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Abstract

Flow matching has recently emerged as a powerful framework for continuous-
time generative modeling. However, when applied to long-tailed distributions,
standard flow matching suffers from majority bias, oversampling majority modes
while generating minority modes with low fidelity. In this work, we propose UOT-
Reweighted Flow Matching (UOT-RFM), which leverages Unbalanced Optimal
Transport (UOT) to estimate an unsupervised majority score for each target data.
Using this score, we correct bias via inverse weighting and introduce higher-order
corrections (K > 1) to further emphasize minority modes. We establish a bias
correction theorem, showing that first-order weighting exactly recovers the target
distribution. We show that UOT-RFM outperforms existing flow-matching baselines
by improving diversity and fidelity on synthetic long-tail data and CIFAR-10-LT.

1 Introduction

Generative modeling addresses the problem of approximating a target data distribution. Deep gen-
erative models have achieved remarkable progress in recent years, such as GANs [1} [15]], optimal
transport maps [7, 9, 28], and diffusion models [17}30]. Among them, flow matching models [22]
have emerged as a promising approach for continuous-time generative models. Flow matching learns
a continuous normalizing flow [4], i.e., a vector field describing the dynamics between an initial prior
distribution and the target distribution, while avoiding costly numerical likelihood estimation. Flow
matching model is trained through regression to conditional vector field, constructed from conditional
probability path between prior and target samples.

Despite these advances, flow matching models remain vulnerable to majority bias when trained on
long-tailed distributions. In many real-world datasets, data often follow long-tailed or imbalanced
distributions, where a few classes dominate while minority classes are severely underrepresented
[3 27, 133]. In such cases, standard flow matching tends to overfit the majority mode due to its
regression-based learning nature, while undersampling or exhibiting low fidelity for the minority
mode. This limitation reduces diversity and degrades the quality of samples from rare classes.

To overcome these challenges, we propose the flow matching model based on the Unbalanced Optimal
Transport (UOT) [6}21]. A key property of UOT is that it naturally produces a density ratio between
the target distribution and the UOT marginal, which we call the majority score. Building on this, we
propose UOT-Reweighted Flow Matching (UOT-RFM), which corrects bias via inverse weighting
and allows high-order corrections (k > 1) to further emphasize tail samples. Our method provides an
unsupervised bias-correction mechanism and enhances coverage of long-tailed data. Our experiments
on the CIFAR-10-LT benchmark demonstrate that our method outperforms existing flow matching
baselines. Our contributions can be summarized as follows:
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* We propose UOT-RFM, which leverages UOT couplings and the majority score for unsupervised
bias correction.

* We establish a bias correction theorem, proving that first-order inverse weighting with the majority
score recovers the true target distribution.

* Our experiments show that our method achieves improved performance on long-tailed data genera-
tion and offers a principled trade-off between majority and minority emphasis with higher-order
correction.

2 Preliminaries

Flow Matching Continuous Normalizing Flows (CNFs) [4} 22]] model the dynamics of the prob-
ability densities through a probability density path p(t,x) : [0,1] x R¢ — Rxq which transports
the initial or source distribution (e.g., Gaussian distribution) p, to the target data distribution p;.
Specifically, the CNF model is defined by the following Ordinary Differential Equation (ODE),
governed by a parameterized vector field v¥ : [0,1] x R? — R, i.e., % = v (x), where we use the
notation v(x) interchangeably with v(¢, x). Then, the associated flow map ¢;(x) denotes the solution
of this ODE with initial condition ¢o(x) = x and the density at time ¢ is given by p; = (¢¢)xpo.

Lipman et al. [22]] proposed flow matching, a scalable method for training CNFs. The idea is to train
the CNF by minimizing a regression loss Lry(68) between the parameterized vector field v and the
ground-truth vector field u;that generates the probability path p;. However, a major challenge is that
the marginal ground-truth vector field w;, is intractable.

L (0) = Byt x, mope (xo) 106 (E, Xe) — u(x4)][3. )]

To overcome this, the flow matching [22| [31]] introduces a conditional flow matching. Instead of
matching u;, the model is trained against the tractable conditional vector field u;(x;|z), which
generates a conditional probability path p.(X:|z), where z denotes sample pairs (Xo, X1). The sample
pairs (x, x1) follow the joint distribution (couplings) of 7(z) = 7(Xo, X1 ). The training objectives
are given by

‘CCFM (9) = EtNZ/LZNTr(Z),Xt ~pi(xt|z) ||’U0 (t, Xt) - ut|z(xt|z) ||§ 2
CFM replaces the intractable marginal vector field with a tractable conditional one based on couplings.
In particular, the conditional probability path p;(x;|z) and the associated conditional vector field
u¢(x¢|z) can be defined as follows [31]:

pe(xe |2) =N (x| tx1 + (L —t)x0 | 0°),  w(x¢ | 2) = x1 —Xg 3)

for some bandwidth hyperparameter o > 0. In this case, the marginal probability path and the
marginal vector field that generates this path are given by

pe(x0) :/pt(xt|z)7r(z)dz7 e (xg) = Eﬂ(z)w

pi(X) =Ep,x) e(xe [2)] (@)

Initial Coupling in Flow Matching A key component in the training flow matching model is
the choice of initial sample couplings 7(z) = 7(xo, X1 ). This coupling determines how the flow
matching model is trained, because the obtained model v (x;) = u;(x;) relies on aggregating the
conditional vector field over paired samples p;(z|x;) (Eq. . The original flow matching framework
[22] employs an independent coupling between the source and target distributions. However, such
independence often leads to curved trajectories, which arises from the mean-shift phenomenon due to
the flow crossing problem [20, [24]. These curved trajectories result in increased numerical errors in
ODE simulation and thereby high computational costs in sampling [23].

To improve couplings, recent works adopted the Optimal Transport (OT) approaches between mini-
batches 26 [31]]. Note that the Kantorovich formulation of the Optimal Transport is given by

Calior)i=_jut [ [ ctuyiintxy] . )
mell(pv) [Jxxy

Here, the optimal coupling 7* is defined as the minimizer of the transport cost ¢(z,y) between

empirical measures of minibatches from the source samples x( and target samples x;. Alternatively,

Rectified flow [23]] proposed that leverages pretrained flow models to improve couplings. In this

approach, the trajectories are iteratively refined using the previous model as the initial coupling,

resulting in straighter paths.
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3 Method

In this section, we present our model, called UOT-Reweighted Flow Matching (UOT-RFM), that
addresses the majority bias of existing flow matching approaches on long-tailed distributions. Our
model leverages minibatch Unbalanced Optimal Transport coupling, which naturally provides a
majority score for each sample. Intuitively, we compensate for majority bias by over-correcting each
target data utilizing this score. In Sec 3.1} we introduce the Uabalanced Optimal Transport problem.
In Sec[3.2] we introduce our UOT-RFM model.

3.1 Unbalanced Optimal Transport

We introduce the Unbalanced Optimal Transport problem [6} 21] and its key properties, which will
be leveraged in our approach. The standard OT problem (Eq.[5) enforces exact transport between the
source and target distributions, i.e., m1g = u, w1 = v. However, this strict marginal constraint makes
OT sensitive to outliers [2, (7} [14} 29]. To address these issues, the Unbalanced Optimal Transport
problem relaxes this constraint and introduces the divergence penalties on the marginal distributions.

Cuot(uvy) = inf / c(x,y)dﬂ(x,y) +7—1D\I/1(7T0||:u’) +7—2D‘I’2(7T1||V) ’ (6)
7\'€M+(X><y) X XY

where we assume c(z,y) = 3|z — y||3 and 71, 72 > 0 control the strength of the marginal matching
penalties. Here, M (X x J) indicates the set of positive Radon measures on X’ x ). The terms
Dy, (mol|w) and Dy, (71 ||v) are two f-divergences that penalizes deviations of the marginals 7, 71

from the source p and target v, respectively.

Therefore, the optimal UOT coupling 7" softly matches p and v, i.e., 7§’ =~ p and 7} ~ v. Moreover,
the UOT problem can represent exact matching of one marginal by setting the divergence penalty
appropriately. Specifically, if ¥; is the convex indicator function ¢ at {1}, then D, (m;||n) = 0 if m; =
7 a.s., and oo otherwise. For example, if ¥'1 = ¢, we obtain at the source-fixed UOT problem where
7wy = pand T} & v.

3.2 Proposed Method

Majority Score Our method leverages the mini-batch UOT coupling 7* and the resulting majority
score s, (-) = (dn}/dv). This score is utilized to address the majority oversampling bias of flow
matching models on long-tailed distributions by inversely reweighting each target sample. Intuitively,
the optimal UOT coupling 7* exhibits distribution error whenever a small increase in Dy leads to
a large decrease in transport cost ¢(x, y) (Eq. @ As aresult, " prioritizes matching the majority
modes, while down-weighting outlier modes with small mass and large cost. This property explains
the robustness of UOT to outliers, as the UOT effectively reduces the influence of outliers [2, 7, 29].

Based on this property, we define the majority score s.(-) = (dn}/dv) as the density ratio in the
target space under the source-fixed UOT problem.

dﬂ_u,*
sr(y) = le

Here, 7, is irrelevant, so we simply set 7 = 7. Intuitively, the majority score measures how
strongly each target sample is emphasized by the UOT coupling. s, > 1 indicates emphasized
majority samples, while s < 1 correspond to down-weighted outlier samples. Importantly, this
weighting is entirely unsupervised, arising from the intrinsic geometry of probability distributions
(see Appendix [A] for details).

(y) >0 (7

Proposed Method Our corrected conditional flow matching objective with correction order k > 1
is defined as follows (Algorithm [I)):

ﬁours,k(a) = Etwu,zwwu(z),xtmp‘(xth) [ST(Xl)_k”UQ(ty Xt) - ut\z(xt|z)H§} . (8)

where the conditioning variable z = (X, X1 ). Compared with standard flow matching (Eq. , our
formulation employs the UOT coupling 7* for pairing z and introduce an additional weighting factor
s+(x1) 7" that rebalances majority and minority samples. Our method is motivated by the following
bias correction theorem (see Appendix |B|for formal statements and proof):
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Table 1: Quantitative results on CIFAR-10-LT. In both settings, the training data is long-tailed. The
test data is either long-tailed (LT—LT) or balanced (LT— Balanced).

Model LT—LT LT—Balanced

FID () Prec(f) Recall(t) F1 (1) FID({) Prec(f) Recall(t) FI (1)
I-CEFM 14.57 0.67 0.28 0.39 25.46 0.60 0.22 0.32
OT-CFM 17.31 0.71 0.24 0.36 27.51 0.63 0.16 0.26
UOT-CFM 14.25 0.67 0.29 0.41 24.94 0.59 0.23 0.33
Ours 11.03 0.61 0.41 0.49 24.06 0.55 0.38 0.45

Table 2: Ablation study on the correction order & when 7 = 2.0. Reported values are FID scores.

Correction order k

Training— Test UOT-CFM (k = 0)
1.0 2.0 4.0 6.0 8.0 10.0
LT—LT 13.77 1341 1242 11.72 1137 11.04 14.25
LT—Balanced 25.02 24.60 24.54 2470 2476 25.35 24.94

Theorem 3.1 (Informal). Flow matching with UOT coupling generates a biased distribution p; =
71 # v, which overweights majority modes. UOT-RFM corrects this bias by reweighting with the

—k_u

majority score: with correction order k, it generates p1 < s "m . In particular, k = 1 exactly

recovers the true target distribution v.

T

Theorem [3.1]shows that when training a flow matching model with UOT coupling (UOT-CFM, [8])),
the generated distribution p; is biased, i.e., p; = 7}" # v. In particular, the distribution 7" magnifies
the majority modes while suppressing the tail modes. This bias can be corrected by applying inverse
weighting with the majority score s. Our method extends this idea with over-correction (k > 1),
further emphasizing tail samples with s, (-) < 1. Unlike OT-CFM [31]], which relies on mini-batch
OT coupling, our approach provides an unsupervised estimate of the majority score, without
requiring class labels [27,[33].

4 Experiments

We evaluate our model on long-tailed distributions. In each experiment, our model is compared with
several flow matching baselines: independent coupling (I-CFM), OT coupling (OT-CFM, [25} 31]),
and UOT coupling (UOT-CFM, [8])).

Long-Tailed CIFAR-10 We evaluate our model on CIFAR-10 under two settings, using long-tailed
CIFAR-10 (CIFAR-10-LT) [3]] as the training data in both cases. In the first setting (LT—LT), the
test set is also CIFAR-10-LT, assessing how well each model fits the long-tailed distribution. In
the second setting (LT—Balanced), the test set is the original balanced CIFAR-10 [18]], evaluating
whether a model trained on imbalanced data can recover the balanced distribution. This evaluation
setup is often adopted in supervised long-tailed learning [27,|33]]. Performance is measured using
FID [16]], Precision, Recall, and F1-score [19].

Table[I]reports the quantitative results (see Appendix [E] for qualitative examples). In both settings,
our model outperforms all flow matching baselines. In particular, our model achieves significant
improvement in the Recall metric, demonstrating improved coverage of minority modes. Although OT-
CFM achieves the best precision metric, our model achieves the best F1-score, which comprehensively
evaluates the Precision and Recall metrics. Moreover, note that the additional training cost is minimal:
UOT-RFM requires only about 7% more time than OT-CFM.

Correction Order We conduct an ablation study on the correction order & to examine its impact on
performance. Interestingly, the best FID scores are achieved when & > 1, rather than with the exact
correction k = 1. Moreover, compared to UOT-CFM (UOT-RFM without correction), introducing
correction generally improves FID scores. Overall, UOT-RFM remains robust to correction order,
outperforming other baseline models for all moderate correction orders 2 < k < 8.
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A Unbalanced Optimal Transport

The classical OT problem assumes an exact transport between two distributions p and v, i.e., mg =
w, ™ = v. However, this exact matching constraint results in sensitivity to outliers [2, [29]] and
vulnerability to class imbalance in the OT problem [8]]. To mitigate this issue, a new variation of the
OT problem is introduced, called Unbalanced Optimal Transport (UOT) [6, 21]. Formally, the UOT
problem is expressed as follows:

Cuot(ﬂ'v I/) = ﬂEMiJrn(f;ny) |:/X><y C(LL', y)d?T(.’L‘, y) + D‘Ifl (ﬂ—o‘:u’) + D‘Ifz (ﬂ—l‘y) ) (9)

where M, (X x )) denotes the set of positive Radon measures on X x ). Dy, and Dy, rep-
resents two f-divergences generated by convex functions ¥;, and are defined as Dy, (7;|n) =

/o, (dﬂ(g)) dn(z). These f-divergences penalize the discrepancies between the marginal distribu-

tions 7o, 71 and p, v, respectively. Hence, in the UOT problem, the two marginal distributions
are softly matched to ., v, i.e., mp =~ p and m; = v. Intuitively, the UOT problem can be seen as the
OT problem between 7y ~ p and m; =~ v, rather than between the exact distributions p and v [7].
This flexibility offers robustness to outliers [2]] and adaptability to class imbalance problem between
w and v [8]] to the UOT problem.

Similar to the standard OT problem, the UOT problem also admits a dual formulation (7} 13} 132]:

Cunlior) = sup [/X 0 (-u(w)dua) + |

w;<v<y>>dv<y>] . 0)
u(z)+v(y)<c(z,y) hY%

withu € C(X), v € C()) where C denotes a set of continuous functions over its domain. Here, f*
denotes the convex conjugate of f,i.e., f*(y) = sup,ep{(z,y) — f(z)} for f : R = [—o00, 00].
Note that this dual problem conducts maximization over two continuous functions v and v. This dual
problem can be simplified into a semi-dual formulation by eliminating u via the optimality condition:

Crot(pt,v) = sup [ [ v @) dute) + [

veC y

—w;<—v<y>>du<y>} . an

where the c-transform of v is defined as v°(z) = ing (e(z,y) — v(y)). Here, v° corresponds to the
ye

optimal v given v.

Finally, the relationship between the marginals of the optimal UOT plan 7** and the original source

and target distributions can be expressed using the optimal UOT potential v* from the semi-dual

problem:

Theorem A.1 ([7,[13L32]]). Let v* be a solution of the dual formulation of the UOT problem between
the source distribution p and the target distribution v. Then, the marginal distributions of the optimal
UOT plan ™ satisfy

drg* (w) = UF' (=™ (2))dpu(z) and  dry"(y) = U35 (—v* (y))dv(y) (12)

B Proofs of theorem

In this section, we provide the proof of our bias correction theorem (Theorem ??) from the main text.
Our proof builds on three key lemmas for the standard flow matching model, originally established
in [22}131], which we restate here for completeness.

Lemma B.1 ([31]], Theorem 3.1). The marginal vector field u, generates the probability path p.(x;)
Sfrom initial conditions po(xg).

pe(x;) = /pt(xt | 2)7m(z)dz,  ug(xy) := E”(Z)W =Ep, ) [we(xe [2)] (13)

Lemma B.2 ([31]], Theorem 3.2). If p;(x;) > 0 for all x; € R? and t € [0,1], then, up to a constant
independent of 0, Lcrm (Eq. E]) and Ly ( Eq. are equal, and hence

VoLrm(0) = VoLcrm(9). (14)
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Lemma B.3 ([31]], Proposition 3.4). Let the initial sample coupling be m(zg,z1) and define the
conditional vector probability path and vector field as in Eq.|3| Then, the corresponding marginal
probability path p.(x;) satisfies the boundary conditions py = o * N (x|0,0%) and p; = m *
N (x]|0,02), where * denotes the convolution operator. Furthermore, assuming regularity properties
of qo, q1, and the optimal transport plan ., as o> — 0, the marginal path p; and field v, minimize
(7), i.e., uy solves the dynamic optimal transport problem between wy and . Specifically, pg — g
andpy — T aso — 0.

Here, we provide a formal statement of Theorem and provide its proof.

Theorem B.4 (Theorem [3.1] Formal). Let w¥ be the optimal source-fixed UOT coupling between
wand v with 7o = 7 > 0 and assume that its target marginal satisfies v < 2. Training a flow
matching model with ' yields the biased distribution p1 = 7} # v [8]. However, applying the
first-order correction (our method with k = 1) recovers the true target distribution v.

£011rs,1(9) = Et~u,z~w2(z),xt~pt(xt lz) [ST(xl)ilHUQ(taxt) - utlz(xt‘z)”g] : (15)

w,x
dm,
dv

where the majority scrore s (y) is defined as s, (y) =
correction order k generates a distribution py oc s7Fr¥ .

(y). More generally, UOR-RFM with

Proof. As an overview, the proof relies on two observations: (1) training with 7* yields p; = 7}, i.e.,
the biased UOT marginal (Theorem and (2) importance reweighting with s~ corrects this bias,
since v = s '7¥ by the Radon-Nikodym derivative. Substituting this correction into the conditional
flow matching loss yields Eq.[I5] and hence the generated distribution recovers v.

Formally, Lemma [B.3]shows that training a flow matching model with the optimal source-fixed UOT
coupling 7¥, i.e.,
LU0T—cFM(0) = Bttt () xemps (xe|2) |00 (8, X0) — g (Xe|2) [[3- (16)

yields a flow matching model whose boundary conditions converge to pg — 7o, p1 — 7, as
o — 0.By Theorem we have 7 = pand 77’y # v. Therefore, the UOT-CFM model generates
a biased distribution.

Moreover, we now show that our UOT-RFM model with the first-order correction recovers the true
target distribution. From Theorem[A.T} we have 7 < v, so the Radon-Nikodym derivative exists
and corresponds to the majority score. By our assuption v < 7%, it follows v = s 7%, Therefore,

Eours,l(a) = Etmu,zwwg(z),xtwpt(xﬂz) [57(X1)71”U9(taxt) - ut\z(xt‘z)”g] . (17)
= / (57 (x1) 7 |vg (£, X¢) — wgyp(xe]2)]3] e (xe|2)dr(x0, X1)dt. (18)
t,X0,X1,X¢

= Bttt (xo 1 )sr (x1) 12 (x0,x0 ) xempe (xelz) L1060 (6 Xe) = wgp(Xe]2)[3] . (19)

Note that the reweighted coupling s, (x1)~!7%(xo,X;) has the true target distribution v as its
marginal.

/ST(X1)717T;.L(XO7X1)dX0 = s;lﬂf(xl) = V(Xl). (20)

Then, following a similar argument as the UOT-CFM case, our UOT-RFM model with the first-order
correction recovers the true target distribution. Note that we specifically employ the sourced-fixed
UOT coupling to ensure consistency with the initial conditions of the flow matching model. More
generally, by a similar argument except for the normalizing constant, UOR-RFM with correction
order k generates a distribution p; o< s kw;"l. O

C Implementation Details

This section provides the specific implementation details for our experiments on the CIFAR-10 and
2D synthetic datasets.
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Algorithm 1 Minibatch UOT-Reweighted Flow Matching (UOT-RFM)

Input: Empirical or samplable distributions qg, g1, bandwidth o, batch size b, initial network vy,
sinkhorn target marginal weight 7o, weight power scale k.
T1 < OO
while Training do
Sample batches of size b i.i.d. from the datasets: xg ~ ¢o(X0); X1 ~ q1(x1)
T 4— UOT(Xl, X0, T1, Tg)
(XOa Xl) ~ T
t ~U(0,1)
p — txg + (1 - t)XO
X ~ N(/Jt, 02_[)
Calculate 3, (x;) from Equation
Lours(0) « 3-(x1) *|lvg(t,x) — (x1 — xo0)|?
0 + Update(8, VoLours(0))
end while
return vy

Minibatch OT Approximation Following mini-batch OT approaches [26l [31], we approximate
the UOT coupling 7* using a mini-batch formulation similar to [10]. In practice, we adopt the POT
library [[11] to compute mini-batch UOT with entropic regularization [3, [12]]. Specifically, for each

mini-batch of training data ({x}}Z ,, {x]}Z ), the mini-batch coupling 7* is computed between

empirical measures i = % > Oxi and U = % > ; 0, Based on this, the majority score is estimated
1

by the probability mass ratio:

5(x]) == =L (x]) = By (x}). @1)

C.1 Experiments on CIFAR-10

Datasets We use two datasets for our image generation experiments: the standard CIFAR-10 dataset
and its long-tailed version, CIFAR-10-LT. The CIFAR-10-LT is generated to simulate class imbalance,
following an exponential decay distribution. The number of samples N; for each class ¢ is determined

by the formula N; = | Nyax - Iﬁj, where C' = 10 is the total number of classes, Ny.x 1S the
number of samples in the largest class, and the imbalance factor Z is set to 0.01.

Network Architecture We employ the U-Net architecture provided in the torchcfm[31]], without
any modifications. The architecture uses four resolution levels with two residual blocks per level
in both encoder and decoder, linked by skip connections at matching scales. Each block uses 3x3
convolutions with Group Normalization, SiLU activations, and dropout. Down-sampling is performed
by stride-2 convolutions, and up-sampling uses nearest-neighbor interpolation followed by a 3x3
convolution.

Training Details All experiments on CIFAR-10 follow the default settings of torchcfm. We
use the doprib5 ODE solver. For optimization, we use the Adam optimizer with a learning rate
of 2 x 10~%. The model is trained for a total of 400,000 iterations with a batch size of 128. Data
preprocessing includes transforms.RandomHorizontalFlip() and normalization of pixel values
to the range [—1, 1] using transforms.Normalize (mean=[0.5, 0.5, 0.5], std=[0.5, 0.5,
0.5]). For stable training, we apply a warmup schedule for the first 5,000 iterations, linearly
increasing the learning rate from O to its target value, and use gradient clipping with an L2-norm
threshold of 1.0. For Unbalanced Optimal Transport (UOT), the entropy regularization parameter e is
setto 5 x 1072, and the source marginal relaxation weight 7 is set to infinity.

Method Details The training process of our proposed method is as follows: (1) Sample mini-batches
from each distribution. (2) Compute the coupling (transport plan) between the two mini-batches. (3)
Determine the weight for each sample based on the computed transport plan. (4) Estimate the vector
fields by feeding the coupled sample pairs into the U-Net and compute the weighted loss. (5) Update
the network parameters via backpropagation. The specifics of each coupling method are as follows:

10
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* ICFM: Uses an independent coupling, assuming the two distributions are independent.

* OT-CFM: Computes the transport plan 7 using the pot . emd function and samples pairs
according to the normalized probability distribution.

* UOT-CFM: Computes the transport plan 7r using the
pot.unbalanced.sinkhorn_knopp_unbalanced function and samples pairs based on
the normalized probabilities.

* UOT-WFM: Also uses pot.unbalanced.sinkhorn_knopp_unbalanced, but samples
only one target for each source sample from the normalized transport plan .

The sample weights are calculated using the column sums of the transport plan 7, which corresponds
to the empirical measure of the target distribution, denoted as ©. The weight w(x;) is defined as
(1/Dx, )7, where  denotes a power factor and 75, denotes marginal density corresponding to a target
sample x;. The final loss function is the weighted mean squared error (MSE) between the vector
fields: B (x x, ) [0(X1) - [[0 (%0, X1) — s (%0, %1)]|?].

Evaluation Metrics To assess the quality of the generated images, we use the Fréchet Inception
Distance (FID), Precision, and Recall. FID scores are calculated using the cleanfid library. For
evaluation against the standard CIFAR-10 dataset, we use the library’s built-in feature statistics.
For CIFAR-10-LT, the real data statistics are computed from a long-tailed dataset generated in
the same manner as the training set. Precision and Recall are measured based on a widely-used
implementatio where the real data distribution is also generated identically to the training setup.

D Additional Ablation Studies

Table 3: Ablation study on the correction order k£ and the marginal matching strength 7: Reported
values are FID scores.

LT—LT LT—Balanced
m\k 1.0 2.0 4.0 8.0 1.0 2.0 4.0 8.0

20 1377 1341 1242 1137 25.02 24.60 2454 24.76
40 14.01 1378 13.68 12.67 2494 24.65 2445 2437
6.0 1439 13772 1348 1241 2491 2488 2486 24.90

Table 3] presents an ablation study on the effects of the correction order k and the marginal matching
strength 75. All models were trained on the CIFAR10-LT dataset. The “LT—LT” columns show FID
scores measured against the CIFAR10-LT dataset itself, assessing fidelity to the training distribution.
The “LT—Balanced” columns show FID scores using the class-balanced CIFAR10 dataset as a
reference, evaluating the generation of a balanced distribution.

First, analyzing the LT—LT results, the task is to faithfully replicate the long-tailed training distribu-
tion. In this scenario, a clear trend emerges: performance consistently improves as the correction order
k increases. For any given value of 75, a larger k leads to a lower (better) FID score. For example,
when 79 = 2.0, the FID score monotonically decreases from 13.77 at k = 1.0 to a superior 11.37 at
k = 8.0. This indicates that overcorrection (k > 1) is consistently beneficial, helping the model to
more accurately estimate and represent the target long-tailed marginal distribution.

In contrast, the LT—Balanced setting reveals a more complex trade-off. Here, a smaller 7 (e.g.,
2.0) enables a strong corrective weight but diminishes the sampling probability of minor classes.
Conversely, a larger 75 (e.g., 6.0) improves the sampling of these classes but flattens the weights,
reducing their corrective impact. This necessitates a higher correction order & to induce overcorrection.
For instance, with 75 = 4.0, increasing k& from 1.0 to 8.0 improves the FID score from 24.94 to 24.37.
However, excessive overcorrection can overshoot the balanced target, as seen for 7o = 2.0, where the
FID score worsens from 24.54 (k = 4.0) to 24.76 (k = 8.0).

"https://github.com/blandocs/improved-precision-and-recall-metric-pytorch
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s E  Additional Qualitative Examples

(d) I-CFM (e) OT-CFM (f) UOT-RFM

Figure 1: CIFAR image generation results: The first row shows images generated from models
trained on the balanced CIFAR10 dataset. The second row shows images from models trained on the
CIFARI10-LT dataset.
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