Reweighted Flow Matching via Unbalanced Optimal Transport for Long-tailed Generation

Anonymous Author(s)

Affiliation Address email

Abstract

Flow matching has recently emerged as a powerful framework for continuoustime generative modeling. However, when applied to long-tailed distributions, 2 standard flow matching suffers from majority bias, oversampling majority modes 3 while generating minority modes with low fidelity. In this work, we propose UOT-Reweighted Flow Matching (UOT-RFM), which leverages Unbalanced Optimal 5 Transport (UOT) to estimate an unsupervised majority score for each target data. Using this score, we correct bias via inverse weighting and introduce higher-order corrections (k > 1) to further emphasize minority modes. We establish a bias correction theorem, showing that first-order weighting exactly recovers the target distribution. We show that UOT-RFM outperforms existing flow-matching baselines 10 by improving diversity and fidelity on synthetic long-tail data and CIFAR-10-LT. 11

2 1 Introduction

Generative modeling addresses the problem of approximating a target data distribution. Deep generative models have achieved remarkable progress in recent years, such as GANs [1, 15], optimal transport maps [7, 9, 28], and diffusion models [17, 30]. Among them, flow matching models [22] have emerged as a promising approach for continuous-time generative models. Flow matching learns a continuous normalizing flow [4], i.e., a vector field describing the dynamics between an initial prior distribution and the target distribution, while avoiding costly numerical likelihood estimation. Flow matching model is trained through regression to conditional vector field, constructed from conditional probability path between prior and target samples.

Despite these advances, flow matching models remain vulnerable to majority bias when trained on long-tailed distributions. In many real-world datasets, data often follow long-tailed or imbalanced distributions, where a few classes dominate while minority classes are severely underrepresented [3, 27, 33]. In such cases, standard flow matching tends to overfit the majority mode due to its regression-based learning nature, while undersampling or exhibiting low fidelity for the minority mode. This limitation reduces diversity and degrades the quality of samples from rare classes.

To overcome these challenges, we propose the flow matching model based on the Unbalanced Optimal Transport (UOT) [6, 21]. A key property of UOT is that it naturally produces a density ratio between the target distribution and the UOT marginal, which we call the **majority score**. Building on this, we propose *UOT-Reweighted Flow Matching (UOT-RFM)*, which corrects bias via inverse weighting and allows high-order corrections (k > 1) to further emphasize tail samples. Our method provides an unsupervised bias-correction mechanism and enhances coverage of long-tailed data. Our experiments on the CIFAR-10-LT benchmark demonstrate that our method outperforms existing flow matching baselines. Our contributions can be summarized as follows:

- We propose UOT-RFM, which leverages UOT couplings and the majority score for unsupervised bias correction.
- We establish a bias correction theorem, proving that first-order inverse weighting with the majority score recovers the true target distribution.
- Our experiments show that our method achieves improved performance on long-tailed data generation and offers a principled trade-off between majority and minority emphasis with higher-order correction.

2 Preliminaries

Flow Matching Continuous Normalizing Flows (CNFs) [4, 22] model the dynamics of the probability densities through a probability density path $p(t, \mathbf{x}) : [0, 1] \times \mathbb{R}^d \mapsto \mathbb{R}_{\geq 0}$ which transports the initial or source distribution (e.g., Gaussian distribution) p_0 to the target data distribution p_1 . Specifically, the CNF model is defined by the following Ordinary Differential Equation (ODE), governed by a parameterized vector field $\mathbf{v}^\theta : [0, 1] \times \mathbb{R}^d \mapsto \mathbb{R}^d$, i.e., $\frac{\mathrm{d}x}{\mathrm{d}t} = \mathbf{v}_t^\theta(\mathbf{x})$, where we use the notation $\mathbf{v}_t(\mathbf{x})$ interchangeably with $v(t, \mathbf{x})$. Then, the associated flow map $\phi_t(\mathbf{x})$ denotes the solution of this ODE with initial condition $\phi_0(\mathbf{x}) = \mathbf{x}$ and the density at time t is given by $p_t = (\phi_t)_{\#}p_0$.

Lipman et al. [22] proposed flow matching, a scalable method for training CNFs. The idea is to train the CNF by minimizing a regression loss $\mathcal{L}_{\mathrm{FM}}(\theta)$ between the parameterized vector field v_t^{θ} and the ground-truth vector field u_t that generates the probability path p_t . However, a major challenge is that the marginal ground-truth vector field u_t is intractable.

$$\mathcal{L}_{\text{FM}}(\boldsymbol{\theta}) = \mathbb{E}_{t \sim \mathcal{U}, \mathbf{x}_t \sim p_t(\mathbf{x}_t)} \| v_{\boldsymbol{\theta}}(t, \mathbf{x}_t) - u_t(\mathbf{x}_t) \|_2^2.$$
 (1)

To overcome this, the flow matching [22, 31] introduces a conditional flow matching. Instead of matching u_t , the model is trained against the tractable *conditional vector field* $u_t(\mathbf{x}_t|\mathbf{z})$, which generates a *conditional probability path* $p_t(\mathbf{x}_t|\mathbf{z})$, where \mathbf{z} denotes sample pairs $(\mathbf{x}_0, \mathbf{x}_1)$. The sample pairs $(\mathbf{x}_0, \mathbf{x}_1)$ follow the joint distribution (couplings) of $\pi(\mathbf{z}) = \pi(\mathbf{x}_0, \mathbf{x}_1)$. The training objectives are given by

$$\mathcal{L}_{\text{CFM}}(\boldsymbol{\theta}) = \mathbb{E}_{t \sim \mathcal{U}, \mathbf{z} \sim \pi(\mathbf{z}), \mathbf{x}_{t} \sim p_{t}(\mathbf{x}_{t}|\mathbf{z})} \|v_{\theta}(t, \mathbf{x}_{t}) - u_{t|\mathbf{z}}(\mathbf{x}_{t}|\mathbf{z})\|_{2}^{2}.$$
(2)

CFM replaces the intractable marginal vector field with a tractable conditional one based on couplings. In particular, the conditional probability path $p_t(\mathbf{x}_t|\mathbf{z})$ and the associated conditional vector field $u_t(\mathbf{x}_t|\mathbf{z})$ can be defined as follows [31]:

$$p_t(\mathbf{x}_t \mid \mathbf{z}) = \mathcal{N}\left(\mathbf{x} \mid t\mathbf{x}_1 + (1-t)\mathbf{x}_0 \mid \sigma^2\right), \quad u_t(\mathbf{x}_t \mid \mathbf{z}) = \mathbf{x}_1 - \mathbf{x}_0 \tag{3}$$

for some bandwidth hyperparameter $\sigma>0$. In this case, the marginal probability path and the marginal vector field that generates this path are given by

$$p_t(\mathbf{x}_t) = \int p_t(\mathbf{x}_t \mid \mathbf{z}) \pi(\mathbf{z}) d\mathbf{z}, \quad u_t(\mathbf{x}_t) := \mathbb{E}_{\pi(\mathbf{z})} \frac{u_t(\mathbf{x} \mid \mathbf{z}) p_t(\mathbf{x} \mid \mathbf{z})}{p_t(\mathbf{x})} = \mathbb{E}_{p_t(\mathbf{z} \mid \mathbf{x}_t)} \left[u_t(\mathbf{x}_t \mid \mathbf{z}) \right]$$
(4)

Initial Coupling in Flow Matching A key component in the training flow matching model is the choice of initial sample couplings $\pi(\mathbf{z}) = \pi(\mathbf{x}_0, \mathbf{x}_1)$. This coupling determines how the flow matching model is trained, because the obtained model $v_t(\mathbf{x}_t) \approx u_t(\mathbf{x}_t)$ relies on aggregating the conditional vector field over paired samples $p_t(\mathbf{z}|\mathbf{x}_t)$ (Eq. 4). The original flow matching framework [22] employs an independent coupling between the source and target distributions. However, such independence often leads to curved trajectories, which arises from the mean-shift phenomenon due to the flow crossing problem [20, 24]. These curved trajectories result in increased numerical errors in ODE simulation and thereby high computational costs in sampling [23].

To improve couplings, recent works adopted the *Optimal Transport (OT)* approaches between minibatches [26, 31]. Note that the Kantorovich formulation of the Optimal Transport is given by

$$C_{ot}(\mu, \nu) := \inf_{\pi \in \Pi(\mu, \nu)} \left[\int_{\mathcal{X} \times \mathcal{Y}} c(\mathbf{x}, \mathbf{y}) d\pi(\mathbf{x}, \mathbf{y}) \right]. \tag{5}$$

Here, the optimal coupling π^* is defined as the minimizer of the transport $\cos c(x,y)$ between empirical measures of minibatches from the source samples \mathbf{x}_0 and target samples \mathbf{x}_1 . Alternatively, Rectified flow [23] proposed that leverages pretrained flow models to improve couplings. In this approach, the trajectories are iteratively refined using the previous model as the initial coupling, resulting in straighter paths.

3 Method

In this section, we present our model, called *UOT-Reweighted Flow Matching (UOT-RFM)*, that addresses the majority bias of existing flow matching approaches on long-tailed distributions. Our model leverages minibatch Unbalanced Optimal Transport coupling, which naturally provides a *majority score* for each sample. Intuitively, we compensate for majority bias by over-correcting each target data utilizing this score. In Sec 3.1, we introduce the Uabalanced Optimal Transport problem. In Sec 3.2, we introduce our UOT-RFM model.

86 3.1 Unbalanced Optimal Transport

We introduce the *Unbalanced Optimal Transport* problem [6, 21] and its key properties, which will be leveraged in our approach. The standard OT problem (Eq. 5) enforces *exact transport* between the source and target distributions, i.e., $\pi_0 = \mu$, $\pi_1 = \nu$. However, this strict marginal constraint makes OT sensitive to outliers [2, 7, 14, 29]. To address these issues, the *Unbalanced Optimal Transport* problem relaxes this constraint and introduces the divergence penalties on the marginal distributions.

$$C_{uot}(\mu, \nu) = \inf_{\pi \in \mathcal{M}_{+}(\mathcal{X} \times \mathcal{Y})} \left[\int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y) + \tau_{1} D_{\Psi_{1}}(\pi_{0} \| \mu) + \tau_{2} D_{\Psi_{2}}(\pi_{1} \| \nu) \right], \quad (6)$$

where we assume $c(x,y)=\frac{1}{2}\|x-y\|_2^2$ and $\tau_1,\tau_2>0$ control the strength of the marginal matching penalties. Here, $\mathcal{M}_+(\mathcal{X}\times\mathcal{Y})$ indicates the set of positive Radon measures on $\mathcal{X}\times\mathcal{Y}$. The terms $D_{\Psi_1}(\pi_0\|\mu)$ and $D_{\Psi_2}(\pi_1\|\nu)$ are two f-divergences that penalizes deviations of the marginals π_0,π_1 from the source μ and target ν , respectively.

Therefore, the optimal UOT coupling π^u softly matches μ and ν , i.e., $\pi_0^u\approx\mu$ and $\pi_1^u\approx\nu$. Moreover, the UOT problem can represent exact matching of one marginal by setting the divergence penalty appropriately. Specifically, if Ψ_i is the convex indicator function ι at $\{1\}$, then $D_\iota(\pi_i\|\eta)=0$ if $\pi_i=\eta$ a.s., and ∞ otherwise. For example, if $\Psi_1=\iota$, we obtain at the **source-fixed UOT problem** where

3.2 Proposed Method

 $\pi_0^u = \mu$ and $\pi_1^u \approx \nu$.

100

101

Majority Score Our method leverages the mini-batch UOT coupling π^u and the resulting majority 102 score $s_{\tau}(\cdot) = (d\pi_1^u/d\nu)$. This score is utilized to address the majority oversampling bias of flow matching models on long-tailed distributions by inversely reweighting each target sample. Intuitively, 104 the optimal UOT coupling π^u exhibits distribution error whenever a small increase in D_{Ψ} leads to 105 a large decrease in transport cost c(x,y) (Eq. 6). As a result, π^u prioritizes matching the majority 106 modes, while down-weighting outlier modes with small mass and large cost. This property explains 107 the robustness of UOT to outliers, as the UOT effectively reduces the influence of outliers [2, 7, 29]. 108 Based on this property, we define the *majority score* $s_{\tau}(\cdot) = (d\pi_1^u/d\nu)$ as the density ratio in the 109 target space under the source-fixed UOT problem. 110

$$s_{\tau}(y) := \frac{d\pi_1^{u,\star}}{du}(y) > 0$$
 (7)

Here, τ_1 is irrelevant, so we simply set $\tau=\tau_2$. Intuitively, the majority score measures how strongly each target sample is emphasized by the UOT coupling. $s_{\tau}>1$ indicates emphasized majority samples, while $s_{\tau}\ll 1$ correspond to down-weighted outlier samples. Importantly, this weighting is entirely **unsupervised**, arising from the intrinsic geometry of probability distributions (see Appendix A for details).

Proposed Method Our corrected conditional flow matching objective with correction order $k \ge 1$ is defined as follows (Algorithm 1):

$$\mathcal{L}_{\text{ours},k}(\boldsymbol{\theta}) = \mathbb{E}_{t \sim \mathcal{U}, \mathbf{z} \sim \pi^u(\mathbf{z}), \mathbf{x}_t \sim p_t(\mathbf{x}_t | \mathbf{z})} \left[s_{\tau}(\mathbf{x}_1)^{-k} \| v_{\theta}(t, \mathbf{x}_t) - u_{t|\mathbf{z}}(\mathbf{x}_t | \mathbf{z}) \|_2^2 \right]. \tag{8}$$

where the conditioning variable $\mathbf{z} = (\mathbf{x}_0, \mathbf{x}_1)$. Compared with standard flow matching (Eq. 3), our formulation employs the UOT coupling π^u for pairing \mathbf{z} and introduce an additional weighting factor $s_{\tau}(\mathbf{x}_1)^{-k}$ that rebalances majority and minority samples. Our method is motivated by the following bias correction theorem (see Appendix B for formal statements and proof):

Table 1: **Quantitative results on CIFAR-10-LT**. In both settings, the training data is long-tailed. The test data is either long-tailed $(LT \rightarrow LT)$ or balanced $(LT \rightarrow Balanced)$.

Model	LT→LT				LT→Balanced			
	$\overline{\mathrm{FID}(\downarrow)}$	Prec (†)	Recall (†)	F1 (†)	$\overline{\mathrm{FID}(\downarrow)}$	Prec (†)	Recall (†)	F1 (†)
I-CFM	14.57	0.67	0.28	0.39	25.46	0.60	0.22	0.32
OT-CFM	17.31	0.71	0.24	0.36	27.51	0.63	0.16	0.26
UOT-CFM	14.25	0.67	0.29	0.41	24.94	0.59	0.23	0.33
Ours	11.03	0.61	0.41	0.49	24.06	0.55	0.38	0.45

Table 2: Ablation study on the correction order k when $\tau = 2.0$. Reported values are FID scores.

Training→Test	Correction order k						UOT-CFM $(k=0)$	
	1.0	2.0	4.0	6.0	8.0	10.0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
LT→LT	13.77	13.41	12.42	11.72	11.37	11.04	14.25	
LT→Balanced	25.02	24.60	24.54	24.70	24.76	25.35	24.94	

Theorem 3.1 (Informal). Flow matching with UOT coupling generates a biased distribution $p_1 = \pi_{\tau,1}^u \neq \nu$, which overweights majority modes. UOT-RFM corrects this bias by reweighting with the majority score: with correction order k, it generates $p_1 \propto s_{\tau}^{-k} \pi_{\tau,1}^u$. In particular, k = 1 exactly recovers the true target distribution ν .

Theorem 3.1 shows that when training a flow matching model with UOT coupling (UOT-CFM, [8]), the generated distribution p_1 is biased, i.e., $p_1 = \pi_1^u \neq \nu$. In particular, the distribution π_1^u magnifies the majority modes while suppressing the tail modes. This bias can be corrected by applying inverse weighting with the majority score s_{τ} . Our method extends this idea with **over-correction** (k > 1), further emphasizing tail samples with $s_{\tau}(\cdot) < 1$. Unlike OT-CFM [31], which relies on mini-batch OT coupling, our approach provides an **unsupervised estimate of the majority score**, without requiring class labels [27, 33].

4 Experiments

133

We evaluate our model on long-tailed distributions. In each experiment, our model is compared with several flow matching baselines: independent coupling (I-CFM), OT coupling (OT-CFM, [25, 31]), and UOT coupling (UOT-CFM, [8]).

Long-Tailed CIFAR-10 We evaluate our model on CIFAR-10 under two settings, using long-tailed CIFAR-10 (CIFAR-10-LT) [3] as the training data in both cases. In the first setting (LT \rightarrow LT), the test set is also CIFAR-10-LT, assessing how well each model fits the long-tailed distribution. In the second setting (LT \rightarrow Balanced), the test set is the original balanced CIFAR-10 [18], evaluating whether a model trained on imbalanced data can recover the balanced distribution. This evaluation setup is often adopted in supervised long-tailed learning [27, 33]. Performance is measured using FID [16], Precision, Recall, and F1-score [19].

Table 1 reports the quantitative results (see Appendix E for qualitative examples). In both settings, our model outperforms all flow matching baselines. In particular, our model achieves significant improvement in the Recall metric, demonstrating improved coverage of minority modes. Although OT-CFM achieves the best precision metric, our model achieves the best F1-score, which comprehensively evaluates the Precision and Recall metrics. Moreover, note that the additional training cost is minimal: UOT-RFM requires only about 7% more time than OT-CFM.

Correction Order We conduct an ablation study on the correction order k to examine its impact on performance. Interestingly, the best FID scores are achieved when k>1, rather than with the exact correction k=1. Moreover, compared to UOT-CFM (UOT-RFM without correction), introducing correction generally improves FID scores. Overall, UOT-RFM remains robust to correction order, outperforming other baseline models for all moderate correction orders $2 \le k \le 8$.

References

- [1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
 networks. In *International conference on machine learning*, pages 214–223. PMLR, 2017.
- Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport with applications in generative modeling and domain adaptation. *Advances in Neural Information Processing Systems*, 33:12934–12944, 2020.
- [3] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced datasets with label-distribution-aware margin loss. In *Advances in Neural Information Processing Systems*, volume 32, 2019.
- [4] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 differential equations. Advances in neural information processing systems, 31, 2018.
- [5] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Scaling
 algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816, 2016.
- [6] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Unbalanced
 optimal transport: Dynamic and kantorovich formulations. *Journal of Functional Analysis*, 274
 (11):3090–3123, 2018.
- [7] Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang. Generative modeling through the semidual formulation of unbalanced optimal transport. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [8] Luca Eyring, Dominik Klein, Théo Uscidda, Giovanni Palla, Niki Kilbertus, Zeynep Akata, and Fabian J Theis. Unbalancedness in neural monge maps improves unpaired domain translation. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=2UnCj3jeao.
- [9] Jiaojiao Fan, Shu Liu, Shaojun Ma, Hao-Min Zhou, and Yongxin Chen. Neural monge map estimation and its applications. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=2mZSlQscj3. Featured Certification.
- [10] Kilian Fatras, Thibault Séjourné, Rémi Flamary, and Nicolas Courty. Unbalanced minibatch
 optimal transport; applications to domain adaptation. In *International conference on machine* learning, pages 3186–3197. PMLR, 2021.
- 184 [11] Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon,
 185 Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo
 186 Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko,
 187 Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander
 188 Tong, and Titouan Vayer. Pot: Python optimal transport. *Journal of Machine Learning Research*,
 189 22(78):1–8, 2021. URL http://jmlr.org/papers/v22/20-451.html.
- [12] Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya, and Tomaso A Poggio.
 Learning with a wasserstein loss. Advances in neural information processing systems, 28, 2015.
- 192 [13] Thomas Gallouët, Roberta Ghezzi, and François-Xavier Vialard. Regularity theory and geometry of unbalanced optimal transport. *arXiv preprint arXiv:2112.11056*, 2021.
- [14] Milena Gazdieva, Jaemoo Choi, Alexander Kolesov, Jaewoong Choi, Petr Mokrov, and Alexander Korotin. Robust barycenter estimation using semi-unbalanced neural optimal transport. In
 The Thirteenth International Conference on Learning Representations, 2025.
- 197 [15] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
 198 Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural*199 *information processing systems*, 27, 2014.
- 200 [16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 201 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30, 2017.

- 203 [17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances* in neural information processing systems, 33:6840–6851, 2020.
- [18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.2009.
- Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 precision and recall metric for assessing generative models. Advances in Neural Information
 Processing Systems, 32, 2019.
- [20] Sangyun Lee, Beomsu Kim, and Jong Chul Ye. Minimizing trajectory curvature of ODE-based
 generative models. In *Proceedings of the 40th International Conference on Machine Learning*,
 volume 202 of *Proceedings of Machine Learning Research*, pages 18957–18973. PMLR, 23–29
 Jul 2023.
- 214 [21] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal entropy-transport problems 215 and a new hellinger–kantorovich distance between positive measures. *Inventiones mathematicae*, 216 211(3):969–1117, 2018.
- Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2022.
- [23] Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate
 and transfer data with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=XVjTT1nw5z.
- [24] Dogyun Park, Sojin Lee, Sihyeon Kim, Taehoon Lee, Youngjoon Hong, and Hyunwoo J Kim.
 Constant acceleration flow. Advances in Neural Information Processing Systems, 37:90030–90060, 2024.
- [25] Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch couplings. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 28100–28127. PMLR, 23–29 Jul 2023.
- [26] Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch couplings. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 28100–28127. PMLR, 23–29 Jul 2023.
- Yiming Qin, Huangjie Zheng, Jiangchao Yao, Mingyuan Zhou, and Ya Zhang. Class-balancing
 diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18434–18443, 2023.
- [28] Litu Rout, Alexander Korotin, and Evgeny Burnaev. Generative modeling with optimal transport
 maps. In *International Conference on Learning Representations*, 2022.
- ²⁴¹ [29] Thibault Séjourné, Gabriel Peyré, and François-Xavier Vialard. Unbalanced optimal transport, from theory to numerics. *arXiv preprint arXiv:2211.08775*, 2022.
- Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
 Ben Poole. Score-based generative modeling through stochastic differential equations. In
 International Conference on Learning Representations, 2021.
- 246 [31] Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid 247 Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based genera-248 tive models with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.

- [32] Adrien Vacher and François-Xavier Vialard. Semi-dual unbalanced quadratic optimal transport:
 fast statistical rates and convergent algorithm. In *International Conference on Machine Learning*,
 pages 34734–34758. PMLR, 2023.
- [33] Tianjiao Zhang, Huangjie Zheng, Jiangchao Yao, Xiangfeng Wang, Mingyuan Zhou, Ya Zhang, and Yanfeng Wang. Long-tailed diffusion models with oriented calibration. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=NW2s5XXwXU.

257 A Unbalanced Optimal Transport

The classical OT problem assumes an exact transport between two distributions μ and ν , i.e., $\pi_0 = \mu$, $\pi_1 = \nu$. However, this exact matching constraint results in sensitivity to outliers [2, 29] and vulnerability to class imbalance in the OT problem [8]. To mitigate this issue, a new variation of the OT problem is introduced, called *Unbalanced Optimal Transport (UOT)* [6, 21]. Formally, the UOT problem is expressed as follows:

$$C_{uot}(\mu,\nu) = \inf_{\pi \in \mathcal{M}_+(\mathcal{X} \times \mathcal{Y})} \left[\int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) + D_{\Psi_1}(\pi_0|\mu) + D_{\Psi_2}(\pi_1|\nu) \right], \tag{9}$$

where $\mathcal{M}_+(\mathcal{X}\times\mathcal{Y})$ denotes the set of positive Radon measures on $\mathcal{X}\times\mathcal{Y}$. D_{Ψ_1} and D_{Ψ_2} represents two f-divergences generated by convex functions Ψ_i , and are defined as $D_{\Psi_i}(\pi_j|\eta)=\int \Psi_i\left(\frac{d\pi_j(x)}{d\eta(x)}\right)d\eta(x)$. These f-divergences penalize the discrepancies between the marginal distributions π_0,π_1 and μ,ν , respectively. Hence, **in the UOT problem, the two marginal distributions** are softly matched to μ,ν , i.e., $\pi_0\approx\mu$ and $\pi_1\approx\nu$. Intuitively, the UOT problem can be seen as the OT problem between $\pi_0\approx\mu$ and $\pi_1\approx\nu$, rather than between the exact distributions μ and ν [7]. This flexibility offers robustness to outliers [2] and adaptability to class imbalance problem between μ and ν [8] to the UOT problem.

271 Similar to the standard OT problem, the UOT problem also admits a *dual formulation* [7, 13, 32]:

$$C_{uot}(\mu,\nu) = \sup_{u(x)+v(y) \le c(x,y)} \left[\int_{\mathcal{X}} -\Psi_1^*(-u(x)) d\mu(x) + \int_{\mathcal{Y}} -\Psi_2^*(-v(y)) d\nu(y) \right], \quad (10)$$

with $u \in \mathcal{C}(\mathcal{X}), v \in \mathcal{C}(\mathcal{Y})$ where \mathcal{C} denotes a set of continuous functions over its domain. Here, f^* denotes the *convex conjugate* of f, i.e., $f^*(y) = \sup_{x \in \mathbb{R}} \{\langle x, y \rangle - f(x) \}$ for $f: \mathbb{R} \to [-\infty, \infty]$. Note that this dual problem conducts maximization over two continuous functions u and v. This dual problem can be simplified into a *semi-dual* formulation by eliminating u via the optimality condition:

$$C_{uot}(\mu, \nu) = \sup_{v \in \mathcal{C}} \left[\int_{\mathcal{X}} -\Psi_1^* \left(-v^c(x) \right) \right) d\mu(x) + \int_{\mathcal{Y}} -\Psi_2^* (-v(y)) d\nu(y) \right], \tag{11}$$

where the c-transform of v is defined as $v^c(x) = \inf_{y \in \mathcal{Y}} (c(x,y) - v(y))$. Here, v^c corresponds to the optimal u given v.

Finally, the relationship between the marginals of the optimal UOT plan $\pi^{u,\star}$ and the original source and target distributions can be expressed using the optimal UOT potential v^{\star} from the semi-dual problem:

Theorem A.1 ([7, 13, 32]). Let v^* be a solution of the dual formulation of the UOT problem between the source distribution μ and the target distribution ν . Then, the marginal distributions of the optimal UOT plan $\pi^{u,*}$ satisfy

$$d\pi_0^{u,\star}(x) = {\Psi_1^{\star}}'(-v^{\star c}(x))d\mu(x) \quad \text{and} \quad d\pi_1^{u,\star}(y) = {\Psi_2^{\star}}'(-v^{\star}(y))d\nu(y) \tag{12}$$

B Proofs of theorem

284

In this section, we provide the proof of our bias correction theorem (Theorem ??) from the main text.
Our proof builds on three key lemmas for the standard flow matching model, originally established in [22, 31], which we restate here for completeness.

Lemma B.1 ([31], Theorem 3.1). The marginal vector field u_t generates the probability path $p_t(\mathbf{x}_t)$ from initial conditions $p_0(\mathbf{x}_0)$.

$$p_t(\mathbf{x}_t) = \int p_t(\mathbf{x}_t \mid \mathbf{z}) \pi(\mathbf{z}) d\mathbf{z}, \quad u_t(\mathbf{x}_t) := \mathbb{E}_{\pi(\mathbf{z})} \frac{u_t(\mathbf{x} \mid \mathbf{z}) p_t(\mathbf{x} \mid \mathbf{z})}{p_t(\mathbf{x})} = \mathbb{E}_{p_t(\mathbf{z} \mid \mathbf{x}_t)} \left[u_t(\mathbf{x}_t \mid \mathbf{z}) \right] \quad (13)$$

Lemma B.2 ([31], Theorem 3.2). If $p_t(\mathbf{x}_t) > 0$ for all $\mathbf{x}_t \in \mathbb{R}^d$ and $t \in [0, 1]$, then, up to a constant independent of θ , \mathcal{L}_{CFM} (Eq. 2) and \mathcal{L}_{FM} (Eq. 1) are equal, and hence

$$\nabla_{\theta} \mathcal{L}_{\text{FM}}(\theta) = \nabla_{\theta} \mathcal{L}_{\text{CFM}}(\theta). \tag{14}$$

Lemma B.3 ([31], Proposition 3.4). Let the initial sample coupling be $\pi(z_0, z_1)$ and define the conditional vector probability path and vector field as in Eq. 3. Then, the corresponding marginal probability path $p_t(\mathbf{x}_t)$ satisfies the boundary conditions $p_0 = \pi_0 * \mathcal{N}(\mathbf{x}|0,\sigma^2)$ and $p_1 = \pi_1 * \mathcal{N}(\mathbf{x}|0,\sigma^2)$, where * denotes the convolution operator. Furthermore, assuming regularity properties of q_0, q_1 , and the optimal transport plan π , as $\sigma^2 \to 0$, the marginal path p_t and field u_t minimize (7), i.e., u_t solves the dynamic optimal transport problem between π_0 and π_1 . Specifically, $p_0 \to \pi_0$ and $p_1 \to \pi_1$ as $\sigma \to 0$.

299 Here, we provide a formal statement of Theorem 3.1 and provide its proof.

Theorem B.4 (Theorem 3.1, Formal). Let π_{τ}^u be the optimal source-fixed UOT coupling between μ and ν with $\tau_2 = \tau > 0$ and assume that its target marginal satisfies $\nu \ll \pi_{\tau}^u$. Training a flow matching model with π_{τ}^u yields the biased distribution $p_1 = \pi_1^u \neq \nu$ [8]. However, applying the first-order correction (our method with k = 1) recovers the true target distribution ν .

$$\mathcal{L}_{\text{ours},1}(\boldsymbol{\theta}) = \mathbb{E}_{t \sim \mathcal{U}, \mathbf{z} \sim \pi_{\tau}^{u}(\mathbf{z}), \mathbf{x}_{t} \sim p_{t}(\mathbf{x}_{t}|\mathbf{z})} \left[s_{\tau}(\mathbf{x}_{1})^{-1} \| v_{\theta}(t, \mathbf{x}_{t}) - u_{t|\mathbf{z}}(\mathbf{x}_{t}|\mathbf{z}) \|_{2}^{2} \right]. \tag{15}$$

where the majority scrore $s_{\tau}(y)$ is defined as $s_{\tau}(y) := \frac{d\pi_1^{u,\star}}{d\nu}(y)$. More generally, UOR-RFM with correction order k generates a distribution $p_1 \propto s_{\tau}^{-k} \pi_{\tau,1}^u$.

Proof. As an overview, the proof relies on two observations: (1) training with π^u yields $p_1=\pi_1^u$, i.e., the biased UOT marginal (Theorem A.1) and (2) importance reweighting with s_{τ}^{-1} corrects this bias, since $\nu=s_{\tau}^{-1}\pi_1^u$ by the Radon–Nikodym derivative. Substituting this correction into the conditional flow matching loss yields Eq. 15, and hence the generated distribution recovers ν .

Formally, Lemma B.3 shows that training a flow matching model with the optimal source-fixed UOT coupling π_{τ}^{u} , i.e.,

$$\mathcal{L}_{\text{UOT-CFM}}(\boldsymbol{\theta}) = \mathbb{E}_{t \sim \mathcal{U}, \mathbf{z} \sim \pi(\mathbf{z}), \mathbf{x}_t \sim p_t(\mathbf{x}_t | \mathbf{z})} \| v_{\boldsymbol{\theta}}(t, \mathbf{x}_t) - u_{t | \mathbf{z}}(\mathbf{x}_t | \mathbf{z}) \|_2^2.$$
 (16)

yields a flow matching model whose boundary conditions converge to $p_0 \to \pi^u_{\tau,0}, p_1 \to \pi^u_{\tau,1}$ as $\sigma \to 0$. By Theorem A.1, we have $\pi^u_{\tau,0} = \mu$ and $\pi^u_{\tau,1} \neq \nu$. Therefore, the UOT-CFM model generates a biased distribution.

Moreover, we now show that our UOT-RFM model with the first-order correction recovers the true target distribution. From Theorem A.1, we have $\pi_{\tau}^u \ll \nu$, so the Radon-Nikodym derivative exists and corresponds to the majority score. By our assuption $\nu \ll \pi_{\tau}^u$, it follows $\nu = s_{\tau}^{-1} \pi_1^u$. Therefore,

$$\mathcal{L}_{\text{ours},1}(\boldsymbol{\theta}) = \mathbb{E}_{t \sim \mathcal{U}, \mathbf{z} \sim \pi_{\tau}^{u}(\mathbf{z}), \mathbf{x}_{t} \sim p_{t}(\mathbf{x}_{t}|\mathbf{z})} \left[s_{\tau}(\mathbf{x}_{1})^{-1} \| v_{\theta}(t, \mathbf{x}_{t}) - u_{t|\mathbf{z}}(\mathbf{x}_{t}|\mathbf{z}) \|_{2}^{2} \right].$$
 (17)

$$= \int_{t,\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_t} \left[s_{\tau}(\mathbf{x}_1)^{-1} \| v_{\theta}(t,\mathbf{x}_t) - u_{t|\mathbf{z}}(\mathbf{x}_t|\mathbf{z}) \|_2^2 \right] p_t(\mathbf{x}_t|\mathbf{z}) d\pi(\mathbf{x}_0,\mathbf{x}_1) dt.$$
 (18)

$$= \mathbb{E}_{t \sim \mathcal{U}, (\mathbf{x}_0, \mathbf{x}_1) \sim s_{\tau}(\mathbf{x}_1)^{-1} \pi_{\tau}^{u}(\mathbf{x}_0, \mathbf{x}_1), \mathbf{x}_t \sim p_t(\mathbf{x}_t | \mathbf{z})} \left[\| v_{\theta}(t, \mathbf{x}_t) - u_{t | \mathbf{z}}(\mathbf{x}_t | \mathbf{z}) \|_2^2 \right]. \tag{19}$$

Note that the reweighted coupling $s_{\tau}(\mathbf{x}_1)^{-1}\pi_{\tau}^u(\mathbf{x}_0,\mathbf{x}_1)$ has the true target distribution ν as its marginal.

$$\int s_{\tau}(\mathbf{x}_{1})^{-1} \pi_{\tau}^{u}(\mathbf{x}_{0}, \mathbf{x}_{1}) d\mathbf{x}_{0} = s_{\tau}^{-1} \pi_{1}^{u}(\mathbf{x}_{1}) = \nu(\mathbf{x}_{1}).$$
(20)

Then, following a similar argument as the UOT-CFM case, our UOT-RFM model with the first-order correction recovers the true target distribution. Note that we specifically employ the sourced-fixed UOT coupling to ensure consistency with the initial conditions of the flow matching model. More generally, by a similar argument except for the normalizing constant, UOR-RFM with correction order k generates a distribution $p_1 \propto s_{\tau}^{-k} \pi_{\tau,1}^u$.

C Implementation Details

325

This section provides the specific implementation details for our experiments on the CIFAR-10 and 2D synthetic datasets.

Algorithm 1 Minibatch UOT-Reweighted Flow Matching (UOT-RFM)

Input: Empirical or samplable distributions q_0, q_1 , bandwidth σ , batch size b, initial network v_θ , sinkhorn target marginal weight τ_2 , weight power scale k.

```
\begin{split} & \tau_1 \leftarrow \infty \\ & \text{while Training do} \\ & \text{Sample batches of size } b \text{ i.i.d. from the datasets: } \mathbf{x}_0 \sim q_0(\mathbf{x}_0); \quad \mathbf{x}_1 \sim q_1(\mathbf{x}_1) \\ & \pi \leftarrow \text{UOT}(\mathbf{x}_1, \mathbf{x}_0, \tau_1, \tau_2) \\ & (\mathbf{x}_0, \mathbf{x}_1) \sim \pi \\ & \mathbf{t} \sim \mathcal{U}(0, 1) \\ & \mu_t \leftarrow \mathbf{t} \mathbf{x}_1 + (1 - \mathbf{t}) \mathbf{x}_0 \\ & \mathbf{x} \sim \mathcal{N}(\mu_t, \sigma^2 I) \\ & \text{Calculate } \hat{s}_\tau(\mathbf{x}_1) \text{ from Equation (21)} \\ & \mathcal{L}_{Ours}(\theta) \leftarrow \hat{s}_\tau(\mathbf{x}_1)^{-k} \|v_\theta(\mathbf{t}, \mathbf{x}) - (\mathbf{x}_1 - \mathbf{x}_0)\|^2 \\ & \theta \leftarrow \text{Update}(\theta, \nabla_\theta \mathcal{L}_{Ours}(\theta)) \\ & \text{end while} \\ & \text{return } v_\theta \end{split}
```

Minibatch OT Approximation Following mini-batch OT approaches [26, 31], we approximate the UOT coupling π^u using a mini-batch formulation similar to [10]. In practice, we adopt the POT library [11] to compute mini-batch UOT with entropic regularization [5, 12]. Specifically, for each mini-batch of training data $(\{\mathbf{x}_0^i\}_{i=1}^B, \{\mathbf{x}_1^j\}_{i=1}^B)$, the mini-batch coupling $\hat{\pi}^u$ is computed between empirical measures $\hat{\mu} = \frac{1}{B} \sum_i \delta_{\mathbf{x}_0^i}$ and $\hat{\nu} = \frac{1}{B} \sum_j \delta_{\mathbf{x}_1^j}$. Based on this, the majority score is estimated by the probability mass ratio:

$$\hat{s}_{\tau}(\mathbf{x}_{1}^{j}) := \frac{\hat{\pi}_{1}^{u}}{\hat{\nu}}(\mathbf{x}_{1}^{j}) = B\hat{\pi}_{1}^{u}(\mathbf{x}_{1}^{j}). \tag{21}$$

C.1 Experiments on CIFAR-10

334

346

347

351

352

353

354

Datasets We use two datasets for our image generation experiments: the standard CIFAR-10 dataset and its long-tailed version, CIFAR-10-LT. The CIFAR-10-LT is generated to simulate class imbalance, following an exponential decay distribution. The number of samples N_i for each class i is determined by the formula $N_i = \lfloor N_{\max} \cdot \mathcal{I}^{\frac{i}{C-1}} \rfloor$, where C=10 is the total number of classes, N_{\max} is the number of samples in the largest class, and the imbalance factor \mathcal{I} is set to 0.01.

Network Architecture We employ the U-Net architecture provided in the torchcfm[31], without any modifications. The architecture uses four resolution levels with two residual blocks per level in both encoder and decoder, linked by skip connections at matching scales. Each block uses 3×3 convolutions with Group Normalization, SiLU activations, and dropout. Down-sampling is performed by stride-2 convolutions, and up-sampling uses nearest-neighbor interpolation followed by a 3×3 convolution.

Training Details All experiments on CIFAR-10 follow the default settings of torchcfm. We use the dopri5 ODE solver. For optimization, we use the Adam optimizer with a learning rate of 2×10^{-4} . The model is trained for a total of 400,000 iterations with a batch size of 128. Data preprocessing includes transforms.RandomHorizontalFlip() and normalization of pixel values to the range [-1,1] using transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]). For stable training, we apply a warmup schedule for the first 5,000 iterations, linearly increasing the learning rate from 0 to its target value, and use gradient clipping with an L2-norm threshold of 1.0. For Unbalanced Optimal Transport (UOT), the entropy regularization parameter ϵ is set to 5×10^{-2} , and the source marginal relaxation weight τ_1 is set to infinity.

Method Details The training process of our proposed method is as follows: (1) Sample mini-batches from each distribution. (2) Compute the coupling (transport plan) between the two mini-batches. (3)
Determine the weight for each sample based on the computed transport plan. (4) Estimate the vector fields by feeding the coupled sample pairs into the U-Net and compute the weighted loss. (5) Update the network parameters via backpropagation. The specifics of each coupling method are as follows:

- ICFM: Uses an independent coupling, assuming the two distributions are independent.
- OT-CFM: Computes the transport plan π using the pot. emd function and samples pairs according to the normalized probability distribution.
- **UOT-CFM:** Computes the transport plan π using the pot.unbalanced.sinkhorn_knopp_unbalanced function and samples pairs based on the normalized probabilities.
- UOT-WFM: Also uses pot.unbalanced.sinkhorn_knopp_unbalanced, but samples
 only one target for each source sample from the normalized transport plan π.

The sample weights are calculated using the column sums of the transport plan π , which corresponds to the empirical measure of the target distribution, denoted as $\tilde{\nu}$. The weight $w(\mathbf{x}_1)$ is defined as $(1/\tilde{\nu}_{\mathbf{x}_1})^{\gamma}$, where γ denotes a power factor and $\tilde{\nu}_{\mathbf{x}_1}$ denotes marginal density corresponding to a target sample \mathbf{x}_1 . The final loss function is the weighted mean squared error (MSE) between the vector fields: $\mathbb{E}_{(\mathbf{x}_0,\mathbf{x}_1)\sim\pi}\left[w(\mathbf{x}_1)\cdot\|v_t(\mathbf{x}_0,\mathbf{x}_1)-u_t(\mathbf{x}_0,\mathbf{x}_1)\|^2\right]$.

Evaluation Metrics To assess the quality of the generated images, we use the Fréchet Inception Distance (FID), Precision, and Recall. FID scores are calculated using the cleanfid library. For evaluation against the standard CIFAR-10 dataset, we use the library's built-in feature statistics. For CIFAR-10-LT, the real data statistics are computed from a long-tailed dataset generated in the same manner as the training set. Precision and Recall are measured based on a widely-used implementation¹, where the real data distribution is also generated identically to the training setup.

D Additional Ablation Studies

360

361

362

363

364

365

366

367

Table 3: Ablation study on the correction order k and the marginal matching strength τ : Reported values are FID scores.

	$LT{ ightarrow}LT$				LT→Balanced			
$\tau_2 \backslash k$	1.0	2.0	4.0	8.0	1.0	2.0	4.0	8.0
2.0	13.77	13.41	12.42	11.37	25.02	24.60	24.54	24.76
4.0	14.01	13.78	13.68	12.67	24.94	24.65	24.45	24.37
6.0	14.39	13.72	13.48	12.41	24.91	24.88	24.86	24.90

Table 3 presents an ablation study on the effects of the correction order k and the marginal matching strength τ_2 . All models were trained on the CIFAR10-LT dataset. The "LT \rightarrow LT" columns show FID scores measured against the CIFAR10-LT dataset itself, assessing fidelity to the training distribution. The "LT \rightarrow Balanced" columns show FID scores using the class-balanced CIFAR10 dataset as a reference, evaluating the generation of a balanced distribution.

First, analyzing the LT \rightarrow LT results, the task is to faithfully replicate the long-tailed training distribution. In this scenario, a clear trend emerges: performance consistently improves as the correction order k increases. For any given value of τ_2 , a larger k leads to a lower (better) FID score. For example, when $\tau_2=2.0$, the FID score monotonically decreases from 13.77 at k=1.0 to a superior 11.37 at k=8.0. This indicates that overcorrection (k>1) is consistently beneficial, helping the model to more accurately estimate and represent the target long-tailed marginal distribution.

In contrast, the LT \rightarrow Balanced setting reveals a more complex trade-off. Here, a smaller τ_2 (e.g., 2.0) enables a strong corrective weight but diminishes the sampling probability of minor classes. Conversely, a larger τ_2 (e.g., 6.0) improves the sampling of these classes but flattens the weights, reducing their corrective impact. This necessitates a higher correction order k to induce overcorrection. For instance, with $\tau_2 = 4.0$, increasing k from 1.0 to 8.0 improves the FID score from 24.94 to 24.37. However, excessive overcorrection can overshoot the balanced target, as seen for $\tau_2 = 2.0$, where the FID score worsens from 24.54 (k = 4.0) to 24.76 (k = 8.0).

¹https://github.com/blandocs/improved-precision-and-recall-metric-pytorch

E Additional Qualitative Examples

Figure 1: CIFAR image generation results: The first row shows images generated from models trained on the balanced CIFAR10 dataset. The second row shows images from models trained on the CIFAR10-LT dataset.