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Abstract

Flow matching has recently emerged as a powerful framework for continuous-1

time generative modeling. However, when applied to long-tailed distributions,2

standard flow matching suffers from majority bias, oversampling majority modes3

while generating minority modes with low fidelity. In this work, we propose UOT-4

Reweighted Flow Matching (UOT-RFM), which leverages Unbalanced Optimal5

Transport (UOT) to estimate an unsupervised majority score for each target data.6

Using this score, we correct bias via inverse weighting and introduce higher-order7

corrections (k > 1) to further emphasize minority modes. We establish a bias8

correction theorem, showing that first-order weighting exactly recovers the target9

distribution. We show that UOT-RFM outperforms existing flow-matching baselines10

by improving diversity and fidelity on synthetic long-tail data and CIFAR-10-LT.11

1 Introduction12

Generative modeling addresses the problem of approximating a target data distribution. Deep gen-13

erative models have achieved remarkable progress in recent years, such as GANs [1, 15], optimal14

transport maps [7, 9, 28], and diffusion models [17, 30]. Among them, flow matching models [22]15

have emerged as a promising approach for continuous-time generative models. Flow matching learns16

a continuous normalizing flow [4], i.e., a vector field describing the dynamics between an initial prior17

distribution and the target distribution, while avoiding costly numerical likelihood estimation. Flow18

matching model is trained through regression to conditional vector field, constructed from conditional19

probability path between prior and target samples.20

Despite these advances, flow matching models remain vulnerable to majority bias when trained on21

long-tailed distributions. In many real-world datasets, data often follow long-tailed or imbalanced22

distributions, where a few classes dominate while minority classes are severely underrepresented23

[3, 27, 33]. In such cases, standard flow matching tends to overfit the majority mode due to its24

regression-based learning nature, while undersampling or exhibiting low fidelity for the minority25

mode. This limitation reduces diversity and degrades the quality of samples from rare classes.26

To overcome these challenges, we propose the flow matching model based on the Unbalanced Optimal27

Transport (UOT) [6, 21]. A key property of UOT is that it naturally produces a density ratio between28

the target distribution and the UOT marginal, which we call the majority score. Building on this, we29

propose UOT-Reweighted Flow Matching (UOT-RFM), which corrects bias via inverse weighting30

and allows high-order corrections (k > 1) to further emphasize tail samples. Our method provides an31

unsupervised bias-correction mechanism and enhances coverage of long-tailed data. Our experiments32

on the CIFAR-10-LT benchmark demonstrate that our method outperforms existing flow matching33

baselines. Our contributions can be summarized as follows:34
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• We propose UOT-RFM, which leverages UOT couplings and the majority score for unsupervised35

bias correction.36

• We establish a bias correction theorem, proving that first-order inverse weighting with the majority37

score recovers the true target distribution.38

• Our experiments show that our method achieves improved performance on long-tailed data genera-39

tion and offers a principled trade-off between majority and minority emphasis with higher-order40

correction.41

2 Preliminaries42

Flow Matching Continuous Normalizing Flows (CNFs) [4, 22] model the dynamics of the prob-43

ability densities through a probability density path p(t, x) : [0, 1] × Rd 7→ R≥0 which transports44

the initial or source distribution (e.g., Gaussian distribution) p0 to the target data distribution p1.45

Specifically, the CNF model is defined by the following Ordinary Differential Equation (ODE),46

governed by a parameterized vector field vθ : [0, 1]× Rd 7→ Rd, i.e., dx
dt = vθ

t (x), where we use the47

notation vt(x) interchangeably with v(t, x). Then, the associated flow map ϕt(x) denotes the solution48

of this ODE with initial condition ϕ0(x) = x and the density at time t is given by pt = (ϕt)#p0.49

Lipman et al. [22] proposed flow matching, a scalable method for training CNFs. The idea is to train50

the CNF by minimizing a regression loss LFM(θ) between the parameterized vector field vθt and the51

ground-truth vector field utthat generates the probability path pt. However, a major challenge is that52

the marginal ground-truth vector field ut is intractable.53

LFM(θ) = Et∼U,xt∼pt(xt)∥vθ(t, xt)− ut(xt)∥22. (1)

To overcome this, the flow matching [22, 31] introduces a conditional flow matching. Instead of54

matching ut, the model is trained against the tractable conditional vector field ut(xt|z), which55

generates a conditional probability path pt(xt|z), where z denotes sample pairs (x0, x1). The sample56

pairs (x0, x1) follow the joint distribution (couplings) of π(z) = π(x0, x1). The training objectives57

are given by58

LCFM(θ) = Et∼U,z∼π(z),xt∼pt(xt|z)∥vθ(t, xt)− ut|z(xt|z)∥22. (2)
CFM replaces the intractable marginal vector field with a tractable conditional one based on couplings.59

In particular, the conditional probability path pt(xt|z) and the associated conditional vector field60

ut(xt|z) can be defined as follows [31]:61

pt(xt | z) = N
(
x | tx1 + (1− t)x0 | σ2

)
, ut(xt | z) = x1 − x0 (3)

for some bandwidth hyperparameter σ > 0. In this case, the marginal probability path and the62

marginal vector field that generates this path are given by63

pt(xt) =
∫

pt(xt | z)π(z)dz, ut(xt) := Eπ(z)
ut(x | z)pt(x | z)

pt(x)
= Ept(z|xt) [ut(xt | z)] (4)

Initial Coupling in Flow Matching A key component in the training flow matching model is64

the choice of initial sample couplings π(z) = π(x0, x1). This coupling determines how the flow65

matching model is trained, because the obtained model vt(xt) ≈ ut(xt) relies on aggregating the66

conditional vector field over paired samples pt(z|xt) (Eq. 4). The original flow matching framework67

[22] employs an independent coupling between the source and target distributions. However, such68

independence often leads to curved trajectories, which arises from the mean-shift phenomenon due to69

the flow crossing problem [20, 24]. These curved trajectories result in increased numerical errors in70

ODE simulation and thereby high computational costs in sampling [23].71

To improve couplings, recent works adopted the Optimal Transport (OT) approaches between mini-72

batches [26, 31]. Note that the Kantorovich formulation of the Optimal Transport is given by73

Cot(µ, ν) := inf
π∈Π(µ,ν)

[∫
X×Y

c(x,y)dπ(x,y)
]
. (5)

Here, the optimal coupling π⋆ is defined as the minimizer of the transport cost c(x, y) between74

empirical measures of minibatches from the source samples x0 and target samples x1. Alternatively,75

Rectified flow [23] proposed that leverages pretrained flow models to improve couplings. In this76

approach, the trajectories are iteratively refined using the previous model as the initial coupling,77

resulting in straighter paths.78
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3 Method79

In this section, we present our model, called UOT-Reweighted Flow Matching (UOT-RFM), that80

addresses the majority bias of existing flow matching approaches on long-tailed distributions. Our81

model leverages minibatch Unbalanced Optimal Transport coupling, which naturally provides a82

majority score for each sample. Intuitively, we compensate for majority bias by over-correcting each83

target data utilizing this score. In Sec 3.1, we introduce the Uabalanced Optimal Transport problem.84

In Sec 3.2, we introduce our UOT-RFM model.85

3.1 Unbalanced Optimal Transport86

We introduce the Unbalanced Optimal Transport problem [6, 21] and its key properties, which will87

be leveraged in our approach. The standard OT problem (Eq. 5) enforces exact transport between the88

source and target distributions, i.e., π0 = µ, π1 = ν. However, this strict marginal constraint makes89

OT sensitive to outliers [2, 7, 14, 29]. To address these issues, the Unbalanced Optimal Transport90

problem relaxes this constraint and introduces the divergence penalties on the marginal distributions.91

Cuot(µ, ν) = inf
π∈M+(X×Y)

[∫
X×Y

c(x, y)dπ(x, y) + τ1DΨ1
(π0∥µ) + τ2DΨ2

(π1∥ν)
]
, (6)

where we assume c(x, y) = 1
2∥x− y∥22 and τ1, τ2 > 0 control the strength of the marginal matching92

penalties. Here,M+(X × Y) indicates the set of positive Radon measures on X × Y . The terms93

DΨ1
(π0∥µ) and DΨ2

(π1∥ν) are two f -divergences that penalizes deviations of the marginals π0, π194

from the source µ and target ν, respectively.95

Therefore, the optimal UOT coupling πu softly matches µ and ν, i.e., πu
0 ≈ µ and πu

1 ≈ ν. Moreover,96

the UOT problem can represent exact matching of one marginal by setting the divergence penalty97

appropriately. Specifically, if Ψi is the convex indicator function ι at {1}, then Dι(πi∥η) = 0 if πi =98

η a.s., and∞ otherwise. For example, if Ψ1 = ι, we obtain at the source-fixed UOT problem where99

πu
0 = µ and πu

1 ≈ ν.100

3.2 Proposed Method101

Majority Score Our method leverages the mini-batch UOT coupling πu and the resulting majority102

score sτ (·) = (dπu
1 /dν). This score is utilized to address the majority oversampling bias of flow103

matching models on long-tailed distributions by inversely reweighting each target sample. Intuitively,104

the optimal UOT coupling πu exhibits distribution error whenever a small increase in DΨ leads to105

a large decrease in transport cost c(x, y) (Eq. 6). As a result, πu prioritizes matching the majority106

modes, while down-weighting outlier modes with small mass and large cost. This property explains107

the robustness of UOT to outliers, as the UOT effectively reduces the influence of outliers [2, 7, 29].108

Based on this property, we define the majority score sτ (·) = (dπu
1 /dν) as the density ratio in the109

target space under the source-fixed UOT problem.110

sτ (y) :=
dπu,⋆

1

dν
(y) > 0 (7)

Here, τ1 is irrelevant, so we simply set τ = τ2. Intuitively, the majority score measures how111

strongly each target sample is emphasized by the UOT coupling. sτ > 1 indicates emphasized112

majority samples, while sτ ≪ 1 correspond to down-weighted outlier samples. Importantly, this113

weighting is entirely unsupervised, arising from the intrinsic geometry of probability distributions114

(see Appendix A for details).115

Proposed Method Our corrected conditional flow matching objective with correction order k ≥ 1116

is defined as follows (Algorithm 1):117

Lours,k(θ) = Et∼U,z∼πu(z),xt∼pt(xt|z)
[
sτ (x1)−k∥vθ(t, xt)− ut|z(xt|z)∥22

]
. (8)

where the conditioning variable z = (x0, x1). Compared with standard flow matching (Eq. 3), our118

formulation employs the UOT coupling πu for pairing z and introduce an additional weighting factor119

sτ (x1)−k that rebalances majority and minority samples. Our method is motivated by the following120

bias correction theorem (see Appendix B for formal statements and proof):121
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Table 1: Quantitative results on CIFAR-10-LT. In both settings, the training data is long-tailed. The
test data is either long-tailed (LT→LT) or balanced (LT→Balanced).

Model LT→LT LT→Balanced

FID (↓) Prec (↑) Recall (↑) F1 (↑) FID (↓) Prec (↑) Recall (↑) F1 (↑)
I-CFM 14.57 0.67 0.28 0.39 25.46 0.60 0.22 0.32
OT-CFM 17.31 0.71 0.24 0.36 27.51 0.63 0.16 0.26
UOT-CFM 14.25 0.67 0.29 0.41 24.94 0.59 0.23 0.33

Ours 11.03 0.61 0.41 0.49 24.06 0.55 0.38 0.45

Table 2: Ablation study on the correction order k when τ = 2.0. Reported values are FID scores.

Training→Test Correction order k UOT-CFM (k = 0)
1.0 2.0 4.0 6.0 8.0 10.0

LT→LT 13.77 13.41 12.42 11.72 11.37 11.04 14.25

LT→Balanced 25.02 24.60 24.54 24.70 24.76 25.35 24.94

Theorem 3.1 (Informal). Flow matching with UOT coupling generates a biased distribution p1 =122

πu
τ,1 ̸= ν, which overweights majority modes. UOT-RFM corrects this bias by reweighting with the123

majority score: with correction order k, it generates p1 ∝ s−k
τ πu

τ,1. In particular, k = 1 exactly124

recovers the true target distribution ν.125

Theorem 3.1 shows that when training a flow matching model with UOT coupling (UOT-CFM, [8]),126

the generated distribution p1 is biased, i.e., p1 = πu
1 ̸= ν. In particular, the distribution πu

1 magnifies127

the majority modes while suppressing the tail modes. This bias can be corrected by applying inverse128

weighting with the majority score sτ . Our method extends this idea with over-correction (k > 1),129

further emphasizing tail samples with sτ (·) < 1. Unlike OT-CFM [31], which relies on mini-batch130

OT coupling, our approach provides an unsupervised estimate of the majority score, without131

requiring class labels [27, 33].132

4 Experiments133

We evaluate our model on long-tailed distributions. In each experiment, our model is compared with134

several flow matching baselines: independent coupling (I-CFM), OT coupling (OT-CFM, [25, 31]),135

and UOT coupling (UOT-CFM, [8]).136

Long-Tailed CIFAR-10 We evaluate our model on CIFAR-10 under two settings, using long-tailed137

CIFAR-10 (CIFAR-10-LT) [3] as the training data in both cases. In the first setting (LT→LT), the138

test set is also CIFAR-10-LT, assessing how well each model fits the long-tailed distribution. In139

the second setting (LT→Balanced), the test set is the original balanced CIFAR-10 [18], evaluating140

whether a model trained on imbalanced data can recover the balanced distribution. This evaluation141

setup is often adopted in supervised long-tailed learning [27, 33]. Performance is measured using142

FID [16], Precision, Recall, and F1-score [19].143

Table 1 reports the quantitative results (see Appendix E for qualitative examples). In both settings,144

our model outperforms all flow matching baselines. In particular, our model achieves significant145

improvement in the Recall metric, demonstrating improved coverage of minority modes. Although OT-146

CFM achieves the best precision metric, our model achieves the best F1-score, which comprehensively147

evaluates the Precision and Recall metrics. Moreover, note that the additional training cost is minimal:148

UOT-RFM requires only about 7% more time than OT-CFM.149

Correction Order We conduct an ablation study on the correction order k to examine its impact on150

performance. Interestingly, the best FID scores are achieved when k > 1, rather than with the exact151

correction k = 1. Moreover, compared to UOT-CFM (UOT-RFM without correction), introducing152

correction generally improves FID scores. Overall, UOT-RFM remains robust to correction order,153

outperforming other baseline models for all moderate correction orders 2 ≤ k ≤ 8.154
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A Unbalanced Optimal Transport257

The classical OT problem assumes an exact transport between two distributions µ and ν, i.e., π0 =258

µ, π1 = ν. However, this exact matching constraint results in sensitivity to outliers [2, 29] and259

vulnerability to class imbalance in the OT problem [8]. To mitigate this issue, a new variation of the260

OT problem is introduced, called Unbalanced Optimal Transport (UOT) [6, 21]. Formally, the UOT261

problem is expressed as follows:262

Cuot(µ, ν) = inf
π∈M+(X×Y)

[∫
X×Y

c(x, y)dπ(x, y) +DΨ1
(π0|µ) +DΨ2

(π1|ν)
]
, (9)

where M+(X × Y) denotes the set of positive Radon measures on X × Y . DΨ1 and DΨ2 rep-263

resents two f -divergences generated by convex functions Ψi, and are defined as DΨi(πj |η) =264 ∫
Ψi

(
dπj(x)
dη(x)

)
dη(x). These f -divergences penalize the discrepancies between the marginal distribu-265

tions π0, π1 and µ, ν, respectively. Hence, in the UOT problem, the two marginal distributions266

are softly matched to µ, ν, i.e., π0 ≈ µ and π1 ≈ ν. Intuitively, the UOT problem can be seen as the267

OT problem between π0 ≈ µ and π1 ≈ ν, rather than between the exact distributions µ and ν [7].268

This flexibility offers robustness to outliers [2] and adaptability to class imbalance problem between269

µ and ν [8] to the UOT problem.270

Similar to the standard OT problem, the UOT problem also admits a dual formulation [7, 13, 32]:271

Cuot(µ, ν) = sup
u(x)+v(y)≤c(x,y)

[∫
X
−Ψ∗

1(−u(x))dµ(x) +
∫
Y
−Ψ∗

2(−v(y))dν(y)
]
, (10)

with u ∈ C(X ), v ∈ C(Y) where C denotes a set of continuous functions over its domain. Here, f∗272

denotes the convex conjugate of f , i.e., f∗(y) = supx∈R{⟨x, y⟩ − f(x)} for f : R → [−∞,∞].273

Note that this dual problem conducts maximization over two continuous functions u and v. This dual274

problem can be simplified into a semi-dual formulation by eliminating u via the optimality condition:275

Cuot(µ, ν) = sup
v∈C

[∫
X
−Ψ∗

1 (−vc(x))) dµ(x) +
∫
Y
−Ψ∗

2(−v(y))dν(y)
]
, (11)

where the c-transform of v is defined as vc(x) = inf
y∈Y

(c(x, y)− v(y)). Here, vc corresponds to the276

optimal u given v.277

Finally, the relationship between the marginals of the optimal UOT plan πu,⋆ and the original source278

and target distributions can be expressed using the optimal UOT potential v⋆ from the semi-dual279

problem:280

Theorem A.1 ([7, 13, 32]). Let v⋆ be a solution of the dual formulation of the UOT problem between281

the source distribution µ and the target distribution ν. Then, the marginal distributions of the optimal282

UOT plan πu,⋆ satisfy283

dπu,⋆
0 (x) = Ψ∗

1
′(−v⋆c(x))dµ(x) and dπu,⋆

1 (y) = Ψ∗
2
′(−v⋆(y))dν(y) (12)

B Proofs of theorem284

In this section, we provide the proof of our bias correction theorem (Theorem ??) from the main text.285

Our proof builds on three key lemmas for the standard flow matching model, originally established286

in [22, 31], which we restate here for completeness.287

Lemma B.1 ([31], Theorem 3.1). The marginal vector field ut generates the probability path pt(xt)288

from initial conditions p0(x0).289

pt(xt) =
∫

pt(xt | z)π(z)dz, ut(xt) := Eπ(z)
ut(x | z)pt(x | z)

pt(x)
= Ept(z|xt) [ut(xt | z)] (13)

Lemma B.2 ([31], Theorem 3.2). If pt(xt) > 0 for all xt ∈ Rd and t ∈ [0, 1], then, up to a constant290

independent of θ, LCFM (Eq. 2) and LFM (Eq.1) are equal, and hence291

∇θLFM(θ) = ∇θLCFM(θ). (14)
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Lemma B.3 ([31], Proposition 3.4). Let the initial sample coupling be π(z0, z1) and define the292

conditional vector probability path and vector field as in Eq. 3. Then, the corresponding marginal293

probability path pt(xt) satisfies the boundary conditions p0 = π0 ∗ N (x|0, σ2) and p1 = π1 ∗294

N (x|0, σ2), where ∗ denotes the convolution operator. Furthermore, assuming regularity properties295

of q0, q1, and the optimal transport plan π, as σ2 → 0, the marginal path pt and field ut minimize296

(7), i.e., ut solves the dynamic optimal transport problem between π0 and π1. Specifically, p0 → π0297

and p1 → π1 as σ → 0.298

Here, we provide a formal statement of Theorem 3.1 and provide its proof.299

Theorem B.4 (Theorem 3.1, Formal). Let πu
τ be the optimal source-fixed UOT coupling between300

µ and ν with τ2 = τ > 0 and assume that its target marginal satisfies ν ≪ πu
τ . Training a flow301

matching model with πu
τ yields the biased distribution p1 = πu

1 ̸= ν [8]. However, applying the302

first-order correction (our method with k = 1) recovers the true target distribution ν.303

Lours,1(θ) = Et∼U,z∼πu
τ (z),xt∼pt(xt|z)

[
sτ (x1)

−1∥vθ(t, xt)− ut|z(xt|z)∥22
]
. (15)

where the majority scrore sτ (y) is defined as sτ (y) :=
dπu,⋆

1

dν (y). More generally, UOR-RFM with304

correction order k generates a distribution p1 ∝ s−k
τ πu

τ,1.305

Proof. As an overview, the proof relies on two observations: (1) training with πu yields p1 = πu
1 , i.e.,306

the biased UOT marginal (Theorem A.1) and (2) importance reweighting with s−1
τ corrects this bias,307

since ν = s−1
τ πu

1 by the Radon–Nikodym derivative. Substituting this correction into the conditional308

flow matching loss yields Eq. 15, and hence the generated distribution recovers ν.309

Formally, Lemma B.3 shows that training a flow matching model with the optimal source-fixed UOT310

coupling πu
τ , i.e.,311

LUOT−CFM(θ) = Et∼U,z∼π(z),xt∼pt(xt|z)∥vθ(t, xt)− ut|z(xt|z)∥22. (16)

yields a flow matching model whose boundary conditions converge to p0 → πu
τ,0, p1 → πu

τ,1 as312

σ → 0. By Theorem A.1, we have πu
τ,0 = µ and πu

τ,1 ̸= ν. Therefore, the UOT-CFM model generates313

a biased distribution.314

Moreover, we now show that our UOT-RFM model with the first-order correction recovers the true315

target distribution. From Theorem A.1, we have πu
τ ≪ ν, so the Radon–Nikodym derivative exists316

and corresponds to the majority score. By our assuption ν ≪ πu
τ , it follows ν = s−1

τ πu
1 . Therefore,317

Lours,1(θ) = Et∼U,z∼πu
τ (z),xt∼pt(xt|z)

[
sτ (x1)−1∥vθ(t, xt)− ut|z(xt|z)∥22

]
. (17)

=

∫
t,x0,x1,xt

[
sτ (x1)

−1∥vθ(t, xt)− ut|z(xt|z)∥22
]
pt(xt|z)dπ(x0, x1)dt. (18)

= Et∼U,(x0,x1)∼sτ (x1)−1πu
τ (x0,x1),xt∼pt(xt|z)

[
∥vθ(t, xt)− ut|z(xt|z)∥22

]
. (19)

Note that the reweighted coupling sτ (x1)−1πu
τ (x0, x1) has the true target distribution ν as its318

marginal.319 ∫
sτ (x1)−1πu

τ (x0, x1)dx0 = s−1
τ πu

1 (x1) = ν(x1). (20)

Then, following a similar argument as the UOT-CFM case, our UOT-RFM model with the first-order320

correction recovers the true target distribution. Note that we specifically employ the sourced-fixed321

UOT coupling to ensure consistency with the initial conditions of the flow matching model. More322

generally, by a similar argument except for the normalizing constant, UOR-RFM with correction323

order k generates a distribution p1 ∝ s−k
τ πu

τ,1.324

C Implementation Details325

This section provides the specific implementation details for our experiments on the CIFAR-10 and326

2D synthetic datasets.327
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Algorithm 1 Minibatch UOT-Reweighted Flow Matching (UOT-RFM)

Input: Empirical or samplable distributions q0, q1, bandwidth σ, batch size b, initial network vθ,
sinkhorn target marginal weight τ2, weight power scale k.
τ1 ←∞
while Training do

Sample batches of size b i.i.d. from the datasets: x0 ∼ q0(x0); x1 ∼ q1(x1)
π ← UOT(x1,x0, τ1, τ2)
(x0,x1) ∼ π
t ∼ U(0, 1)
µt ← tx1 + (1− t)x0

x ∼ N (µt, σ
2I)

Calculate ŝτ (x1) from Equation (21)
LOurs(θ)← ŝτ (x1)

−k∥vθ(t,x)− (x1 − x0)∥2
θ ← Update(θ,∇θLOurs(θ))

end while
return vθ

Minibatch OT Approximation Following mini-batch OT approaches [26, 31], we approximate328

the UOT coupling πu using a mini-batch formulation similar to [10]. In practice, we adopt the POT329

library [11] to compute mini-batch UOT with entropic regularization [5, 12]. Specifically, for each330

mini-batch of training data ({xi0}Bi=1, {x
j
1}Bi=1), the mini-batch coupling π̂u is computed between331

empirical measures µ̂ = 1
B

∑
i δxi0 and ν̂ = 1

B

∑
j δxj1

. Based on this, the majority score is estimated332

by the probability mass ratio:333

ŝτ (xj1) :=
π̂u
1

ν̂
(xj1) = Bπ̂u

1 (x
j
1). (21)

C.1 Experiments on CIFAR-10334

Datasets We use two datasets for our image generation experiments: the standard CIFAR-10 dataset335

and its long-tailed version, CIFAR-10-LT. The CIFAR-10-LT is generated to simulate class imbalance,336

following an exponential decay distribution. The number of samples Ni for each class i is determined337

by the formula Ni = ⌊Nmax · I
i

C−1 ⌋, where C = 10 is the total number of classes, Nmax is the338

number of samples in the largest class, and the imbalance factor I is set to 0.01.339

Network Architecture We employ the U-Net architecture provided in the torchcfm[31], without340

any modifications. The architecture uses four resolution levels with two residual blocks per level341

in both encoder and decoder, linked by skip connections at matching scales. Each block uses 3×3342

convolutions with Group Normalization, SiLU activations, and dropout. Down-sampling is performed343

by stride-2 convolutions, and up-sampling uses nearest-neighbor interpolation followed by a 3×3344

convolution.345

Training Details All experiments on CIFAR-10 follow the default settings of torchcfm. We346

use the dopri5 ODE solver. For optimization, we use the Adam optimizer with a learning rate347

of 2 × 10−4. The model is trained for a total of 400,000 iterations with a batch size of 128. Data348

preprocessing includes transforms.RandomHorizontalFlip() and normalization of pixel values349

to the range [−1, 1] using transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5,350

0.5]). For stable training, we apply a warmup schedule for the first 5,000 iterations, linearly351

increasing the learning rate from 0 to its target value, and use gradient clipping with an L2-norm352

threshold of 1.0. For Unbalanced Optimal Transport (UOT), the entropy regularization parameter ϵ is353

set to 5× 10−2, and the source marginal relaxation weight τ1 is set to infinity.354

Method Details The training process of our proposed method is as follows: (1) Sample mini-batches355

from each distribution. (2) Compute the coupling (transport plan) between the two mini-batches. (3)356

Determine the weight for each sample based on the computed transport plan. (4) Estimate the vector357

fields by feeding the coupled sample pairs into the U-Net and compute the weighted loss. (5) Update358

the network parameters via backpropagation. The specifics of each coupling method are as follows:359

10



• ICFM: Uses an independent coupling, assuming the two distributions are independent.360

• OT-CFM: Computes the transport plan π using the pot.emd function and samples pairs361

according to the normalized probability distribution.362

• UOT-CFM: Computes the transport plan π using the363

pot.unbalanced.sinkhorn_knopp_unbalanced function and samples pairs based on364

the normalized probabilities.365

• UOT-WFM: Also uses pot.unbalanced.sinkhorn_knopp_unbalanced, but samples366

only one target for each source sample from the normalized transport plan π.367

The sample weights are calculated using the column sums of the transport plan π, which corresponds368

to the empirical measure of the target distribution, denoted as ν̃. The weight w(x1) is defined as369

(1/ν̃x1
)γ , where γ denotes a power factor and ν̃x1

denotes marginal density corresponding to a target370

sample x1. The final loss function is the weighted mean squared error (MSE) between the vector371

fields: E(x0,x1)∼π

[
w(x1) · ∥vt(x0,x1)− ut(x0,x1)∥2

]
.372

Evaluation Metrics To assess the quality of the generated images, we use the Fréchet Inception373

Distance (FID), Precision, and Recall. FID scores are calculated using the cleanfid library. For374

evaluation against the standard CIFAR-10 dataset, we use the library’s built-in feature statistics.375

For CIFAR-10-LT, the real data statistics are computed from a long-tailed dataset generated in376

the same manner as the training set. Precision and Recall are measured based on a widely-used377

implementation1, where the real data distribution is also generated identically to the training setup.378

D Additional Ablation Studies379

Table 3: Ablation study on the correction order k and the marginal matching strength τ : Reported
values are FID scores.

LT→LT LT→Balanced

τ2\k 1.0 2.0 4.0 8.0 1.0 2.0 4.0 8.0

2.0 13.77 13.41 12.42 11.37 25.02 24.60 24.54 24.76
4.0 14.01 13.78 13.68 12.67 24.94 24.65 24.45 24.37
6.0 14.39 13.72 13.48 12.41 24.91 24.88 24.86 24.90

Table 3 presents an ablation study on the effects of the correction order k and the marginal matching380

strength τ2. All models were trained on the CIFAR10-LT dataset. The “LT→LT” columns show FID381

scores measured against the CIFAR10-LT dataset itself, assessing fidelity to the training distribution.382

The “LT→Balanced” columns show FID scores using the class-balanced CIFAR10 dataset as a383

reference, evaluating the generation of a balanced distribution.384

First, analyzing the LT→LT results, the task is to faithfully replicate the long-tailed training distribu-385

tion. In this scenario, a clear trend emerges: performance consistently improves as the correction order386

k increases. For any given value of τ2, a larger k leads to a lower (better) FID score. For example,387

when τ2 = 2.0, the FID score monotonically decreases from 13.77 at k = 1.0 to a superior 11.37 at388

k = 8.0. This indicates that overcorrection (k > 1) is consistently beneficial, helping the model to389

more accurately estimate and represent the target long-tailed marginal distribution.390

In contrast, the LT→Balanced setting reveals a more complex trade-off. Here, a smaller τ2 (e.g.,391

2.0) enables a strong corrective weight but diminishes the sampling probability of minor classes.392

Conversely, a larger τ2 (e.g., 6.0) improves the sampling of these classes but flattens the weights,393

reducing their corrective impact. This necessitates a higher correction order k to induce overcorrection.394

For instance, with τ2 = 4.0, increasing k from 1.0 to 8.0 improves the FID score from 24.94 to 24.37.395

However, excessive overcorrection can overshoot the balanced target, as seen for τ2 = 2.0, where the396

FID score worsens from 24.54 (k = 4.0) to 24.76 (k = 8.0).397

1https://github.com/blandocs/improved-precision-and-recall-metric-pytorch
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E Additional Qualitative Examples398

(a) I-CFM (b) OT-CFM (c) UOT-RFM

(d) I-CFM (e) OT-CFM (f) UOT-RFM

Figure 1: CIFAR image generation results: The first row shows images generated from models
trained on the balanced CIFAR10 dataset. The second row shows images from models trained on the
CIFAR10-LT dataset.
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