
Under review as a conference paper at ICLR 2023

HYPHEN: A HYBRID PACKING METHOD AND
OPTIMIZATIONS FOR HOMOMORPHIC ENCRYPTION
BASED NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Private Inference (PI) enables users to enjoy secure AI inference services while
companies comply with regulations. Fully Homomorphic Encryption (FHE)
based Convolutional Neural Network (CNN) inference is promising as users can
offload the whole computation process to the server while protecting the privacy
of sensitive data. Recent advances in AI research have enabled HE-friendly deep
CNN like ResNet. However, FHE-based CNN (HCNN) suffers from high com-
putational overhead. Prior HCNN approaches rely on dense packing techniques
that aggregate as many channels into the ciphertext to reduce element-wise oper-
ations like multiplication and bootstrapping. However, these approaches require
performing an excessive amount of homomorphic rotations to accumulate chan-
nels and maintain dense data organization, which takes up most of the runtime.
To overcome this limitation, we present HyPHEN, a deep HCNN implementation
that drastically reduces the number of homomorphic rotations. HyPHEN lever-
ages two convolution algorithms, CAConv and RAConv. Alternating between two
convolution algorithms leads to a significant reduction in rotation count. Further-
more, we propose hybrid gap packing method for HyPHEN, which gathers sparse
convolution results into a dense data organization with a marginal increase in the
number of rotations. HyPHEN explores the trade-off between the computational
costs of rotations and other operations, and finds the optimal point minimizing the
execution time. With these optimizations, HyPHEN takes 3.4-4.4× less execu-
tion time than the state-of-the-art HCNN implementation and brings the runtimes
of ResNet on CIFAR10 inference down to 1.44-13.37s using a GPU-accelerated
HEAAN library.

1 INTRODUCTION

Private inference (PI) has recently gained the spotlight in the MLaaS domain as cloud companies
should comply with privacy regulations such as GDPR Regulation (2016) and HIPAA Act (1996).
PI enables inference services at the cloud server while protecting the privacy of the client and the
intellectual properties of the service provider. For instance, hospitals can provide a private medi-
cal diagnosis of diseases, and security companies can provide private surveillance systems without
accessing client’s sensitive data (Kumar et al., 2020; Bowditch et al., 2020).

PI can be achieved using various cryptographic primitives (Gentry, 2009; Yao, 1982; Costan &
Devadas, 2016). Fully Homomorphic Encryption (FHE), which is a set of cryptographic schemes
that can directly evaluate a rich set of functions on encrypted data, is especially suited for PI. FHE-
based PI solution uniquely features 1) full offloading of the computation process to the server, 2)
succinct data communication requirement, and 3) non-disclosure of any information about the model
except the inference result. Such benefits have driven researchers to investigate convolutional neural
network (CNN) PI implementations using FHE (Gilad-Bachrach et al., 2016; Brutzkus et al., 2019;
Dathathri et al., 2020; Lee et al., 2022a; Aharoni et al., 2020).

To implement CNN using FHE, activation functions should be replaced with polynomials as FHE
only supports arithmetic operations of addition and multiplication. Given the constraint, two classes
of polynomial activation functions have been proposed: (i) low-degree polynomials (Gilad-Bachrach

1

Under review as a conference paper at ICLR 2023

et al., 2016; Chabanne et al., 2017) replacing the activation functions in training neural networks, and
(ii) more precise high-degree approximation of ReLU (Lee et al., 2021) that replaces RELU during
PI without additional training. However, both approaches lack practicality; low-degree polynomials
are not applicable to deep neural networks and high-degree approximation significantly degrades the
runtime of PI. Recently, Park et al. (2022) showed that deep homomorphic CNNs (HCNNs) can be
trained with low-degree polynomials even for complex image datasets with their proposal, AESPA,
which utilizes orthogonal polynomial bases and fuses activation functions with batch normalization
(BN) to turn them into second-degree polynomials. AESPA does not sacrifice runtime nor accuracy
unlike prior approaches, thus we employ AESPA in our work.

Another line of research lies in implementing an efficient convolution algorithm in FHE. Gazelle (Ju-
vekar et al., 2018) proposed a convolution algorithm that can compute a single Conv layer on FHE.
However, Gazelle’s method cannot be directly applied to continuous convolutions as it requires ad-
justing arrangement of data by re-encrypting ciphertexts after every Conv layer. Lee et al. (2022a)
modified Gazelle’s convolution by densely mapping data into a ciphertext before entering the next
Conv layer. However, the current state of HCNN is far from being practical. Using the convolution
algorithm of Lee et al. (2022a) and approximated ReLU, inference times of ResNet20 CIFAR-10
are 1662/174s using a single/64 threads in our CPU environment. Despite the unique advantages of
FHE-based PI, the huge runtime overhead prevents FHE from being the go-to solution for PI.

We propose Hybrid Packing method and optimizations for Homomophic Encryption-based neural
Network (HyPHEN), which mitigates the huge overhead of HCNN with an optimized convolu-
tion algorithm and packing method. We observe that after AEPSA is applied, rotation operations in
HCNN take up the majority of the runtime (See Appendix A) and most of the rotations (92-99%) are
spent to implement the sum of channels within the same ciphertext and maintain data organization.
We design a novel convolution algorithm named RAConv that does not require rotations to accu-
mulate channels. In addition, based on the observation that maintaining a single data organization
necessitates massive unnecessary rotations, we design RAConv to take the new data organization
based on the replication of the images. By alternating between two data organizations, we remove
rotations priorly required to adjust the data organization. HyPHEN also includes a novel Hybrid
Packing (HP) method that effectively handles the gap arising from strided convolution (Section 3.2).
HyPHEN achieves 39.6s and 1.44s of runtime in ResNet20 for the CIFAR-10 dataset on CPU and
GPU, respectively. The key contributions of the paper are as follows:

• We propose a replication-based convolution method, RAConv, that can effectively reduce
two types of unnecessary rotations which are the major bottleneck in HCNN.

• We propose a novel hybrid packing (HP) method that can utilize the entire slots of a cipher-
text with a marginal increase in the number of rotations.

• Our experiments show that our HCNN implementation with HyPHEN improves the infer-
ence latency by 3.4-4.4× over prior state-of-the-art HCNNs for ResNet on CIFAR-10.

2 BACKGROUND

2.1 FULLY HOMOMORPHIC ENCRYPTION

FHE is a set of public key encryption schemes that can perform computation on encrypted data.
Among several popular FHE schemes, RNS-CKKS (Cheon et al., 2018) has been broadly adopted
in the PI domain as it supports fixed-point numbers and slot batching. A plaintext in RNS-CKKS
is an unencrypted degree-N polynomial in a cyclotomic polynomial ring, RQ=ZQ[X]/(XN+1).
A plaintext maps to a message which is a vector of N/2 real (or complex) numbers. Thus a single
plaintext batches N/2 slots, which can store complex or real numbers. CKKS encrypts a plaintext
into a ciphertext in R2

Q. Q is a ring modulus which is represented by a set of prime modulus obtained
from the Chinese Remainder Theorem (CRT) as

∏l
i=0 qi (1 ≤ l ≤ L). L and l denote the initial

and current level of a ciphertext. The level is an HE-specific resource that determines the number of
multiplications applicable to a given ciphertext. We also denote the associated level of ring modulus
using subscript as QL or Ql. We denote the plaintext and ciphertext of a message a as 〈a〉 and [a].
HE operations of addition, multiplication, and rotation can be described as follows:

• HE.Eval([a],[b],fl) = HE.Eval([a],〈b〉,fl) = [fl(a,b)]
• HE.Rotate([a],r) = [rot(a,r)]

2

Under review as a conference paper at ICLR 2023

fl denotes linear operations, either Hadamard addition or multiplication. rot(a,r) represents cycli-
cally shifting vector a by r to the left. Unlike addition and rotation, multiplication in RNS-CKKS re-
quires additional rescale operation, which consumes a level by dividing ct ∈ RQl

into ct′ ∈ RQl−1
.

If a ciphertext has no level left after a series of multiplications, bootstrapping (Bossuat et al., 2022)
is needed to reconcile the levels and allow further operation. Bootstrapping, the most costly opera-
tion in HE, consists of multiple HE operations including rescale operations. After bootstrapping, the
level of the resulting ciphertext becomes L′=(L− Lb) where Lb is the depth of rescale operations
in the bootstrapping circuit. As it is beneficial to perform many operations before bootstrapping, L
should be sufficiently larger than Lb. However, large L decreases the security level, which should
be high enough to tolerate cryptographic attacks. The security level is roughly proportional to N/L.
Considering the security requirement of HE, large L requires large N (≥ 215). Thus prior works on
FHE (Bossuat et al., 2021; Jung et al., 2021; Lee et al., 2022b) target N = 215 to 217.

Table 1 shows the execution time of HE operations on a system specified in Section 4.1. We mea-
sured the execution time of each operation at the initial level (max level) of a ciphertext and thus
the execution time may decrease for ciphertexts with lower levels. Bootstrapping consumes over
two orders of magnitude longer runtime than other operations, but boostrapping does not occur as
frequently as others. Except for bootstrapping, Rotate and MulCt are the most time-consuming
operations in HE, which is due to the expensive key-switching procedure.

Benchmark AddPt AddCt MulPt MulCt Rescale Rotate Boot
Time (ms) 0.572 0.202 0.506 17.301 3.904 15.492 2156.605

Table 1: The benchmark of HE operations averaged over 100 iterations on CPU (64 threads). Pt and
Ct postfixes represent ciphertext-plaintext and ciphertext-ciphertext operation, respectively.

2.2 CONVOLUTION ON HOMOMORPHIC ENCRYPTION

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

hi

wi

∗

k1 k2 k3

k4 k5 k6

k7 k8 k9

fh

fw

=

c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

c13 c14 c15 c16

ho

wo

(a) Unencrypted convolution with s = 1

##

a1 a2 a3

a5 a6 a7

a9 a10 a11

⊙

0 0 0 0

0 k1 k1 k1

0 k1 k1 k1

0 k1 k1 k1

⊕

##

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

⊙

0 0 0 0

k2 k2 k2 k2

k2 k2 k2 k2

k2 k2 k2 k2

· · · =

c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

c13 c14 c15 c16

(b) HE SISO convolution with s = 1

##

a1 a2 a3

a5 a6 a7

a9 a10 a11

⊙

0 0 0 0

0 0 0 0

0 0 k1 0

0 0 0 0

⊕

##

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

⊙

0 0 0 0

0 0 0 0

k2 0 k2 0

0 0 0 0

· · · =

c1 0 c2 0

0 0 0 0

c3 0 c4 0

0 0 0 0

(c) HE SISO convolution with s = 2

Figure 1: SISO convolution. ciphertexts and plaintexts are illustrated as a 2D matrix but are actually
stored in 1D manner with each matrix row concatenated.

In this subsection, we describe previous convolution algorithms for FHE. We represent input and
output tensors with tuples {wi, hi, ci} and {wo, ho, co}, and Conv layers with {fw, fh, ci, co}. We
denote the stride of the convolution as s and assume padding = 1 for simplicity. Gazelle (Juvekar
et al., 2018) proposed efficient SISO (single-input and single-output channel) convolution algorithms
on HE. Figures 1b, 1c show SISO convolutions for s = 1, 2. Filter elements are separated into fwfh
plaintexts. Each slot in i-th plaintext stores ki or 0 (punctured) depending on whether ki is involved
in the computation of the output pixel at the same slot. SISO operates as follows: 1) rotate an
encrypted input image with different indexes according to plaintext filter, 2) perform Hadamard
multiplication, and 3) accumulate the multiplication results to obtain the output. Alternatively, if we

3

Under review as a conference paper at ICLR 2023

prepare the filter plaintexts inversely rotated and directly multiply them with the input ciphertext,
the rotations can be performed after MulPt operations (Zhang et al., 2021), which we dub lazy-SISO.
We selectively use SISO and lazy-SISO to minimize rotations for convolution. Detailed explanation
of lazy-SISO is provided in Appendix E

In more general cases of multiple channels, convolution on HE is performed in a SIMD manner. If
the size of a channel image is smaller than the number of slots in a ciphertext, multiple channels can
be placed in a ciphertext. For example, if slot = 215 and an input channel is sized wihi = 32×32 as
in the input image of the CIFAR-10 dataset, slot

wihi
= 32 channels can be placed in a single ciphertext

in an aligned manner (i.e. channel-aligned). Then, the process of convolution for a channel-aligned
input ciphertext storing multiple channels can be described as follows. Suppose ci = slot

wihi
. First,

SISO is performed on ci input channels in a SIMD manner (see Figure 2c), which produces cico
convolution outputs MK(i,j) (1 ≤ i ≤ ci, 1 ≤ j ≤ co). To compute the result for the k-th output
channel,

∑ci
i=1 MK(i,k) is accumulated by RaS (Rotate and Sum), which is repeated until all the

output channels are acquired. Finally, the ciphertexts packed with output channels are realigned to
match the next layer’s input alignment by IR (Image Realign). Throughout this paper, we refer to
this convolution that takes a channel-aligned ciphertext as the input as channel-aligned convolution
(CAConv). CAConv can be further optimized for the case where the input tensor is not large enough
to fill all the slots in a ciphertext; slot

wihici
repeated copies of the input tensor are placed in a ciphertext,

then slot
wihici

output channels can be computed together in a single ciphertext (Lee et al., 2022a).

Strided convolution (s > 1) using SISO algorithm creates a gap between valid values (see Fig-
ure 1c). A ciphertext with a gap underutilizes its slots, leading to throughput degradation. While
Juvekar et al. (2018) can remove the gap by a client-aided re-encryption process, non-interactive PI
shall remove the gap through masking and rotation, which incur additional rotation overhead and
also consume more levels. Lee et al. (2022a) proposed a multiplexed packing method that can be
combined with CAConv (MP-CAConv) to mitigate the overheads. In the IR stage of MP-CAConv,
multiplexed packing fills the gap with other channels (see Figure 3b), which we refer to as the
repacking process. Other than the repacking process, MP-CAConv is very similar to CAConv. In
MP-CAConv, IR collectively refers to realigning and repacking process.

Tile tensoring based convolution proposed in (Aharoni et al., 2020) is a yet another convolution
algorithm for FHE. While tile tensoring based convolution can be efficient alternative to SISO-
based convolution when the image size is sufficiently high, our paper mainly focuses on SISO-based
convolution, which can be applied more broadly.

In RNS-CKKS, the hoisting optimization allows multiple rotations to share common sub-operations
composing a rotation operation. First-level hoisting shares the front decomposition sub-operations
when rotating a single ciphertext multiple times with different indexes. Second-level hoisting shares
the rear ModDown sub-operations when rotating and summing up multiple ciphertexts. We refer the
reader to Bossuat et al. (2021) for further details of the hoisting optimization. First-level hoisting
can be applied to SISO, whereas second-level hoisting can be applied to lazy-SISO.

2.3 POLYNOMIAL ACTIVATION FUNCTION ON HOMOMORPHIC ENCRYPTION

Non-linear activation functions, such as ReLU, cannot be used in HCNN. They must be replaced
with polynomial functions as HE only supports addition and multiplication operations. To directly
replace ReLU with approximate polynomials, approximation error should be negligible over a wide
range to retain the original accuracy of a CNN model. Lee et al. (2021) designed a precise approx-
imation of ReLU having an l1 norm approximation error less than 2−13 in the range of [-50, 50],
obtained by a composition of {15, 15, 27} degree polynomials. This approximation-based approach
has a benefit that it can be applied to pretrained neural networks. However, evaluation of high-
degree polynomials imposes a significant runtime overhead in HCNN inference. Another approach
is to train neural networks with low-degree polynomial activations as in Ishiyama et al. (2020); Cha-
banne et al. (2017); Obla et al. (2020); Hesamifard et al. (2019); Thaine et al. (2019). While this ap-
proach requires retraining, operational cost is much cheaper compared to high-degree polynomials.
Recently AESPA (Park et al., 2022) demonstrated that CNN trained with low-degree polynomials
can achieve equivalent accuracy to ReLU-based networks across various CNN networks and image
datasets. AESPA replaces batch normalization (BN) and ReLU with the composition of orthogonal
basis polynomials and basis-wise BN as follows:

4

Under review as a conference paper at ICLR 2023

f(x) = γ

d∑
i=0

f̂i
hi(x)− µ√

σ2 + ϵ
+ β (1)

Here, hi are the orthogonal bases, σ and µ are the mean and variance computed from BN, and γ and
β are trainable parameters. For d = 2, AESPA turns into a second-degree polynomial with different
coefficients for each channel on inference. We adopt AESPA in this paper, which leads to better
runtime performance.

2.4 THREAT MODEL

We adopt the same threat model as prior PI works. A client sends encrypted data to an untrusted
server. The server performs CNN inference using HE operations and returns inference results to the
client. The client decrypts the resulting ciphertext to obtain the private result. The server only holds
the client’s public keys and cannot decrypt any intermediate ciphertexts in the inference process.
The client does not know any information about the processing at the server other than the result.

3 METHOD

3.1 REPLICATION-ALIGNED CONVOLUTION

The main performance bottleneck of CAConv is the massive number of rotations. CAConv requires
an enormous number of rotations to implement the sum of the channels within the same ciphertext
(RaS) and the relocation of the channels (IR) to match the next layer’s input representation. These
rotations take up most of the time in CAConv. For example, when N = 216, rotations for RaS and IR
account for 49% and 43% of the total number of rotations in ResNet20, respectively. Furthermore,
IR consumes an additional level for masking to extract the values.

M (1) M (1)

M (2) M (2)

co

ci ∗
K(1,1) K(1,2)

K(2,1) K(2,2)

co

ci

fwfh

SISO−−−−→
MK(1,1) MK(1,2)

MK(2,1) MK(2,2)

∑
−→ N (1) N (2)

(a) RAConv with SISO

M (1) M (1)

M (2) M (2)

co

ci ∗
K(1,1) K(1,2)

K(2,1) K(2,2)

co

ci

fwfh

SISOl−−−−→ MK(1,1) MK(1,2)

MK(1,1) MK(1,2)

MK(1,1) MK(1,2)
RaS−−−→ N (1) N (2)

(b) RAConv with lazy-SISO

M (1) M (2)

ci

∗
K(1,1) K(2,1)

K(1,2) K(2,2)

ci

co

fwfh

SISO−−−−→
MK(1,1) MK(2,1)

MK(1,2) MK(2,2)

rotate and add

RaS−−−→
N (1) N (1)

N (2) N (2)

(c) CAConv with SISO

Figure 2: CAConv and RAConv. The single superscript denotes channel and the superscript pair
denotes (input channel, output channel). We simplify the notation of M (a)K(a,b) as MK(a,b).

To mitigate the performance bottleneck caused by rotations in CAConv, we design Replication-
Aligned Convolution (RAConv) to receive the alternative data representation. In CAConv, the output
ciphertext of RaS contains replications of the channel sum (i.e. replication-aligned) as shown in
Figure 2c. RAConv receives replication-aligned ciphertexts as input and skips IR and RaS stages.
Figure 2a shows an example of performing RAConv. RAConv takes ci input ciphertexts each filled
with replications of a single input channel and weight plaintexts aligned in output channel order.
RAConv operates as follows: 1) perform parallel SISO, which outputs ci ciphertexts where the i-th
ciphertext contains MK(i,j) for all j values, and 2) accumulate the ciphertexts by simple HE ad-
ditions. SISO in RAConv actually increases the number of rotations because ci input ciphertexts
require ci(fwfh − 1) rotations during parallel SISO. Instead, we utilize lazy-SISO with RAConv,
which requires much fewer (fwfh − 1) rotations for SISO. RAConv produces a densely-packed
channel-aligned ciphertext that complies with the CAConv input data organization, so we alternate
between RAConv and CAConv. RAConv-CAConv chain halves the RaS rotations previously re-
quired in two CAConvs to cilog(co).

5

Under review as a conference paper at ICLR 2023

a
(1)
1 0 a

(1)
2 0

0 0 0 0

a
(1)
3 0 a

(1)
4 0

0 0 0 0

(a) Void packing

a
(1)
1 a

(2)
1 a

(1)
2 a

(2)
2

a
(3)
1 a

(4)
1 a

(3)
2 a

(4)
2

a
(1)
3 a

(2)
3 a

(1)
4 a

(2)
4

a
(3)
3 a

(4)
3 a

(3)
4 a

(4)
4

(b) Multiplex packing

a
(1)
1 a

(1)
1 a

(1)
2 a

(1)
2

a
(1)
1 a

(1)
1 a

(1)
2 a

(1)
2

a
(1)
3 a

(1)
3 a

(1)
4 a

(1)
4

a
(1)
3 a

(1)
3 a

(1)
4 a

(1)
4

(c) Duplicate packing

a
(1)
1 a

(2)
1 a

(1)
2 a

(2)
2

a
(1)
1 a

(2)
1 a

(1)
2 a

(2)
2

a
(1)
3 a

(2)
3 a

(1)
4 a

(2)
4

a
(1)
3 a

(2)
3 a

(1)
4 a

(2)
4

(d) Hybrid packing

Figure 3: Comparison of gap packing methods to fill gap induced by downsampling layers.

a(1) a(1) a(17) a(17)

a(1) a(1) a(17) a(17)
CAConv−−−−−−→

b(1−16,1) b(1−16,2) b(17−32,1) b(17−32,2)

b(1−16,3) b(1−16,4) b(17−32,3) b(17−32,4)

RaS

RaS−−−→
c(1) c(2) ## ##

c(3) c(4) ## ##

Mask and Broadcast

Broadcast−−−−−−−→
c(1) c(2) c(1) c(2)

c(3) c(4) c(3) c(4)

(a) CAConv with hybrid packing (HP-CAConv)

a
(1)
1 a

(2)
1 a

(1)
1 a

(2)
1

a
(3)
1 a

(4)
1 a

(3)
1 a

(4)
1

RAConv−−−−−−→
b(1−8,1) b(9−16,1) b(1−8,17) b(9−16,17)

b(17−24,1) b(25−32,1) b(17−24,17) b(25−32,17)

RaS

RaS−−−→
c(1) ## c(17) ##

##

Mask and Broadcast

Broadcast−−−−−−−→
c(1) c(1) c(17) c(17)

c(1) c(1) c(17) c(17)

(b) RAConv with hybrid packing (HP-RAConv)

Figure 4: The procedure of CAConv and RAConv with hybrid packing

3.2 HYBRID PACKING

SISO convolution suffers from low slot utilization in ciphertexts due to two reasons. First, strided
convolution creates a gap between valid values (see Figure 3a). Second, the small size of input
tensors creates empty slots in ciphertexts. Due to the security requirement of FHE, the number of
slots in a ciphertext is often larger than the size of an input tensor. Underutilization of slots in SISO
leads to severe throughput degradation in HCNN.

Prior state-of-the-art HCNN implementation (MP-CAConv) mitigates underutilization of slots using
multiplexed packing and input repetition (see Section 2.2). However, they cause a lot of additional
rotation overhead to adjust the data organization. In MP-CAConv, RaS operation is used to accumu-
late SISO results in a ciphertext. Under input repetition, RaS operation returns an output channel at
the slots where an input ciphertext stores the first channel of an input tensor. Multiplexed channels
are also accumulated through RaS operation, thus values constituting an output channel exist only
in non-gap slots, as shown in Figure 3a. To restore the data organization of MP-CAConv, invalid
values are masked off and empty slots are filled with other channels through IR process. In the pres-
ence of input repetition, IR spends O(co) rotations to relocate output channels and slot

wohoco
additional

rotations for generating input repetition.

To reduce the relocating overhead between convolutional layers, we propose a novel image pack-
ing method, hybrid packing (HP). HP fills the gap with channel duplicates of multiple channels
(See Figure 3d). We design HP based on two key observations. First, applying convolution over
a duplicate-packed ciphertext (Figure 3c) produces a multiplex-packed output ciphertext as in Fig-
ure 3b. Second, converting a void-packed ciphertext into a duplicate-packed ciphertext requires
fewer rotations than converting it into a multiplex-packed ciphertext. Duplicate packing only needs
O(log(gapsize)) rotations while multiplexed packing requires O(gapsize) rotations.

HP is a hybrid of duplicate packing and multiplexed packing. We represent a hybrid-packed cipher-
text by a pair of numbers, the number of multiplexed channels m, and the number of duplicates d.
For example, Figure 3d shows (m, d) = (2, 2) HP. Packing of the ciphertext switches between two
HP settings while processing CAConv and RAConv as shown in Figure 4. We denote HP param-
eter (m, d) of the input and output ciphertext as (min, din) and (mout, dout). Input repetition is no
longer required as HP with larger din can be used instead. Duplicates of HP produce different output
channels within the gap (See c(1) and c(17) in Figure 4b) Then, the IR process adjusts the output
ciphertext’s organization from (mout, dout) = (din, 1) to (din,min), which only requires O(logmin)

6

Under review as a conference paper at ICLR 2023

Method ctin ctout SISO RaS IR

(Lee et al., 2022a) ⌈wihici
n ⌉ ⌈wohoco

n ⌉ ctin(fwfh − 1) wihicico
n log ci co+ log n

wohoco

HP-CAConv wihicidin

n
co
din

ctmin(fwfh − 1) ctout log
ci

ctin
ctout logmin

HP-RAConv ci
min

wihicomin

n ctmin(fwfh − 1) ctout logmin ctout logmin

Table 2: The rotation complexity of the convolutions. We denote the numbers of input and output
ciphertexts as ctin, ctout. Then, ctmin = min(ctin, ctout) considering SISO and lazy-SISO.

rotations, which fill the gaps. After performing a series of CAConv and RAConv, the HP organiza-
tion of the output ciphertext returns to the initial (min, din). The complete procedures of RAConv
and CAConv with HP are described more in detail in Appendix H.

Compared to MP-CAConv, HP significantly reduces the rotations in RaS and IR. The rotation com-
plexities of MP-CAConv (Lee et al., 2022a) and our hybrid-packed convolutions are shown in Ta-
ble 2. For both HP convolution methods, the product of the numbers of input and output ciphertexts
remains constant (ctin · ctout = wihicico

n). Compared to MP-CAConv, the number of rotations for
RaS is reduced by about ctin times for both HP-CAConv and HP-RAConv. IR stage of HP repacks
the gap with duplicates. Rotation decreases from co of MP-CAConv to mere logmin rotations per
output ciphertext.

HP convolutions require more rotations than MP-CAConv for SISO; ctin of MP-CAConv is always
smaller than or equal to ctmin of HP-CAConv or HP-RAConv. Nevertheless, hoisting can be applied
to SISO which reduces the significance of the rotation cost of SISO, and the reduction of rotations
in RaS and IR overwhelms the increase in SISO.

All things considered, HP reduces the overall number of rotations required for convolutions. We can
also explore various combinations for the (m, d) pair to minimize the total number of rotations. The
choice of (m, d) decides ctin and ctout values and creates a trade-off between SISO, RaS, and IR
costs, and also affects the number of ciphertexts we have to perform bootstrapping with. We provide
an in-depth performance analysis with regard to the choice of (m, d) in Section 4.2.

3.3 THE RESNET ARCHITECTURE ON HYPHEN

Square (1) RAConv (2)CAConv (2) Bootstrap

Shortcut (1) / CAConv1x1 (2) Basic Block

Square (1)

Figure 5: The structure of ResNet basic block built on HyPHEN. The level consumption per block
is written in parentheses. In the downsampling block, pointwise convolution is added to the critical
path. Otherwise, a simple shortcut is added.

HyPHEN combines RAConv and HP to build the entire CNN model. Figure 5 shows the basic block
of ResNet implemented on HyPHEN. There are three more considerations when deciding the order
of operations. First, bootstrapping is cheaper when placed after RAConv, and not CAConv, because
the number of ciphertexts is smaller at the moment. Second, to match the level between the shortcut
path and the main CAConv-RAConv path, bootstrapping should be placed either before residual
connections diverge or after they converge. Last, it is beneficial to perform convolutional layers at
the lowest level possible. The complexity of FHE operations such as rotation is proportional to the
level l of ciphertext. Therefore, the lower the calculated level, the smaller the computational cost.

All things put together, our ResNet basic block implementation consumes a total of 6 levels. The
level consumption of each layer is represented in the parenthesis of each block. CAConv and
RAConv use HP and consume one level for each SISO and IR. Activation uses AESPA and con-
sumes one level. AESPA is a quadratic polynomial having different coefficients for each channel
while training. During inference, we fuse the coefficients into nearby layers, then the activation
becomes a simple square function x2. We set the initial ciphertext level L to six and perform boot-
strapping when the level becomes zero.

7

Under review as a conference paper at ICLR 2023

4 EVALUATION

4.1 EXPERIMENTAL SETUP

We ran HCNN inference on CPU and GPU environments using the RNS-CKKS library, HEAAN.
CPU instance is equipped with AMD EPYC 7452 running at 2.35GHz (64 cores) and 480GB
DRAM. GPU experiments are conducted at the same system with an additional NVIDIA A100 GPU
with 80GB HBM. Our HCNN inference experiments use the CIFAR-10 (Krizhevsky et al., 2009).
We evaluate ResNet20/32/44/18 trained with AESPA on PyTorch and applied the fusion technique to
all the networks. Our RNS-CKKS parameters satisfy 128-bit security level (Cheon et al., 2019) with
polynomial degree N = 216 and hamming weight 192. Multiplication and bootstrapping primes
each occupy 48 bits and over 56 bits, respectively. The bootstrapping implementation consumes 17
levels in our setup.

4.2 OPTIMAL POINT

We explore the optimal (m, d) pair for HP to minimize the latency of ResNet 20/18. Table 3 shows
the operation count of rotation and bootstrapping, which are major contributors to the runtime. Ro-
tation is categorized into SISO and non-SISO. Only SISO rotations can be optimized with hoisting.
Table 3 presents an instance of MP-CAConv and three (or two) instances of our HP-based convo-
lution. Instances of HP-based convolution consist of settings with minimal bootstrapping, minimal
rotations, and optimal latency. In ResNet20, The optimal point corresponds to the minimal boot-
strapping. In ResNet18, the amount of rotations hikes following the channel increment. The optimal
point sacrifices bootstrapping counts to play fewer rotations. We opt for these two settings to evalu-
ate in the following section. A more thorough parameter study on GPU is presented in Appendix B.

Model Packing (m,d) Rotations Boot CPU Runtime(s)L1 L2 L3 L4 SISO RaS IR total

ResNet20
MP-CAConv 152 924 800 1876 11 74.3 ± 0.8

Optimal (1,2) (2,4) (4,8) - 152 580 187 919 11 39.6 ± 0.3
Min Rot (1,2) (1,8) (2,16) - 240 407 142 789 16 46.3 ± 0.3

ResNet18

MP-CAConv 176 19472 4787 24435 12 558.6 ± 5.6
Min Boot (1,1) (4,1) (8,2) (16,4) 184 12678 3380 16242 12 366.5 ± 7.2
Optimal (1,1) (1,4) (2,8) (4,16) 448 3976 1131 5555 27 185.5 ± 2.0
Min Rot (1,1) (1,4) (1,16) (2,32) 672 3376 1007 5055 39 195.0± 1.7

Table 3: Runtime for the ResNet instances with different (m, d) parameters and packing strategies.

4.3 SENSITIVITY STUDY

Set1 Set2 Set3
ResNet-20

0

50

100

150

E
xe

cu
tio

n
Ti

m
e(

s)

Set1 Set2 Set3
ResNet-18

0

200

400

600

CAConv RAConv Boot Act Etc

Figure 6: The execution time of ResNet20/18 with
three settings on our CPU environment. Set1
uses appReLU with MP-CAConv (Lee et al.,
2022a). Set2 uses AESPA with MP-CAConv
and Set3 represents HyPHEN, using AESPA
with our convolution method. FHE parameters
used in the experiments are explained in Table 11

In Figure 6, three activation function & convo-
lution algorithm pairs are evaluated. Set1 fol-
lows the implementation of Lee et al. (2022a),
using AppReLU with MP-CAConv. Set1
spends most of the time for bootstrapping in
ResNet20 inference. Set2 employs the square
activation of AESPA along with MP-CAConv.
AESPA reduces the number of levels consumed
by activation functions, thus requiring much
less time for bootstrapping. Set2 experiences
5.1× and 2.9× reduction in bootstrapping time
in ResNet20 and ResNet18, respectively. For
both networks, most of the runtime is spent on
CAConv in Set2.

By introducing HyPHEN in Set3, the execu-
tion times spent for convolutional layers are
reduced by 3.1× and 5.0× in ResNet20 and
ResNet18, respectively. The impact of Hy-
PHEN is amplified for more complex networks
like ResNet18; HyPHEN resolves the problem

8

Under review as a conference paper at ICLR 2023

of MP-CAConv showing a superlinear increase in the number of rotations as the number of chan-
nels increases. Overall, HyPHEN achieves 3.4-4.4× speedup compared to the prior state-of-the-art
implementation of Lee et al. (2022a) (Set1).

4.4 EXECUTION TIME

Table 4 shows the runtimes of various ResNet instances on CIFAR-10. We measured the execu-
tion time of running inference with a single CIFAR-10 image in our CPU/GPU environments. Our
ResNet20/32/44 implementations on GPU take merely a few seconds to complete. Furthermore,
We demonstrate running ResNet18 for the first time. As ResNet18 has 4× more channels than
ResNet20/32/44, execution time largely depends on the convolutional layer. Table 4 again demon-
strates that RAConv effectively reduces the overall runtime of the conv layer, as our operation count
analysis in Table 3. Detailed comparison with Lee et al. (2022a) is provided in Appendix A

Execution
time (s)

CPU (64 cores) GPU
ResNet20 ResNet32 ResNet44 ResNet18 ResNet20 ResNet32 ResNet44 ResNet18

HP-CAConv 14.43 20.96 26.68 102.34 0.49 0.70 0.90 7.06
HP-RAConv 2.41 4.12 5.83 19.18 0.07 0.11 0.15 1.03
Bootstrap 21.08 33.93 46.07 57.53 0.82 1.31 1.80 3.49
Activation 1.44 2.50 3.40 6.16 0.05 0.09 0.12 0.58
Etc 0.22 0.25 0.40 0.31 <0.01 <0.01 0.01 1.21

total 39.58 ± 0.3 61.76 ± 0.7 82.38 ± 0.9 185.52 ± 2.0 1.44± 0.02 2.21 ±0.02 2.98±0.02 13.37 ± 0.09

Table 4: HyPHEN Inference time of a single CIFAR-10 image using ResNet models on CPU and
GPU. As FC layer and Pooling have a tiny execution time, we gather them at Etc.

4.5 ACCURACY

Top-1 Acc (%) ResNet20 ResNet32 ResNet44 ResNet18
Backbone 92.18 93.36 94.04 95.1
Measured 92.17 93.35 94.08 95.02

Table 5: Comparison of the inference accuracies
for the CIFAR-10 dataset running ResNet models
on our RNS-CKKS-based implementation.

In Table 5, we measured inference accura-
cies for CIFAR-10 images running ResNet
model on our RNS-CKKS-based implementa-
tion. Though we found an error below the sec-
ond decimal place at the classifier result, we did
not observe any deterioration in the accuracy
of ResNet20/32/44. ResNet18 shows -0.08%
degradation in accuracy, which is smaller com-
pared to the accuracy drop in Lee et al. (2022a).
The difference in accuracy drop can be explained by whether the original network is executed as is
or an approximation has been made.

5 LIMITATIONS

ResNet networks are the only models addressed in the paper. Broader experiments toward various
models such as Liu et al. (2022) would show the practicality of FHE-based PI more clearly.

6 CONCLUSION

In this paper, we proposed an efficient convolution algorithm RAConv, and a novel packing
method Hybrid Packing. We showed HyPHEN, FHE-based ResNet architecture implementation
applying proposed optimizations. Our experiments on real machine show 3.4-4.4× lower la-
tency for ResNet20/32/44/18 compared to Lee et al. (2022a). Using GPU acceleration, HyPHEN
demonstrates 1.44/2.21s/2.98s/13.37s execution time for running ResNet20/32/44/18 on CIFAR-10
dataset.

REFERENCES

Nvidia Nsight Systems. https://developer.nvidia.com/nsight-systems, 2021.
NVIDIA Coporation, Santa Clara, California.

9

https://developer.nvidia.com/nsight-systems

Under review as a conference paper at ICLR 2023

Accountability Act. Health insurance portability and accountability act of 1996. Public law, 104:
191, 1996. URL https://www.hhs.gov/hipaa/index.html.

Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash, Lev Greenberg,
Ramy Masalha, Guy Moshkowich, Dov Murik, et al. Helayers: A tile tensors framework for large
neural networks on encrypted data. arXiv e-prints, pp. arXiv–2011, 2020.

Jean-Philippe Bossuat, Christian Mouchet, Juan Ramón Troncoso-Pastoriza, and Jean-Pierre
Hubaux. Efficient bootstrapping for approximate homomorphic encryption with non-sparse keys.
In Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part I, 2021. URL https://doi.org/10.1007/978-3-030-77870-5_
21.

Jean-Philippe Bossuat, Juan Ramón Troncoso-Pastoriza, and Jean-Pierre Hubaux. Bootstrapping for
approximate homomorphic encryption with negligible failure-probability by using sparse-secret
encapsulation. In Applied Cryptography and Network Security - 20th International Conference,
ACNS 2022, Rome, Italy, June 20-23, 2022, Proceedings, 2022. URL https://doi.org/
10.1007/978-3-031-09234-3_26.

William Bowditch, Will Abramson, William J. Buchanan, Nikolaos Pitropakis, and Adam J. Hall.
Privacy-preserving surveillance methods using homomorphic encryption. In Proceedings of the
6th International Conference on Information Systems Security and Privacy, ICISSP 2020, Val-
letta, Malta, February 25-27, 2020. SCITEPRESS, 2020. URL https://doi.org/10.
5220/0008864902400248.

Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy preserving inference.
In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, 2019. URL http://proceedings.mlr.press/
v97/brutzkus19a.html.

Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and Emmanuel Prouff.
Privacy-preserving classification on deep neural network. IACR Cryptol. ePrint Arch., 2017. URL
http://eprint.iacr.org/2017/035.

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full RNS variant
of approximate homomorphic encryption. In Selected Areas in Cryptography - SAC 2018 - 25th
International Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Selected Papers,
2018. URL https://doi.org/10.1007/978-3-030-10970-7_16.

Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. A hybrid of dual and meet-
in-the-middle attack on sparse and ternary secret LWE. IEEE Access, 2019. URL https:
//doi.org/10.1109/ACCESS.2019.2925425.

Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR Cryptol. ePrint Arch., 2016. URL
http://eprint.iacr.org/2016/086.

Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan Musuvathi.
EVA: an encrypted vector arithmetic language and compiler for efficient homomorphic compu-
tation. In Proceedings of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, 2020. doi:
10.1145/3385412.3386023. URL https://doi.org/10.1145/3385412.3386023.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2,
2009, 2009. URL https://doi.org/10.1145/1536414.1536440.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, volume 48, 2016. URL http://proceedings.
mlr.press/v48/gilad-bachrach16.html.

10

https://www.hhs.gov/hipaa/index.html
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.5220/0008864902400248
https://doi.org/10.5220/0008864902400248
http://proceedings.mlr.press/v97/brutzkus19a.html
http://proceedings.mlr.press/v97/brutzkus19a.html
http://eprint.iacr.org/2017/035
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1109/ACCESS.2019.2925425
https://doi.org/10.1109/ACCESS.2019.2925425
http://eprint.iacr.org/2016/086
https://doi.org/10.1145/3385412.3386023
https://doi.org/10.1145/1536414.1536440
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html

Under review as a conference paper at ICLR 2023

Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate homomorphic encryption.
IACR Cryptol. ePrint Arch., 2019. URL https://eprint.iacr.org/2019/688.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, 2016. URL https://doi.org/10.1109/CVPR.
2016.90.

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Deep neural networks classification over
encrypted data. In Proceedings of the Ninth ACM Conference on Data and Application Security
and Privacy, CODASPY 2019, Richardson, TX, USA, March 25-27, 2019, 2019. URL https:
//doi.org/10.1145/3292006.3300044.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, 2015. URL http://arxiv.org/abs/1503.02531.

Takumi Ishiyama, Takuya Suzuki, and Hayato Yamana. Highly accurate CNN inference using ap-
proximate activation functions over homomorphic encryption. In 2020 IEEE International Con-
ference on Big Data (IEEE BigData 2020), Atlanta, GA, USA, December 10-13, 2020, 2020. URL
https://doi.org/10.1109/BigData50022.2020.9378372.

Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho Lee. Over 100x faster
bootstrapping in fully homomorphic encryption through memory-centric optimization with gpus.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021. URL https://doi.org/10.46586/
tches.v2021.i4.114-148.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan. GAZELLE: A low la-
tency framework for secure neural network inference. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, 2018. URL https://www.
usenix.org/conference/usenixsecurity18/presentation/juvekar.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi, and Rahul
Sharma. Cryptflow: Secure tensorflow inference. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, 2020. URL https://doi.
org/10.1109/SP40000.2020.00092.

Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No,
and Woosuk Choi. Low-complexity deep convolutional neural networks on fully homomor-
phic encryption using multiplexed parallel convolutions. In International Conference on Ma-
chine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, 2022a. URL https:
//proceedings.mlr.press/v162/lee22e.html.

Junghyun Lee, Eunsang Lee, Joon-Woo Lee, Yongjune Kim, Young-Sik Kim, and Jong-Seon No.
Precise approximation of convolutional neural networks for homomorphically encrypted data.
CoRR, abs/2105.10879, 2021. URL https://arxiv.org/abs/2105.10879.

Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No, and HyungChul
Kang. High-precision bootstrapping for approximate homomorphic encryption by error vari-
ance minimization. In Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway,
May 30 - June 3, 2022, Proceedings, Part I, 2022b. URL https://doi.org/10.1007/
978-3-031-06944-4_19.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. CoRR, abs/2201.03545, 2022. URL https://arxiv.org/abs/
2201.03545.

Srinath Obla, Xinghan Gong, Asma Aloufi, Peizhao Hu, and Daniel Takabi. Effective activation
functions for homomorphic evaluation of deep neural networks. IEEE Access, 8, 2020. URL
https://doi.org/10.1109/ACCESS.2020.3017436.

11

https://eprint.iacr.org/2019/688
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3292006.3300044
https://doi.org/10.1145/3292006.3300044
http://arxiv.org/abs/1503.02531
https://doi.org/10.1109/BigData50022.2020.9378372
https://doi.org/10.46586/tches.v2021.i4.114-148
https://doi.org/10.46586/tches.v2021.i4.114-148
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://doi.org/10.1109/SP40000.2020.00092
https://doi.org/10.1109/SP40000.2020.00092
https://proceedings.mlr.press/v162/lee22e.html
https://proceedings.mlr.press/v162/lee22e.html
https://arxiv.org/abs/2105.10879
https://doi.org/10.1007/978-3-031-06944-4_19
https://doi.org/10.1007/978-3-031-06944-4_19
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2201.03545
https://doi.org/10.1109/ACCESS.2020.3017436

Under review as a conference paper at ICLR 2023

Jaiyoung Park, Michael Jaemin Kim, Wonkyung Jung, and Jung Ho Ahn. AESPA: accuracy
preserving low-degree polynomial activation for fast private inference. CoRR, 2022. URL
https://arxiv.org/abs/2201.06699.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing
Systems 32, pp. 8024–8035. 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Protection Regulation. Regulation (eu) 2016/679 of the european parliament and of the council. Reg-
ulation (eu), 679:2016, 2016. URL http://data.europa.eu/eli/reg/2016/679/
oj.

Patricia Thaine, Sergey Gorbunov, and Gerald Penn. Efficient evaluation of activation functions
over encrypted data. In 2019 IEEE Security and Privacy Workshops, SP Workshops 2019, San
Francisco, CA, USA, May 19-23, 2019, 2019. URL https://doi.org/10.1109/SPW.
2019.00022.

Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982.
IEEE Computer Society, 1982. URL https://doi.org/10.1109/SFCS.1982.38.

Qiao Zhang, Chunsheng Xin, and Hongyi Wu. GALA: greedy computation for linear algebra in
privacy-preserved neural networks. In 28th Annual Network and Distributed System Security
Symposium, NDSS 2021, virtually, February 21-25, 2021, 2021.

12

https://arxiv.org/abs/2201.06699
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1109/SPW.2019.00022
https://doi.org/10.1109/SPW.2019.00022
https://doi.org/10.1109/SFCS.1982.38

Under review as a conference paper at ICLR 2023

A BOTTLENECK ANALYSIS

Figure 7 shows the runtime analysis of the convolutional layer, which is conducted on actual layer
instances of ResNet20. In Lee et al. (2022a), rotation accounts for 83-94% of the total convolution
time, which is reduced to 46-77% with our method. The optimized convolutional layer in HyPHEN
leads to a smaller ratio of rotation in the total execution time. Table 6 shows runtime breakdown
of each operation and detailed comparison with (Lee et al., 2022a) in our CPU environment. As
we set both implementations to use AESPA with the same HE parameter set, the speedup is solely
due to the different packing schemes. In ResNet20, our implementation shows slight increase in
activation function runtime. However, latency improvements in convolution layer leads to the 1.87×
lower total execution time. Similarly in ResNet18, our implementation reports increased runtime in
activation function and bootstrapping time, but 5.77× lower convolution time again leads to 3.33×
lower total execution execution time.

0

1000

2000

3000

4000

E
xe

cu
tio

n
Ti

m
e(

m
s) Others

Rotation

(a) CP-CAConv (Lee et al., 2022a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

500

1000

1500

E
xe

cu
tio

n
Ti

m
e(

m
s)

(b) HyPHEN

Figure 7: Comparison of rotation time in ResNet20 convolutional layers

Execution
time (s)

ResNet 20 ResNet18
Ours Lee et al. (2022a) Ours Lee et al. (2022a)

runtime percent runtime percent runtime percent runtime percent

CAConv 14.43 36.4% 52.32 70.4% 102.33 55.2% 590.53 95.9%
RAConv 2.41 6% - - 19.18 10.3% - -
Bootstrap 21.08 53.2% 21.41 28.8 % 57.53 31.0% 25.91 4.2%
Activation 1.44 3.6% 0.34 <0.01% 6.16 3.3% 0.43 <0.01 %
Etc 0.22 0.01% 0.22 <0.01% 0.31 <0.01% 0.24 <0.01 %

Total 39.58 ± 0.3 100% 74.29 ± 0.8 100% 185.52± 2.04 100% 617.11± 2.04 100%

Table 6: HyPHEN inference time of a single CIFAR-10 image using ResNet models on CPU. As
FC layer and Pooling have a tiny execution time, we gather them at Etc.

B PARAMETER STUDY

We present a parameter study to explore the optimal HP setting which minimizes latency. Table 7
and 8 show the rotation and bootstrapping counts with varying (m, d) available in ResNet20 and
18 and the execution time running the network on GPU. We only represent the (m, d) pair of CA-
Conv, as m and d are exchanged at RAConv. In ResNet20, we start with (m, d) = (1, 2) to remove
input repetition as the size of the input tensor in the first layer (32 × 32 × 16) is smaller than the
ciphertext slots (215). Nevertheless, Larger d has not been considered as it leads to more bootstrap-
ping, as shown in our proposed architecture (See Figure 5). As the input ciphertexts go through
the downsampling layer, m · d gets quadrupled and the size of the intermediate tensor gets halved.
In ResNet20, HP that doubles d every downsampling layer yields optimal performance, which re-
duces rotation without increasing bootstrap. In ResNet18, the impact of bootstrapping increment

13

Under review as a conference paper at ICLR 2023

is often smaller than the impact of rotation decrement. The optimal HP setting requires 15 more
bootstrappings and 10687 fewer rotations than the minimum bootstrapping HP setting.

(m,d) Rotations Boot GPU Runtime(s)L1 L2 L3 SISO RaS IR total

(1,2) (2,4) (4,8) 152 580 187 919 11 1.44 ± 0.02
(1,2) (2,4) (2,16) 192 539 162 893 13 1.56± 0.02
(1,2) (1,8) (4,8) 200 448 165 813 14 1.59± 0.02
(1,2) (1,8) (2,16) 240 407 142 789 16 1.71± 0.02
(1,2) (1,8) (1,32) 240 419 154 831 20 2.06 ± 0.02

Table 7: Comparison of the instances of CAConv (m,d) parameters in ResNet20.

(m,d) Rotations Boot GPU Runtime(s)L1 L2 L3 L4 SISO RaS IR total

(1,1) (4,1) (8,2) (16,4) 184 12678 3380 16242 12 18.5 ± 0.09
(1,1) (4,1) (8,2) (8,8) 208 12046 2793 15047 13 17.7 ± 0.12
(1,1) (4,1) (4,4) (16,4) 216 9804 2786 12806 14 16.9 ± 0.15
(1,1) (4,1) (4,4) (8,8) 240 9172 2207 11619 15 15.8 ± 0.12
(1,1) (4,1) (4,4) (4,16) 288 8904 1979 11171 17 15.7 ± 0.09
(1,1) (2,2) (8,2) (16,4) 216 10122 2920 13258 14 17.4 ± 0.11
(1,1) (2,2) (8,2) (8,8) 240 9490 2333 12063 15 17.0 ± 0.20
(1,1) (2,2) (4,4) (16,4) 248 7248 2342 9838 16 15.3 ± 0.12
(1,1) (2,2) (4,4) (8,8) 272 6616 1763 8651 17 14.7 ± 0.11
(1,1) (2,2) (4,4) (4,16) 320 6348 1535 8203 19 14.9 ± 0.14
(1,1) (2,2) (2,8) (8,8) 336 5352 1531 7219 21 14.6 ± 0.14
(1,1) (2,2) (2,8) (4,16) 384 5084 1311 6779 23 14.1 ± 0.11
(1,1) (2,2) (2,8) (2,32) 480 5004 1243 6727 27 14.3 ± 0.13
(1,1) (1,4) (4,4) (16,4) 312 6140 2146 8598 20 15.1 ± 0.14
(1,1) (1,4) (4,4) (8,8) 336 5508 1567 7411 21 14.0 ± 0.14
(1,1) (1,4) (4,4) (4,16) 384 5240 1339 6963 23 13.9 ± 0.10
(1,1) (1,4) (2,8) (8,8) 400 4244 1351 5995 25 13.6 ± 0.15
(1,1) (1,4) (2,8) (4,16) 448 3976 1131 5555 27 13.4 ± 0.09
(1,1) (1,4) (2,8) (2,32) 544 3896 1063 5503 31 13.7 ± 0.10
(1,1) (1,4) (1,16) (4,16) 576 3456 1067 5099 35 13.4 ± 0.10
(1,1) (1,4) (1,16) (2,32) 672 3376 1007 5055 39 13.8 ± 0.11
(1,1) (1,4) (1,16) (1,64) 672 3432 1031 5135 47 14.4 ± 0.10

Table 8: Comparison of the instances of CAConv (m,d) parameters in ResNet18.

C RESNET ARCHITECTURE AND PARAMETERS

Figure 8 presents model architecture of modifed ResNet20 used in HCNN evaluation. Table 9
and 10 shows parameters used in convolution layer of ResNet20/32/44/18. All the parameters
(ci, co, wi, hi, wo, ho, fw, fh, s) are determined following the origianl ResNet paper (He et al.,
2016).

Fully Connected

BasicBlock

RAConv Bootstrap Square

Downsample BB BasicBlock BasicBlock

Downsample BB BasicBlock BasicBlock

AvgPool

BasicBlock BasicBlock

Square RAConvCAConv Bootstrap

Shortcut
Basic Block

Square

Image Ciphertext

Result

Figure 8: The ResNet20 structure of HyPHEN.

14

Under review as a conference paper at ICLR 2023

Layer1 Layer2 Layer3
conv dsconv pconv conv dsconv pconv conv

ci 16 16 16 32 32 32 64
co 16 32 32 32 64 64 64
wi(= hi) 32 32 32 16 16 16 8
wo(= ho) 32 16 16 16 8 8 8
fw(= fh) 3 3 1 3 3 1 3
s 1 2 2 1 2 2 1

Table 9: Parameters used in the convolution layers of ResNet20/32/44

Layer1 Layer2 Layer3 Layer4
conv dsconv pconv conv dsconv pconv conv dsconv pconv conv

ci 64 64 64 128 128 128 256 256 256 512
co 64 128 128 128 256 256 256 512 512 512
wi(= hi) 32 32 32 16 16 8 8 8 4 4
wo(= ho) 32 16 16 16 8 8 8 4 4 4
fw(= fh) 3 3 1 3 3 1 3 3 1 3
s 1 2 2 1 2 2 1 2 2 1

Table 10: Parameters used in the convolution layers of ResNet18

D TRAINING DETAILS

Models used in this paper is all trained using PyTorch (Paszke et al., 2019). For ResNet18 and
20, our training settings are mostly identical to the AESPA; To be specific, networks are trained
for 200 epochs using SGD optimizer, 0.1 initial learning rate, 100 batch size, 0.0005 weight decay
and 0.9 momentum, and cosine annealing scheduler. We also use soft labels as in (Park et al.,
2022) to get higher accuracy. For ResNet32 and 44, we use knowledge distillation (Hinton et al.,
2015) to enhance the accuracy, using pretrained ResNet32/44 with 93.4% and 94.1% accuracies
as teacher models. As the FC layer of the student and teacher network is identical, teacher’s FC
layer is directly reused in student network. We trained the student networks by minimizing l2 loss
(Lkd = ∥ft − fs∥22). ResNet32 and 44 are trained for 200 epochs using SGD optimizer, 0.0005
weight decay and 0.9 momentum. We use 0.05 initial learning rate and learning rate scheduler
decays learning rate on epochs 150, 180, 200 by 0.1.

E LAZY-SISO

Unlike the original SISO convolution which rotates input ciphertexts before multiplying with filter
plaintexts, lazy-SISO proposed in (Zhang et al., 2021) uses inversely rotated filter plaintexts to
multiply with input ciphertexts. The actual process of lazy-SISO when ci, co = 1 is depicted in
Figure 9. After multiplying with filter plaintext, postponed rotation is performed to accumulate
intermediate ciphertexts. During this process, multiple ciphertexts sharing the same rotation index
are grouped to be accumulated first and then rotated, reducing the amount of rotations. (e.g. ci
ciphertexts are grouped in Figure 2b). Lazy-SISO is beneficial when input channels, which are to
be accumulated, are distributed in different ciphertexts as in RAConv.

F MEMORY REQUIREMENT

Memory requirement for HCNN depends on FHE parameters and data representations (packing
schemes). In FHE, expansion of data size occurs while encryption and encoding procedure. Result-
ing ciphertexts and plaintexts are typically orders of magnitude larger than messages. The table 11
shows the actual size of the ciphertext, plaintext and evaluation key on three FHE parameter settings.
dnum denotes RNS-decomposition number introduced in (Han & Ki, 2019). Given N, the degree
of a cyclotomic polynomial ring, large dnum increases L, max level. ParamSet1 is used in Set1
in Figure 6 to reproduce Lee et al. (2022a). As Set1 uses approximated ReLU for activation,
ParamSet1 adopts maximum dnum to have L = 16. ParamSet2 is set with the smallest L among
three and is only used in Set2 on ResNet18. ParamSet3 is the parameter set used to evaluate

15

Under review as a conference paper at ICLR 2023

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

hi

wi

∗

k1 k2 k3

k4 k5 k6

k7 k8 k9

fh

fw

=

c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

c13 c14 c15 c16

ho

wo

(a) Unencrypted convolution with s = 1
a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

⊙

k1 k1 k1 0

k1 k1 k1 0

k1 k1 k1 0

0 0 0 0

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

⊙

k2 k2 k2 k2

k2 k2 k2 k2

k2 k2 k2 k2

0 0 0 0

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

⊙

0 k3 k3 k3

0 k3 k3 k3

0 k3 k3 k3

0 0 0 0

· · ·

b1 b1 b1 0

b1 b1 b1 0

b1 b1 b1 0

0 0 0 0

Rot−−→

0 0 0 0

0 b1 b1 b1

0 b1 b1 b1

0 b1 b1 b1

b2 b2 b2 b2

b2 b2 b2 b2

b2 b2 b2 b2

0 0 0 0

Rot−−→

0 0 0 0

b2 b2 b2 b2

b2 b2 b2 b2

b2 b2 b2 b2

0 b3 b3 b3

0 b3 b3 b3

0 b3 b3 b3

0 0 0 0

Rot−−→

0 0 0 0

b3 b3 b3 0

b3 b3 b3 0

b3 b3 b3 0

· · ·

0 0 0 0

0 b1 b1 b1

0 b1 b1 b1

0 b1 b1 b1

⊕

0 0 0 0

b2 b2 b2 b2

b2 b2 b2 b2

b2 b2 b2 b2

⊕

0 0 0 0

b3 b3 b3 0

b3 b3 b3 0

b3 b3 b3 0

· · ·=

c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

c13 c14 c15 c16

(b) HE lazy-SISO convolution with s = 1

Figure 9: Lazy-SISO convolution.

HyPHEN and Set2 on ResNet20 which has L = 6. Some FHE operations such as MulCt, Rotate
and Conjugate requires specific key switching procedure. Eval key denotes public key used at this
process. The size of single Eval key is 2147, 206, 176 MB in ParamSet1, 2 and 3, respectively.
To support bootstrapping operation, one relinearization key for MulCt, one conjugate key and 48
rotation keys per rotation index are required. We additionally load frequently used rotation keys to
perform convolution. For instance, We load 68 unique Eval keys in ResNet20 which take up 146,
14, 12 GB in ParamSet1, 2, and 3.

Once FHE parameter is determined, the packing scheme determines the number of ciphertext, plain-
text to run each ResNet block. Table 12 and 13 shows the required number and total memory size
of ciphertexts and plaintexts. We further explain the actual computation procedure to explain how
the results are obtained in Appendix H. In SISO-based HCNN kernel, the size of filter plaintexts
increases by factor of wihi as each filter element is duplicated to the size of input image, which re-
quires total fwfhwihicico slots for weight plaintexts. In consequence, weight plaintexts take up the
majority of memory regardless of the ciphertext packing method. In table 12, our implementation
shows up to 14.75% memory overhead compared to Lee et al. (2022a), which is primarily due to
the increase in the number of ciphertexts and bias plaintext. In Table 13, our implementation shows
up to 36.8% memory overhead compared to Lee et al. (2022a). The larger memory overhead is
caused by using different FHE parameters; In ResNet18, we use ParamSet3 for our implementation
and ParamSet2 for Lee et al. (2022a). When using the same ParamSet3, overhead is reduced by up
to 7%.

Unlike CPU, GPU memory capacity is more constrained by the current HBM technology to support
high bandwidth. As the GPU memory is not capable of loading the weights of the entire model con-
sidering ResNet18, weight plaintexts should be loaded separately; while one stream computes the
current ResNet block, another stream is overlapped to load next block’s weight plaintext. Through
profiling the workloads of CPU and GPU activities through NVIDIA Nsight Systems (nvi, 2021),
we find that all the copy stream is completed before the end of the compute stream, meaning that
loading weight plaintexts does not affect overall execution time. As such, for running large neural
networks, fine-grained multi-streaming can be applied to relieve memory capacity constraint.

G IMAGENET EXPERIMENT

We conducted additional experiments to evaluate the ResNet18 model on the ImageNet dataset. The
runtime is 81.85 seconds in our GPU environment. We slightly modified the first pooling layer to

16

Under review as a conference paper at ICLR 2023

L dnum Ciphertext (MB) Plaintext (MB) Eval Key (MB) Total Keys(GB)
ParamSet1 16 32 17.82 8.91 2147.48 146.03
ParamSet2 3 7 7.34 3.67 205.52 13.98
ParamSet3 6 6 10.48 5.24 176.16 11.98

Table 11: FHE parameter settings. dnum is tuned to support 16, 3, 6 levels required in Set1, Set2,
Set3. Each Ciphertext and Plaintext memory size is represented when current level l = L.

Layer1 Layer2 Layer3
ResNet20 BB DSB BB DSB BB

Ours Lee Ours Lee Ours Lee Ours Lee Ours Lee

filter ptxts 144 144 232 232 144 144 232 232 144 144
input ctxts 1 1 1 1 1 1 1 1 1 1
peak ctxts 19 10 19 10 19 10 19 10 19 10

total size (GB) 0.70 0.68 1.18 1.07 0.79 0.69 1.19 1.08 0.79 0.71
memory overhead 0.3% 10.5% 14.7% 10.1% 12.0%

Table 12: Total memory size and the number of each object in ResNet20. We abbreviated Down-
sampling Block and Basic Block to DSB and BB.

average pool with kernel size 2×2 and stride 2. As shown in Figure 10, the network receives input
ciphertexts processed with modified im2col. Original im2col would transform 224×224×3 images
into 147×12544 matrix. As HCNN prefers images size to be exponential of 2, 12544 columns
turns to 16384 columns. We further split 16384 columns with stride 2 (savg in Figure 10) to per-
form average pooling without rotation, resulting 4096 columns. We pack slot/4096 = 8 rows
into a ciphertext. As the total number of row is fhfwci = 147, the number of input ciphertext is
⌈147/8⌉ × 4. After the initial convolution layer, the number of intermediate ciphertexts becomes
64 and each ciphertext stores 8 channels with (m,d) = 1. Table 14 shows the runtime of ResNet18
on ImageNet. During the experiment, swap memory is used to make up the lack of CPU memory.
Loading weight plaintexts from swap memory, which is in SSD, incurs runtime hikes as Table 14
shows large runtimes for Etc.

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

224

224

Im2Col−−−−−→
... ...

⊙ RaS−−−→
...

wihi/s
2
avg = 4096

8

s2avg = 4

19 1216

4096

8

4096

8

8

4

Figure 10: ImageNet Im2Col

H COMPLETE CONVOLUTION PROCEDURE OF HYBRID PACKED TENSOR

Figure 11 and 12 show the complete procedure of CAConv and RAConv with HP shown briefly
in Figure 4. Both CAConv and RAConv perform the sequence of {SISO,RaS, IR} to the input
ciphertexts. As in Figure 2, a single superscript represents the channel of input images, and a
superscript pair represents (input channel, output channel) of filters. If multiple channels are stored
in a box, we represent the list of channels using & or the range of channels using −. We set
ci, co = 32 and wi, hi = 16 as the layer 2 of ResNet20. In HP-CAConv (Figure 11), the HP
setting of input ciphertext is (m, d) = (2, 4). In HP-RAConv (Figure 12), the HP setting of input
ciphertext is (m, d) = (4, 2).

We use different brightness of color to fill the ciphertexts and plaintexts to reflect the actual com-
putation process. In Figure 11 and 12, the intermediate ciphertexts of the CAConv and input ci-
phertexts of the RAConv are co

4 and ci
4 times larger than input ciphertext of the CAConv, respec-

17

Under review as a conference paper at ICLR 2023

Layer1 Layer2 Layer3 Layer4
ResNet18 BB DSB BB DSB BB DSB BB

Ours Lee Ours Lee Ours Lee Ours Lee Ours Lee Ours Lee Ours Lee

filter ptxts 2304 2304 3712 3712 2304 2304 3712 3712 2304 2304 3712 3712 2304 2304
input ctxts 2 2 2 2 4 1 4 1 4 1 4 1 4 1
max ctxts 38 19 38 19 76 10 76 10 76 10 76 10 76 10

total size (GB) 7.27 7.39 14.14 11.81 8.67 7.33 16.09 11.76 9.84 7.33 16.10 11.76 9.84 7.34
memory overhead -0.2% 19.7% 18.3% 36.8% 34.3% 36.8% 34.2%

Table 13: Total memory size and the number of each object in ResNet18. DSB and BB refers to
downsampling Block and basic block.

Im2Col CAConv RAConv Bootstrap Activation Etc total
runtime 3.99 5.98 2.68 28.97 0.45 39.78 81.85 ±1.99
percent 4.9 % 7.3 % 3.3 % 35.4% 0.5% 48.60% 100%

Table 14: HyPHEN Inference time of a single ImageNet image using ResNet18 models on GPU.

tively. The CAConv, activation and RAConv in a ResNet block is processed at once to mitigate the
huge number of intermediate ciphertexts. To avoid an increase of memory footprint, the operation
on the input ciphertext continues until the ciphertext shrinks again. Thus, the tuple of operations
{SISO,RaS, IR, Square, SISOl} are processed to an input ciphertext and then accumulated.
Blocks colored with high brightness show actual working set, which means co

4 times larger interme-
diate ciphertexts (colored with low brightness) are irrelevant with the peak memory consumption.

M (1&17) × 4 · · · M (16&32) × 4 ∗

##

A1 · · · A15

...
. . .

...

A211 · · · A225

a
(1)
1 a

(1)
1 a

(17)
1 a

(17)
1

a
(1)
1 a

(1)
1 a

(17)
1 a

(17)
1

K(1&17,1−4) · · · K(16&32,1−4)

K(1&17,5−8) · · · K(16&32,5−8)

· · · · · · · · ·

K(1&17,29−32) · · · K(16&32,29−32)

ci/2

co/4

0 0 0 0

0 F1 · · · F1

0 ...
.

0 F1 · · · F1

k
(1,1)
1 k

(1,2)
1 k

(17,1)
1 k

(17,2)
1

k
(1,3)
1 k

(1,4)
1 k

(17,3)
1 k

(17,4)
1

wi

hi

wi

hi

fwfh

SISO−−−−→

MK(1&17,1−4) · · · MK(16&32,1−4)

MK(1&17,5−8) · · · MK(16&32,5−8)

· · · · · · · · ·

MK(1&17,29−32) · · · MK(16&32,29−32)

RaS

RaS−−−→

MK(1−32,1−4) · · ·

MK(1−32,5−8) · · ·

· · · · · ·

MK(1−32,29−32) · · ·

b(1−16,1) b(1−16,2) b(17−32,1) b(17−32,2)

b(1−16,3) b(1−16,4) b(17−32,3) b(17−32,4)

RaS

RaS−−−→
c(1) c(2) ## ##

c(3) c(4) ## ##

Mask and Broadcast

Broadcast−−−−−−−→
c(1) c(2) c(1) c(2)

c(3) c(4) c(3) c(4)

repack−−−−→

N (1−4) × 2 · · ·

N (5−8) × 2 · · ·

· · · · · ·

N (29−32) × 2 · · ·

Figure 11: CAConv method with HP

18

Under review as a conference paper at ICLR 2023

M (1−4) × 2 · · ·

M (5−8) × 2 · · ·

· · · · · ·

M (29−32) × 2 · · ·

co/2

ci/4 ∗

K(1−4,1&17) · · · K(1−4,16&32)

K(5−8,1&17) · · · K(5−8,16&32)

K(9−12,1&17) · · · K(9−12,16&32)

K(29−32,1&17) · · · K(29−32,16&32)

co/2

ci/4

A1 · · · · · · A16

...
.

...
...

.
...

A241 · · · · · · A256

wi

hi

a
(1)
1 a

(2)
1 a

(1)
1 a

(2)
1

a
(3)
1 a

(4)
1 a

(3)
1 a

(4)
1

F1 · · · F1 0

...
. . .

... 0

F1 · · · F1 0

0 0 0 0

wi

hi

k
(1,1)
1,1 k

(2,1)
1,1 k

(1,17)
1,1 k

(2,17)
1,1

k
(3,1)
1,1 k

(4,1)
1,1 k

(3,17)
1,1 k

(4,17)
1,1

SISOl−−−−→ MK(1−32,1&17) · · ·
MK(1−32,1&17) · · ·

MK(1−32,1&17) · · ·

fwfh

fwfh

RaS−−−→ MK(1−32,1&17) · · ·

b(1−8,1) b(9−16,1) b(1−8,17) b(9−16,17)

b(17−24,1) b(25−32,1) b(17−24,17) b(25−32,17)

RaS

RaS−−−→
c(1) ## c(17) ##

##

Mask and Broadcast

Broadcast−−−−−−−→
c(1) c(1) c(17) c(17)

c(1) c(1) c(17) c(17)

repack−−−−→ N (1&17) × 4 · · · N (16&32) × 4

Figure 12: RAConv method with HP

19

	Introduction
	Background
	Fully Homomorphic Encryption
	Convolution on Homomorphic Encryption
	Polynomial Activation Function on Homomorphic Encryption
	Threat Model

	Method
	Replication-Aligned Convolution
	Hybrid Packing
	The ResNet Architecture on HyPHEN

	Evaluation
	Experimental Setup
	Optimal Point
	Sensitivity Study
	Execution time
	Accuracy

	Limitations
	Conclusion
	Bottleneck Analysis
	Parameter Study
	ResNet architecture and parameters
	Training Details
	Lazy-SISO
	Memory requirement
	ImageNet experiment
	Complete convolution procedure of hybrid packed tensor

