Proceedings of Machine Learning Research 304, 2025 ACML 2025

Direct Quantized Training of Language Models with
Stochastic Rounding

Kaiyan Zhao' KAIYAN1006@QLOGOS.T.U-TOKYO.AC.JP
Tsuguchika Tabaru?® TABARUQFUJITSU.COM
Kenichi Kobayashi? KENICHIQFUJITSU.COM
Takumi Honda? HONDA.TAKUMIQFUJITSU.COM
Masafumi Yamazaki? M.YAMAZAKIQFUJITSU.COM
Yoshimasa Tsuruokal TSURUOKAQLOGOS.T.U-TOKYO.AC.JP

L The University of Tokyo, Tokyo, Japan
2 Fujitsu Limited, Kawasaki, Japan

Editors: Hung-yi Lee and Tongliang Liu

Abstract

Although recent quantized Large Language Models, such as BitNet, have paved the way for
significant reduction in memory usage during deployment with binary or ternary weights,
training these models still demands substantial memory footprints. This is partly because
high-precision (i.e., unquantized) weights required for straight-through estimation must be
maintained throughout the whole training process. To address this, we explore directly
updating the quantized low-precision weights without relying on straight-through estima-
tion during backpropagation, aiming to save memory usage during training. Specifically,
we employ a stochastic rounding technique to minimize the information loss caused by the
use of low-bit weights throughout training. Experimental results on our LLaMA-structured
models of various sizes indicate that (1) training with only low-precision weights is feasible
even when they are constrained to ternary values; (2) extending the bit width to 8 bits
achieves performance on par with BitNet b1.58; (3) our models remain robust to precision
scaling and memory reduction, showing minimal performance degradation when moving
from FP32 to lower-memory environments (BF16/FP8); and (4) our models also support
inference using ternary weights, showcasing their flexibility in deployment.!

Keywords: Large Language Models; Quantization-Aware Training.

1. Introduction

Large Language Models (LLMs) have become a promising solution for a wide range of
Natural Language Processing (NLP) tasks, including machine translation (Xu et al., 2024a;
Wu et al., 2024; Miao et al., 2025), reasoning (OpenAl, 2022, 2024; Kojima et al., 2024; Miao
et al., 2024) and multimodal understanding (Huang et al., 2025; Mao et al., 2025). However,
their development is challenged by the need for vast datasets and substantial computational
resources, especially as the size of current LLMs continually grows larger (Duan et al., 2024).

Quantization, which involves converting high-precision parameter matrices into lower-
precision formats, has emerged as an effective approach for enabling resource-efficient LLMs.
Traditional quantization methods can be divided into two categories: Post-Training Quan-
tization (PTQ) and Quantization-Aware Training (QAT). PTQ reduces the bit precision

1. Code is available at https://github.com/KYuuto1006/DQT.

© 2025 K. Zhao, T. Tabaru, K. Kobayashi, T. Honda, M. Yamazaki & Y. Tsuruoka.

https://github.com/KYuuto1006/DQT

ZHAO TABARU KOBAYASHI HONDA YAMAZAKI TSURUOKA

Inputs
-0.238 -+ 0.429 AbsMean -1 - 1
: : Quantization oo
0.056 -+ -0483} — L0 - -1 Loss
high-precision weights low-precision weights
1 Update on the high-precision weights Backward with STE
replace [—0.238 +0.002 - 0.429 —0.005]
0.056 —0.003 -+ —0.483 4+ 0.009

(a) Training process of BitNet

e &

low-bit weights initialization

(e.g., ternary)
1 Stochastic rounding Update on the low-bit weights without STE
replace {922/;;81 {955%: 1 -140.02 - 1-0.05]
o: %: 0 <:| : :
: : ‘ 0-003 - —1+4009
97%:0 . [91%: -1
{3%: -1 { 9%: 0

(b) Our Modified Training Process

Figure 1: Comparison of the training process for BitNet and our modified one. Upper: The
training process for BitNet, where the original high precision weights are updated
with the straight-through estimator in backward process. Lower: We directly
update the low precision weights with stochastic rounding, eliminating the need
to quantize the weight matrices in each training step and keeping weight matrices
always at low-bit. We provide an 8-bit example in Supplementary Material,
Figure 3.

of weight matrices in an already pre-trained LLM (Banner et al., 2019; Frantar et al.,
2023), while QAT incorporates quantization during training, enabling the model to adapt
to low-bit precision throughout the learning process (Jacob et al., 2018).

Recently, a QAT method, BitNet (Wang et al., 2023; Ma et al., 2024), has shown the
feasibility of quantizing full-precision (FP32) transformers into binary or ternary models
from scratch, while maintaining competitive performance with unquantized ones. We illus-
trate the training process of traditional QAT methods such as BitNet in Figure 1 (a). After
computing the loss based on the quantized weights and inputs, the loss is backpropagated to
update the original high-precision weights via the straight-through estimator (STE) (Ben-
gio et al., 2013). These weights are then re-quantized in each training step. This iterative
process is necessary because quantization itself is not differentiable (Chen et al., 2019),
requiring special gradient accumulation methods. As a result, the high-precision weight
matrices are always maintained throughout the whole training process, which makes tradi-
tional QAT inefficient and takes up a lot of extra memory footprints. For example, main-
taining the weights of a 1B LLM alone would require 4GB of memory in the FP32 format,
whereas maintaining ternary weights reduces this to 0.2GB. This requirement for memory

DIRECT QUANTIZED TRAINING OF LANGUAGE MODELS WITH STOCHASTIC ROUNDING

footprints limits the accessibility of QAT techniques for researchers and organizations with
limited computational resources.

In order to address these challenges, we explore Direct Quantized Training (DQT), a
modified QAT approach for language models that maintains only low-precision weights
throughout the training process. DQT eliminates the reliance on STE by directly updat-
ing the quantized low-precision weights during backpropagation, as shown in Figure 1 (b).
Specifically, we use stochastic rounding (Von Neumann and Goldstine, 1947) to preserve
the low-precision format of the weight matrices after backpropagation and minimize the
information loss caused by using only low-bit weights. The DQT method keeps all weight
matrices fixed at n-bit precision (INTn) throughout the entire training process and elim-
inates the needs to quantize high-precision weight matrices at each training step. More
importantly, traditional QAT often introduces extra memory overhead due to the updates
on high-precision weights, which limits its practicability in training general LLMs. In con-
trast, the light-weighted memory dependency of DQT enables quantization’s application
even for scenarios where computational resources are constrained.

Experimental results on our LLaMA-structured models ranging from 130M, 320M and
1B parameters demonstrate that (1) DQT enables model convergence even when weight
matrices are constrained to ternary values; (2) with 8-bit DQT, our models can achieve
performance levels competitive with BitNet b1.58, showing the feasibility of the approach;
(3) DQT models exhibit robust performance against GPU memory reductions, showing their
light-weighted memory dependency; and (4) inference using only ternary weights in DQT
remains effective, delivering performance comparable to BitNet. In addition, we conduct
an in-depth analysis of stochastic rounding and find that it helps preserve critical update
signals and contributes to training stability. We assume that DQT could provide new
insights on addressing the computational challenges posed by traditional QAT.

2. Related Works

Efficient learning methods for LLMs have become a critical area of research (Zhao et al.,
2025). Quantization for deep neural networks has a history spanning nearly ten years, with
researchers initially compressing networks to reduce memory usage and computational load
while maintaining accuracy (Rastegari et al., 2016; Hubara et al., 2018). Recent quan-
tization methods for LLMs can be divided into two categories: Post-Training Quantiza-
tion (PTQ) and Quantization-Aware Training (QAT).

Post-Training Quantization PTQ transforms high-precision parameters into low-bit
ones after the parameters are already pre-trained. Some approaches utilize a small set
of calibration data to accomplish this transformation while preserving the model’s perfor-
mance (Nagel et al., 2020; Li et al., 2021; Frantar et al., 2023). Others explore methods
that eliminate the need for calibration data altogether (Cai et al., 2020). The challenge
of PTQ lies in achieving a balance between compression efficiency and minimal accuracy
degradation, often involving computational trade-offs that make it a non-trivial task for
general-purpose applications. Moreover, the performance of PT(Q consistently lags behind
that of QAT, as there is a gap between the learned high-precision representations and the
constrained bit width (Chen et al., 2024; Liu et al., 2024).

ZHAO TABARU KOBAYASHI HONDA YAMAZAKI TSURUOKA

Quantization-Aware Training To bridge the gap between high-precision parameter
training and quantization, QAT incorporates the quantization of model parameters during
the training process. One of the initial applications of QAT to LLMs comes from Liu et al.
(2024), who propose a data-free distillation-based method and quantize the model to 4
bits. Xu et al. (2024b) further expand distillation-based methods to binary quantization by
introducing limited trainable vectors. More recently, BitNet (Wang et al., 2023; Ma et al.,
2024) is proposed, achieving training from scratch QAT with weight values constrained to
{-1,0,1}. However, due to the non-differentiability of the quantization process, special
gradient approximation methods like the straight-through estimator (STE) (Bengio et al.,
2013) are commonly employed during training. While effective, this approach often results in
slower training processes and increased computational memory overhead since high-precision
weights are always maintained during the training process. These inefficiencies become
particularly pronounced when scaling QAT to larger models, limiting the practical training
of QAT in real-world use cases. To address this, in this work, we explore the potential for
more efficient and practical QAT methods that have significantly lower memory dependency
compared to traditional QAT approaches.

3. Method

In this section, we first introduce stochastic rounding, the core idea of our proposed method
that maintains weight matrices at low-precision during training. Then we move on to
describe how stochastic rounding is applied in the modified training process for QAT.

3.1. Stochastic Rounding

The idea of stochastic rounding (SR) originates from Von Neumann and Goldstine (1947),
and is initially used for reducing bias in numerical computations and recently for deep
learning models (Gupta et al., 2015). It is a rounding technique that probabilistically
rounds values to the nearest representable precision based on their distance from those
values. Given a high precision value x, stochastic rounding can be defined as the following
equation (Gupta et al., 2015; Markov et al., 2023; Zhang et al., 2024):

{{:cj, with p = [z] —

SR(z) = : (1)

[x], otherwise

where p stands for the probability of turning z to floor(z) or ceil(x). In this way, we can
naturally quantize high-precision values into low-precision ones.

3.2. Modified Training Process

Next, we continue to explain the details of DQT. As shown in Figure 1 (b), we start training
from low-precision weight matrices instead of high-precision ones. We achieve this through
utilizing AbsMean Quantization following Ma et al. (2024) on a randomly initiated weight
matrix W. The absolute mean value for W can be represented as

k
1
AbsMean(W) = Z Z |wil, (2)
i=1

DIRECT QUANTIZED TRAINING OF LANGUAGE MODELS WITH STOCHASTIC ROUNDING

where w; is the 4y, element in W. For n-bit quantization, @, = —2""! and Qp = on—l 1
are then determined to constrain the range of quantization, and the scaling factor s can be
defined as

Qp

o AbsMean(W) ®)

Finally, the quantized weights W can be expressed in the following equation:
W = Clip[Round(W - 5), Qn, @)/, (4)

where the Clip() function assures that all the values are in the range of [@,, @Qp] and Round|()
returns the nearest integer. This allows us to constrain the quantized W to n-bits (INTn).
While for the inputs and activations, we follow the settings introduced in BitNet (Wang
et al., 2023; Ma et al., 2024) and quantize them into 8 bits.

After computing the language modeling cross-entropy loss based on W and inputs in
each training step, we first allow the optimizer to calculate W', the dense weight matrix
intended for updating. In traditional QAT, the straight-through estimator is applied, and
W' replaces the original high-precision W, subsequently undergoing the quantization process
from Equation (2) to Equation (4) again in the next training step. However, in our approach,
we simplify this process by directly applying stochastic rounding on W' using Equation (1):

o~

W = SR(W'), (5)

to make sure it maintains n-bits (INTn) without requiring the retention of high-precision
weights, thus getting rid of the straight-through estimator and skipping the process from
Equation (2) to Equation (4). During our modified DQT, we directly replace W with W and
proceed to the next training step, ensuring that the weight matrices are always constrained
to n-bits throughout training, which makes the biggest difference from traditional QAT.

4. Experiments

In this section, we begin by detailing our training dataset and implementation setup in
Section 4.1. Section 4.2 presents a comparison between the training behavior of DQT
models and other baselines. To demonstrate the robustness of DQT under reduced GPU
memory environments, we evaluate its performance in FP32, BF16, and FP8 formats, as
well as with memory-efficient optimizers, in Section 4.3. We then analyze the effect of
varying bit widths in DQT in Section 4.4. Finally, Section 4.5 reports evaluation results on
various tasks.

4.1. Implementation Setup

Model architecture. We follow the architecture of LLaMA2 (Touvron et al., 2023) and
initialize models with sizes ranging from 130M to 320M and 1B parameters. Detailed model
specifications and configurations are provided in the Supplementary Material, Section 1.1.
For the main experiments, we use AdamW (Loshchilov and Hutter, 2019) as the optimizer.
For DQT models, we apply modified versions of the optimizers that incorporate stochastic
rounding.

ZHAO TABARU KOBAYASHI HONDA YAMAZAKI TSURUOKA

Baselines. We choose two types of baselines for comparison with our DQT. The first
is a reproduced full-precision (FP32) model. We compare DQT to it to demonstrate the
effectiveness of our approach with reduced bits. The second baseline is the reproduced
BitNet b1.58, a well-known QAT method that employs ternary weights at inference but
relies on high-precision weights during training.

Datasets We use two types of datasets to pretrain the models. The first is the English
Wikipedia dataset (20231101.en)?. For the 1B models, we further pre-train them using a
larger dataset containing 10B tokens from the FineWeb dataset (Penedo et al., 2024)3. We
split 1% of the data as the corresponding development set. Models are trained for one
epoch with a cosine scheduler applied and a 2000 step warm-up. Refer to Supplementary
Material, Section 1.2 for details on how we process the training dataset.

Evaluation. Besides reporting the training loss and perplexity results, we perform zero-
shot evaluation on general language modeling tasks using the lm_eval benchmark (Gao
et al., 2024). Specifically, we evaluate on WinoGrande (Sakaguchi et al., 2019), ARC (Clark
et al., 2018), PIQA (Bisk et al., 2020) and SciQ (Welbl et al., 2017), which span a range of

reasoning and question answering tasks across diverse domains.

Hardware. We pre-train the 130M models on 4 NVIDIA A100 80GB GPUs, the 330M
models on 8 NVIDIA GH200 Grace Hopper Superchips, and the 1B models on 16 GH200
Superchips. To remain hardware-agnostic, we simulate our quantization approach under
FP32, BF16, and FP8 environments. We use MS-AMP* for FP8 experiments with opti-
mization level set to MS-AMP O2. While we recognize that FP8 is still not true ternary
precision, it offers a practical compromise under current hardware constraints, as done in
many prior works.

4.2. Main Results

We first present the training loss for DQT variants, our reproduced LLaMA (FP32) and
BitNet b1.58 in Figure 2, including different model sizes and training datasets under the
FP32 environment. In all subfigures of Figure 2, the blue line represents the ternary im-
plementation of DQT, where weight matrices are always constrained to {—1,0,1}. The
green line denotes the 8-bit (INT8) implementation of DQT (in the format of FP32 due
to simulation). The orange line corresponds to the reproduced BitNet b1.58, which uti-
lizes high-precision information during training. Finally, the red line indicates the standard
FP32 LLaMA implementation.

We first examine the blue lines: although there remains a performance gap compared
to higher-precision models, the ternary DQT implementation still demonstrates the abil-
ity to converge. Across all model sizes and training datasets, we observe that standard
FP32 models (red lines) consistently achieve the best performance, as they are not sub-
ject to any quantization. BitNet (orange lines) consistently delivers performance close to
FP32, benefiting from high-precision updates during training. Finally, for our DQT 8 bit
implementation (green lines), the performance gap with BitNet bl.58 narrows as model

2. https://huggingface.co/datasets/wikimedia/wikipedia
3. https://huggingface.co/datasets/HuggingFaceFW/fineweb/viewer/sample-10BT
4. https://github.com/Azure/MS-AMP

https://huggingface.co/datasets/wikimedia/wikipedia
https://huggingface.co/datasets/HuggingFaceFW/fineweb/viewer/sample-10BT
https://github.com/Azure/MS-AMP

loss

loss

DIRECT QUANTIZED TRAINING OF LANGUAGE MODELS WITH STOCHASTIC ROUNDING

10

10

130M models (wiki)

— FP32
BitNet b1.58

—— 1.58 bits (ours)

8 bits (ours)

10 100
steps

1000 10000 100000

1B models (wiki)

— FP32
BitNet b1.58

1.58 bits (ours)
8 bits (ours)

10 100
steps

1000 10000 100000

10

loss

10

loss

320M models (wiki)

— FP32

BitNet b1.58
—— 1.58 bits (ours)
—— 8 bits (ours)

=

100 1000
steps

10000 100000

1B models (fineweb)

— FP32
BitNet b1.58

—— 1.58 bits (ours)

—— 8 bits (ours)

100 1000
steps

10000 100000

Figure 2: Comparison of our DQT and other baselines across different model sizes and

training datasets.

The horizontal axis represents the training steps while the

vertical axis represents the training loss. As model size increases, the performance
of our DQT models, especially DQT 8 bit, become more comparable to and even

better than the reproduced BitNet b1.58.

size increases. Particularly, in the 1B models, DQT 8 bit models surpass BitNet bl.58,
and this trend persists even when training on the larger FineWeb dataset. A clearer non-
logarithmic comparison between the 1B DQT 8-bit model and BitNet b1.58 is provided in
the Supplementary Material, Figure 1.

Generally speaking, as model size increases, all models show improved performance,
reflecting the general benefits of scaling. However, the performance gains of our DQT
models are especially pronounced. This suggests that DQT benefits more from scaling
than other quantized approaches, narrowing the gap with other baselines and, in some
cases, even surpassing them. Notably, since our DQT models do not rely on high-precision
weights during training, even when 8-bit quantization is used, their memory requirements
are significantly lower than those of BitNet, which still depends on high-precision updates.
In the next section, we demonstrate DQT’s low GPU memory dependency in detail.

ZHAO TABARU KOBAYASHI HONDA YAMAZAKI TSURUOKA

Memory vs. Loss

o]
o

FP32

—e— BitNet 130M
—@— BitNet 1B
——
——

P32
DQT 8bit 130M
DQT 8bit 1B

~
o

o))
o

16

BF16+Adafactor, BF16+Adafactor

BF16{-Adafaktor B@Fﬁﬁ Adafactor

(O]
o

FP8+Adafactor

FP8

I
o

FP8+Adafactor -
FP8+Adafactor F§8+Adafactor

GPU Memory Usage (% on one GH200)

222 2.4 2.6 2.8 3.0
Loss on development set

Figure 3: GPU memory usage versus loss on development set. While BitNet suffers sig-
nificant performance degradation in low-precision formats, DQT demonstrates
strong robustness with minimal loss increase.

4.3. Low Memory Experiments

We additionally conduct two types of experiments to evaluate DQT’s performance given
reduced GPU memory, simulating resource-limited environments. First, we assess perfor-
mance in low-precision formats using BF16 and FP8 °. Second, we examine the effect
of memory-efficient optimizers, as standard AdamW maintains two high-precision states
(momentum and variance) for each parameter, contributing significantly to memory usage.
To demonstrate DQT’s low reliance on high-precision information, we specifically choose
Adafactor (Shazeer and Stern, 2018), which eliminates the need for fully storing these addi-
tional states. Note that we conduct experiments with Adafactor in BF16 and FP8 formats,
as its benefits are most pronounced in low-precision environments.

Figure 3 presents the GPU memory usage and corresponding development set loss at the
end of training for 130M and 1B models trained on the Wikipedia dataset. The y-axis indi-
cates the percentage of GPU memory used on a single GH200 GPU under our experimental
settings. We explain how we acquire the percentage in Supplementary Material, Section 1.4.
As shown in the figure, BitNet models experience clear performance degradation as GPU
memory usage decreases in BF16 and FP8 settings, for both 130M and 1B scales. This is
expected, since BitNet still relies on high-precision information for effective weight updates.
In contrast, our DQT 8-bit models maintain robust performance under reduced precision.
For both 130M and 1B models, the performance drop is less than 0.1 in loss, demonstrating
DQT’s resilience to lower GPU memory usage and its minimal dependence on high-precision

5. In our notation, “n-bit” refers to the quantization level of the model weights (INT-n), while the labels
such as FP32, BF16, or FP8 refer to the precision of the environment. Note that any “n-bit” can be
simulated in these precisions.

DIRECT QUANTIZED TRAINING OF LANGUAGE MODELS WITH STOCHASTIC ROUNDING

130M models (wiki)

1 \ — 1.58 bits — 1.58 bits
— 3bits 10 — 3bits
N —— 4 bits —— 4 bits

8 bits

1B models (fineweb)

8 bits

loss

1 10 100

steps

1000 10000 100000 1 10 100 1000

steps

10000 100000

Figure 4: Comparison of bit widths in DQT. Higher n-bit results in better performance.

information. This robustness persists even when applying memory-efficient optimizers such
as Adafactor in both BF16 and FP8 settings. These results suggest that DQT models can
be effectively trained even in memory-constrained environments, showing consistent perfor-
mance across both low-precision formats and lightweight optimization methods. We believe
that DQT can be further extended to even lower-precision settings while maintaining its
effectiveness.

4.4. Impact of the Bit Width in DQT

Next, we proceed to examine the impact of varying the number of bits in DQT. Specifically,
we experiment with n in {1.58, 3, 4, 8} on 130M models trained with the Wikipedia dataset
and 1B models trained with the FineWeb dataset under FP32. The corresponding results
are presented in Figure 4. We select the optimal learning rate for each model.

From Figure 4, we can first observe a clear trend: as the number of bits used in DQT
increases, the model’s performance improves consistently for both 130M and 1B models.
Notably, for the relatively lower bits DQT implementations (1.58-bit and 3-bit), we can
observe some outliers in the blue line and red line, indicating the difficulty of training low-
bit models. In contrast, the higher-bit implementations exhibit more stability throughout
the training process.

4.5. Evaluation Results

In this section, we conduct evaluation on the WikiText-2 test set (Merity et al., 2016) and
several other zero-shot tasks. We focus on 1B parameter models to best demonstrate the
capability of our approach. The results are summarized in Table 1. For consistency, we set
the sequence length to 512 across all tasks, matching the configuration used during training.
In the table, ‘ternary Inf.” refers to DQT models trained with 8-bit weights but evaluated
using ternary weights. Details on how ternary inference is implemented for DQT models are
provided in Supplementary Material, Section 3. As shown in Table 1, FP32 models achieve
the highest overall performance across tasks, followed closely by our DQT 8-bit variants.
Notably, except for the WinoGrande task using 1B models trained on the Wikipedia dataset,

ZHAO TABARU KOBAYASHI HONDA YAMAZAKI TSURUOKA

Models Wikitext2(}) WinoGrande (1) ARC (easy) (1) ARC (challenge) (1) PIQA (1) SciQ (1)
1B models (wiki)
FP32 27.03 49.01 39.56 23.29 56.20 70.70
BitNet b1.58 34.90 51.38 36.74 22.95 54.68 69.40
DQT 8 bit 30.94 49.96 37.54 23.55 56.47 69.50
DQT 8 bit (ternary Inf.) 35.51 51.30 36.36 24.23 54.19 68.90
1B models (fineweb)
FP32 19.99 52.33 48.06 25.00 67.90 80.20
BitNet b1.58 28.20 51.22 44.36 22.53 65.40 75.40
DQT 8 bit 25.43 51.97 45.12 23.63 66.38 75.90
DQT 8 bit (ternary Inf.) 27.32 51.70 45.62 22.87 65.51 75.70

Table 1: Evaluation results on different tasks. Except for WikiText-2, where perplexity is
reported, we report the accuracy metric for the remaining tasks.

our DQT 8 bit models outperform BitNet b1.58 across all other benchmarks. These results
highlight that DQT 8 bit models more closely approximate the performance of FP32 models
compared to BitNet. Moreover, when ternary inference is applied, the performance slightly
decreases compared to 8-bit inference but remains on par with BitNet, demonstrating the
robustness of our approach with ternary inference and its flexibility in deployment.

5. Analysis

The use of stochastic rounding in DQT can be viewed as a convergence-guaranteed optimiza-
tion scheme. This follows from the fact that stochastic rounding introduces zero-mean noise
with bounded variance, a property well studied in stochastic optimization theory (Gupta
et al., 2015; Hubara et al., 2018; Bottou et al., 2018; Ajalloeian and Stich, 2021). As a re-
sult, the updates in DQT maintain convergence guarantees despite operating in a quantized
space. For completeness, we provide a proof sketch of this guarantee in Supplementary Ma-
terial, Section 4. In this section, we primarily focus on the empirical analysis, demonstrating
how these theoretical properties manifest in practice.

While stochastic rounding offers advantages in keeping low-precision weights, it may
bring some problems. For example, small weight updates may be applied with low prob-
ability (e.g., a value like —1 + 0.02 has only a 2% chance of being rounded to 0). If such
rare updates do occur, we are particularly interested in understanding their impact on the
overall training dynamics. In this section, we provide a detailed analysis of the effects and
implications of using stochastic rounding.

5.1. The Role of Stochastic Rounding in DQT

Firstly, we provide empirical evidence for the critical role of stochastic rounding in preserving
gradient information during training with low-precision weights. Particularly, we compare
130M ternary DQT with a variant that simply uses absmax quantization on the updated
weight matrices and maintains the weights in ternary format without stochastic rounding.
As shown in the left part of Figure 5, the latter fails to converge, despite operating under the
same bit budget. This outcome is expected, as absmax quantization can easily ignore small
updates on the weights. In contrast, stochastic rounding not only performs quantization

DIRECT QUANTIZED TRAINING OF LANGUAGE MODELS WITH STOCHASTIC ROUNDING

Average Weight Changes

10
—— DQT 1.58 bit
10 BitNet b1.58
8 —— DQT 8 bit
? g
~ 6
[}
[=)
3 8
2 ¢ £
O o4
9}
a Magnified View
0.10
4 - bbbt
241 0.05
Absiax 0.00 T T T i T
—— DQT 1.58 bits (ours) "0 10000 20000 30000 40000 50000
2
0 10000 20000 30000 40000 50000 °% 10000 20000 30000 40000 50000
steps Steps

Figure 5: Left: Comparison between DQT 1.58 bits and a variant using absmax quanti-
zation for weight updates under the same learning rate. Right: Percentage of
updated weights after each training step.

but also facilitates the accumulation of fine-grained updates, enabling effective training even
in extremely low-bit regimes.

5.2. Quantifying Weight Update Frequency in DQT

As discussed in Section 5.1, stochastic rounding facilitates training by allowing even small
weight updates to take effect. To better understand its impact, we examine how frequently
weights are updated during training. Specifically, we analyze 130M-size models to measure
the percentage of quantized weights that change after each training step.

We quantify the weight update frequency in the right part of Figure 5 for three variants:
DQT 1.58 bit, BitNet b1.58 and DQT 8 bit under the same learning rate and batch size.
Note that we show the average percentages of all weight matrices in the model. For BitNet,
the peak weight update rate is approximately 0.05% (observed at step 2000, the end of the
warm-up phase), meaning only 0.05% of quantized ternary weights change after a single step.
Ternary DQT exhibits a similar update rate of around 0.04%, indicating minimal difference
between the two in terms of update frequency. In contrast, the 8-bit DQT variant, with
weight values ranging from —128 to 127, shows a significantly higher update frequency,
reaching up to 8%.

5.3. Impact of Small Weight Updates in DQT Training

Finally, to investigate the impact of small weight updates during training, we rank the
absolute value of weight updates at each step and selectively intervene in the lowest 20%.
For these bottom 20% updates, we apply one of two interventions: either suppress the
update by retaining the original ternary value, or enforce a change by rounding it to a
different quantized value, even if the update is small. For example, if an update of +0.02
from —1 + 0.02 falls within the smallest 20%, we either keep it at —1 (suppress) or round it
to 0 (enforce), depending on the experimental condition. Figure 6 shows the training loss

ZHAO TABARU KOBAYASHI HONDA YAMAZAKI TSURUOKA

DQT 1.58 bit Variants

—— original
104 —— force to remain
force to update
84
@
L 6l
44
24

1 10 100 1000 10000 100000
steps

Figure 6: Force to remain refers to the variant that ignores the smallest 20% of weight
updates, while force to update enforces changes in this bottom 20%. All variants
use the same learning rate.

for these variants, where force to remain refers to suppressing the bottom 20% of updates,
and force to update corresponds to enforcing them to change. From Figure 6, we observe
that the original implementation of DQT (1.58-bit) achieves the best performance. Ignoring
the smallest 20% of updates has minimal impact, while enforcing these small updates to
take effect slightly accelerates convergence. However, the final losses at the end of training
are similar across all variants. This may be due to the fact that small updates contribute
less to training overall, and even when such updates do occur, stochastic rounding may
re-adjust them toward the optimal value in the next training steps.

6. Conclusion

In this work, we explore Direct Quantized Training, a modified QAT method that directly
updates low-bit weight matrices without relying on high-precision weights during training.
This design enables DQT to operate effectively even under constrained GPU memory set-
tings. Experimental results across different sizes of models demonstrate that DQT enables
training without updating on high-precision weights, which are required for straight-through
estimation. Moreover, when using 8-bit weights, DQT achieves performance comparable to
both FP32 models and BitNet b1.58 during training and inference, demonstrating its effec-
tiveness and practicality for efficient model training.

References

Ahmad Ajalloeian and Sebastian U. Stich. On the convergence of sgd with biased gradients,
2021. URL https://arxiv.org/abs/2008.00051.

https://arxiv.org/abs/2008.00051

DIRECT QUANTIZED TRAINING OF LANGUAGE MODELS WITH STOCHASTIC ROUNDING

Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization
of convolutional networks for rapid-deployment. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
c0a62e133894cdce43bbcb4abdf1db2d-Paper.pdf.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiw:1308.3432, 2013.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piga: Reason-
ing about physical commonsense in natural language. In Thirty-Fourth AAAI Conference
on Artificial Intelligence, 2020.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning, 2018. URL https://arxiv.org/abs/1606.04838.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. Zeroq: A novel zero shot quantization framework. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages 1316913178,
2020.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping
Luo. Efficientqat: Efficient quantization-aware training for large language models, 2024.
URL https://arxiv.org/abs/2407.11062.

Shangyu Chen, Wenya Wang, and Sinno Jialin Pan. Metaquant: Learning to
quantize by learning to penetrate non-differentiable quantization. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
£8e59f4b2fe7c5705b£878bbd494ccdf-Paper. pdf.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc,
the ai2 reasoning challenge. ArXiv, abs/1803.05457, 2018.

Jiangfei Duan, Shuo Zhang, Zerui Wang, Lijuan Jiang, Wenwen Qu, Qinghao Hu, Guoteng
Wang, Qizhen Weng, Hang Yan, Xingcheng Zhang, Xipeng Qiu, Dahua Lin, Yonggang
Wen, Xin Jin, Tianwei Zhang, and Peng Sun. Efficient training of large language models
on distributed infrastructures: A survey, 2024. URL https://arxiv.org/abs/2407.
20018.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-
training compression for generative pretrained transformers. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=tcbBPnfwxS.

https://proceedings.neurips.cc/paper_files/paper/2019/file/c0a62e133894cdce435bcb4a5df1db2d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c0a62e133894cdce435bcb4a5df1db2d-Paper.pdf
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/2407.11062
https://proceedings.neurips.cc/paper_files/paper/2019/file/f8e59f4b2fe7c5705bf878bbd494ccdf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f8e59f4b2fe7c5705bf878bbd494ccdf-Paper.pdf
https://arxiv.org/abs/2407.20018
https://arxiv.org/abs/2407.20018
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS

ZHAO TABARU KOBAYASHI HONDA YAMAZAKI TSURUOKA

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi,
Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle
McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin
Wang, and Andy Zou. A framework for few-shot language model evaluation, 07 2024.
URL https://zenodo.org/records/12608602.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep
learning with limited numerical precision. In Proceedings of the 32nd International Con-
ference on International Conference on Machine Learning - Volume 37, ICML’15, page
1737-1746. JMLR.org, 2015.

Lang Huang, Qiyu Wu, Zhongtao Miao, and Toshihiko Yamasaki. Joint fusion and encoding;:
Advancing multimodal retrieval from the ground up, 2025. URL https://arxiv.org/
abs/2502.20008.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Quantized neural networks: Training neural networks with low precision weights and
activations. Journal of Machine Learning Research, 18(187):1-30, 2018. URL http:
//jmlr.org/papers/v18/16-456.html.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS '22, Red Hook, NY, USA,
2024. Curran Associates Inc. ISBN 9781713871088.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei
Wang, and Shi Gu. Brecq: Pushing the limit of post-training quantization by block
reconstruction. In International Conference on Learning Representations, 2021.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad,
Yangyang Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: Data-
free quantization aware training for large language models. In Lun-Wei Ku, An-
dre Martins, and Vivek Srikumar, editors, Findings of the Association for Computa-
tional Linguistics: ACL 2024, pages 467-484, Bangkok, Thailand, August 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.26. URL
https://aclanthology.org/2024.findings-acl.26.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th In-
ternational Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=Bkg6RiCqY7.

https://zenodo.org/records/12608602
https://arxiv.org/abs/2502.20008
https://arxiv.org/abs/2502.20008
http://jmlr.org/papers/v18/16-456.html
http://jmlr.org/papers/v18/16-456.html
https://aclanthology.org/2024.findings-acl.26
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

DIRECT QUANTIZED TRAINING OF LANGUAGE MODELS WITH STOCHASTIC ROUNDING

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang,
Li Dong, Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large
language models are in 1.58 bits, 2024. URL https://arxiv.org/abs/2402.17764.

Zhuoyuan Mao, Mengjie Zhao, Qiyu Wu, Hiromi Wakaki, and Yuki Mitsufuji. Deepreso-
nance: Enhancing multimodal music understanding via music-centric multi-way instruc-
tion tuning, 2025. URL https://arxiv.org/abs/2502.12623.

Ilia Markov, Adrian Vladu, Qi Guo, and Dan Alistarh. Quantized distributed training
of large models with convergence guarantees. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 24020-24044. PMLR, 23-29 Jul 2023.
URL https://proceedings.mlr.press/v202/markov23a.html.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models, 2016. URL https://arxiv.org/abs/1609.07843.

Zhongtao Miao, Kaiyan Zhao, and Yoshimasa Tsuruoka. Improving arithmetic reasoning
ability of large language models through relation tuples, verification and dynamic feed-
back, 2024. URL https://arxiv.org/abs/2406.17873.

Zhongtao Miao, Qiyu Wu, Masaaki Nagata, and Yoshimasa Tsuruoka. Improving word
alignment using semi-supervised learning. In Wanxiang Che, Joyce Nabende, Ekate-
rina Shutova, and Mohammad Taher Pilehvar, editors, Findings of the Association for
Computational Linguistics: ACL 2025, pages 19871-19888, Vienna, Austria, July 2025.
Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/
2025.findings-acl.1020. URL https://aclanthology.org/2025.findings-acl.1020/.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen
Blankevoort. Up or down? adaptive rounding for post-training quantization. In Proceed-
ings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org,
2020.

OpenAl Introducing chatgpt, 2022. https://openai.com/blog/chatgpt.
OpenAl. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Guilherme Penedo, Hynek Kydlicek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell,
Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the
web for the finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Im-
agenet classification using binary convolutional neural networks. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Computer Vision — ECCV 2016, pages
525-542, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46493-0.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande:
An adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641,
2019.

https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/2502.12623
https://proceedings.mlr.press/v202/markov23a.html
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2406.17873
https://aclanthology.org/2025.findings-acl.1020/
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2406.17557

ZHAO TABARU KOBAYASHI HONDA YAMAZAKI TSURUOKA

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear mem-
ory cost. In International Conference on Machine Learning, pages 4596-4604. PMLR,
2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

John Von Neumann and Herman Heine Goldstine. Numerical inverting of matrices of high
order. 1947.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan
Yang, Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large
language models, 2023. URL https://arxiv.org/abs/2310.11453.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science
questions. In NUT@QEMNLP, 2017.

Qiyu Wu, Masaaki Nagata, Zhongtao Miao, and Yoshimasa Tsuruoka. Word alignment as
preference for machine translation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen, editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3223-3239, Miami, Florida, USA, November 2024. Association for
Computational Linguistics. URL https://aclanthology.org/2024.emnlp-main. 188.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Hassan Awadalla. A paradigm shift
in machine translation: Boosting translation performance of large language models. In
The Twelfth International Conference on Learning Representations, 2024a. URL https:
//openreview.net/forum?id=farT6XXntP.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong
Liu, and Wanxiang Che. Onebit: Towards extremely low-bit large language models. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.
URL https://openreview.net/forum?id=ZwiG9KjfHV.

Zhenyu Zhang, Ajay Jaiswal, Lu Yin, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and
Zhangyang Wang. Q-galore: Quantized galore with int4 projection and layer-adaptive
low-rank gradients, 2024. URL https://arxiv.org/abs/2407.08296.

Kaiyan Zhao, Qiyu Wu, Zhongtao Miao, and Yoshimasa Tsuruoka. Prompt tuning can
simply adapt large language models to text encoders. In Vaibhav Adlakha, Alexan-
dra Chronopoulou, Xiang Lorraine Li, Bodhisattwa Prasad Majumder, Freda Shi, and
Giorgos Vernikos, editors, Proceedings of the 10th Workshop on Representation Learning
for NLP (RepL4NLP-2025), pages 38-50, Albuquerque, NM, May 2025. Association for
Computational Linguistics. ISBN 979-8-89176-245-9. doi: 10.18653/v1/2025.repldnlp-1.3.
URL https://aclanthology.org/2025.repldnlp-1.3/.

https://arxiv.org/abs/2310.11453
https://aclanthology.org/2024.emnlp-main.188
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=ZwiG9KjfHV
https://arxiv.org/abs/2407.08296
https://aclanthology.org/2025.repl4nlp-1.3/

	Introduction
	Related Works
	Method
	Stochastic Rounding
	Modified Training Process

	Experiments
	Implementation Setup
	Main Results
	Low Memory Experiments
	Impact of the Bit Width in DQT
	Evaluation Results

	Analysis
	The Role of Stochastic Rounding in DQT
	Quantifying Weight Update Frequency in DQT
	Impact of Small Weight Updates in DQT Training

	Conclusion

