly as well as ground-truth labels. Notably,
while the accuracy of the linear classifier trained with 1%
of the labels of CIFAR100 is only 70.8%, this does not
negatively affect the quality of subsets found by SAS. The
latent classes help us avoid confusing examples that are
similar to examples across many latent classes; thus, even
with relatively inaccurate latent classes, such examples can
be filtered. Moreover, in the absence of any labels, using
k-means clustering on the on the representations of a pre-
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(b) ImageNet labels (STL10)

20 30 40 50 60 70 80
Subset Size (%)

56

58

60

62

64

66

To
p-

1 
Ac

cu
ra

cy
 (%

)

Random
SAS
R50, 50%
R18, 100%
R10, 100%
R50, 10%

(c) Effect of proxy model
(CIFAR100)

20 30 40 50 60 70 80
Subset Size (%)

52.5

55.0

57.5

60.0

62.5

65.0

67.5

To
p-

1 
Ac

cu
ra

cy
 (%

)

Random
SAS (best)
Least Forgettable
SAS (worst)
Most Forgettable

(d) Easy examples for SL are im-
portant for SSL(CIFAR100)

Figure 5. Ablation study on CIFAR100 and STL10.

trained model performs equally well for smaller subsets and
still provides a significant improvement for larger subsets.

Next, we consider using a different set of labels than the
original labels of the training data to find the latent classes.
In particular, we use a pretrained CLIP to label STL10 im-
ages by ImageNet labels, using the zero-shot approach. That
is, we match every image in STL10 to one of the ImageNet
labels, by finding the CLIP text embedding of the ImageNet
label that is most similar to the CLIP image embedding.
Fig. 5(b) compares the downstream performance on STL10,
when using ImageNet labels to find latent classes using a
zero-shot approach to that of using the available (< 5%)
STL10 labels to train a linear classifier on CLIP image rep-
resentations. Notably, no label information about STL is
used in the first case. The results clearly shows how SAS can
entirely avoid the use of labels for approximating the latent
classes. Crucially, any relevant and potentially finer-grained
set of labels are enough to approximately find the latent
classes and achieve a superior downstream performance.

Using Proxy Models to Estimate Expected Augmentation
Distance. Fig. 5(c) shows estimating augmentation distance
using various proxy models, such as a ResNet-50 that is
partially trained for as few as 10% of epochs as well as
smaller models such as a pre-trained ResNet-10, achieves
a very similar downstream performance to that of using a
fully pre-trained ResNet-50.

5.3. Investigating subsets found by SAS
Visualization. Fig. 6(a) use t-SNE to visualize examples
that are selected by SAS vs those that are not selected,
from the class “bed” in CIFAR100. Examples with small
expected augmentation distance to selected and not selected
examples are connected. We see that the selected examples
have small distance to many other examples in the class. Fig.
6(b), illustrates some examples that are selected and not
selected from the “bicycle” class. We see that the selected
examples are representatives of the whole class, while those
not selected present uncommon poses or views of the object.

Easy Examples are the Most Important. Finally, we use
the forgetting score (Toneva et al., 2019), i.e. the number

(a) t-SNE of bed (pairs with
small dxxxxxx′ are connected)

(b) Examples from bicycle

Figure 6. Visualizing selected examples from CIFAR100

of times an examples is misclassified after being correctly
classified during supervised learning, to quantify the diffi-
culty of an example. Importantly, least forgettable exam-
ples that can be safely discarded from supervised learning
without harming the accuracy (Toneva et al., 2019). Fig.
5(d) shows that least forgettable examples can considerably
outperform the random baseline and achieve a comparable
performance to SAS for smaller subsets. On the other hand,
the most forgettable examples that are most beneficial for
supervised learning, perform significantly worse than the
random baseline and similar to the subsets deemed worst
by SAS. This illustrates how the subsets that contribute the
most to contrastive learning are the least beneficial for su-
pervised learning and vice-a-versa. Fig. 7 in Appendix A
further shows that subsets found by SAS have low forgetting
score and high confidence, in expectation. That is, they are
easy for supervised learning. Effectively, the most important
subsets for SSL are least important for supervised learning.

6. Conclusion
We identified subsets of examples that contribute the most to
contrastive SSL. Theoretically, we characterized important
subsets for contrastive learning with rigorous generalization
guarantees for downstream performance. Empirically, we
showed that using our method 20% - 40% examples can be
discarded on CIFAR100, STL10 and TinyImageNet, observ-
ing no loss and even improvement in downstream accuracy.
Surprisingly, we discovered that these important subsets are
the least informative for supervised learning.
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Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z.,
Gheshlaghi Azar, M., et al. Bootstrap your own latent-a
new approach to self-supervised learning. Advances in
neural information processing systems, 33:21271–21284,
2020a.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond,
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Gomez, A. N., Morisot, A., Farquhar, S., and Gal,

10

https://arxiv.org/abs/2002.05709v3
https://arxiv.org/abs/2002.05709v3
https://proceedings.neurips.cc/paper/2020/hash/63c3ddcc7b23daa1e42dc41f9a44a873-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/63c3ddcc7b23daa1e42dc41f9a44a873-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/63c3ddcc7b23daa1e42dc41f9a44a873-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/63c3ddcc7b23daa1e42dc41f9a44a873-Abstract.html
https://proceedings.mlr.press/v15/coates11a.html
https://proceedings.mlr.press/v15/coates11a.html
http://arxiv.org/abs/2006.07733
http://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2106.04156
https://arxiv.org/abs/2106.04156
http://arxiv.org/abs/1911.05722
http://arxiv.org/abs/1911.05722


Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised Learning Contribute the Least

Y. Prioritized Training on Points that are Learn-
able, Worth Learning, and not yet Learnt. In Pro-
ceedings of the 39th International Conference on
Machine Learning, pp. 15630–15649. PMLR, June
2022. URL https://proceedings.mlr.press/
v162/mindermann22a.html. ISSN: 2640-3498.

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. In Optimization techniques, pp.
234–243. Springer, 1978.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák,
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A. Extension to Experiments
A.1. Details for STL10 Investigatory Experiments

BYOL We consider a ResNet-18 trained for 40 epochs on STL10 with batch size 64 using SGD with learning rate of 0.001.

A.2. Easy Examples are Important

Here, we present results showing that the subsets SAS selects are easier for supervised learning by various metrics. We
consider the number of forgetting events (Toneva et al., 2019) and the confidence of the prediction to quantify difficulty
of a given example. Fig. 7 shows that SAS consistently picks examples with lower average forgetting events and higher
confidence than the random subsets.
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Figure 7. Examples found by SAS are easy (smaller number of forgetting events or higher confidence) for supervised learning.

A.3. Empirical Proof of Good Alignment and Divergence
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(a) Lalign(S)

20 40 60 80
Subset Size (%)

0.000

0.002

0.004

0.006

Si
m

ila
rit

y 
of

 C
la

ss
 C

en
te

rs

Random
SAS
Full Data

(b) Divergence
Figure 8. Empirically verifying we find subsets that achieve good alignment and divergence

In Fig. 8, we empirically measure Lalign(S) and the mean similarity of class centers to show that the subsets chosen by SAS
do indeed have better alignment and divergence than random subsets. Moreover, Fig. 8(a) also empirically verifies our claim
that Lalign(Sk) ≤ Lalign(Vk)
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B. Proof for Theorem 4.3
Proof. First, we upper-bound the inner product of µµµk and µµµl using the discrepancy between class centers on the subset and
the full data; thus, giving a bound on the divergence of full data class centers for our model trained on the subset S.

Let νkµ = ∥µµµS
k −µµµk∥. Then,

∥µµµT
kµµµl∥ ≤ ∥µµµk∥ · ∥µµµl∥ ≤ (∥µµµS

k ∥+ νkµ)(∥µµµS
l ∥+ νlµ) = ∥µµµS

k ∥ · ∥µµµS
l ∥+ νkµ∥µµµS

l ∥+ νlµ∥µµµS
k ∥+ νkµν

l
µ. (23)

Thus, for a normalized encoder ∥f∥ = r we get

∥µµµT
kµµµl∥ − ∥µµµS

k

T
µµµS
l ∥ ≤ ∥µµµT

kµµµl∥ − ∥µµµS
k ∥ · ∥µµµS

l ∥ ≤ r(νkµ + νlµ) + νkµν
l
µ. (24)

Next, we use Theorem B.1 to provide a generalization guarantee for the downstream NN classifier.

Let V ϵ ⊆ V be the subset of examples of the full data that are well-aligned i.e. ∀xxxi ∈ V ϵ, s.t.
supxxx1,xxx2∈A(xxxi) ∥f(xxx1)− f(xxx2)∥ ≤ ϵ

Recall V 0
k ⊆ Vk is the subset of examples with sharp concentration of augmented data in latent class k, i.e.,

supi,j∈V 0
k
minxxx∈A(xxxj),xxx′∈A(xxxj) ∥xxx− xxx′∥ ≤ δ and |V 0

k | ≥ σ|Vk| for σ ∈ (0, 1]

Theorem B.1 (Complete version of Theorem 4.1 (Huang et al., 2021)). For any l, k ∈ [K], if

µµµk
Tµµµl < ϕ(σ, δ, ϵ) = r2(1− ρk(σ, δ, ϵ)−

√
2ρk(σ, δ, ϵ)−

1

2
∆µ), (25)

then every example in V 0
k ∩ V ϵ can be classified correctly by the NN classifier, where ρk(σ, ϵ, δ) = 2(1− σ) + Rϵ

pk
+ (σ −

Rϵ

pk
)(Lδ

r + 2ϵ
r ), pk = probability of an example being from latent class k and ∆µ = 1−mink ∥µµµk∥2/r2.

If for any latent class k ∈ [K], all examples in V 0
k ∩ V ϵcan be classified correctly by the NN classifier, then the downstream

error rate of NN classifier

ξ(gf (V )) ≤ (1− σ) +Rϵ(V ) (26)

The above Theorem cannot be directly used as the training on the subset introduces an additional error in capturing the
alignment for latent class k, i.e., νkR. Incorporating this, we get:

µµµk
Tµµµl < r2(1− ρ′k(σ, δ, ϵ)−

√
2ρ′k(σ, δ, ϵ)−

1

2
∆µ), (27)

where ρ′k(σ, ϵ, δ) = 2(1− σ) +
Rϵ+νk

R

pk
+ (σ− Rϵ+νk

R

pk
)(Lδ

r + 2ϵ
r ), and Rϵ is the probability of examples not having aligned

augmented views and νkR is the alignment error on latent class k due to training on the subset.

From (24), we have:

µµµS
k

T
µµµS
l + r(νkµ + νlµ) + νkµν

l
µ <r2

(
1− ρ′k(σ, ϵ, δ)−

√
2ρ′k(σ, ϵ, δ)−

1

2
∆µ

)
. (28)

Then, as long as the following bound on the divergence of the class centers of the subset holds:

µµµS
k

T
µµµS
l <r2

(
1− ρ′k(σ, ϵ, δ)−

√
2ρ′k(σ, ϵ, δ)−

1

2
∆µ

)
− r(νkµ + νlµ)− νkµν

l
µ, (29)

by Theorem B.1, we have that the NN classifier can correctly classify all the examples in V 0
k ∩ V ϵ for any latent class

k ∈ [K]

Thus, then incorporating our additional error in alignment νR into the generalization error bound in Theorem B.1, we get

ξ(gfS (V )) ≤ (1− σ) +Rϵ(V ) + νR (30)
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Now, we can bound how much smaller the inner product of the class centers on the subset must be than that on the full data
to achieve equivalent generalization guarantees (Eq. (30)), i.e. how much better the divergence on the subset should be than
divergence on the full data.

Let εk,l = r(νkµ + νlµ) + νkµν
l
µ. Then, comparing the bounds on divergence from Eq. (25) from Theorem B.1 and Eq. (29),

we have

r2(1− ρk(σ, δ, ϵ)−
√

2ρk(σ, δ, ϵ)−
1

2
∆µ)− r2(1− ρ′k(σ, δ, ϵ)−

√
2ρ′k(σ, δ, ϵ)−

1

2
∆µ) + εk,l (31)

= r2
(
ρ′k(σ, δ, ϵ)− ρk(σ, δ, ϵ) +

√
ρ′k(σ, δ, ϵ)−

√
ρk(σ, δ, ϵ))

)
+ εk,l. (32)

Let ζ =
νk
R

pk
(1− Lδ+2ϵ

r ) where pk is probability of an example being from latent class k.

Since
√
x+ a−

√
x+ b ≈ a−b

2
√
x

for large x, we get:

≈ r2
(
ζ +

ζ

2
√
ρ(σ, δ, ϵ)

)
+ νkµ

2
+ 2rνkµ + r2 + r(νkµ + νlµ) + νkµν

l
µ (33)

= CνkR + 2(max{νkµ, νlµ})2 + 4max{νkµ, νlµ}. (34)

where C = r2

pk
(1− Lδ+2ϵ

r )(1 + 1

2
√

ρk(σ,δ,ϵ)
).

Hence, we can rewrite Eq. (29) as

µµµS
k

T
µµµS
l <ϕ(σ, δ, ϵ)−

(
CνkR + 2(max{νkµ, νlµ})2 + 4max{νkµ, νlµ}

)
(35)

When examples in every class have a high concentration of augmented data, i.e., when δ is small, ρ(σ, δ, ϵ) is small and C is
large. However, in this settings, picking a subset according the objective in Eq. (15) guarantees a very small νkR. Therefore,
CνkR is small. On the other hand, when examples in every class do not have a high concentration of augmented data, δ is
relatively large and hence C is small. As a result, CνkR in Eq. (35) is small in both cases. Thus, for small νµ, the required
divergence of subset class centers for the model trained on the subset is similar to the required divergence of full data class
centers for the model trained on full data.

C. Detailed Steps to derive Eq. (14) from Eq. (13)

Let j ∈ Sk and xxxj′ = argminxxxjk
∈A(xxxj) Exxx1∈A(xxxi) ∥f(xxx1)− f(xxxjk)∥.

Then ∀i ∈ Vk \ Sk:

E
xxx1,xxx2∈A(xxxi)

∥f(xxx1)− f(xxx2)∥ (36)

≤ E
xxx1,xxx2∈A(xxxi)

[∥f(xxx1)− f(xxxj′)∥+ ∥f(xxxj′)− f(xxx2)∥] (37)

≤ E
xxx1∈A(xxxi)

∥f(xxx1)− f(xxxj′)∥+ E
xxx2∈A(xxxi)

∥f(xxxj′)− f(xxx2)∥ . (38)

But by definition of xxxj′ , we have:

≤ E
xxx1∈A(xxxi)
xxxjk

∈A(xxxj)

∥f(xxx1)− f(xxxjk)∥+ E
xxx2∈A(xxxi)
xxxjk

∈A(xxxj)

∥f(xxxjk)− f(xxx2)∥ (39)

= 2 E
xxx1∈A(xxxi)
xxx2∈A(xxxj)

∥f(xxx1)− f(xxx2)∥ . (40)

Since this inequality holds for any j ∈ S, we get:

E
xxx1,xxx2∈A(xxxi)

∥f(xxx1)− f(xxx2)∥ ≤ 2min
j∈S

E
xxx1∈A(xxxi)
xxx2∈A(xxxj)

∥f(xxx1)− f(xxx2)∥ . (41)
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Thus, substituting the aforementioned bound to upper bound the second term (summation over i ∈ Vk \ Sk) Eq. (13), we get
Eq. (14) i.e.:

η(ϵ)

nk
·

(∑
i∈Sk

E
xxx1,xxx2∈A(xxxi)

∥f(xxx1)− f(xxx2)∥+
∑

i∈Vk\Sk

E
xxx1,xxx2∈A(xxxi)

∥f(xxx1)− f(xxx2)∥

)
(42)

≤ η(ϵ)

nk
·

(∑
i∈Sk

E
xxx1,xxx2∈A(xxxi)

∥f(xxx1)− f(xxx2)∥+
∑

i∈Vk\Sk

[2 min
j∈Sk

E
xxx1∈A(xxxi),
xxx2∈A(xxxj)

∥f(xxx1)−f(xxx2)∥]

)
. (43)
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