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Abstract: Offline reinforcement learning (RL) enables learning control policies
by utilizing only prior experience, without any online interaction. This can allow
robots to acquire generalizable skills from large and diverse datasets, without any
costly or unsafe online data collection. Despite recent algorithmic advances in
offline RL, applying these methods to real-world problems has proven challeng-
ing. Although offline RL methods can learn from prior data, there is no clear
and well-understood process for making various design choices, from model ar-
chitecture to algorithm hyperparameters, without actually evaluating the learned
policies online. In this paper, our aim is to develop a practical workflow for using
offline RL analogous to the relatively well-understood workflows for supervised
learning problems. To this end, we devise a set of metrics and conditions that
can be tracked over the course of offline training, and can inform the practitioner
about how the algorithm and model architecture should be adjusted to improve fi-
nal performance. Our workflow is derived from a conceptual understanding of the
behavior of conservative offline RL algorithms and cross-validation in supervised
learning. We demonstrate the efficacy of this workflow in producing effective poli-
cies without any online tuning, both in several simulated robotic learning scenarios
and for three tasks on two distinct real robots, focusing on learning manipulation
skills with raw image observations with sparse binary rewards. Explanatory video
and additional content can be found at sites.google.com/view/offline-rl-workflow.
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1 Introduction

Figure 1: Our proposed workflow aims to detect
overfitting and underfitting, and provides guidelines for
addressing these issues via policy selection, regulariza-
tion, and architecture design. We evaluate this work-
flow on two real-world robotic systems and simulation
domains, and we find it to be effective.

Offline reinforcement learning (RL) can in
principle make it possible to convert existing
large datasets of robotic experience into ef-
fective policies, without the need for costly
or dangerous online interaction for each train-
ing run. While offline RL algorithms have
improved significantly [1, 2, 3, 4, 5], apply-
ing such methods to real-world robotic con-
trol problems presents a number of major chal-
lenges. In standard online RL, any interme-
diate policy found during training is executed
in the environment to collect more experience,
which naturally allows for an evaluation of the
policy performance. This ability to evaluate in-
termediate policies lets practitioners use “brute-
force” to evaluate the effects of various design factors, such as model capacity and expressivity, the
number of training steps, and so forth, and facilitates comparatively straightforward tuning. In
contrast, offline RL methods do not have access to real-world on-policy rollouts for evaluating the
learned policy. Thus, in order for these methods to be truly practical for real-world applications, we
not only require effective algorithms, but also an effective workflow: a set of protocols and metrics
that can be used to reliably and consistently adjust model capacity, regularization, etc in offline RL
to obtain policies with good performance, without requiring real-world rollouts for tuning.
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A number of prior works have studied model selection in offline RL by utilizing off-policy eval-
uation (OPE) methods [6] to estimate policy performance. These methods can be based either on
model or value learning [7, 8, 9, 10] or importance sampling [6, 11, 12, 13]. However, developing
reliable OPE methods is itself an open problem, and modern OPE methods themselves suffer from
hyperparameter selection challenges (see Fu et al. [14] for an empirical study). Moreover, accurate
off-policy evaluation is likely not necessary to simply tune algorithms for best performance – we do
not need a precise estimate of how good our policy is, but rather a workflow that enables us to best
improve it by adjusting various algorithm hyperparameters.

In this paper, we devise a practical workflow for selecting regularizers, model architectures, and
policy checkpoints for offline RL methods in robotic learning settings. We focus on a specific class
of conservative offline RL algorithms [15, 2] that regularize the Q-function, but also show that our
workflow can be effectively applied to policy constraint methods [16]. Our aim is not to focus on
complete off-policy evaluation or to devise a new approach for off-policy evaluation, but rather to
adopt a strategy similar to the one in supervised learning. Analogously to how supervised learning
practitioners can detect overfitting and underfitting by tracking training and validation losses, and
then adjust hyperparameters based on these metrics, our workflow (see Figure 1 for a schematic) first
defines and characterizes overfitting and underfitting, proposes metrics and conditions that users can
track to determine if an offline RL exhibits overfitting or underfitting, and then utilizes these metrics
to inform design decisions pertaining to neural net architectures, regularization, and early stopping.
This protocol is intended to act as a “user’s manual” for a practitioner, with guidelines for how to
modify algorithm parameters for best results without real-world evaluation rollouts.

The primary contribution of this paper is a simple yet effective workflow for robotic offline RL.
We propose metrics and protocols to assist practitioners in selecting policy checkpoints, regulariza-
tion parameters, and model architectures for conservative offline RL algorithms such as CQL [2]
and BRAC [16]. We empirically verify the efficacy of our proposed workflow on simulated robotic
manipulation problems as well as three real-world robotic manipulation problems on two different
robots, with diverse objects, pixel observations, and sparse binary reward supervision. Experimen-
tally, we evaluate our method on two real-world robots (the Sawyer and WidowX robots), and one
realistic simulated tasks. Our approach is effective in all of these cases, and on two tasks with the
Sawyer robot that initially fail completely, our workflow improves the success rate to 70%.

2 Preliminaries, Background, and Definitions
The goal in RL is to optimize the infinite horizon discounted return R =

∑∞
t=0 γ

tr(st,at), where
r(s, a) represents the reward function evaluated at a state-action pair (s,a). We operate in the offline
RL setting and are provided with a fixed dataset D = {(s,a, r(s,a), s′)}, consisting of transition
tuples obtained from rollouts under a behavior policy πβ(a|s). Our goal is to obtain the best possible
policy by only training on this fixed offline datasetD, with no access to online rollouts. We focus on
conservative offline RL algorithms that modify the Q-function to penalize distributional shift, with
most experiments on CQL [2], though we also adapt our workflow to BRAC [16] in Appendix F.1.

Conservative Q-learning (CQL). The actor-critic formulation of CQL trains a Q-functionQθ(s,a)
with a separate policy πφ(a|s), which maximizes the expected Q-value Es∼D,a∼πφ [Qθ(s,a)] like
other standard actor-critic deep RL methods [17, 18, 19]. However, in addition to the standard TD
error LTD(θ) (in blue below), CQL applies a regularizerR(θ) (in red below) to prevent overestima-
tion of Q-values for out-of-distribution (OOD) actions. This term minimizes the Q-values under a
distribution µ(a|s), which is automatically chosen to pick actions a with high Q-values Qθ(s,a),
and counterbalances this term by maximizing the values of the actions in the dataset:

min
θ

α
(
Es∼D,a∼µ(·|s) [Qθ(s,a)]− Es,a∼D [Qθ(s,a)]

)
+

1

2
Es,a,s′∼D

[(
Qθ(s,a)− BπQ̄(s,a)

)2]
,(1)

where BπQ̄(s,a) is the Bellman backup operator with a delayed target Q-function, Q̄: BπQ̄(s,a) :=
r(s,a) + γEa′∼π(a′|s′)[Q̄(s′,a′)]. In practice, CQL computes µ(a|s) using actions sampled from
the policy πφ(a|s). More discussion of CQL is in Appendix B. In this paper, we will utilize CQL as
a base algorithm that our workflow intends to tune, but we also extend it to BRAC.

Overfitting and underfitting in CQL. Conservative offline RL algorithms [2, 20] like CQL can
be sensitive to design choices, including number of gradient steps for training [21, 22] and network
capacity. These challenges are also present in supervised learning, but supervised learning methods
benefit from a simple and powerful workflow that involves using training error and validation error
to characterize overfitting and underfitting. A practitioner can then make tuning choices based on
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these characterizations. To derive an analogous workflow for offline RL, we first ask: what do
overfitting and underfitting actually mean for the case of conservative offline RL?

To define overfitting and underfitting generically for any conservative offline RL method, we con-
sider an abstract optimization formulation for such methods [2]:

π∗ := arg max
π

JD(π)− αD(π, πβ) (Conservative offline RL). (2)

Quantity Supervised Learning Conservative Offline RL

Test error Loss L evaluated on test data,Dtest Performance of policy, J(π)
Train error Loss L evaluated on train data,Dtrain Objective in Equations 2, 1

Overfitting L(Dtrain) low, L(Dval) high, Dval is
a validation set drawn i.i.d. asDtrain

Training objective in Equation 1 is ex-
tremely low, low value of J(π)

Underfitting high value of train error L(Dtrain) Training objective in Equation 1 is ex-
tremely high, low value of J(π)

Table 1: Summary of train error, test error and our definitions of overfitting
and underfitting in supervised learning and conservative offline RL methods.
We will propose metrics to measure these phenomena in a purely offline man-
ner and recommend how to tune the underlying method accordingly.

JD(π) denotes the average
return of policy π in the
empirical MDP induced by
the transitions in the offline
dataset D, and D(π, πβ)
denotes a closeness con-
straint to the behavior pol-
icy, effectively applied by
the offline RL method. Our
definition of conservative
offline RL requires that this
divergence be computed in expectation over the state visitation distribution of the learned policy π
in the empirical MDP as discussed in Appendix F.1. For example, Equation 1 translates to utilizing
DCQL(p, q) :=

∑
x p(x)(p(x)/q(x) − 1) in Equation 2 (see Theorem 3.5 in Kumar et al. [2] for a

proof). The training loss is discussed in Equations 1 and 2 and the test loss is equal to the negative
of the actual return J(π) of the learned policy. Analogously to supervised learning, we can use
the notion of train and test error to define overfitting and underfitting in offline RL, as discussed in
Table 1. However, note that the conditions summarized in Table 1 are not measurable completely
offline. Precisely estimating if a run of an offline RL method overfits or underfits requires evaluating
the learned policy via interaction with the real-world environment. In Section 3, our goal will be
to devise offline metrics for characterizing overfitting that do not have this requirement. We will
tailor our study specifically towards CQL, though we extend it to BRAC in Appendix F.1. A similar
procedure could be devised for other offline RL methods, but we leave this for future work.

3 Detecting Overfitting and Underfitting in Conservative Offline RL
In standard supervised learning, we can determine if a method overfits or underfits by comparing the
training loss to the same loss function evaluated on a held-out validation dataset, which serves as a
“proxy” test dataset. In contrast, the return of the learned policy J(π) in RL does not have a direct
proxy that can be computed offline. Thus, our goal is to identify offline metrics and conditions that
allow us to measure overfitting and underfitting in conservative offline RL, with a focus on CQL.
We also adapt these conditions to BRAC [16], a policy-constraint method in Appendix F.2.

Detecting overfitting in CQL. Our definition of overfitting (Table 1)
corresponds to a low value for the training loss (Equation 1), but poor
actual policy performance J(π). To detect this, we analyze the time
series of the estimated Q-values averaged over the dataset samples
(s,a, r, s′) ∈ D over the course of training with a large number of gra-
dient steps. A run is labeled as overfitting if we see that the expected
dataset Q-value exhibits a non-monotonic trend: if the average Q-values
first increase and then decrease as shown in the figure on the right. Ad-
ditionally, we would see that training loss in Equation 1 eventually becomes very low. Why do we
see such a trend in the average dataset Q-value? Since CQL selectively penalizes the average Q-
value under the distribution µ(a|s) supported on actions with large Q-values, we would expect the
Q-values on states from the dataset s ∼ D and the learned a ∼ π(·|s) to be small since the policy is
trained to maximize the Q-function as well. This in turn would lead to an eventual reduction in the
average Q-value on dataset actions, Es,a∼D[Qθ(s,a)]. This would be visible after sufficiently many
steps of training, when values have propagated via Bellman backups in Equation 1 giving rise to the
non-monotonic trend. If such a trend is observed, this raises two questions, as we discuss next.

What does a low average Q-value Es,a∼D[Qθ(s,a)] imply about J(π)? We show in Appendix A
that, in principle, CQL training (Equation 1) should never learn Q-values smaller than the dataset
Monte-Carlo return, and the Q-values should increase unless the learned policy π is better than πβ .
Intuitively, this is because the objective in Equation 1 aims to also maximize the average dataset
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Q-value and thus the Q-values for the behavior policy are not underestimated in expectation. Now,
if the policy optimizer finds a policy that attains a smaller learned Q-value than the dataset return,
the policy can always be updated further towards the behavior policy so as to raise the Q-value.
Therefore, Q-values can only decrease when the policy found by CQL is better than the behavior
policy. We formalize this intuition in Appendix A in Theorem A.1. Thus, a low Q-value on (s,a) ∈
D indicates that the Q-function predicts extremely small Q-values on actions sampled from µ(a|s).
Typically, this would mean the highest Q-value actions a at a state s ∈ D are those sampled from the
offline dataset, drawn from the behavior policy. Thus, policy optimization, which aims to maximize
the Q-value, would make π(a|s) closer to the behavior policy πβ(a|s) on s ∈ D.

Which training checkpoint is likely to attain the best policy performance? Tracking overfitting
in supervised learning is important for selecting the best-performing checkpoint, before overfitting
becomes severe. Analogously, we can compare the average dataset Q-value across different check-
points within the same run to pick the best policy. Since CQL aims to increase the average dataset
Q-value (Equation 1), we would expect Q-values to initially increase, until learning starts to overfit
and the average dataset Q-value starts decreasing. We should therefore select the latest checkpoint
that corresponds to a peak in the estimated dataset Q-value. A visual illustration of this idea is shown
in the figure on the previous page, where the checkpoint marked by the green line is recommended
to be chosen. In summary, (a) to detect overfitting we can track:

Metric 3.1 (Overfitting). A low average data Q-value Es,a∼D[Qθ(s,a)] that decreases with
more gradient steps on Equation 1 indicates that the offline RL algorithm is overfitting.

and (b) further, given a run that exhibits overfitting, our principle for policy selection is given by:

Guideline 3.1 (Policy selection). If a run overfits (per Metric 3.1), select the checkpoint that
attains the highest average dataset Q-value before overfitting for deployment.

Finally, for actor-critic algorithms [18] that update the actor slower than the critic, the next policy
checkpoint after the peak in the average dataset Q-value appears must be selected. In most of our
experiments, we find that simply utilizing the policy checkpoint at the point of the peak in the Q-
value also leads to good results making this a rare concern, but in some cases, utilizing the next
checkpoint after the Q-value peak performs better empirically.

Detecting underfitting in CQL. Next, we turn to devising a procedure
to detect underfitting. As summarized in Table 1, underfitting occurs
when the RL algorithm is unable to minimize the training objective in
Equation 1 effectively. Therefore, large values for the TD error, the CQL
regularizer, or both imply underfitting. A large value for the CQL reg-
ularizer, R(θ), indicates an overestimation of Q-values relative to their
true value [2] and thus, unlike the overfitting regime, we would not ex-
pect the average learned Q-value to decrease with more training. Thus, one approach to predict
underfitting is to track both the TD error, LTD(θ), and the CQL regularizer, R(θ), and check if the
value of even one of these quantities is large. More discussion is provided in Appendix A.

How do we determine if the TD error and the CQL regularizer are “large”? In order to determine
if the error of a particular run is large, we can rerun the base CQL algorithm but with models of
higher capacity, which does not necessarily correspond to the function approximator size, as we
will discuss in Section 4. For each model, we record the corresponding training errors and check if
the training TD error and CQL regularizer value are reduced with capacity increase. If increasing
capacity leads to a reduction in the loss without exhibiting the overfitting signs described previously,
then we are in an underfitting regime. Another approach to answer the question is to utilize the value
of the TD error (LTD(θ)) and the task horizon (1/(1−γ)) to estimate the overall error in the learned
Q-values against the actual Q-value, which is equal to LTD(θ)/(1−γ) [23] (see Appendix A). If this
overall error spans the range of allowed Q-values on the task – which could be inferred based on the
structure of the reward function in the task – then we can say that the algorithm is underfitting.

Metric 3.2 (Underfitting). Compute the values of the training TD error, LTD(θ) and CQL
regularizer,R(θ) for the current run and another identical run with increased model capacity.
If the training errors reduce with increasing model capacity, the original run was underfitting.
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4 Addressing Overfitting and Underfitting in Conservative Offline RL
The typical workflow for supervised learning not only identifies overfitting and underfitting, but
also guides the practitioner how to adjust their method so as to alleviate it (e.g., by modifying
regularization or model capacity), thus improving performance. Can we devise similar guidelines
to address overfitting and underfitting with conservative offline RL? Here, we discuss some ways to
adjust regularization and model capacity to alleviate these phenomena.

Capacity-decreasing regularization for overfitting. As we observed in Section 3, the mechanism
behind extremely low Q-values on the dataset is that CQL training minimizes Q-values on actions
sampled from µ(a|s). Two possible approaches to preventing over-minimization of these values are
(1) applying regularization such as dropout [24] on Q-function layers, similar to supervised learning,
and (2) enforcing that representations of the learned Q-function match a pre-specified target for all
state-action tuples. For (2), we can apply techniques such as a variational information bottleneck
(VIB) [25, 26] regularizer on the learned representations, φ(s). Formally, let (s,a) denote a state-
action pair. Instead of predicting a deterministic φ(s) ∈ Rd (Figure 10), we modify the Q-network
to predict two distinct vectors, φm(s) ∈ Rd and φΣ(s) ∈ Rd, and sample φ(s) randomly from
a Gaussian centered at φm with covariance φΣ, i.e., φ(s) ∼ N (φm(s), diag(φΣ(s)). VIB then
regularizes N (φm(s), diag(φΣ(s)) to be close to a prior distribution, N (0, I):

min
θ
LCQL(θ)+βEs∼D

[
DKL

(
N (φm(s), diag(φΣ(s)))

∣∣∣∣ N (0, I)
)]

(VIB regularizer), (3)

Guideline 4.1. To address overfitting, we recommend using some form of capacity-decreasing
regularization on the Q-function, such as dropout or the VIB regularizer shown in Equation 3.

Capacity-increasing techniques for underfitting. To address underfitting, we need to increase
model capacity to improve optimization of the training objective. Analogous to supervised learning,
model capacity can be increased by using more expressive neural nets (e.g., ResNets [27], trans-
formers [28]) for representing the learned policy. We use ResNets in our experiments (Figure 10).
However, the RL setting presents an additional challenge with capacity: while larger models in
principle have more capacity, recent work [29, 21, 22] has shown that utilizing larger networks to
represent Q-functions does not always improve its capacity in practice, because TD-based RL meth-
ods introduce an “implicit under-parameterization” effect that can result in aliased (i.e., similar)
internal representations for different state-action inputs, even for very large neural networks that
can express the true Q-function effectively. To address this issue, these works apply a “capacity-
increasing” regularizer to Q-function training. For instance, we can use the DR3 regularizer [22],
which penalizes the dot product of φ(s) and φ(s′) for a transition (s,a, s′) ∈ D, and hence reduces
aliasing. This objective is given by:

min
θ
LCQL(θ) + βEs,a,s′∼D

[∣∣φ(s)>φ(s′)
∣∣] (DR3 regularizer [22]), (4)

Guideline 4.2. To address underfitting, we recommend using some capacity-increasing regu-
larization on the Q-function and the policy either in conjunction or separately. Examples: (1)
bigger policy networks (e.g., ResNets), (2) DR3 regularizer on the Q-network.

5 Evaluation of Our Workflow Metrics and Protocols in Simulation

Figure 2: Simulated domains [3] we use.

Next, we empirically validate the workflow proposed in
Sections 3 and 4 on a suite of simulated robotic manipu-
lation domains that mimic real-robot scenarios, from im-
age observations with sparse binary rewards. We will ex-
amine how applying the workflow in Section 3 to detect
overfitting or underfitting and then utilizing the strategies
in Section 4 affects the performance of offline RL meth-
ods. An improved performance would indicate the effi-
cacy of our workflow in making successful design decisions without any online tuning.

Experimental setup. We use the environments from Singh et al. [3] to design offline RL tasks and
datasets that we use for our empirical analysis. We consider two tasks: (1) a pick and place task and
(2) a grasping object from a drawer task. Examples of trajectories in both of these simulated domains
are shown in Figure 2 and are detailed in Appendix D. Briefly, the pick and place task consists of
a 6-DoF WidowX robot in front of a tray with an object. The goal is to put the object inside the
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Figure 3: Policy performance (Top) and
average dataset Q-values of CQL (bot-
tom) with varying number of trajectories.
Vertical bands indicate regions around the
peak in average Q-value and observe that
these regions correspond to policies with
good actual performance.

tray. A non-zero reward of +1 is provided only when the
object has been placed in the box. The offline dataset
for this task consists of trajectories that grasp an object
with a 35% success and other trajectories that place an
object with a 40% success. Our second task is a grasp-
ing from drawer task where the WidowX robot is placed
in front of a drawer and multiple objects. The robot can
open or close the drawer, grasp objects from inside the
drawer or on the table, and place them anywhere in the
scene. The goal is to close the top drawer, then open the
bottom drawer and take the object out. Only if the object
has been taken out, a reward of +1 is obtained. The offline
dataset consists of trajectories with a 30-40% success rate
for opening and closing a drawer and other trajectories
with only 40% placing success. We use α = 1.0 for CQL
training in all experiments, which is directly taken from
prior work [3], without any tuning. However, too low or
too high α values will inhibit the effectiveness of regu-
lar CQL and we first need to tune α as discussed in Ap-
pendix G. More details are provided in Appendix D.

Scenario #1: Variable amount of training data. Our first scenario consists of the simulated tasks
discussed above with a variable number of trajectories in the training data (50, 100, 500, 10000). We
run CQL and track metrics 3.1 and 3.2 in each case. Observe in Figure 3 (bottom) that with fewer tra-
jectories, the average dataset Q-value Es,a∼D[Qθ(s,a)] first rises, and then drops. This matches the
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Left: CQL Regularizer Right: Mitigating Overfitting with VIB

CQL

CQL + VIB

Figure 4: Left: CQL regularizer attains low val-
ues, especially with 50 and 100 trajectories in the
pick and place task, Right: Using VIB mitigates
overfitting, giving rise to a stable trend in Q-values
and better performance which does not degrade
with more training steps.

description of overfitting in Section 3. Observe in
Figure 4 (left) that, at the same time, the value of the
CQL regularizer is very low, which is not consistent
with what we expect of underfitting. Thus, we can
conclude that these conditions exhibit overfitting, es-
pecially with 50 and 100 trajectories. The vertical
dashed lines indicate the checkpoints that would be
selected for evaluation per Guideline 3.1. We fur-
ther visualize the performance of the chosen check-
points against the actual return of each intermediate
policy in Figure 3 (top). Note that this value is ob-
tained by rolling out the learned policy, and would
not be available in a realistic offline RL setting, but is
provided only for analysis. Selecting the checkpoint
based on Guideline 3.1 leads us to select a model
with close to the peak performance over the training
process, validating the efficacy of Guideline 3.1.

Since we detected overfitting by following our work-
flow, we now aim to address it by using the VIB
regularizer in the setting with 100 trajectories. As
shown in Figure 4 (right), applying this regularizer not only alleviates the drop in Q-values after
many training steps, but allows us to pick later checkpoints in training which perform better than
base CQL on both the tasks. This validates that overfitting, as detected via our workflow, can be
effectively mitigated by decreasing capacity, in this case by using VIB. We evaluate dropout, `1 and
`2 regularization schemes in Appendix J.

Scenario #2: Multiple training objects. Our second test scenario consists of the pick and place
task, modified to include a variable number of object types (1, 5, 10, 20, 35). Handling more objects
requires higher capacity, since each object has a different shape and appearance. In each case, CQL
is provided with 5000 trajectories. Following our workflow from Section 3, we first compute the
average dataset Q-value and the training TD error. We observe in Figure 5 that, unlike in Scenario
#1, Q-values do not generally decrease when trained for many steps, suggesting that the Q-function
is likely not overfitting. To check for underfitting, we visualize the training TD error and find that,
with 10, 20 and 35 objects, TD error magnitudes are in the range of [1.0, 2.0], which suggests a
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overall Q-value error of [30.0, 60.0] since the task horizon is 30. On an absolute scale, this error
magnitude is large: since the rewards are 0/1, the range of difference between actual Q-values for
any two policies is at most 30, which suggests that the error magnitude in the runs in Figure 5
are high. Hence, we conclude that this scenario generally exhibits underfitting with more objects.
Indeed this trend is reflected in the policy performance that we plot for analysis in Figure 5: note
that the policy return decreases with an increased number of objects, and the policy performance
initially increases and saturates at a suboptimal value.
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Figure 5: Performance (left), TD error (middle) and average dataset Q-
values (right) for the pick and place task with a variable number of objects.
Note that while the learned Q-values increase and stabilize, the TD error values
in scenarios with more than 10 objects are large (1.0-2.0). Correspondingly, the
performance generally decreases as the number of objects increases.
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Figure 6: Correcting un-
derfitting by applying our
workflow for 35 objects.

To address underfitting in the multi-object case, we apply the proposed capacity-increasing measures
to the 35-object task (results for 10 and 20 object settings are in Appendix I). We use a more expres-
sive ResNet architecture for the policy and the DR3 regularizer for the Q-function together. Observe
in the figure on the right that this combination (shown in red) improves policy performance in this
setting (compared to green), which validates our workflow protocol for addressing underfitting.

6 Tuning CQL for Real-World Robotic Manipulation

Figure 7: Real-world tasks. Successful rollouts
of CQL tuned with our workflow from Sections 3
& 4. Top to bottom: Sawyer lid on pot, Sawyer
drawer opening, WidowX pick-place task.

Having evaluated the efficacy of our proposed work-
flow in simulation, we now utilize our workflow to
tune CQL for real-world robotic manipulation. We
test in two setups that require the robot to learn from
sparse binary rewards and image observations. The
settings differ in robot platform, task specification,
and dataset size. Additional results and robot videos
are at the following website: https://sites.
google.com/view/offline-rl-workflow

Sawyer manipulation tasks [30]. First, we train a
Sawyer robot in a tabletop setting to perform two tasks: (1) placing the lid onto a pot and (2) opening
a drawer. The robot must perform these tasks in the presence of visual distractor objects, as shown in
Figure 7. We directly use the dataset of 100 trajectories for each task collected by Khazatsky et al.
[30] for our experiments so as to mimic the real-world use case of leveraging existing data with
offline RL. We use four-dimensional actions with 3D end-effector velocity control in xyz-space and
1D gripper open/close action. More details regarding the setup are provided in Appendix D.
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Figure 8: Average Q-value and TD error on Sawyer
tasks as model capacity increases. Q-values increase
over training with lower capacity ruling out overfitting
and increasing model capacity leads to a reduction in
TD error indicating the presence of underfitting.

We run default CQL on these tasks and track
the average Q-value, TD error, and CQL reg-
ularizer value. As shown in Figure 8, the av-
erage Q-value does not decrease over training,
and the TD error (and CQL regularizer shown
in Appendix E.2) is large. Per our discussion in
Section 3, this indicates underfitting. Following
our guidelines from Section 4, we utilize a more
expressive ResNet policy (Figure 10), which in-
creases the number of total convolutional layers
from 3 to 9. We observe that this reduces the
values of both the TD error Figure 8 and CQL
regularizer (Appendix E.2) on both tasks. We
then evaluate the learned policy over 12 trials conducted with different sets of distractor objects,
including ones that are unseen during training. While the policy trained using base CQL is unable
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Figure 9: Q-values (left) and performance of CQL with (middle) and without (right) the variational infor-
mation bottleneck correction for overfitting on the real-world widowX pick and place task. Since the Q-values
start to decrease with more training, our workflow detects that CQL is overfitting. Using our policy selection
guideline (Guideline 3.1) enables us to choose checkpoint 50 marked with the green vertical dashed line (right)
which performs well. Further, addressing overfitting by applying the VIB regularizer stabilizes the Q-values
(brown) which do not decrease unlike base CQL (blue) (left). Finally, applying the VIB regularizer improves
performance and reduces sensitivity to policy selection (middle).

to successfully complete either task even once attaining a score of 0/12 on both tasks, the run that
uses ResNet attains a significantly better success rate of 9/12 on the put lid on pot task and 8/12 on
the drawer opening task, equal to 70.8% success rate on average.

WidowX pick and place task. In our second setting, we tune CQL on a pick and place task with a
WidowX 250 robotic arm, shown in Figure 7. The dataset consists of 200 trajectories collected by
running a noisy scripted policy (Appendix D) with 35% success. We run CQL on this task and track
the average Q-values, which we find initially increase and then decrease (Figure 9 (left; labeled as
“Q-values”)), indicating overfitting. We then evaluate our policy selection scheme, which in this
case suggests deploying checkpoint 50, the immediate checkpoint after the peak in Q-values. To
see if this checkpoint is effective, we evaluate the performance of a few other policy checkpoints
(for analysis only) and plot this performance trend in Figure 9 (right) as a dashed line. Observe
that indeed the checkpoint found by our workflow attains the highest success rate (7/9) compared to
other checkpoints, which only succeed ≤ 4/9 times.

Real-world WidowX pick and place
Method | Epoch 50 75 100 200
CQL 7/9 4/9 4/9 2/9
CQL + VIB 3/9 8/9 7/9 7/9

Table 2: Performance of various policy checkpoints
of CQL and CQL + VIB on the real WidowX pick and
place task (bold entry denotes the checkpoint selected
by our workflow). Note that when overfitting is cor-
rected via VIB, multiple checkpoints perform well.

Since overfitting is detected, we now turn to ad-
dressing overfitting by adding the VIB regular-
izer (Equation 3) during training. As shown in
Figure 9 (left), the Q-values obtained after the
addition of this regularizer (shown in brown; la-
beled “Q-values (VIB)”) are now stable and do
not decrease over the course of training and so
we can choose any policy for evaluation. We
evaluate multiple policies, for visualization pur-
poses only, in Figure 9 (middle), we find that all of them attain a≥7/9 success, comparable or better
than the base CQL algorithm (Figure 9 (right)). This indicates that addressing overfitting not only
leads to some gains in performance but also greatly simplifies policy selection as all checkpoints
perform similarly and well. Table 2 summarizes these results below, where the bold entries denote
the checkpoints found by our policy selection rule. These results indicate the effectiveness of our
workflow in tuning CQL by addressing overfitting and underfitting on multiple real robot platforms.

7 Discussion
While offline RL algorithms have improved significantly, applying these methods to real-world
robotic domains is still challenging due to little guidance on tuning them. In this paper, we devise
a workflow for algorithms such as CQL and BRAC, which consists of a set of metrics and condi-
tions that can be tracked by a practitioner over the course of offline training to detect overfitting
and underfitting, and recommendations to addresses the observed challenges. Applying our work-
flow both in simulation and the real world shows strong performance benefits. While our proposed
workflow is an initial step towards practical robotic offline RL and is based on our best conceptual
understanding of certain offline RL algorithms, these guidelines are heuristic. To some extent this
is unavoidable, since a workflow is a set of guidelines and recommendations, rather than a rigid
algorithm. Regardless of how theoretically justified it is, in the end, its value is determined by its
ability to produce good results. We believe the breadth of tasks considered, which consist of two dif-
ferent real robots and multiple simulated tasks, indicates its broad applicability. However, deriving
theoretical guarantees regarding workflows of this type is an important direction for future research.
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