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Abstract
The data heterogeneity has been a challenging
issue in federated learning in both training and
inference stages, which motivates a variety of ap-
proaches to learn either personalized models for
participating clients or test-time adaptations for
unseen clients. One such approach is employing
a shared feature representation and a customized
classifier head for each client. However, previous
works either do not utilize the global head with
rich knowledge or assume the new clients have
enough labeled data, which significantly limit
their broader practicality. In this work, we pro-
pose a lightweight framework to tackle the label
shift issue in model deployment by test priors es-
timation and model prediction calibration. We
emphasize the importance of training a balanced
global model in FL and the general effectiveness
of prior estimation approaches. Numerical evalu-
ation results on benchmark datasets with various
label distribution shift cases demonstrate the su-
periority of our proposed framework.

1. Introduction
Personalized Federated Learning (PFL) (Tan et al., 2022;
Kairouz et al., 2021) has attracted increasing attentions to
tackle the data heterogeneity issue that becomes one of the
key bottlenecks of federated learning (McMahan et al.,
2017; Yang et al., 2019; Li et al., 2020). The heterogeneous
data across clients are usually caused by either feature dis-
tribution shift or label distribution shift, as different devices
generate/collect data separately and may have specific pref-
erences, making it hard to learn a single global model that
works well at all clients (Zhao et al., 2018; Zhu et al., 2021;
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Li et al., 2022). Different from the traditional FL, per-
sonalized approaches aim at learning a customized model
for each client that has better performance than the global
model. Such settings can be motivated by many realistic FL
applications, where clients (e.g., hospitals and corporations)
may wish to satisfy client-specific tasks.

While advanced algorithms have been developed for PFL,
they also have some limitations as they only generate person-
alized models during the training stage and rely on enough
labeled local data for unseen/new clients during the infer-
ence stage (Collins et al., 2021; Shamsian et al., 2021).
Moreover, the resulting personalized models naturally lose
the robustness to label distribution shift, since the personal-
ized model may only fit the local labeled class distribution
while the global model obtained by FL could generalize
to all classes (Jiang & Lin, 2023). Besides, it is possible
that some devices do not support the model re-training after
deployment due to hardware/software constraints or model
intellectual property protection (Sun et al., 2021).

Adapting the learned model to new clients with low cost
after FL is both challenging and important for real-world
applications. To this end, we adapt the trained global model
to new clients by only calibrating the classifier prediction
without global knowledge forgetting. We focus on the label
distribution shift scenarios, where the target classification
categories could vary for new clients. To perform classifier
calibration, both the a-priori label distributions of training
and test sets are essentially required (Alexandari et al., 2020;
Tian et al., 2020). The key challenge is how to evaluate the
label distribution information in the FL systems with the pri-
vacy constraints and only unlabeled test data for new clients,
or even online emerging data points. For this purpose, we
apply the balanced-softmax (Ren et al., 2020) to debias
the global model training and utilize the historic prediction
information to obtain reliable test-time prior estimations.

Our contributions. We propose a simple yet effective PFL
framework with flexible prediction Calibration (FedCal)
to improve the overall performance of client-specific tasks.
The proposed framework does not rely on any extra labeled
data and also not modify the model parameters, only making
use of some prediction statistics to dynamically adjust the
class priors during the inference, incuring minimal compu-
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tational costs. Evaluation results on benchmark datasets
with label shift verified the effectiveness in achieving higher
performance than the plain global model prediction on test
sets with unknown label shifts.

2. Related Work
Most personalized FL methods achieve the model adap-
tation during the training process for the participating
clients (Deng et al., 2020; Dinh et al., 2020; Li et al., 2021b;
Zhang et al., 2021b) or by local fine-tuning after global train-
ing based on local labeled data (Yu et al., 2020; Cheng et al.,
2021). In particular, model decoupling of feature extractor
and classifier head is widely studied (Arivazhagan et al.,
2019; Liang et al., 2020; Collins et al., 2021). Combing
global and local classifiers after FL is investigated in (Chen
& Chao, 2022) and (Marfoq et al., 2022). A mixture of
multiple global models with theoretical interpretation and
new clients generalization is also proposed (Marfoq et al.,
2021; Wu et al., 2023). Besides, a server-side hypernet-
work is employed for generating customized local models
(Shamsian et al., 2021; Amosy et al., 2022). However, most
methods cannot customize the model to new clients without
labeled data. There is also a line of work addressing the
test-time label shift issues in the centralized settings (Az-
izzadenesheli et al., 2019; Lipton et al., 2018; Alexandari
et al., 2020; Garg et al., 2020; Zhang et al., 2021a; Ma et al.,
2022), however the training set is not directly accessible
in FL. Only few works tackle the test-time adaptation to
new distributions in the context of FL (Jiang & Lin, 2023;
Amosy et al., 2022).

3. Preliminary and Motivation
3.1. Problem Setup

We consider a setup with m clients and a central server,
where each client i is equipped with its own data distribution
P

(i)
XY on X × Y , and P

(i)
XY and P

(j)
XY could be different

for any pair of client i and j. We also assume that the
server does not have any prior knowledge about the data
distribution of the participating clients, which is usually the
case in FL. Let ℓ : X × Y → R+ denote the loss function
given local model wi and data point ξi sampled from P

(i)
XY ,

e.g., cross-entropy loss, then the underlying optimization
goal of PFL can be formalized as

min
w

{
F (w) :=

1

m

m∑
i=1

Eξi [ℓ(wi; ξi) +R(wi,wg)]

}
, (1)

where w = (wg,w1,w2, ...,wm) denotes the collection of
global model and all local models. R is a regularization
between local and global models. The global model wg

can be further used for new clients. The feature embedding
function f : X → Rd is a learnable network parameterized
by θf and d is the dimension of feature embedding. The
linear classifier head g parameterized by ϕg is responsible

for making predictions. For example, LG-FedAvg (Liang
et al., 2020) keeps θf local and only shares the ϕg, while
FedRep (Collins et al., 2021) shares θf and keeps ϕg local.
However, some clients may only participate the FL system
after the training phase and do not have labeled data to train
the missing model part. In such cases, how to generate a
customized model is of significantly importance.

3.2. Local Prediction Calibration

Unlike previous works that maintain the local trained classi-
fier, we focus on generalize to new clients without labeled
data or new test sets for old clients during the deployment
stage. Therefore, a global classifier head that is capable to
discriminate all possible categories is essentially required.
Rather than combining the global and local heads (Chen
& Chao, 2022; Jiang & Lin, 2023), we argue that simply
calibrating the classifier prediction can offer significantly
higher performance than many personalization approaches.

Probabilistic interpretation of model predictions. As a
common interpretation, training a deep network by minimiz-
ing the cross-entropy actually tries to approximate the true
conditional distributions:

w∗ = argmin
w

− 1

n

n∑
i=1

log f(yi|xi,w), (2)

where the loss is computed over samples xi with known
labels yi, w∗ are parameters of the trained model. Let us
assume that a model is well-trained to provide an good
estimate of posterior probabilities of classes c1, . . . , cK ∈
[K] given a test point xi ∈ X :

f(ck|xi,w
∗) ≈ ps(ck|xi). (3)

When the prior class probabilities pt(ck) in the test1 set
differ from the training set, the posterior pt(ck|xi) changes
as well. As we focus on label shift, we assume that the
class-wise conditional distribution p(xi|ck) remain (almost)
unchanged for the unknown test set, which describe the
statistical properties of observations belonging to class ck:

p(xi|ck) =
ps(ck|xi)p(xi)

ps(ck)
=

pt(ck|xi)p(xi)

pt(ck)
. (4)

Then the prediction calibration can be formulated as

pt(ck|xi) :=
pt(ck)

ps(ck)
· ps(ck|xi). (5)

The training priors ps(ck) can be empirically quantified as
the proportion of samples labeled as ck in the training set.
The test-time priors pt(ck) are, however, often unknown for
new clients, especially for the online test deployment where
data will not be stored due to limited storage capability. In
FL, the training class priors are also difficult to know as local

1We use index s and t to denote the training (source) and test
(target) distributions, respectively.
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statistics may not be shared or the global model may not fit
the overall priors perfectly due to partial client participation
and non-linear change after global aggregation. However,
if the global model is approximately unbiased, then the
challenge of training priors estimation could be avoided by
directly setting them as the uniform distributions.

3.3. Learning an Unbiased Global Model

While significant efforts have been devoted for better model
training, most methods will introduce extra communication
and computation costs (Karimireddy et al., 2020; Li et al.,
2021a; Acar et al., 2021). Previous works have applied the
balanced-softmax (BSM) for local training (Chen & Chao,
2022; Zhang et al., 2022), which is promising for resulting
more balanced global model. In this work, we also follow
this strategy due to its simplicity and utility. We leave the
better global model training strategy as future works.

4. Test-Time Prior Estimation
In this work, we provide three methods for test-time prior
estimation, which can be selected or combined flexibly.

4.1. Estimation by Pseudo Labeling

By assuming the model has a good fit to the training data
distribution, we can estimate the prior distribution by count-
ing the pseudo labels generated by the model prediction.

pt(ck) :=
1

n

n∑
i=1

I{ck = argmax
c

f(c|xi,w
∗)}, (6)

where I{·} is the indication function and advanced sample
selections could also be applied to obtain a better estimation.

4.2. Estimation by Maximum Likelihood

A theoretically sound approach to estimate the unknown
test-time label distributions is maximizing the likelihood
of the test observations (Saerens et al., 2002; du Plessis &
Sugiyama, 2014; Alexandari et al., 2020):

L(x1, ...xn) =

n∏
i=1

pt(xi) =

n∏
i=1

[
K∑

k=1

pt(xi, ck)

]

=

n∏
i=1

[
K∑

k=1

p(xi|ck)pt(ck)

] (7)

To solve this problem, a simple EM algorithm can be derived
with the following steps:

E-Step: p
(τ)
t (ck|xi) =

ps(ck|xi)p
(τ)
t (ck)

K∑
k=1

ps(ck|xi)p
(τ)
t (ck)

(8)

M-Step: p
(τ+1)
t (ck) =

1

n

n∑
i=1

p
(τ)
t (ck|xi) (9)

where τ is the iteration step index, Eq. (8) is the Expectation-
step, Eq. (9) is the Maximization-step, and p0t (ck) could be
initialized with a uniform distribution.

4.3. Estimation by Feature Matching

If the global class-wise prototypes C = {ck}Kk=1 (i.e., the
mean feature representation for each class) are available
by aggregating local prototypes, then it is possible to esti-
mate the priors p = {pk}Kk=1 by the following mean-feature
matching (FM) optimization objective (we justify the ratio-
nality of this approach in Appendix A):

p = argmin
p

1

2
∥CTp− f∥2

= argmin
p

1

2
pTCCTp− (Cf)Tp,

s.t.
K∑

k=1

pk = 1; ∀k : pk ≥ 0.

(10)

where f is the mean test feature representation of test obser-
vations. Note that this objective is a quadratic optimization
problem and can be solved by the cvxpy toolbox efficiently.

4.4. Online Adaptive Calibration

Moreover, the test set might emerge continually and should
be predicted online, instead of testing after collecting all
the test data points (Wu et al., 2021; Bai et al., 2022). For
the online test scenarios, the test data may not be stored
due to limited storage capacity. Instead, we can record the
original predicted posteriors for each test point as {ŷi}ni=1,
which are memory efficient and can be accumulated within
the maximum buffer size to derive an increasingly better
estimation of label distribution in the online settings. When
the global prototypes are available, we can also record the
point-wise low-dimentional feature representation.

4.5. Special Consideration

In many FL studies, the local test set only has partial cate-
gories but uniformly distributed (pathological case) (McMa-
han et al., 2017; Collins et al., 2021), we claim that with
such a assumption, the estimated priors could be further rec-
tified by simply setting the elements with 0/1. To this end,
clustering- or threshold-based methods could be employed.
Note that in the absence of such prior knowledge, it might
be too radical to conduct such an estimate rectification.

5. Evaluation
Experimental Setup. We conduct experiments on four pop-
ular datasets with simple CNN models, including MNIST,
Fashion-MNIST, CIFAR-10 and CINIC-10. We focus on
the pathological cases and compare our three variants (PL-,
EM-, FM-based) with popular PFL baselines as listed in Ta-
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Table 1. The comparison of label-shift test accuracy (%) on different datasets. We apply full participation for FL system with 20 clients.

Method MNIST Fashion-MNIST CIFAR-10 CINIC-10

Local Test OoC Test Local Test OoC Test Local Test OoC Test Local Test OoC Test

Local-only 93.73 46.47 88.97 43.62 84.17 23.10 75.43 20.79
FedAvg 95.25 95.25 86.34 86.34 68.43 68.43 52.73 52.73
FedPer 96.07 77.83 91.56 67.02 88.35 26.41 81.21 28.46
FedRep 95.39 71.29 90.05 54.20 84.83 24.32 78.63 22.20
Ditto 97.04 90.55 90.80 71.46 88.63 36.64 81.21 27.11

Fed-RoD 96.43 58.25 91.28 78.15 87.60 50.19 81.32 36.38
kNN-Per 96.39 66.65 91.59 55.72 87.77 31.98 81.05 26.42
FedTHE 96.41 71.37 91.25 82.73 87.03 59.63 81.46 43.47

pFedHN 94.91 90.69 88.53 81.67 87.07 31.82 79.40 24.65
ODPFL-HN 94.07 94.06 86.32 86.17 64.82 64.80 50.63 50.47

FedCal-PL 96.68 96.55 91.41 91.41 88.48 87.92 82.16 69.11
FedCal-EM ∖ 96.55 ∖ 90.35 ∖ 88.48 ∖ 74.04
FedCal-FM ∖ 95.62 ∖ 91.41 ∖ 88.07 ∖ 70.25

ble 1. For new clients without labeled data, we only compare
with FedAvg. More details are provided in Appendix B.

Performance Comparison. We first consider a setup with
20 clients and full participation. Similar to (Jiang & Lin,
2023), both in-client and out-of-client (OoC) tests are con-
ducted to evaluate the generalization performance. From
the results in Table 1, we can find that prediction calibra-
tion not only can achieve competitive performance with ad-
vanced PFL methods when given local true priors, but also
dominates the OoC test with unknown label shifts, which
demonstrates the effectiveness and benefit of calibration.

Generalize to New Clients. We vary the number of classes
per-client C to simulate different levels of shift. The results
in Fig. 1 clearly show that FedCal achieves better accuracy
than the plain global model under all levels of label shift.
We also consider the test data points emerge online and
could have non-stationary prior transitions. We split the test
process into multiple time slots (20 samples in each slot)
and repeat prior estimation after each time slot by using
information from the latest 5 slots. We further consider
a step change of test prior with another set of randomly
selected C classes to assess the algorithm resilience. The
accuracy curves are plotted in Fig. 2, where our methods still
outperform the FedAvg. However, we also find the accuracy
fluctuates a lot, which means both the online calibration
strategy and the inter-class fairness of the global model
should be further improved.

Table 2. Ablation Studies on CIFAR-10 with two FL settings. Com-
ponents: 1) Calibration, 2) rectification, 3) Balanced-SoftMax.

FL Setting 1) 1) 2) 1) 3) 1) 2) 3)

20 clients, 100% 83.13 87.86 84.69 88.48
100 clients, 10% 77.46 80.61 83.79 86.78

Effect of Design Components. To show the necessity of a

C=2 C=3 C=5 C=850

60

70

80

90

100

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10
FedAvg
FedCal-EM

Figure 1. Static test on CIFAR-10 with various C.
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Figure 2. Comparison of online test on CIFAR-10 dataset.

balanced global model and the benefit of prior rectification,
here we add a more challenging case with 100 clients and
10% participating ratio in each round on the CIFAR-10.
Clients may not get the final global model but only the
intermediate one, and a new unknown test set is randomly
assigned to each client for OoC test. As reported in Table 2,
without a balanced global model, the prior estimation is
actually unreliable and the calibrated prediction accuracy is
very low. In the full participating case, the impact is largely
mitigated. In contrast, the combination of BSM and prior
rectification can achieve the best results in both cases.
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6. Conclusion and Future Work
In this work, we introduce several calibration methods for
building customized prediction in new clients, providing
empirical justification for their utilities in label shift settings.
Future work includes investigating the test-time adaptation
with feature-level distribution shift, and developing a more
robust global model against various test data shifts.
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Appendix

A. Rationality of Feature Matching
Suppose that there are nt,k test samples for class k ∈ [K] and the empirical test priors based on true labels are pt =

{pt,k}Kk=1, with nt =
∑K

k=1 nt,k and pt,k = nt,k/nt. Then, the mean feature representation f is given by

f =
1

nt

nt∑
i=1

f(xi) =

K∑
k=1

nt,k

nt

∑n
i=1 I{yi = k}f(xi)

nk
=

K∑
k=1

pt,kfk, (11)

where fk is the class-wise prototype of test set. Denote F = {fk}Kk=1 as the collection of test prototypes and ∆p = p− pt

as the estimate error, then the optimization problem in (10) can be rewritten as

∆p∗ = argmin
∆p

1

2
∥CT (∆p+ pt)− FTpt∥2

= argmin
∆p

1

2
∥CT∆p+ (C− F)Tpt∥2

= argmin
∆p

1

2
∆pTCCT∆p+ pt

T (C− F)CT∆p,

s.t.
K∑

k=1

∆pk = 0.

(12)

Notice that the optimization problem in (12) is still a quadratic programming. Suppose that the feature prototype matrix C
is non-singular, then the closed-form solution can be derived as

∆p∗ = 1T [CCT ]−1C(C− F)Tpt
[CCT ]−11

1T [CCT ]−11
− [CCT ]−1C(C− F)Tpt, (13)

where 1 is a K-dimensional vector with all elements equal to 1. Therefore, the squared error of test priors estimate is
determined by the deviation between training and test prototype matrix ∥(C− F)Tpt∥2, which means we have

∥∆p∗∥2 = O
(
∥(C− F)Tpt∥2

)
. (14)

Now, we further assume that the feature representation of each class follows a Gaussian distribution G(µk,σ
2
k) with

σ2 = max{σk}Kk=1, and the per-class training prototype is averaged over ns samples. For the random training and test
sample generation process in expectation we have

E [fk] = µk, E∥fk − µk∥2 ≤ σ/nt,k, ∀k ∈ [K] (15)

E [ck] = µk, E∥ck − µk∥2 ≤ σ/ns, ∀k ∈ [K] (16)

Then, take the expectation over sampling process again, we have the following error bound

E∥(C− F)Tpt∥2 = E
K∑

k=1

∥∥∥nk

n
(ck − fk)

∥∥∥2
= E

K∑
k=1

∥∥∥nk

n
(ck − µk + µk − fk)

∥∥∥2
= E

K∑
k=1

[
n2
k

n2

(
∥ck − µk∥2 + 2(ck − µk)

T (µk − fk) + ∥µk − fk∥2
)]

≤ E
K∑

k=1

[
n2
t,k

n2
t

(
σ2

ns
+

σ2

nt,k

)]

= E
K∑

k=1

[
n2
t,kσ

2

n2
tns

+
nt,kσ

2

n2
t

]

≤ (
1

ns
+

1

nt
)σ2.

(17)
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Therefore, when the size of training data in FL and the size of unlabeled test set are sufficiently large, the squared error of
prior estimate could be small enough for a reliable model prediction calibration. It is worth noting that both discriminative
feature prototypes and accurate prior estimate depend on a well-trained global model, which means the the first step towards
generalizing to unseen clients is selecting enough devices in FL training stage and obtaining a sufficiently good global
model. Otherwise, even the prior estimate is accurate, the resulted prediction performance is still limited, which indeed
bridges the intrinsic connection between the global model and personalization.

B. Details of Experimental Setup
B.1. Datasets and Models

We consider image classification tasks and evaluate our method on four popular datasets: (1) MNIST is a 10-class digit
classification dataset; (2) Fashion-MNIST with 10 categories of clothes (Xiao et al., 2017); (3) CIFAR-10 with 10 categories
of color images (Krizhevsky & Hinton, 2009); and (4) CINIC-10 (He et al., 2020), which is more diverse than CIFAR-10
as it is constructed from two different sources: ImageNet and CIFAR-10. We construct two different CNN models for
MNIST/Fashion-MNIST and CIFAR-10/CINIC-10, respectively. The first CNN model is constructed by two convolution
layers with 16 and 32 channels respectively, each followed by a max pooling layer, and two fully-connected layers with 128
and 10 units before the softmax output. We use the LeakyReLU (Xu et al., 2015) activation function. The second CNN
model is similar to the first one but has one more convolution layer with 64 channels.

B.2. Data Partitioning

Similar to (McMahan et al., 2017; Collins et al., 2021), we make all clients have the same data size and each of the clients
has C classes which are randomly selected from the whole class set. We evenly divide the local training samples over
available classes. Specifically, for MNIST and Fashion-MNIST, C=5 categories are randomly selected for each client as
these two learning tasks are relatively easy and result in high accuracy if C is two small, while CIFAR-10 and CINIC-10 are
relatively hard to learn and 3 categories are chosen for each client. For all experiments, each client will be assigned with
1000 training samples and 500 test samples, where the local test set has the same label distribution with local training set by
default. For new/unseen clients after federated training stage, we change the random seed and generate new 10 clients with
C changing over {2, 3, 5, 8}. For online test settings, we generate three different test label sets and select any two of which
as a pair that arise sequentially with a transition time point. We repeat the online test with three distinct pairs in total and
report the averaged results in the test accuracy curves. Take the setup on Fashion-MNIST and CIFAR-10 with 20 clients as
instance, the label distributions across all clients are presented in the following figures.
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Figure 3. Data label distributions of 20 clients with random samples partitioning from a limited number of classes.
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B.3. Implementation Details

Training Settings. We employ the min-batch SGD as the local optimizer for all approaches. The learning rate η of local
training is set to 0.01 for MNIST/Fashion-MNIST, and 0.02 for CIFAR-10/CINIC-10. The weight decay is set to 5e-4 and
the momentum is set to 0.5. The batch size is fixed to B = 50 for all datasets. The number of local training epochs is set to
E = 5 for all federated learning approaches unless explicitly specified. And the number of global communication rounds
is set to 200 for all datasets, where all FL approaches have little or no accuracy gain with more communications. For all
methods, we report the average test accuracy of all local models for performance evaluation.

Compared Methods. We compare our proposed FedCal with the following approaches: a baseline approach named
Local-only, where each client only trains model on its own local data; parameter decoupling based methods, including
FedPer (Arivazhagan et al., 2019) and FedRep (Collins et al., 2021) that learn personal classifier on top of a shared feature
extractor, FedRoD (Chen & Chao, 2022) and FedTHE (Jiang & Lin, 2023) that combine global and local prediction heads.
multi-task learning based methods Ditto (Li et al., 2021b); pFedHN (Shamsian et al., 2021) that employs a server-side
hypernetwork to generate the personalized model for each client. ODPFL-HN (Amosy et al., 2022) trains an encoder
with the same structure of the local model to generate client embeddings based on unlabeled data, which are fed into a
hypernetwork to generate customized models. It is worth noting that a common drawback of pFedHN and ODPFL-HN is
that they cannot support parallel client local training in each round and thus inefficient. Moreover, they involve the client
representation transmission, which has potential privacy risk. We do not compare the methods in centralized settings as they
usually need access the (offline) training set, which is not practical in FL settings.

Hyper-parameters. For all FedCal variants, we use a simple threshold-based method to rectify the estimated priors. More
precisely, we consider there are at least two classes in the test set and denote ys the second largest element in the prior
vector, then all the elements that are smaller than α · ys are set to zero, where α is a tunable coefficient and is set to 0.5 by
default. For kNN-Per, we tune the λ over {0.5, 0.6, 0.7, 0.8} and select 0.6. The hyper-parameters in FedTHE are adopted
from the paper. For pFedHN and ODPFL-HN, we set both the server learning rate and the client learning rate to 0.01.

Training priors and class-wise prototypes. In our proposed methods, to perform the test-time calibration, the training
priors are needed in all calibration-based variants and the class-wise prototypes are specially required in the FM-based
variant. However, how to obtain them is a non-trivial issue as those information are not naturally available for the FL service
provider due to privacy protection needs. In our work, as mentioned before, we try to learn an unbiased global model such
that it has the similar performance as the model trained on a class-balanced training set, to avoid the estimation of training
priors. While advanced client selection methods and other approaches have been developed in the literature, we choose the
balanced-softmax based local training strategy to achieve this goal with minimal costs of computation and communication.
For the class-wise prototypes, one way is to collect and aggregate the local prototypes, which might be practical or might not
be feasible as the local label distribution information would be exposed to the server. Another way is to maintain a prototype
dictionary in the server and iteratively update the dictionary by distributing to local clients and aggregating locally updated
ones. Moreover, other privacy-preserving techniques could also be integrated to enhance the system security.

C. Additional Experimental Results

Table 3. Comparison between FedCal with and without rectification in pathological cases

Method MNIST Fashion-MNIST CIFAR-10 CINIC-10

w/o rect. w/ rect. w/o rect. w/ rect. w/o rect. w/ rect. w/o rect. w/ rect.

FedCal-PL 96.87 96.55 (-0.32) 88.71 91.41 (+2.70) 80.05 87.92 (+7.87) 62.92 69.11 (+6.09)

FedCal-EM 96.97 96.55 (-0.42) 89.25 90.35 (+1.10) 84.69 88.48 (+3.79) 68.18 74.04 (+5.86)

FedCal-FM 96.65 95.62 (-1.03) 90.32 91.42 (+1.10) 85.29 88.07 (+2.78) 69.84 70.25 (+0.41)

C.1. More Discussions on Prior Rectification

As mentioned in the main text, when we have the prior knowledge about that the test set is uniformly distributed for existing
categories, we can utilize the rectification to generate more precise test priors. Here, we compare the performance of FedCal
with and without the rectification in the pathological settings. As demonstrated in Table 3, in most cases, the rectification
can promote the test accuracy except the MNIST dataset, where the classification task is relatively easy and the rectification
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will instead slightly reduce the accuracy. It also can be found that as the difficulty of task increases, the effect of rectification
becomes more significant for pseudo-label and maximum likelihood based estimation, while the feature-matching based
estimation is more insensitive to the rectification and outperforms the other two variants when no rectification is conducted.

However, this operation is kind of risky as imbalanced test sets generally exist in many real-world applications, e.g., the
disease diagnosis and anomaly detection, where the positive and negative samples could be highly-imbalanced in both
training and test stages. Therefore, the prior rectification is only recommended when we have prior knowledge of the
balanced test scenarios. Moreover, the results in Table 3 also indicate that when the classification tasks are relatively easy or
the global model performs well, the marginal gain of rectification is rather limited. In such cases, the rectification operation
is not suggested as the original prior estimate can already lead to a significant improvement over the global model.

C.2. Estimated Priors of Clients

Here we take the CIFAR-10 as an example and plot the estimated label distributions of 20 clients by three methods,
respectively. From the results in Fig. 4-Fig. 6, it can be seen that all methods can achieve a relatively precise estimate of the
unknown priors and the rectification can further remove the estimate noises to a large extent. We also notice that the prior
estimates of some clients may still be biased even after rectification, e.g., client 5 in FedCal-PL and client 7 in FedCal-FM.
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Figure 4. Estimated test priors on CIFAR-10 with pseudo labeling method. (a) Original prior estimate; (b) Rectified prior estimate.
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(a) Maximal likelihood w/o rectification
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(b) Maximal likelihood w/ rectification

Figure 5. Estimated test priors on CIFAR-10 with maximal likelihood estimation. (a) Original prior estimate; (b) Rectified prior estimate.
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(a) Feature matching w/o rectification
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(b) Feature matching w/ rectification

Figure 6. Estimated test priors on CIFAR-10 with feature matching method. (a) Original prior estimate; (b) Rectified prior estimate.
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Figure 7. Global model performance on CIFAR-10. (a) 20 clients with 100% participation; (b) 100 clients and 10% participating ratio.

C.3. Global Model Performance with Full and Partial Participation

We also provide the global model accuracy on global test set over the training rounds in Fig. 7. It can be find that when all
clients participate the federated training in each round, the aggregated model is relatively balanced and the balanced-softmax
loss function will has little or no effect. In contrast, when the number of clients becomes larger and the participating ratio is
relatively low, the model performance will fluctuate over time and the clients that only have a short active period will only
receive a intermediate biased global model. Therefore, when those clients encounter with time-varying test set, the estimate
of unknown priors and the prediction calibration will become unreliable and lead to low test accuracy as shown in Table 2.

C.4. More results on generalizing to new clients

There, we provide more empirical evaluation results on test-time adaptation to new clients with unknown label distribution
shift. We consider two typical cases in the non-IID FL literature, including the one studied in the main text where each
client only has partial but balanced categories, and the other one named Dirichlet distribution based sampling. For the
first case, the results on MNIST/Fashion-MNIST/CIFAR-10/CINIC-10 are also provided in Fig. 8. Moreover, we use the
concentration parameter β ∈ {0.01, 0.1, 0.5, 1.0} to simulate a more complicated label distribution shift scenario, where the
available labels in the test set is not balanced. In such cases, the assumption of balanced test samples of available categories
does not hold anymore, therefore we also omit the rectification operation accordingly. From the results in Fig. 9, it can also
be found that our method still outperforms the baseline without test-time adaptation.
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Figure 8. Generalization on new clients with various numbers of target categories. Each client has C randomly selected classes in the test
set. Rectification is applied.
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Figure 9. Generalization on new clients with various levels of label distribution shift. The label distributions among clients are sampled
according to the Dirichlet distribution with a concentration parameter β. Rectification is not applied.
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