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Learning Scalable Structural Representations for Link Prediction
with Bloom Signatures

Anonymous Author(s)*

ABSTRACT

Graph neural networks (GNNs) have shown great potential in learn-
ing on graphs, but they are known to perform sub-optimally on link
prediction tasks. Existing GNNs are primarily designed to learn
single-node representations and usually fail to capture pairwise
relations between target nodes, which proves to be crucial for link
prediction. Recent works resort to learning more expressive edge-
wise representations by enhancing vanilla GNNs with structural
features such as labeling tricks and link prediction heuristics, but
they suffer from high computational complexity and limited scal-
ability. To tackle this issue, we propose to learn structural link
representations by augmenting the message passing framework of
GNNs with Bloom signatures. Bloom signatures are hashing-based
compact encoding of node neighborhoods, which can be efficiently
merged to recover various types of edge-wise structural features.
We further show that any type of neighborhood overlap-based
heuristic can be estimated by a neural network which takes Bloom
signatures as input. GNNs with Bloom signatures are provably
more expressive than vanilla GNNs and also more scalable than
existing edge-wise models. Experimental results on standard link
prediction benchmarks show that our proposed model achieves
comparable or better performance than existing edge-wise GNN
models while being 2-121 X faster and more memory-efficient for
online inference.
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1 INTRODUCTION

Link prediction is one of the fundamental tasks in graph machine
learning and has wide real-world applications in network analy-
sis, recommender systems [3, 38], knowledge graph completion
[28, 41], interaction of proteins [27] and drugs [26], and vascular
prediction in neuroscience [21]. Early research [20] investigated
using hand-crafted score functions to measure the neighborhood
similarity between two end nodes for predicting links. These score
functions including Common Neighbor (CN) [2], Jaccard index [13],
Adamic-Adar (AA) [1] and Resource Allocation (RA) [40] are deter-
ministic and localized, often referred as link prediction heuristics.
To incorporate the global structure, node embedding [10, 22] or
matrix factorization-based [24] methods are proposed, which map
each node in the graph into a low-dimensional hidden space. These
vectorized node embeddings preserve certain structural properties
of the input graph that can be used for predicting links. Recently,
graph neural networks (GNNs) [11, 16] have begun to dominate
representation learning on graphs, due to its benefits in combin-
ing node features and graph structures through a message passing
framework [9]. To predict the target link, GNNs are first applied to
the entire graph to obtain the node-wise representation, and then
embeddings of two end nodes are aggregated to predict the likeli-
hood of forming a link. GNNs have shown excellent performance on
node-level tasks, but sometimes only achieve subpar performance
on link prediction, and may even be worse than unsupervised em-
bedding methods or simple heuristics [37, 39].

Multiple studies have revealed the deficiency of directly aggre-
gating node embeddings produced by GNNs as the representation
of a link for prediction [6, 19, 25, 31, 37, 39]: (1) It cannot mea-
sure the overlap between node neighborhoods as link prediction
heuristics do, where [7] proves that GNNs are incapable of count-
ing connected substructures like triangles. (2) It cannot distinguish
target nodes that are isomorphic (e.g. nodes u, w are structurally
symmetric in Fig. 1) within its k-hop induced subgraphs, where
[32] proves that the expressive power of GNNs is bounded by the
1-Weisfeiler-Lehman (1-WL) test. For nodes with isomorphic neigh-
borhood, GNNs map them into the same representation due to
limited expressiveness, while graph embedding methods do not
suffer as their receptive fields are the whole graph. As a node-wise
model, GNNs are incapable of producing effective structural rep-
resentations of target links, which require encoding the pairwise
relation between two given candidate nodes.

Recent studies resort to learning more expressive link represen-
tations through edge-wise models. Two approaches are used to
alleviate the limitations of vanilla GNNs in generating structural
link representations. Coupled: labeling tricks are a family of hand-
crafted and target-link-specific structural features [19, 35, 37, 39, 41].
It injects dependencies between nodes in target links by separately
assigning different node labels based on proximity-based metrics
within their k-hop enclosing subgraphs. Added labels enable the
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model to distinguish links containing isomorphic nodes (breaks the
symmetry) and to learn data-driven heuristics from labeled neigh-
borhoods. For each target link, it appends node labels after raw
features and then runs a GNN to obtain the representation of link-
induced subgraph for prediction (often refers as subgraph-based
models), which significantly outperforms vanilla GNNs on mul-
tiple benchmark datasets but also suffers from high computation
overhead. Decoupled: directly use heuristic-like pairwise features
to generate structural link representations without modifying the
input graph, including high-order neighborhood overlap [36], inter-
section and difference of node neighborhoods [6], and geodesic path
between two end nodes [17]). Detaching structural features from
message passing achieves better scalability, but this simplification
also compromises its capacity and empirical performance.

The emerging challenge in leveraging structural features to yield
more expressive link representations lies in the trade-off between
feature richness and their computation complexity. Structural link
representations is edge conditioned, where the inefficiency and
redundancy of materializing structural features for each target link
makes it no longer feasible for large-scale graphs; directly using
precomputed pairwise features for learning link representations
avoids rerunning GNNs and explicitly constructing structural fea-
tures. Meanwhile, it loses substantial capacity and flexibility for
message passing models to capture some important structural sig-
nals on the graph, as these features are hand-crafted and collapsed
to certain values by fixed score functions (e.g. overlap or difference).

To address the above issues, we propose Bloom Signature, a scal-
able node-wise neighborhood signature for constructing scalable
structural features. It encodes node neighborhoods of different or-
ders into compact bit arrays (termed “signature") through hashing.
By design, Bloom Signature can be preprocessed offline in parallel
once and efficiently merged to recover edge-wise features online,
including a variety of neighborhood overlap-based heuristics. This
property avoids expensive overhead of feature materialization for
each target link in labeling tricks. Meanwhile, unlike manual pair-
wise features, it maintains structural signals from node neighbor-
hoods, allowing for the flexibility to learn more expressive link rep-
resentations and data-driven heuristics. Bloom Signature achieves
a balance between model expressiveness and computational com-
plexity for learning structural link representations. Experimental
results on 5 public benchmark datasets show that its performance is
comparable to or better than existing edge-wise models, achieving
121 X speedup over formerly SOTA model SEAL and another 2x
speedup over the fastest one.

Our main contributions can be summarized as follows:

o We identify key bottlenecks in applying structural features for
learning expressive structural link representations and propose a
decoupling mechanism to address the computational challenges
of pairwise feature construction while maintaining model ex-
pressiveness and empirical performance;

e A scalable hashing-based structural feature, Bloom Signature, is
proposed to augment the message passing framework of GNNs,
which is a compact encoding of node neighborhoods that can be
efficiently merged to recover edge-wise structural features for
online training and inference on large-scale graphs.

e We provide error bounds for the estimation of neighborhood
intersections from Bloom signatures and further show that any

Anon.

Double Radius Node Labeling (DRNL) Induced 1-hop Computation Graph of GNNs
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Figure 1: GNNs cannot correctly predict whether u is more
likely linked with v or w, because v and w have the same
node representation without additional information (colored
nodes only, without DRNL labels or encoding of shortest
path distances within 3 hops). Representations with distance-
based labels added are more expressive to distinguish these
two pairs of link (u, v) and (u, w).

type of overlap-based heuristics can be recovered from neighbor-
hood signatures via neural networks with accuracy guarantee.

2 PRELIMINARIES AND RELATED WORK

Notations. Let G = (V, &, X) be a undirected graph of N nodes
YV ={1,2...,N} and E edges & C V X V with node features of
X € RNXF Let A € RN*N be the adjacency matrix of G, where
Ayp = 11if (u,0) € E and Ay, = 0 otherwise. The degree of node
u is deg(u) = Zé\jzl Ayy. We denote the k-hop neighborhood of
node u as N¥ (u), which is the set of all nodes that is connected to
u with the shortest path distance k. The kth-order neighborhood
overlap, union and difference between node u and v are given by
NE@) 0 N5 ), N*(w) U N*(0), and N* (1) = N*(0). Let H :
V — [n] be a pairwise independent hash function, i.e. Pr(H (u) =
hi A H(v) = hy) = 1/n? for hy,hy € [n],u #vand u,v € V.

Link Prediction Heuristic. Common heuristics for link predic-
tion is neighborhood overlap-based with varieties in score func-
tions to measure the similarity. (1) 1-hop neighborhood: common
neighbor (CN) ScN(w,0) = Xive N(u)nN(v) 1, Tesource allocation
(RA) Sra (4,0) = Xswe N(u)n N (o) 1/deg(w), and Adamic-Adar (AA)
Saa(w,0) = Yye N(u)NN(v) 1/10g deg(w). (2) high-order neigh-
borhood: Neo-GNN [36] utilizes a weighted overlap with node
degrees in different orders as Sneo (4, v) = Zzlzl 22:1 (ﬁk1+k2_z .
2iwe NE1 (W) N2 (v) f(deg(w))), where f8 is a hyper-parameter and
f is a learnable function of degree features. BUDDY [6] uses k?
high-order overlap and 2k difference features as Spuppy (4, v) =
{2 we Nk () Ak (o) LKL K2 € [T e pk (w)-Uk,_ N¥ (o) b
ZWENkZ(v)—Ull:,:lNk'(u) 1|k, k2 € [k]}, where || is concatenation.

Message Passing Neural Network. Message passing neural net-
work (MPNN) [9] is a generic framework of GNNs, which learns
node representations via iterative aggregations of their local neigh-

borhoods in the graph. To compute the message mz(,l) and the hidden
state hg,l) for each node v € V at the [-th layer (I = 1,2,...,L):

mg,)  AGG ({¢(z) (hgl—l)’h%—l)) lw e N(u)}) (1)
K=o (D md) @

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

Learning Scalable Structural Representations for Link Prediction with Bloom Signatures

Observed Graph Bloom Signatures Pairwise Structural Features
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Figure 2: Bloom Signature: A scalable hashing-based struc-
tural feature of node neighborhoods, which can be used to
recover neighborhood overlap-based heuristics or learn data-
driven pairwise relations for structural link representation.

where ¢, o are learnable functions of message and update, respec-
tively. AGG is a local permutation-invariant aggregation function
(e.g. sum, mean). The initial node representation is set as hﬁ,‘)) =Xy
The final layer output gives the node representation h, (omits the
superscript (L) for simplicity). To predict the likelihood between
two candidate nodes u, v to form a link (noted as A; ) from repre-
sentations produced by MPNN:

Ayp = sigmoid(MLP (hy, o hy,)),

where o is the decoder for link prediction, such as dot product,
Hardamard product or concatenation.

Definition 2.1 (Li et al., Srinivasan and Ribeiro). The most expres-
sive structural representation of link gives the same representation
if and only if two links are isomorphic (symmetric, on the same
orbit) in the graph.

Structural Features for Link Prediction. From Def. 2.1, a most ex-
pressive structural representation will distinguish all non-isomorphic
links, where simply aggregating node representations generated
from GNN:ss fails to do so. GNNs map isomorphic nodes into the
same representation as its expressive power is upper-bounded by
the 1-WL test. As Fig. 1 shown, such behaviour would lead to two
totally unrelated nodes u, w and two neighboring nodes u, v shar-
ing the same link representations, just because the tail nodes w
and v have the isomorphic neighborhood. Structure features are in-
troduced to break symmetries in their neighborhood and inject
dependency between target end nodes (u,v) through distance-
based functions dis(w), Yw € A% (u) U A% (v): Distance Encoding
[19] adopts shortest path distance (SPD) or random walk land-
ing probability (RW); Double Radius Node Labeling (DRNL, [37])
dis(w) = SPD(u, w) + SPD (v, w), and Relative Positional Encoding
[33, 34] dis(w) = {RW(u, w)||RW (v, w)}. It has been proven that a
sufficiently expressive GNN with structural features like labeling
tricks or link prediction heuristics can learn the most expressive
structural representation for links [30].

3 BLOOM SIGNATURES FOR STRUCTURAL
LINK REPRESENTATION LEARNING

3.1 Breakdown Pairwise Structural Features

Using structural features for link representation learning is justified
by theoretical foundations and superior empirical performance.
However, the successfully deployed structural features are pairwise
and edge-specific. Meanwhile, it must be computed before being

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Table 1: Unified Formulation of Node Neighborhood-based
Structural Features

Feature Neighborhood Set operator & f(x) d(-)
CN k=1 N(u) N N(v) x 1
RA k=1 N(u) N N(v) x 1/deg(w)
AA k=1 N(u) N N(v) x 1/log deg(w)
Neo-GNN kiky > 1 NFEL () N NF2 (o) MLP deg(w)
Nk () 0 NR2 (o)
BUDDY ki,ky > 1 K © ¥ X 1
N™(u) - U, N* ()
Labeling Trick k>1 NE(u) U N (0) MPNN dis(w)

fed to the model each time during training and inference, which
loses the advantage of being easily parallelizable like node features
typically processed in GNNs. The challenge of learning structural
link representation is how to obtain high quality pairwise structural
features at low cost.

By observation, neighborhood intersection-based structural fea-
tures including common link prediction heuristics, high-order over-
lap and difference features share the common format as

Swoy= D f@dw) 3)

we Nk (u)WNk ()

We unify them by defining a function d : V — R* and a learn-
able function f. Table 1 summarizes the unified formulation for
heuristics and high-order pairwise features. Note that, the labeling
trick implicitly follows the formulation in Eq. (3) by first labeling
nodes via a predefined distance function dis(-) within the union of
two k-hop neighborhoods and then feeding those node labels for
message passing.

From Eq. (3), node neighborhood is essential to obtaining pair-
wise structural features, and set operations constitute the main
computational cost. To get node labels, one common trick, DRNL
requires two traversals over the union neighborhoods, with a com-
plexity of O(d¥) where d is the average degree. While heuristic-like
pairwise features are manually crafted to obtain certain topological
statistics (intersection, difference, union) from node neighborhoods.
Eliminating node neighborhoods and detach them from message
passing do reduce the complexity, but this simplification greatly
compromises the model’s ability to capture any additional struc-
tural signals not included in the computed statistics.

One solution is to decompose structural features into carefully
designed node neighborhood representations, so that pairwise fea-
tures can be efficiently recovered from them online. Such a design
brings three main benefits: (1) it maintains the topological infor-
mation of the neighborhood while providing more richness and
flexibility; (2) it decouples the dependence on edges as node-wise
representations can be preprocessed offline; (3) there are low-cost
substitutes of set operations for reconstructing pairwise features
from compact neighborhood representations. However, it is pro-
hibitively expensive to store and operate on the complete node
neighborhood, not to mention it is sparse and of varying sizes. An
ideal representation of node neighborhood should be space efficient
while being able to produce an accurate estimation of pairwise
features through lightweight operations during online inference.

3.2 Encode Node Neighborhood via Hashing

We propose Bloom Signature, a compact, merge-able node neighbor-
hood encoding, inspired by Bloom filter [4] which is a probabilistic
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data structure for set membership testing. Bloom Signature encodes
a node’s neighborhood as a short-length bit array (“signature") via
random hashing without explicitly storing the neighbors. The ob-
tained neighborhood signatures contain provably sufficient struc-
tural information to accurately estimate pairwise features, such as
intersection and cosine similarity.

For node u, its neighborhood N (u) can be represented by a
multi-hot N-length binary array u € {0, 1}V, where u[w] = 1{w €
N (u)} (set the w-th bit to 1 if node w exists in N (u) and 0 other-
wise). Clearly, such a long and dense representation is impractical,
but its sparsity can be exploited to reduce the size of u while main-
taining the property of recovering node neighborhood statistics
and pairwise structural features. By using a hash function H to ran-
domly map elements from {1,...,N} to {1,...,n} where n < N,
the Bloom Signature s, € {0,1}" is a compact encoding of the
node neighborhood N (u):

sulil=\/ il @
i:H (i)=j

where \/ denotes the bit-wise OR operator. s, refers as the signature
of N(u) with reduced size of n while approximately preserving its
neighborhood information. Note that Bloom Signature is a special
case of Bloom filters [4] with one hash function. Rather than using
it for set membership testing, Bloom Signature encodes node neigh-
borhoods that contain sufficient structural information from which
rich features can be constructed and learnt for link prediction. The
benefits of Bloom Signature are threefold:

o Informative: pairwise heuristics such as neighborhood overlaps
can be accurately recovered from Bloom signatures (Sec. 3.3);

e Flexible: by feeding Bloom Signature into neural networks, data-
driven pairwise features can be learned end-to-end (Sec. 3.4);

e Expressive: MPNN is provably more powerful by enhancing it
with Bloom Signature (Sec. 3.5).

3.3 Recover Pairwise Heuristics from
Neighborhood Signatures

After obtaining the Bloom Signature of each node, one can recover
neighborhood overlap-based heuristics from a pair of Bloom sig-
natures with accuracy guarantee. This section describes how to
reconstruct common neighbors, cosine similarity, and containment
score between two neighborhoods by simply merging their corre-
sponding Bloom signatures. We first show how to obtain statistics of
node neighborhood N, from single signature s, and then introduce
the merge operation of s, s, for pairwise features.

Since the hash function H is uniformly random, we can estab-
lish the relation between the number of non-zeros in s, and the
cardinality of My, by E (|sy|/n) =1—-(1— l/n)lN(“)l, where s, has
a size of n with |s,|-many non-zero bits. Thus, the size of node u’s
neighborhood can be estimated from the signature s,, as

IN ()] ~ iy :1n(1— M)/lnp, p=1- % c(0,1). (5

n

The error bound of the above cardinality estimation of N, is
given by Lemma 3.1, and its detailed proof is provided in Appx. A.2.

Anon.

Lemma 3.1. With probability at least 1 — &, it holds that

NG| = ] < \Jamlog 3, ©

where m is the sparsity of the binary vector u representing N (u).

Given a pair of n-size signatures sy, sy, their inner-product pre-
serves original neighborhood statistics after random mapping [5]:
B (LHH) = (1= pIN@IY Z (1 = pIN@I) 4 HIN@HING) = IN@AN )]
This allows us to express the cardinality (equivalently, common

neighbors) of two neighborhood intersection N (u) "N (v) in terms
of the inner-product of two Bloom signatures sy, s, as

) In (pﬁu +pﬁv + <5ur,lsv> _ 1)
IN(W)NN (0)] = Sen(u, 0) = Ay+iy—

@)
where iy, fiy are obtained from Eq. (5) and p = 1 — 1/n. We further
provide the quality analysis of the above intersection estimation
and gives the error bound in Theorem 3.2 (detailed in Approx. A.2).

Inp

Theorem 3.2. With probability at least 1 — 34, it holds that

IN (@) N N ()] = Sen(,0)] < 6+ 74 [2m1n g (8)

where N-dim binary vectors of N'(u) and N (v) have the sparsity
at most m with probability at least 1 — §”.

The inner-product of two Bloom signatures can be efficiently
obtained by “merging” them in parallel: bit-wise AND operations
followed by a summation. From Egs. (5) and (7), we can accurately
estimate the cardinality of a node’s neighborhood and pairwise in-
tersections, which forms the basis of neighborhood overlap-based
heuristics. Below shows how to generalize this beyond intersection
and take into account the neighborhood size of each node. Use
cosine similarity Scos(u,v) = I[N (w) N N (0)|/+/IN @)||N(v)| and
containment score Scont(4,v) = [N (u) N N(0)|/IN(u)| as an ex-
ample, we can estimate them from 7y, i, and §CN obtained earlier
as

Sen(u,0)

A A Sen(w, v
Secos (U, v) = — Scont(4,0) = #

©)
nyny ny

Note that cosine similarity is symmetric, while containment score
is asymmetric, and they both provide fine-level details of the topol-
ogy in the original node neighborhood. The compactness of Bloom
signatures enables us to encode higher-order (i.e. multi-hop) neigh-
borhoods of nodes, which can contain useful features for link pre-
diction models.

3.4 Learning Data-driven Pairwise Relations

Common link prediction heuristics can be recovered by simply
merging a pair of Bloom signatures. However, most pairwise heuris-
tic are hand-crafted and thus inflexible. The summation in Eq. (3)
further collapses the structural information of node neighborhoods
into some statistics, making it hardly learnable. Ideally, we would
like to capture pairwise relations in an end-to-end manner. For
example, SEAL [37] directly modifies the input graph and attaches
link-specific distance features for message passing. However, the
coupling between node labels and target links makes its deployment
extremely expensive in practice. Although some simplifications
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Table 2: Complexity comparison. hg, hy: the complexity of hash operations in Subgraph Sketch and Bloom Signature, respectively.
F: the dimension of node representations. k is the number of hops for induced subgraphs (node neighborhood). h is the complexity
of hashing-based methods to obtain pairwise structural features. When predicting the g target links, time complexity of existing
models comes from two parts: message passing and link predictor.

Complexity GNN SEAL Neo-GNN BUDDY Ours
Preprocessing 1 1 1 k|E|(d + hs) kNhy,
Message Passing NdF + NF? 0 NdF + NF? NdF NdF + NF?
Link Predictor qF? q(d** F + dkF2)  q(d* +F%)  q(h+F?) g(h+F?)

[17, 33, 34, 36] of labeling tricks have recently been proposed, they
still suffer from the high complexity of the set operation W used to
connect neighborhoods of two end nodes.

Bloom signatures encode node neighborhoods in a compact and
aligned format that carries provably sufficient structural informa-
tion to approximately extract pairwise relations without involving
any set operations. This property enables neural networks to cap-
ture important signals in node neighborhoods and identify data-
drive pairwise heuristics from it but at much lower cost. Theorem
3.3 shows that neighborhood overlap-based heuristics can be re-
covered to arbitrary precision by a neural network (such as MLP)
taking a pair of Bloom signatures as input (full proof provided in

Appx. A.3).

Theorem 3.3. Suppose S(u,v) is a neighborhood intersection-
based heuristic as in Eq. (3) with the maximum value of d(-) as
dmax = Maxyeq d(w). Let p, = (1 - 1/n)|N(“)| denote the false
positive rate of node u for set membership testing in the Bloom
signature s;,. Then, there exists an MLP with one hidden layer of
width N and ReLU activation, which takes the Bloom signatures of
u and v as input and outputs S(u,0) = MLP(sy,, sp), such that with
probability 1, §(u, v) — S(u,v) > 0; with probability at least 1 — 36,
it holds that

S(u,0) — S(u,0) <

O (= A (N [
(10)

where Sc = V\(N(u) U N(v)), Sp, = N(u)\N(v), and Sp, =
N(@)\N (uv).

In fact, the above result can be applied to any pairwise relations
of node neighborhoods following the form of Eq. (3), including
set difference and union with theorems given in Appx. A.4. The
approximation error here is proportional to the false positive rate
of Bloom signatures, which means any neighborhood intersection-
based heuristic can be exactly recovered if p,, = 0. For commonly
used heuristics such as CN, AA, and RA, dpax = 1.

Other hashing-based methods. Subgraph sketch [6] utilizes a com-
bination of MinHash and HyperLogLog to estimate the intersection
and complement of high-order node neighborhoods. These hand-
crafted pairwise features are used as input to MPNN or MLP for link
prediction, obtaining comparable results to labeling tricks. However,
subgraph sketch either suffers from high storage and computation
overhead (coupled with message passing) or has limited expres-
siveness (decoupled, only using MLP). The two hashing algorithms

employed require hundreds of repetitions and a large memory bud-
get to achieve reasonable estimation accuracy for pairwise features
(see Fig. 3 in Sec. 4.3 for estimation quality study). Moreover, the
sketch of subgraphs can only be used to estimate to the statistics
of neighborhood intersection and complement, which is inflexible
and substantially limits the richness of structural information. In
comparison, Bloom Signature captures node membership of en-
coded neighborhoods, enabling more powerful models to recover
any kind of neighborhood overlap-based heuristics (such as RA
and AA), or learn data-driven pairwise relations. Both of which are
unachievable by subgraph sketch.

3.5 Boost Message Passing with Scalable
Pairwise Structural Features

Putting all the pieces together, we propose a new scalable MPNN
framework augmented by Bloom signatures, which achieves a trade
off between efficiency and expressiveness of learning structural
link representation. It inherits the rich capacity from pairwise struc-
tural features while decoupling from specific edges, enabling online
inference. In particularly, we add Bloom signatures as edge fea-
ture/weight to augment the message function and/or as additional
pairwise features to the link predictor by

B = 0 (1,466 ({00 (1,0, e0so) I € M)

Aup = sigmoid (MLP (hu o hy||S(u, 0))) (12)

where ew,o = ¥ ({swllso}) or Y (lIsw —ssll), and ¥f, Yy are neural
encoders such as MLP. $(u, 0) can be any estimated heuristics or
learnable data-driven pairwise relations.

Expressivity of MPNN with Bloom Signature. By introducing Bloom
Signature, the new framework acts as a more powerful and flexible
feature extractor for pairwise relations while enjoying tractable
computational complexity of MPNN. As a result, it is more ex-
pressive than vanilla GNNs: (1) can measure the overlap between
node neighborhoods via recovering intersection-based heuristics
from bloom signatures; (2) can avoid node ambiguity via regulated
message passing with bloom signatures and recovered pairwise
structural features.

Complexity Comparison. Table 2 summarizes the computation
complexity of vanilla and existing edge-wise GNN models for link
prediction. Both BUDDY [6] and Bloom Signature are hashing-
based methods, which require preprocessing to obtain k-hop sub-
graph sketches in O(k|E|hs) and node neighborhood signatures
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Table 3: Summary statistics for evaluation datasets.

Dataset Type #Nodes #Edges d Split(%)
citation2 Homo./Social. 2,927,963 30,561,187 1044  98/1/1
collab Homo./Social. 235,868 1,285,465 5.45 92/4/4
ddi Homo./Drug 4,267 1,334,889 312.84 80/10/10
ppa Homo./Protein 576,289 30,326,273 52.62 70/20/10
vessel Homo./Vesicular 3,538,495 5,345,897 1.51 80/10/10

in O(kNhy). Note that, hashing operations in BUDDY requires
hundreds of samples and large storage to generate reasonable esti-
mation, while Bloom Signature only need bit-wise operations and
easily parallelizable algebraic operations with accuracy guarantee.
Vanilla GNN, Neo-GNN [36] and MPNN with Bloom Signature share
the same complexity for message passing. BUDDY precomputes the
node feature propagation with O (k|E|d) and takes another O(NdF)
to obtain node embeddings. For predicting g target links, vanilla
GNN only needs to call MLP with the cost of O(qF?). SEAL [37]
runs MPNN for each link-induced k-hop subgraph of size O(d¥),
resulting in the total complexity of O(q(d**! + d¥F?)). Neo-GNN
needs additional O(d¥) to compute pairwise features before feeding
node embeddings into link predictor. To obtain pairwise structural
features, both BUDDY and Bloom Signature need extra operations
on preprocessed node-wise features with complexity of h.

4 EVALUATION
In this section, we aim to evaluate the following questions:

e How scalable is Bloom Signature compared to SOTA link predic-
tion models, including hashing-based and other simplification of
labeling tricks?

e Can MPNN with Bloom Signature provide prediction perfor-
mance comparable to existing edge-wise baselines?

e How is estimation quality and efficiency of Bloom Signature?

4.1 Experiment Setup

Datasets Table 3 summarizes the statistics of datasets used to
benchmark different models for link prediction. Five homogeneous
networks are selected from the Open Graph Benchmark (OGB)
[12] at different scales (4K ~ 3.5M nodes and 1.2M ~ 30.6M edges),
various densities (average degree d from 1.51 to 312.84), and with
distinguishing characteristics: popular social networks of citation -
citation2 and collaboration - collab; biological network of pro-
tein interactions - ppa, drug interactions - ddi and brain vessels
- vessel. Social networks play a key role in network analysis of
modeling real-word dynamics. Recently, biological networks are
emerging a new data source of network science research. Particu-
larly, understanding the interaction between proteins, drugs and
the structure of brain vessel network are of unique significance for
scientific discovery [14], which can be used for new drug discovery
and early disease detection of neurological disorders.

Baselines We consider both classic approaches and state-of-the-
art GNN-based models: (1) Link Prediction Heuristics: Common
Neighbors (CN) [2], Adamic-Adar (AA) [1], and Resource Allocation
(RA) [40]. (2) Embedding Methods: Matrix Factorization (MF)
[24], Multi-layer Perceptron (MLP) and Node2Vec [10]. (3) Vanilla
GNNs: Graph Convolutional Network (GCN) [16], GraphSAGE

Anon.

[11] and Graph Attention Network (GAT) [29]. Edge-wise GNNss:
SEAL [37, 39], Neo-GNN [36], GDGNN [17], BUDDY [6].

Settings Data split of OGB is used to isolate validation and test
links from the input graph. We adopt official implementations of all
baselines with tuned parameters that match their reported results
as [18]. All experiments are run 10 times independently, and we
report the mean performance and standard deviation.

Evaluation Metrics Ranking-based metrics (i.e. mean reciprocal
rank (MRR) and Hits@K, K € {20, 50, 100}) and the area under the
curve (AUC) are used for standard benchmark evaluation.

Environment We use a server with two Intel Xeon Gold 6248R
CPUs, 1TB DRAM, and two NVIDIA A100 (80GB) GPUs (only one
GPU is used per model). Codebase is built on PyTorch 1.12, PyG
2.3, DGL 1.0.2, and numba 0.56.

4.2 Prediction Performance Analysis

Table 4 shows the prediction performance of different methods.
On these five link prediction benchmarks, edge-wise models sig-
nificantly outperform both vanilla GNNs and embedding-based
models, especially for two challenging biological networks ppa and
vessel. Link prediction in biological networks relies on pairwise
structural information that vanilla GNNs have limited expressive-
ness to capture. Among edge-wise models, MPNN with Bloom
Signature achieves comparable or better performance than BUDDY
(hashing-based) and other simplified labeling tricks including Neo-
GNN and GDGNN, and consistently outperforms SEAL (formerly
SOTA), which validates the effectiveness of our proposed compact
neighborhood encoding. Note that unlike BUDDY which explicitly
rely on manual features such as CN and RA, our model can cap-
ture richer and complex pairwise structural relations from Bloom
Signature, which results in performance exceeding common link
prediction heuristics on all five datasets.

4.3 Quality Analysis of Hashing-based
Estimation for Pairwise Heuristics

To measure the quality of hashing-based methods, Bloom Signa-
ture and Subgraph Sketch are compared on a variety of randomly
generated graphs and real-world networks for estimating pairwise
structural features. The key metric is the trade-off between es-
timation accuracy and memory cost of hashing. We choose the
cardinality of 1-hop and 2-hop neighborhood intersection as the
estimated statistic, since it is essential for many commonly used
heuristics and pairwise structural features as discussed in Sec. 3.

Random Graphs. Two types of representative random network
models are picked: Erdés—Rényi [8] and Barabasi-Albert [2]. Each
random graph is generated with 10,000 nodes. In Erdés—Rényi
model, each edge is drawn from the binomial distribution with
probability p. In Barabasi-Albert, each node is added incrementally,
with m new edges attached to existing nodes with preferential
attachment, meaning the sampling probability is proportional to
the node degree. Graphs drawn from Barabasi—Albert model have
power-law distributed node degrees, which reflects the structure of
real-world networks such as the world-wide web, social networks,
and academic graphs.

Fig. 3 (UP) presents the mean absolute error (MAE) of intersec-
tion estimation for two hashing-based methods on Erdés-Rényi
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Table 4: Results (%) on OGB datasets for link prediction. Highlighted and underlined are the results ranked FIRST, second.

Models ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2  ogbl-vessel

Hits@50 Hits@20 Hits@100 MRR AUC

'é CN 61.37 17.73 27.65 50.31 48.49

E AA 64.17 18.61 32.45 51.69 48.49

é RA 63.81 6.23 49.33 51.65 48.49
%ﬂ MF 41.81 + 1.67 23.50 £ 5.35 28.40 £4.62  50.57 £12.14  49.97 £ 0.05
;; MLP 35.81 £ 1.08 N/A 0.45 + 0.04 38.07 £ 0.09 50.28 £+ 0.00
Jé Node2Vec | 49.06 + 1.04 34.69 £ 2.90 26.24 £ 0.96 45.04 £ 0.10 47.94 +1.33
< GCN 54.96 £ 3.18 49.90 + 7.23 29.57 £ 2.90 84.85 £ 0.07 43.53 £9.61
;5 SAGE 59.44 £ 1.37 49.84 £ 1556 41.02£1.94 83.06 = 0.09 49.89 £ 6.78

g GAT 55.00 = 3.28 31.88 + 8.83 OOM OOM OOM
SEAL 63.37 £ 0.69 25.25 £3.90 48.80 £ 5.61 86.93 £ 0.43 80.50 + 0.21

+ Neo-GNN | 66.13 + 0.61 20.95 £ 6.03 48.45 £ 1.01 83.54 £ 0.32 OOM
§ GDGNN 54.74 £ 0.48 21.01 £ 2.09 4592 £ 2.14 86.96 £ 0.28 75.84 £ 0.08
g)ﬁ BUDDY 64.59 + 0.46 29.60 £ 4.75 47.33 £ 1.96 87.86 + 0.18 65.30 £ 0.09
E Ours 65.65 £0.32 54.33+£+14.94 49.80+1.74 87.29 £ 0.20 79.83 £ 0.52
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Figure 3: Mean absolute errors (MAE) of cardinality estimation for 1-hop and 2-hop neighborhood intersection on random
networks and real-world networks by Bloom Signature and subgraph sketch with varying memory budget. Under the same
memory budget, Bloom Signature produces estimations with up to 2.83x and 68.52x lower error than subgraph sketch for 1-hop
and 2-hop neighborhood intersection on random graphs, and with up to 12.84x and 303.10x lower error on real graphs.

(p € {0.5%, 1%, 2%}) and Barabasi—-Albert (m € {50, 100, 150}) mod-
els with varying density and degree distribution. Under the same
memory budget of hashing, Bloom Signature achieves lower es-
timation error than Subgraph Sketch in almost all cases. As the
number of hops increases, the estimation quality of Subgraph Sketch
degrades significantly. For 2-hop neighborhood intersection, the
estimation error of Subgraph Sketch levels off quickly and does not

approach zero even with increasing memory budget. On the other
hand, Bloom Signature is capable of achieve low estimation error
for high-order neighborhoods, and the estimation error approaches
zero as memory budget increases. Bloom Signature produces esti-
mations of 1-hop neighborhood intersection with up to 2.83% lower
error than Subgraph Sketch under the same memory budget, and
with up to 68.52Xx lower error for 2-hop estimations.
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Throughput of Pairwise Structural Feature Construction
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Figure 4: Throughput of constructing pairwise structural
features by Subgraph Sketch and Bloom Signature on three
OGB datasets. Bloom Signature achieves up to 41.25X and
9.48% higher throughput than Subgraph Sketch on CPU (same

number of threads) and GPU, respectively.

Table 5: Runtime Comparison. The row of Train records the
time per 10K edges, and Inference is the full test set.

dataset | time (s) | SEAL  GDGNN BUDDY GCN Ours

% Prep. 0 338 398 17 92
= Train 3.52 2.26 0.11 0.13  0.20
S Inf. 24,626 5,460 128 15 204

Real-word Networks. The MAE comparison of intersection es-
timation on three real-world networks are shown in the second
half of Fig. 3. Bloom Signature consistently produces more accu-
rate results thanks to the design of compact bit encoding and non-
sampling based estimation from Eq. (5). Under the same memory
budget, Bloom Signature produces with up to 12.84x and 303.10x
lower error than Subgraph Sketch for estimating 1-hop and 2-hop
neighborhood intersection, respectively. Note that the estimation
quality is dependent upon the degree distribution of the graphs
and the actual intersection size, as larger neighborhoods are more
difficult to encode and more collisions in encoding are occurred.
Aligning with Theorem 3.2, Bloom Signature performs uniformly
better than Subgraph Sketch on all real-world networks at different
memory budget. This observation is also consistent with the perfor-
mance difference between BUDDY and our model in Table 4, when
estimated pairwise structural features are used for prediction.

4.4 Efficiency and Scalability Analysis

Figure 4 compares the efficiency of two hashing-based methods
by measuring the throughput of computing 2-hop pairwise struc-
tural features. Subgraph Sketch is currently only deployed on CPU,
while Bloom Signature can perform accelerated calculations on CPU
and GPU. Bloom Signature has 41.25X and 9.48% higher through-
put than Subgraph Sketch on CPU and GPU, respectively. Bloom
Signature uses only lightweight bitwise and algebraic operations,
which favors multithreading on CPUs with lower I/O overhead.
Running on GPU introduces I/O inefficiencies, especially on large-
scale graphs (e.g. citation2). This hurts hardware-accelerated per-
formance and results in Bloom Signature having relatively lower
throughput on GPU than on CPU.

Table 5 lists the end-to-end runtime of edge-wise GNN models
on the largest benchmark graph citation2. The dynamic mode of
SEAL (online subgraph extraction) is used due to its extremely high

Anon.
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Figure 5: Comparison of different model configurations of
MPNN with Bloom Signature on three OGB datasets.

time and space complexity on large graphs. Similarly, only numbers
of BUDDY is reported as its message passing version ELPH [6] is
infeasible on citation2. We also list GCN as a reference point.
We omit the result of Neo-GNN as it is even slower than SEAL
even only runs MPNN once but needs k-order pairwise features.
BUDDY precomputes the node feature propagation with sketches
and only adopts simplified message passing (shown in Table 2),
which is reflected in high cost of preprocessing and low training
latency. GDGNN requires to find the geodesic path between node
pairs first and then runs MPNN. Bloom Signature only needs to be
computed once for k-hop node neighborhoods. Overall, MPNN with
Bloom Signature does not suffer from high complexity of pairwise
structural features as SEAL, GDGNN and Neo-GNN and is orders
of magnitude faster. In particular, Bloom Signature is 17.6-120.7
X faster than SEAL in dynamic mode for training and inference
on citation2 and is overall 2x faster than BUDDY (under fair
comparison on preprocessing of hashing and full inference with
pairwise structural features).

4.5 Ablation Study

To validate the design of Bloom Signature, we conduct an abla-
tion analysis and report results on three OGB datasets with the
following configurations in Fig. 5: (1) vanilla GNN with only raw
node features; (2) MLP with multi-hop estimated pairwise structural
features from Bloom Signature; and (3) MLP with multi-hop raw
pairwise Bloom Signatures as input. Neither MPNN with raw node
features nor MLP with estimated/raw pairwise structural features
alone can achieve the best performance. Note that, MLP taking a
pair of raw Bloom Signatures as input is comparable or outperforms
MLP using estimated pairwise structural features, indicating that
Bloom Signature encodes sufficient structural information of node
neighborhood for model to capture beyond handcrafted heuristics.

5 CONCLUSION

In this work, we present a new MPNN framework with scalable
structural features for structural link representation learning, which
is based on the observation and analysis of key bottlenecks in the
most expressive edge-wise GNN models. A novel efficient struc-
tural feature termed Bloom Signature is proposed to encode node
neighborhoods through hashing, which is decoupled from specific
edges. MPNN with Bloom Signatures is provably more expressive
than vanilla GNNs and also more scalable than existing edge-wise
models. In practice, it achieves much better time and space com-
plexity and superior predictive performance on a range of standard
link prediction benchmarks.
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A APPENDIX

A.1 Experiment Details

Model Architecture. We use 3 layers of either GCN or GraphSAGE
(the one performs the best) as the backbone of MPNN in Eq. (11)
with extended support of edge features. 3-layer MLP of hidden
dimension 256 with layer normalization is used for link predictor
(dot/diff) and pairwise structural feature encoder. Bloom Signatures
of 2-hop node neighborhoods are used for all five datasets, with
sizes of [1024, 4096] or [2048, 8192].

Model Hyperparameter. We perform heuristic guided searches
for tuning. Hyperparameters were selected to maximize metrics on
the validation set. The best hyperparameters picked for each model
can be found in our code. We set the ratio between the output of
MPNN and structural feature encoder as a learnable parameter.

Training Process. We use Adam [15] as the optimizer to opti-
mize model parameters with learning rate 0.0005 — 0.01 and set the
maximum epoch of 500. Each positive edge is paired with a ran-
dom picked negative edge, except for vessel. Pairwise structural
features are computed on the fly from a pair of Bloom Signatures.

A.2 Error Bounds for Pairwise Structural
Feature Estimation from Bloom Signatures

Given a N-dimensional binary vector x € {0, 1}N , Bloom Signa-
ture reduces it to a n-dimensional binary vector s, € {0, 1}". Let

N = tm,/mln ( %) and m is non-zero value (sparsity) of x with

probability at least 1 — §”. It randomly maps each bit position {l}{i 1
to an integer {Jj };.’:1 as shown in Eq. (4). To compute the j-th bit of
Sy, it checks which bit positions have been mapped to j, computes
the bitwise - OR of the bits located at those positions and assigns
it to sx[j]-

Lemma A.1.

E['j\[—x'] =(1-pl*h, wherep:l—%e (0,1), (13)

1\(xy)
E [(sx.xy)/n] = (1= pPX)) (1 = pl¥l) 4 pli+lv] (;) -1

— 1=l plyl . plxl+ly—(xy) (14)

3
Lemma A.2. Given n > cmz, with probability at least 1 - J, it

holds that
1+ 4/(c®+¢) log%

llsxl = Ellsxlll <« ——F———Vm.

Proor. Given a measurable space (Q, F) with Q = {0, 1,...,n}
and corresponding o-algebra ¥, consider a sequence of random
variables X1, X2, ..., Xm. Here, X} represents the count of occupied
bins after k ball throws. As the processes are independent, the
probability for the k + 1-th ball to land in an empty bin is 1 — ’%
This implies Xj.,; = Xy + Zy1, where Zy,; follows a Bernoulli
distribution with parameter 1 — %" (noted as Ber(1 — ka)), and we

Anon.

X" _andY; =1-

initialize with Xo = 0. Further, define Y = W

we observe that

X — 1- % 7
E(Yeulo(Z1, .., Zy)) = noy n +]E( k+1 )

(1-2F  (1-)F (1- 4k
_(I—E)Xk+l—n_ X —n _
- (1- 1)k - (1-L1yk-1 =Y
n n (15)

Thus, (Yg,1) form a martingale adapted to filteration (o(Z1, ..., Zg)).

From Azuma Hoeffding inequality, we have

P[|Ym — V1| = €] < Zexp( a ) (16)

Zle

where ¢ = 1/(1 - l)k_1 > Yy — Yl

m-—1 2
Consider Zkl o

\%

m-1 m—1

2= e
= (1-

k=1

m-1 ylog(—L_
s/ & gy (17)
0

_ 1 . L oyme1
g [(1+—) 1] (18)

(i) 1
S(”‘g)[(“‘m) -1] (19)

where (i) is from 22+—xx < log(1+x),Yx > 0.

2 3
Letm = O, (n3), specifically, n > cm?2, to have the concentration
hold for Y, we need to make sure that

—€?
2 — | <4 20
exp zz;cn:—ll CIZC ( )
2 2
log — 21
T g o “
(m-1)
2 ! P A

=1 2((1+n_1) 1) (n 2)10g5 (22)

1 2 1 2

> (m+ E\/ﬁ+o(\/ﬁ))log3 Ee>L4[(1+ E)mlogg
(23)

From the concentration of Yy, we further derive the concentration
property of the number of non-empty bins, i.e. X, — Xp. Since
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|Ym — (1 —n)| < e whyp. Y ~ (1 —n) +e, we have

Xon = Xo = | (9
=11 = )" Y+ = ] (25)
Sl = " (1 =) el +n -] (26)
S0- D) - (1= ) =) @)

(J(1+ 1) log 2)ym
TN O pom)
n n 2n n—1
(28)
1+ /(4c? + 4c) log 2
S(m—22+(w/(1+l)logz)ﬂ)-ns e+ %
2n c 8 n 2¢2
(29)
m}

Lemma A.3. With probability at least 1 — §, it holds that

[(su> $0) = E[(su> $0)]| < \/2 min{|N ()], N (0)[} logg

Proor. Forany given N (u), N (v) € {0, 1}V, we partition {1, 2, .., N}

in to four sets: (a) A = {jIN(w)[j] = N(v)[j] = 1}; (b) B =
UIN@ )] = LN (@)[j] = 0}; () C = {jINwW)[j] = 0. N (o) [j] =
1};(d) D = {j/IN(w)[j] = N(v)[j] = 0}. The random mapping
can be viewed as throwing different balls in to n bins. Let red balls
denote indices in A, blue balls and green balls denote indices in
B and C respectively. We say a bin is non-empty if there exist at
least one red ball or same amount of blue and green balls. WLOG,
we can assume |B| > |C|, we further simplified the process as first
we throw |B| blue balls. After fixing these balls, we further throw
|A| + |C| balls. Given measurable space (Q, ) with Q = {0, 1, ..., n}
and corresponding o-algebra 7, define a sequence of random vari-
ables Xi, X2, ..., X||+|c| Where X} represents the count of occu-
pied bins after k ball throws. Since we have Lipschitz condition
[Xgs1 — Xi| < 1, and from Azuma-Hoeffding inequality

2
—€
P(|(su, s0) = E[(su, s0}]| = €) < Zexp(m) (30)
Further let § > 2 exp( m), we have
2
€> 1[2(|A|+|C|)log3 (31)

Since |A| + |C| = min{|N (u)|, [N (v)|}, we have we probability at
least 1 — &,

[(su> 80) — E[(su, s0) ]| < \/2 min{|N ()], IN(v)I}log?S (32)

O

Lemma A.4. With probability at least 1 — §, it holds that

. 1 Ve +¢ 2
IN )| = Al < ( +— )-\/mlogg
2cz,llog% ¢

11
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Proor. From Lemma A.1 and Eq. (5), we have ,olN(“)| - plu =

1+,/(4c?+4c) log &

[sul—E[|sul] _
ot Lety = 57
ability at least 1 — 8, we have

.From Lemma A.2, with prob-

PN _ pi = 15ul = Ellsull 33)
n
. Va2
Sy \/ﬁzl( 1 + 4c 2+4C) (34)
" m 2021'1llog(2—S 2ct
From Pratap et al. [23], we have
L= plINwl=uly ¢ L 1 . \/4c22+ [ [
2 m ZCzr,llog% 2ct
2 1 Vac2 + 4
SN )] - Ayllogp = log1- = L At ac
m 202 [1 2 2¢21
c°T ()g S
(36)
2( 1 n m)
R 2021\/10?% 2c21
<:||N(“)|_nu| < (37)

1 Vic’+dcy log 1
+ 2027 ) P
2c?74[log £

1 + \/4c2+4.:)

( 2
2c?r,[log 4 2t 2
T4 /mlo =
_9 1 Vac2+4c J 1)
" (2C2T log % s )
Vg s

1 Vac? + 4¢

+ 2
2¢2r,[log % 2T

To estimate the size of intersection N (u) N N'(v), we can use
their Bloom signatures of sy, s, as follows

m—2(

=[IN@)| - Ayl <

(38)

SIIN W) - gl < ( )-T\/mlogg (39)

[m]

In (pﬁu 4+ phio 4 <3u;lsv> _ 1)

S(u,0) = Ay, + Ay — np

where 7, = In(1 — |sy|/n)/In p and A, = In(1 — |sy|/n)/In p.
Lemma A.5. With probability at least 1 — 36, it holds that

IN () NN )] - $(u,0)| < ﬁ + (5 2L 4 2v2) fmlog 2,
c c )

where m = max(|u|, |0]).
Proor. From Lemma A.1, we have

(1,0) = |u| + o] - In (pl"‘ + 17l + B [(su, 80)] /n — 1) /Inp
) ) (40)
S(u,0) = fiy + Ap — In (p"" +p" + (sy, sp)/n — l) /Inp

in which |u| = fiy, |v| = fi, (Lemma A.4), and E [(sy, $)] ~ {(syu, Su)
(Lemma A.3) with probability at least 1 — §. In Lemma A.4, we show
that

1 Vel +¢

+ )

Zcz,llog% ¢

Ay = ul| < (

mlog % (41)
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1 c2+c

'ﬁ“_'”“<(zcz\/b?§+ ) mlog s @)

We have
1, 0) = (u,0)| 43)
<l + g = In (p + po + (s4,50) /n = 1) finp (44)

= (lul + o] =

(Q 24/m
<=

n (pl# 4 plP 4+ B [(s0,50)] /n = 1) /npl) (45)

+1/C+1,/mlogz
c3 8
L 2 B (s 800 fn - 1
Inp plu + phto + (s, 8) /n — 1
where (i) is from Lemma A.4.
Further,

| (46)

1
lnp
1

“lnp

p|u| +p|u| +E [{sy,s0)] /n—1

47
Pn" +pn”<su,3z1>/"_ 1 @)

|p!#! + pl?l + B [(su, )] /n = p™ + p™o + (54, 50) /n|

max{pl#l + pl?l + E [(sy, s0)] /n — 1, pu + p/to + (sy, sp) /n — 1}
(48

2
\C/—ZE +2\/%lmlog%S +\/2mlogcz—S

~ max{pl4l + pll + B [(su, s0)] /n - 1, phu + plio + Gusofn 1)
49

2
\/2m lOg 3

Where (i) is from Pratap et al. [23] for reasonable values of m and
§ (Proof of Lemma 12). Gluing the above together, we prove the
results. ¢ = 1 leads to Theorem 3.2. O

(50)

A.3 Proof of Theorem 3.3

ProoOF. We prove the existence of the MLP in the following by
giving the recipe for constructing such an MLP and prove that it
satisfies the conditions.

The MLP has an input layer of width 2n, a hidden layer of width

N, and an output layer of width 1. It can be formulated as
MLP(sy,$0) = 0 ([su  so] W1 +b1) Wy +by (51)

where W; € R2"XN W, € RNX! b; € RN by € R, and o is the
ReLU activation function.

We let
1 if =i i) =i

Wl[i,j]z{ i 7-((01.) ior H(vj) I+N,b1=—1~1 (52)
0 otherwise

W3 [i,0] = d(vi),bz = 0 (53)

The idea is that the hidden layer performs “set membership
testing” forallo € V.Leta=0¢ ([su sl,] W, +b1) € RN. Then,
a; = 1if and only if v; is a positive in both Bloom signatures s
and s,, and a; = 0 if and only if v; is a negative in either Bloom
signatures.

Consider expectation of the output of the MLP,

12

Anon.
E(MLP(sy, ) = E (aW3 + b) (54)
—]E( DU dwdai+ ) d(w)a,
wie N(u)NN(v) wj€Sc
+ ) dwae+ ) d(w»al) (55)
Wi € é;L)v wie é;[)u
=S(u,v)+E( > d(wj)aj)
wj€ :;C
+E( Z d(wk)ak)+E( Z d(wl)al),

W € J;[)v wjE é;[)u

(56)

where Sc = V\(N(u) U N(v)), Sp,
N (@)\N (u).

Since Bloom filters have no false negatives, w; € N'(u) N N (v)
implies a; = 1. aj for all j such that w; € V\(N(u) U N (v)) are
independent Poisson trials with Pr(aj = 1) = pyp,, where p, =
(1- %) IN@WI s the false positive rate for set membership testing
of the Bloom signature of u, and similarly for wp € N (v)\N (u)
and w; € N(u)\N(v).

By Chernoff bound, we obtain the three following inequalities,

“3log§
pr| > ajs(1+ —og)|SC|PuPu >1-6  (57)
wes |Sclpupo
'j C

= N(u)\N(v), and Sp, =

—3logé
Pr Z ap < (1+ 3 o8 )|SDZ,|PZ) >1-8  (58)
We€SD, | D,,|PU
—3logé
Pr| > as|1+ B Splpu|21-8  (59)
w |S |Pu
1€Sp,,

Therefore, by Boole’s inequality, we have

—3logd
Pr(MLP(sy, s5) — S(w,0) < [1+ 2089 Amax|Sc) [pupo+
|Sclpupo

—3logd —3logéd
1 d S 1 d S
( " |5Dv|pv) s D”|pv+( " |SDu|Pu) x| D“|pu)
>1-36
(60)
u]

A.4 Approximation of Neighborhood Union
and Difference-based Heuristics

Theorem A.6. Suppose S(u,v) is a neighborhood union-based

heuristic with the maximum value of d(-) as dpax = max,ye d(w).

Let p, = (1 - 1/n)IN®I denote the false positive rate of node u

for set membership testing in the Bloom signature s,,. Then, there
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exists an MLP with one hidden layer of width N and activation func-

0 ifx<1
tion f(x) = ~ where x € R, which takes the Bloom
1 otherwise

signatures of u and v as input and outputs S(u,v) = MLP(sy, sp),
such that with probability 1, S(u,v) — S(u,v) > 0; with probability
at least 1 — 4, it holds that

—3logéd

S, 0) = S(u,0) < dmax |1+ ]| ——2—
(w2 =Sw0) ma( 1Sclpupo

)'SC|PMP0 (61)

where S¢ = VAN (u) U N (v)).

Proor. The proof is omitted since it is analogous to the proof
of Theorem 3.3. O

Theorem A.7. Suppose S(u,v) is a neighborhood difference-based
heuristic with the maximum value of d(-) as dmax = max,yey d(w).
Letp, = (1 - 1/n)IN®I denote the false positive rate of node u
for set membership testing in the Bloom signature s;. Then, there
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exists an MLP with one hidden layer of width N and activation func-

1 ifx=0
tion f(x) = 0

~ where x € R, which takes the Bloom
0 otherwise

signatures of u and v as input and outputs S(u,v) = MLP(sy, sp),
such that with probability at least 1 — 24, it holds that

|§(u,v) —S(u,0)| <
/—310g(5 /—3log5
1+ | ——— | dmax|S o+ |1+ [—— | dmax|S
( |5Du|p0) ma: | Du|p ( |5D,,|Pu) ma: | Dvlpu
(62)
where Sp, = N(u)\N (v), and Sp, = N (v)\N (u).

Proor. The proof is omitted since it is analogous to the proof
of Theorem 3.3. O
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