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Abstract

With the remarkable advancement of Al agents,
the number of their equipped tools is increasing
rapidly. However, integrating all tool informa-
tion into the limited model context becomes
impractical, highlighting the need for efficient
tool retrieval methods. In this regard, dominant
methods primarily rely on semantic similari-
ties between tool descriptions and user queries
to retrieve relevant tools. However, they often
consider each tool independently, overlooking
dependencies between tools, which may lead to
the omission of prerequisite tools for success-
ful task execution. To deal with this defect, in
this paper, we propose Tool Graph Retriever
(TGR), which exploits the dependencies among
tools to learn better tool representations for re-
trieval. First, we construct a dataset termed
TDI300K to train a discriminator for identify-
ing tool dependencies. Then, we represent all
candidate tools as a tool dependency graph and
use graph convolution to integrate the depen-
dencies into their representations. Finally, these
updated tool representations are employed for
online retrieval. Experimental results on sev-
eral commonly used datasets show that our
TGR can bring a performance improvement
to existing dominant methods, achieving SOTA
performance. Moreover, in-depth analyses also
verify the importance of tool dependencies and
the effectiveness of our TGR. !

1 Introduction

As an important step towards artificial general in-
telligence (AGI), tool learning expands the ability
of LLM-based Al agents and enables them to in-
teract with the external environment. (Goertzel,
2014; Dou et al., 2023; McLean et al., 2023). How-
ever, as the number of equipped tools increases
rapidly, it has become challenging for LLMs to
process all the tool information, primarily due to

'We will release our code and dataset upon the acceptance
of our paper.
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Figure 1: An example of dominant tool retrieval process,
where some necessary prerequisite tools are omitted due
to low semantic similarities. The down arrows | denote
the calling order of the tools.

the context length limitations. Therefore, a typ-
ical framework of Al agents employs a retriever
to retrieve the candidate tools before the practi-
cal task, which involves the following four steps.
First of all, relevant tools are retrieved from the
equipped tool set according to the task description
provided by user. Secondly, the LLM, guided by
a delicately-designed prompt and the tool retrieval
results, creates a tool-invoking plan as the solution
path for the task. Thirdly, it takes actions to invoke
tools based on the plan and receives feedback from
the tool execution result. Finally, if the task is con-
sidered complete, it will generate the final response
to the user.

As the first step in the above process, tool re-
trieval plays a critical role in constructing a high-
performing tool-augmented agent. This is because
the context length of the model restricts us to us-
ing only a limited number of tools. If necessary
tools cannot be accurately retrieved, it will result
in an execution error. To achieve accurate tool re-
trieval, prevalent tool retrieval methods primarily
focus on the semantic similarities between the tool
descriptions and the user queries (Patil et al., 2023;
Li et al., 2023; Qin et al., 2023). They consider
each tool independently, which, however, results in
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Figure 2: Our proposed TGR involves three steps: (1) Dependency Identification, where we build a dataset for
tool dependency identification and train a discriminator; (2) Graph-Based Tool Encoding, where we represent the
tools with dependencies as a graph and integrate the dependencies into tool representations with graph convolution;
(3) Online Retrieval, where we utilize the updated tool embeddings to compute query-tool similarities as the final

retrieval scores.

the omission of some necessary prerequisite tools
during retrieval. For instance, in the example of Fig-
ure 1, the solution path for the query “Update my
email to ‘new@domain.com’.” involves three tools
that should be invoked in sequence: “Validate”,
“Login”, and “Updatelnfo”. However, the descrip-
tions of tools “Validate” and “Login”, which are
about “Validate credential” and “Login account”,
are semantically irrelevant to the query. As a result,
although the invocation of “Updatelnfo” depends
on the results of “Validate” and “Login”, only the
tool “Updatelnfo” can be successfully retrieved.

In this paper, we propose Tool Graph Retriever
(TGR), which exploits the dependencies between
tools to refine the tool retrieval process. As shown
in Figure 2, it involves three steps: (1) Dependency
Identification. In this step, we construct a dataset,
termed as TDI300K, and train a discriminator to
identify the tool dependencies; (2) Graph-Based
Tool Encoding. To model the dependencies, we
construct a graph with tools as nodes and their
dependencies as edges. Then we use graph con-
volution to integrate the dependencies for a better
learning of the tool representations; (3) Online Re-
trieval. We conduct online retrieval by calculating
the query-tool similarity with the updated tool rep-
resentations. Compared with previous studies (Li
et al., 2023; Qin et al., 2023; Patil et al., 2023),
TGR leverages the tool dependencies as additional
information to refine the retrieval process, thus lead-
ing to better results.

Overall, our contributions can be summarized as

follows:

* We propose Tool Graph Retriever (TGR),
leveraging tool dependencies as additional in-
formation to improve the performance of tool
retrieval.

* We construct a tool dependency identification
dataset termed TDI300K and subsequently
train a discriminator, facilitating the subse-
quent studies in this area.

* Experimental results and in-depth analyses
on several commonly-used datasets demon-
strate that TGR brings the improvement of
Recall, NDCG and Pass Rate to existing dom-
inant methods, achieving state-of-the-art per-
formance on several commonly-used datasets.

2 Related Work

Recently, LLMs have demonstrated outstanding
abilities in many tasks. Meanwhile, it becomes
dominant to equip LLMs with external tools, de-
riving many tool-augmented LL.Ms such as Tool-
former (Schick et al., 2023), ART (Paranjape et al.,
2023) and ToolkenGPT (Hao et al., 2023). How-
ever, as the number of tools grows rapidly, how
to efficiently conduct tool retrieval becomes more
important.

In this regard, Qin et al. (2023) employ Sentence-
BERT (Reimers and Gurevych, 2019) to train a
dense retriever based on a pretrained BERT-base
(Devlin et al., 2019). The retriever encodes the



queries and tool descriptions into embeddings re-
spectively and selects top-k tools with the highest
query-tool similarities. Similarly, Li et al. (2023)
and Patil et al. (2023) employ paraphrase-MiniLM-
L3-v2 (Reimers and Gurevych, 2019) and text-
embedding-ada-002 ? as the tool retrievers respec-
tively. Besides, Hao et al. (2023) represent tools as
additional tokens and finetune the original LLM to
autonomously select the tool to be invoked. Unlike
the studies mentioned above, Liang et al. (2023) di-
vide tools into different categories to quickly locate
relevant ones. They also employ Reinforcement
Learning from Human Feedback for the entire task
execution, so as to enhance the ability of the tool
retriever.

Different from the above studies, TGR improves
the effectiveness of tool retrieval with tool depen-
dencies as additional information. We first identify
the dependencies between tools and model them
as a graph. Then, we use graph convolution to in-
tegrate the dependencies into tool representations,
which are used for final online retrieval. To the best
of our knowledge, our work is the first attempt to
leverage tool dependencies to refine the retrieval
process.

3 Tool Graph Retriever

As shown in Figure 2, the construction and uti-
lization of our retriever involve three steps: 1) De-
pendency Identification; 2) Graph-Based Tool En-
coding; 3) Online Retrieval. he following sections
provide detailed descriptions of these steps.

3.1 Dependency Identification

In this work, we consider the tool ¢, depends on
the tool ? if they satisfy one of the following con-
ditions:

* The tool ¢, requires the result from the tool
1y as the input. For example, if we want to
update the email of a user with the tool “Up-
dateEmail”, we should first get the permission
from the user with the tool “Login”. There-
fore “UpdateEmail” depends on “Login’ for
permission acquisition.

* The tool t, requires the tool ¢; for prior verifi-
cation. For example, the tool “Login” depends
on the tool “Validate” to ensure a valid user-
name combined with the correct password.

Zhttps://platform.openai.com/docs/guides/embeddings
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Figure 3: The pipeline used to construct the pretraining
dataset, which involves three steps: 1) Extract tool docu-
ment; 2) Generate dependent tool document; 3) Validate
and filter the dependency.

Based on the definition above, we build a dataset
termed TDI300K for tool dependency identifica-
tion with the format {(¢,,%),y}, where (¢4, 1)
denotes a pair of tools and y denotes their depen-
dencies with three categories: (1) ¢, depends on
ty, (2) no dependency exists between t, and ¢, and
(3) tp depends on t,. It is worth noting that the
dependencies between tools are sparse in the tool
set, which, however, poses challenges for training
the discriminator on a dataset with an imbalanced
proportion of different categories. To solve this
problem, we adopt a two-stage strategy to train a
3-class discriminator: the pretraining stage enables
the discriminator to understand tool functions, and
the finetuning stage enhances its ability to identify
tool dependencies.

Pretraining Due to the lack of open-source tool
dependency identification dataset, we design a
three-step pipeline to construct the pretraining
dataset derived from CodeSearchNet (Husain et al.,
2019), which contains 1.78 million real function
implementations across various programming lan-
guages. As shown in Figure 3, we employ three
agents based on gpt-3.5-turbo to extract tool docu-
ments, generate dependent tool documents, and val-
idate the dependency. The LLM-specific prompts
are shown in the Appendix B. Firstly, given the spe-
cific implementation of a tool function, which is



Category | Pretraining | Finetuning
ta — Tp 92,000 1,029
ta X tp 92,000 33,365
ta < Tp 92,000 1,056
Table 1: The statistics of our constructed dataset

TDI300K for tool dependency identification. The ar-
row — indicates the direction of the dependency and x
means no dependency.

the source of t,, we extract the document in JSON
format, containing descriptions of tool functions,
input parameters, and output results. Subsequently,
the document of another tool ¢, is generated which
is required to depend on ¢,. Finally, we evaluate
whether the dependency between ¢, and t; fulfills
the predefined criteria, discarding tool pairs that do
not satisfy the conditions.

Once we obtain an instance where t; depends
on t,, their positions can be swapped to obtain the
opposing dependency category. Finally, we con-
struct the instances without tool dependencies by
breaking up and shuffling the tool pairs to make ¢,
and ¢; independent. The statistics of the pretraining
part of TDI300K are shown in Table 1. Notice that
here we keep three categories balanced to ensure a
comprehensive learning of our discriminator on all
three categories.

The pretraining process is a 3-class classifica-
tion task, where we concatenate the documents of
t, and t; and separate them with a special token
[SEP], following Devlin et al. (2019). Besides, we
add a special classification token [CLS] before the
input sequence, whose final hidden state is used for
the classification task. With ¢ denoting the model
prediction, we define the following cross-entropy
training objective:

3
L(y,9) = = >_ vk log(iix)- (1)
k=1

Finetuning To enhance the ability of the discrim-
inator, we further finetune it on a manually con-
structed dataset with imbalanced category propor-
tions which is more consistent with the real appli-
cation scenario. First, we collect real function tools
from open-source datasets, projects, and libraries>.
Then, we write documents for these function tools

3The sources include datasets like the training dataset of

ToolBench, projects like online shopping, and libraries like
OpenGL.

with the same format as those in the pretraining
dataset. Subsequently, these tools are organized as
several tool sets to facilitate dependency annota-
tion. Based on the definition of tool dependency
mentioned above, we manually annotate the depen-
dency categories given a pair of tools within a tool
set. The statistics of the result datasets are also
shown in Table 1.

From Table 1, we can clearly find that the imbal-
ance category proportions propose a challenge for
the discriminator. To deal with this problem and
avoid overfitting, we define the following category-
specific average training loss:

3 N "
- Z,:’H Yik IOg(yi,k)
L(y,9) ; N @)
where IV, denotes number of instances with the
k-th dependency category.

Notably, during the practical finetuning process,
we split 20 percent of the whole dataset as the vali-
dation dataset, which is used to keep the checkpoint
with the best performance. We also manually con-
struct the testing dataset, which is derived from the
existing tools in API-Bank, and the dependency
categories are manually annotated. It contains 60,
500, and 60 samples for each category respectively.
Here we choose API-Bank as the source of the test
dataset since the tools are massive and the depen-
dencies are hard to annotate in ToolBench. The
performances of the discriminator on the validation
and testing dataset will be presented in Section 4.2.

3.2 Graph-Based Tool Encoding

With the above tool dependency discriminator, we
use it to identify the dependencies among the tool
set and then construct a tool dependency graph.
Formally, our graph is directed and can be formal-
ized as G = (V, E). In the node set V, each node
represents a candidate tool. As for the edge set
E, if the tool t, depends on the tool ¢, the node
of t, will be linked to that of ¢;, forming an edge.
Let us revisit the graph in Figure 2. In this graph,
we include the tools “Validate”, “Login”, and “Up-
dateEmail” as separate nodes, and construct two
edges linking the tool nodes: “Login” to “Validate”,
“UpdateEmail” to “Login”, respectively.

Then, based on the tool dependency graph, we
adopt graph convolution (Kipf and Welling, 2017)
to learn tool representations, where the tool de-
pendency information is fully incorporated. For-
mally, we follow Kipf and Welling (2017) to con-



duct graph-based tool encoding in the following
way:

G(X,A)=D :(A+I)D2X. (3

Here X stands for the tool embedding matrix. A
and D denote the adjacency matrix and degree ma-
trix of the graph respectively. There are several
ways to initialize the tool embeddings here. For
latter experiment, we follow Qin et al. (2023) to
use the retriever to encode the tool documents with
a specific format for ToolBench to embeddings.
While for API-Bank, we only encode the tool de-
scriptions to mitigate the difference between the
query domain and tool document domain. It is also
worth noting that Equation 3 removes the trainable
parameters of GCN (Kipf and Welling, 2017) to
accelerate the retrieval process.

3.3 Online Retrieval

The final process of TGR is to retrieve tools with
the updated tool representations, which have in-
corporated the dependency information. Specifi-
cally, given a user query, we encode the query to
an embedding vector with the same dimension as
the updated tool representations. Following Qin
et al. (2023), we compute the similarities between
the embeddings of queries and tools as the retrieval
score. Subsequently, we rank all the candidate tools
in descending order and return top-k tools with the
highest scores.

4 Experiment

In this section, we conduct comprehensive experi-
ments and in-depth analyses to evaluate the effec-
tiveness of TGR.

4.1 Setup

Datasets We carry out experiments on two
commonly-used datasets:

¢ API-Bank (Li et al., 2023). The test dataset of
API-Bank involves 3 levels, including a total
of 311 test samples which are composed of the
user query, the corresponding tools, and the
final execution results. During the evaluation,
we extract user queries and the correspond-
ing tool retrieval results to quantify the tool
retrieval performance.

* ToolBench (Qin et al., 2023). Considering the
massive number of APIs and time complex-
ity, we conduct experiments with the Tool-

Bench instances at the I1 level*. Given the
category information about the APIs in Tool-
Bench, we first group these APIs based on
their categories. Subsequently, we identify
the dependencies between APIs within each
group and build a graph. Finally, on the ba-
sis of the graph, all API representations are
updated for retrieval.

Baselines We compare TGR with several com-
monly used retrieval baselines, which can be
mainly divided into the following two categories:

* Word frequency-based retrieval methods.
Typically, these methods compute the similar-
ities between the queries and tool descriptions
according to the word frequency. In this cat-
egory, the commonly used methods include
BM25 (Robertson et al., 2009) and TF-IDF
(Ramos et al., 2003).

* Text embedding-based retrieval methods.
The methods we consider in this category
involve different text embedding models:
Paraphrase MiniLM-L3-v2 (Reimers and
Gurevych, 2019) and ToolBench-IR (Qin
et al., 2023), which have been used in API-
Bank and ToolBench as tool retrievers respec-
tively.

Implementation Details We use BERT-base-
uncased (Devlin et al., 2019) as the base model
of the discriminator. As described in Section 3.1,
we first pretrain the discriminator on the category-
balanced pretraining dataset, and then finetune it on
the category-imbalanced finetuning dataset. During
this process, we keep the checkpoint with the best
performance on the validation dataset and evaluate
its performance on the test dataset. Finally, we use
Precision, Recall, and F1 score as the evaluation
metrics for the discriminator.

As for the tool retrieval experiment on API-Bank,
we simply use the description of tools for retrieval.
For ToolBench, we follow Qin et al. (2023) to use
a structured document format of tools containing
names, descriptions, and parameters for retrieval.
Lastly, following Qu et al. (2024), we consider
three metrics: Recall, NDCG, and Pass Rate at the
settings of top-5 and top-10 for both API-Bank and

*At 12 and I3 levels, each query involves APIs across
different categories, which proposes challenges of high time
complexity for constructing graphs. Thus, we leave extending
our retrieval to other levels as future work.



Recall NDCG Pass Rate
Dataset Method
@5 @10 @5 @10 @5 @10
BM25 (Robertson et al., 2009) 0.391 0.493 | 0.353 0.394 | 0.228 0.302
TF-IDF (Ramos et al., 2003) 0.566 0.746 | 0.501 0.573 | 0.383 0.605
APLBank PMLM-L3-v2 (Reimers and Gurevych, 2019) | 0.659 0.763 | 0.569 0.609 | 0.479 0.592
-Ban
PMLM-L3-v2+TGR 0.736 0.834 | 0.622 0.659 | 0.576 0.698
ToolBench-IR (Qin et al., 2023) 0.714 0.790 | 0.639 0.670 | 0.531 0.624
ToolBench-IR+TGR 0.761 0.878 | 0.664 0.712 | 0.595 0.788
BM25 (Robertson et al., 2009) 0.175 0.218 | 0.224 0.221 | 0.030 0.090
TF-IDF (Ramos et al., 2003) 0.406 0.525 | 0.442 0473 | 0.210 0.330
PMLM-L3-v2 (Reimers and Gurevych, 2019) | 0.365 0.468 | 0.399 0.421 | 0.140 0.250
ToolBench-I1
PMLM-L3-v2+TGR 0.429 0.556 | 0.451 0.483 | 0.240 0.450
ToolBench-IR (Qin et al., 2023) 0.709 0.841 | 0.791 0.807 | 0.460 0.690
ToolBench-IR+TGR 0.742 0.868 | 0.811 0.829 | 0.510 0.730
Table 2: Evaluation results on API-Bank and ToolBench-I1.
Valid | Test API-Bank | ToolBench
Precison | 0.775 | 0.893 #Total 119 10,439
Recall 0.814 | 0.760 #Connected 50 8,600
F1 0.792 | 0.817 Proportion 0.420 0.824

Table 3: Performance of the tool dependency discrimi-
nator. We evaluate the Precision, Recall, and F1 score
on the train, valid, and test datasets.

ToolBench. Here we define the Pass Rate as the
proportion of test samples whose required tools are
totally retrieved successfully, which can be formal-
ized as follows:

Q
passQk = Ml?‘ Z]I(CI)(q) CURq) @

where ®(q) denotes the set of ground-truth tools for
query g, ¥*(q) represents the top-k tools retrieved
for query ¢, and I(-) is an indicator function that
returns 1 if the retrieval results include all ground-
truth tools within the top-k results for query ¢, and
0 otherwise.

A higher Recall demonstrates that more required
tools are successfully retrieved, a higher NDCG
score indicates that the target tools achieve higher
ranks, and a higher Rass Rate signifies that more
queries are completed with all the required tools
retrieved.

Table 4: The proportion of connected graph nodes in
API-Bank and ToolBench.

4.2 Discriminator Performance

In this group of experiments, we first focus on the
quality of the constructed tool dependency graph,
which, intuitively, greatly depends on the discrimi-
nator and is crucial for the performance of TGR.

To this end, we present the Precision, Recall,
and F1 score of our discriminator across the vali-
dation and testing datasets in Table 3. Overall, our
discriminator can achieve decent performance on
two datasets. Additionally, the resulting graphs are
visualized in Appendix C.

Furthermore, we calculate the proportions of
connected nodes in the tool dependency graphs,
as shown in Table 4. We note that the proportions
of connected graph nodes differ between the two
datasets, which is influenced by the granularity of
tool functions because fully-featured tools are less
likely to depend on others while specialized tools
designed with fine-grained functions usually have
more intensive dependencies.



Method ‘ Recall ‘ NDCG ‘ Pass Rate

@5 @] @5 @0 | @5 @lo

PMLM-L3-v2 +TGR-d | 0.736  0.834 | 0.622 0.659 | 0.576 0.698
(Reimers and Gurevych, 2019) | LTGR-m | 0.745 0.846 | 0.634 0.672 | 0.592 0.711
ToolBench-IR +TGR-d | 0.761 0.878 | 0.664 0.712 | 0.595 0.788
(Qin et al., 2023) +TGR-m | 0.788 0.893 | 0.698 0.741 | 0.646 0.817

Table 5: Performance comparison between different TGRs, of which tool dependency graphs are constructed by
our discriminator (represented as +TGR-d) and manual annotations (represented as +TGR-m). These group of
experiments are conducted on the API-Bank (Li et al., 2023).

4.3 Main Results

The results of tool retrieval are presented in Table 2,
showing that on all three metrics, TGR significantly
improves the performance of base text embedding
models and outperforms word frequency-based re-
trieval methods to a large extent. This indicates that
incorporating tool dependency as additional infor-
mation greatly enhances the effectiveness of tool
retrieval. Furthermore, we arrive at the following
interesting conclusions.

Firstly, when applying TGR to ToolBench-IR,
which is finetuned specifically for the tool retrieval
task, it can achieve the SOTA performance on both
datasets. Therefore, we believe that finetuning and
TGR are two methods that are compatible with
each other and thus can be used to improve the
performance of tool retrieval simultaneously.

It can also be seen that the methods based on
ToolBench-IR greatly surpass others on ToolBench.
This is because the tool documents in ToolBench
have a specific format that only ToolBench-IR can
fit well since it is finetuned on the training set of
ToolBench.

4.4 Effect of Different Dependency Graph

In this subsection, we study the effect of the graph
construction quality for TGR. Due to the extensive
number of tools in ToolBench, which makes man-
ual annotation of the entire graph impractical, we
choose API-Bank and the same two text embed-
ding models: Paraphrase MiniLM-L3-v2 (Reimers
and Gurevych, 2019) and ToolBench-IR (Qin et al.,
2023) for this experiment. We also use the same
metric as the main experiments in Section 4.3.
Table 5 lists the experimental results. To avoid
confusion, we term the TGR based on the discrim-
inator as +TGR-d and on manual annotation as
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Figure 4: The relationship between the density of the
tool dependency graph and the recall increment.

+TGR-m. From this table, we can clearly observe
that +TGR-m performs better than +TGR-d, no
matter which embedding model is used. In our
opinion, this result is reasonable because the quality
of the manually-constructed tool dependency graph
is higher than that of the discriminator-constructed
graph. Thus, we believe that how to improve the
performance of our discriminator is very important
for the further improvement of TGR.

4.5 Effect of Graph Density

In this subsection, we evaluate the effect of the den-
sity of the tool dependency graph on tool retrieval.
Specifically, we collate all the tools in ToolBench
by their categories and rank the categories accord-
ing to their graph density, which is measured by
the proportion of connected tool nodes. Due to the
limited size of the test set, we extract 100 queries
for each category from the train set for evaluation,
which are completely unused during the procedure
of discriminator dataset construction. For the evalu-
ation metric, we measure the recall increment of the



Can you please help me delete my
Query account? My username is foo and
my password is bar.

GetUserToken

Ground Truth Delete Account

Dependency DeleteAccount — GetUserToken

. DeleteAccount

. AccountInfo

. DeleteReminder

. DeleteBankAccount
. DeleteScene

ToolBench-IR

. GetUserToken

. Transfer

. OpenBankAccount
. RegisterUser

. DeleteAccount

Toolbench-IR+TGR
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Table 6: Case study of tool retrieval on API-Bank. Cor-
rect APIs are highlighted in blue.

TGR-enhanced text embedding model over the base
text embedding model at the top-5 setting. Here we
use the ToolBench-IR as the text embedding model
considering its excellent retrieval performance.
The result is shown in Figure 4. We can see
that as the density of the graph increases, the recall
increment also exhibits an upward trend, which val-
idates that dependencies between tools indeed help
to improve the performance of tool retrieval. It also
demonstrates that TGR is highly robust and more
effective for dependency-intensive tool retrieval.

4.6 Case Study

Finally, we provide two examples to further illus-
trate how TGR improves the performance of tool
retrieval. We conduct case studies on both API-
Bank and ToolBench with ToolBench-IR as the
base text embedding model, since it achieves the
best performance in our main experiments.

Table 6 presents the first example in API-Bank,
where the tool “DeleteAccount” requires the re-
sult (the user token) from the tool “GetUserToken”
as an input parameter. We display the retrieval
results by their ranking orders. The retrieval re-
sults of ToolBench-IR contain only one correct API
“DeleteAccount” with the top rank due to its high se-
mantic similarity with the query. With the enhance-
ment of TGR, “GetUserToken”, which “DeleteAc-
count” depends on, incorporates the information
from “DeleteAccount” and is also retrieved with a
high rank.

Table 7 presents the second example in Tool-

Which football leagues’ predictions are
available for today? I want to explore
the predictions for the Premier League
and La Liga.

Query

Get Today’s Predictions

Ground Truth Get Next Predictions

Get Next Predictions — Get Today’s

Dependency Predictions

. Daily Predictions

. Football predictions by day
. Get Next Predictions

. VIP Scores

. Prediction DetPredictionails

ToolBench-IR

. Football predictions by day

. Basketball predictions by day
. Get Today’s Predictions

. Get Next Predictions

. Sample predictions

ToolBench-IR+TGR

N R WN =R W -

Table 7: Case study of tool retrieval on ToolBench.
Correct APIs are highlighted in blue.

Bench. It is obvious that the base ToolBench-IR
misses the required API “Get Today’s Prediction”.
Given the relationship that “Get Next Prediction”
depends on “Get Today’s Prediction”, the TGR-
enhanced ToolBench-IR succeeds in retrieving the
missing tool.

5 Conclusion

In this paper, we introduce Tool Graph Retriever
(TGR), leveraging tool dependencies to enhance
the tool retrieval process for LLMs. We first de-
fine the criteria for tool dependency and establish a
dataset to train a discriminator for identifying tool
dependencies. Then, we use this discriminator to
handle candidate tools, forming a tool dependency
graph. Subsequently, via graph convolution, we
perform tool encoding based on this graph, where
the updated tool representations can be used for
the final tool retrieval. Experimental results and
in-depth analyses strongly demonstrate the effec-
tiveness of TGR across multiple datasets.

In the future, we will explore more features to
improve our discriminator, which has a significant
impact on the performance of our TGR. Besides,
we will try some efficient graph networks to obtain
better tool representations. Finally, how to further
enhance the generalization of our TGR is also one
of our future research focuses.



Limitations

In our opinion, due to the absence of a tool de-
pendency identification dataset, the accuracy of
the discriminator is somewhat limited. The time
complexity of graph construction is O(N?), which
could be optimized by developing prior rules to
filter out tools with no apparent dependency.
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A Evaluation on Different Similarity
Computing Methods

We evaluate the effect of different similarity com-
puting methods, including cosine similarity, dot
product similarity, L1 distance, and L2 distance.
The experiment is conducted on both API-Bank
and ToolBench using Paraphrase-MiniLM-L3-v2
and ToolBench-IR as the text-embedding models.
From Figure 5, we can see that cosine similarity
performs the best, while L1 and L2 distance have
relatively lower performance. In our opinion, it is
because the L1 and L2 distance ignore the angles
between vectors, thus losing some features.

B Prompts for LLMs during Dataset
Construction

Here we provide the prompts we used for each
LLM in the dataset construction pipeline we men-
tioned in Section 3.1. The prompts are shown in
Figure 6, 7, and 8 respectively.

C Visualization of the Graph

We also visualize the tool dependency graph. Con-
sidering aesthetics and simplicity, we display part
of the graph in API-Bank and ToolBench con-
structed by the discriminator. The graph is shown
in Figure 9 and 10.
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Figure 5: Evaluation on different similarity computing methods.

The following is a code for a Python function. Please extract the corresponding API
document and return it in JSON format:

" {language}

{code}

ARRY

RN

Please strictly follow the JSON format below to return the API document: " json

{

CERE D)

“name””: function name",
"description": " the function description can be directly filled with doc_string’ ",
"input_param": [
{
“name”: "name of input parameter ",
“type”: "type of input parameter”,
“description”: ”description of input parameter"
}
]

n

output_param":[

97, 9,

“name”: "name of output parameter",
“type”: “type of output parameter",
“description”: ”description of output parameter"

}
]

ARRY

Among them, the function name field name and function description field are strings,
and the input parameter "input_parm’ field and output parameter *ouput_parm’ field
are lists. Each parameter contains three fields: parameter name, parameter type, and
parameter description, all of which are string types. If no function or parameter
description is provided in the code, please analyze the function based on its
functionality and fill it in English completely.

Please provide the API documentation for the above function:

Figure 6: The prompt for the LLM to extract API documentation.

10




Here is a API document. To analyze the input and output parameters of this document, you
need to generate another API document that meets one of the following conditions:

1. The input parameters of the generated API are obtained from the output parameters of the
given API

2. The output parameters of the generated API can serve as input parameters for the given API

Below is the given API documentation:
**'json

{api}

Please return your results in the following json format:
“'json
{
"satisfied": " The serial number that satisfies the above conditions, with a value of 1 or2 ",
“name”: ”function name",
"description": " the function description can be directly filled with *doc_string’ ",
"input_param": [
{
"name": " name of input parameter ",
"type": " type of input parameter ",
"description": " description of input parameter "
¥
]

output param": [
{
"name": " name of output parameter ",
"type": " type of output parameter ",
"description": " description of output parameter "
}
]
!

Among them, satisfied indicates that the generated API satisfies which condition, numerical
type, the value is 1 or 2. function name field name and function description field are strings,
input parameter ‘input_parm' field and output parameter ‘ouput_param' are lists, each
parameter contains parameter name, parameter type type, parameter description description
three fields, all of which are of string type. Please return all the above fields in English.
Please give the documentation of the generated API:

Figure 7: The prompt for the LLM to generate API documentation of a dependent tool function.
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Here are two API documents given in json format, you need to determine
if there is a parameter dependency between the two APIs, i.e. whether the
input of one API should be taken from the output of the other.

The first API:

**’json

{apil}

The second API:
“*json

{api2}

Determine whether the above two APIs have dependencies on parameters,

and return them in the following json format:

“*'json

{
"result":" 1 means there is a dependency on the parameter, 0 means

there is no dependency on the parameter "

RN}

Figure 8: The prompt for the LLM to verify the dependency between two tools with the format of API documentation.
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Figure 9: Visualization of the part of our constructed tool dependency graph in API-Bank (Li et al., 2023). The
directed edge from ¢, to ¢, means ¢, is the prerequisite of t;, i.e. the calling of ¢; depends on ¢,.
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Figure 10: Visualization of the part of our constructed tool dependency graph in Toolbench (Qin et al., 2023).
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