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Abstract001

With the remarkable advancement of AI agents,002
the number of their equipped tools is increasing003
rapidly. However, integrating all tool informa-004
tion into the limited model context becomes005
impractical, highlighting the need for efficient006
tool retrieval methods. In this regard, dominant007
methods primarily rely on semantic similari-008
ties between tool descriptions and user queries009
to retrieve relevant tools. However, they often010
consider each tool independently, overlooking011
dependencies between tools, which may lead to012
the omission of prerequisite tools for success-013
ful task execution. To deal with this defect, in014
this paper, we propose Tool Graph Retriever015
(TGR), which exploits the dependencies among016
tools to learn better tool representations for re-017
trieval. First, we construct a dataset termed018
TDI300K to train a discriminator for identify-019
ing tool dependencies. Then, we represent all020
candidate tools as a tool dependency graph and021
use graph convolution to integrate the depen-022
dencies into their representations. Finally, these023
updated tool representations are employed for024
online retrieval. Experimental results on sev-025
eral commonly used datasets show that our026
TGR can bring a performance improvement027
to existing dominant methods, achieving SOTA028
performance. Moreover, in-depth analyses also029
verify the importance of tool dependencies and030
the effectiveness of our TGR. 1031

1 Introduction032

As an important step towards artificial general in-033

telligence (AGI), tool learning expands the ability034

of LLM-based AI agents and enables them to in-035

teract with the external environment. (Goertzel,036

2014; Dou et al., 2023; McLean et al., 2023). How-037

ever, as the number of equipped tools increases038

rapidly, it has become challenging for LLMs to039

process all the tool information, primarily due to040

1We will release our code and dataset upon the acceptance
of our paper.

Figure 1: An example of dominant tool retrieval process,
where some necessary prerequisite tools are omitted due
to low semantic similarities. The down arrows ↓ denote
the calling order of the tools.

the context length limitations. Therefore, a typ- 041

ical framework of AI agents employs a retriever 042

to retrieve the candidate tools before the practi- 043

cal task, which involves the following four steps. 044

First of all, relevant tools are retrieved from the 045

equipped tool set according to the task description 046

provided by user. Secondly, the LLM, guided by 047

a delicately-designed prompt and the tool retrieval 048

results, creates a tool-invoking plan as the solution 049

path for the task. Thirdly, it takes actions to invoke 050

tools based on the plan and receives feedback from 051

the tool execution result. Finally, if the task is con- 052

sidered complete, it will generate the final response 053

to the user. 054

As the first step in the above process, tool re- 055

trieval plays a critical role in constructing a high- 056

performing tool-augmented agent. This is because 057

the context length of the model restricts us to us- 058

ing only a limited number of tools. If necessary 059

tools cannot be accurately retrieved, it will result 060

in an execution error. To achieve accurate tool re- 061

trieval, prevalent tool retrieval methods primarily 062

focus on the semantic similarities between the tool 063

descriptions and the user queries (Patil et al., 2023; 064

Li et al., 2023; Qin et al., 2023). They consider 065

each tool independently, which, however, results in 066
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Figure 2: Our proposed TGR involves three steps: (1) Dependency Identification, where we build a dataset for
tool dependency identification and train a discriminator; (2) Graph-Based Tool Encoding, where we represent the
tools with dependencies as a graph and integrate the dependencies into tool representations with graph convolution;
(3) Online Retrieval, where we utilize the updated tool embeddings to compute query-tool similarities as the final
retrieval scores.

the omission of some necessary prerequisite tools067

during retrieval. For instance, in the example of Fig-068

ure 1, the solution path for the query “Update my069

email to ‘new@domain.com’.” involves three tools070

that should be invoked in sequence: “Validate”,071

“Login”, and “UpdateInfo”. However, the descrip-072

tions of tools “Validate” and “Login”, which are073

about “Validate credential” and “Login account”,074

are semantically irrelevant to the query. As a result,075

although the invocation of “UpdateInfo” depends076

on the results of “Validate” and “Login”, only the077

tool “UpdateInfo” can be successfully retrieved.078

In this paper, we propose Tool Graph Retriever079

(TGR), which exploits the dependencies between080

tools to refine the tool retrieval process. As shown081

in Figure 2, it involves three steps: (1) Dependency082

Identification. In this step, we construct a dataset,083

termed as TDI300K, and train a discriminator to084

identify the tool dependencies; (2) Graph-Based085

Tool Encoding. To model the dependencies, we086

construct a graph with tools as nodes and their087

dependencies as edges. Then we use graph con-088

volution to integrate the dependencies for a better089

learning of the tool representations; (3) Online Re-090

trieval. We conduct online retrieval by calculating091

the query-tool similarity with the updated tool rep-092

resentations. Compared with previous studies (Li093

et al., 2023; Qin et al., 2023; Patil et al., 2023),094

TGR leverages the tool dependencies as additional095

information to refine the retrieval process, thus lead-096

ing to better results.097

Overall, our contributions can be summarized as098

follows: 099

• We propose Tool Graph Retriever (TGR), 100

leveraging tool dependencies as additional in- 101

formation to improve the performance of tool 102

retrieval. 103

• We construct a tool dependency identification 104

dataset termed TDI300K and subsequently 105

train a discriminator, facilitating the subse- 106

quent studies in this area. 107

• Experimental results and in-depth analyses 108

on several commonly-used datasets demon- 109

strate that TGR brings the improvement of 110

Recall, NDCG and Pass Rate to existing dom- 111

inant methods, achieving state-of-the-art per- 112

formance on several commonly-used datasets. 113

2 Related Work 114

Recently, LLMs have demonstrated outstanding 115

abilities in many tasks. Meanwhile, it becomes 116

dominant to equip LLMs with external tools, de- 117

riving many tool-augmented LLMs such as Tool- 118

former (Schick et al., 2023), ART (Paranjape et al., 119

2023) and ToolkenGPT (Hao et al., 2023). How- 120

ever, as the number of tools grows rapidly, how 121

to efficiently conduct tool retrieval becomes more 122

important. 123

In this regard, Qin et al. (2023) employ Sentence- 124

BERT (Reimers and Gurevych, 2019) to train a 125

dense retriever based on a pretrained BERT-base 126

(Devlin et al., 2019). The retriever encodes the 127
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queries and tool descriptions into embeddings re-128

spectively and selects top-k tools with the highest129

query-tool similarities. Similarly, Li et al. (2023)130

and Patil et al. (2023) employ paraphrase-MiniLM-131

L3-v2 (Reimers and Gurevych, 2019) and text-132

embedding-ada-002 2 as the tool retrievers respec-133

tively. Besides, Hao et al. (2023) represent tools as134

additional tokens and finetune the original LLM to135

autonomously select the tool to be invoked. Unlike136

the studies mentioned above, Liang et al. (2023) di-137

vide tools into different categories to quickly locate138

relevant ones. They also employ Reinforcement139

Learning from Human Feedback for the entire task140

execution, so as to enhance the ability of the tool141

retriever.142

Different from the above studies, TGR improves143

the effectiveness of tool retrieval with tool depen-144

dencies as additional information. We first identify145

the dependencies between tools and model them146

as a graph. Then, we use graph convolution to in-147

tegrate the dependencies into tool representations,148

which are used for final online retrieval. To the best149

of our knowledge, our work is the first attempt to150

leverage tool dependencies to refine the retrieval151

process.152

3 Tool Graph Retriever153

As shown in Figure 2, the construction and uti-154

lization of our retriever involve three steps: 1) De-155

pendency Identification; 2) Graph-Based Tool En-156

coding; 3) Online Retrieval. he following sections157

provide detailed descriptions of these steps.158

3.1 Dependency Identification159

In this work, we consider the tool ta depends on160

the tool tb if they satisfy one of the following con-161

ditions:162

• The tool ta requires the result from the tool163

tb as the input. For example, if we want to164

update the email of a user with the tool “Up-165

dateEmail”, we should first get the permission166

from the user with the tool “Login”. There-167

fore “UpdateEmail” depends on “Login” for168

permission acquisition.169

• The tool ta requires the tool tb for prior verifi-170

cation. For example, the tool “Login” depends171

on the tool “Validate” to ensure a valid user-172

name combined with the correct password.173

2https://platform.openai.com/docs/guides/embeddings

Figure 3: The pipeline used to construct the pretraining
dataset, which involves three steps: 1) Extract tool docu-
ment; 2) Generate dependent tool document; 3) Validate
and filter the dependency.

Based on the definition above, we build a dataset 174

termed TDI300K for tool dependency identifica- 175

tion with the format {⟨ta, tb⟩, y}, where ⟨ta, tb⟩ 176

denotes a pair of tools and y denotes their depen- 177

dencies with three categories: (1) ta depends on 178

tb, (2) no dependency exists between ta and tb and 179

(3) tb depends on ta. It is worth noting that the 180

dependencies between tools are sparse in the tool 181

set, which, however, poses challenges for training 182

the discriminator on a dataset with an imbalanced 183

proportion of different categories. To solve this 184

problem, we adopt a two-stage strategy to train a 185

3-class discriminator: the pretraining stage enables 186

the discriminator to understand tool functions, and 187

the finetuning stage enhances its ability to identify 188

tool dependencies. 189

Pretraining Due to the lack of open-source tool 190

dependency identification dataset, we design a 191

three-step pipeline to construct the pretraining 192

dataset derived from CodeSearchNet (Husain et al., 193

2019), which contains 1.78 million real function 194

implementations across various programming lan- 195

guages. As shown in Figure 3, we employ three 196

agents based on gpt-3.5-turbo to extract tool docu- 197

ments, generate dependent tool documents, and val- 198

idate the dependency. The LLM-specific prompts 199

are shown in the Appendix B. Firstly, given the spe- 200

cific implementation of a tool function, which is 201
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Category Pretraining Finetuning

ta → tb 92,000 1,029
ta × tb 92,000 33,365
ta ← tb 92,000 1,056

Table 1: The statistics of our constructed dataset
TDI300K for tool dependency identification. The ar-
row→ indicates the direction of the dependency and ×
means no dependency.

the source of ta, we extract the document in JSON202

format, containing descriptions of tool functions,203

input parameters, and output results. Subsequently,204

the document of another tool tb is generated which205

is required to depend on ta. Finally, we evaluate206

whether the dependency between ta and tb fulfills207

the predefined criteria, discarding tool pairs that do208

not satisfy the conditions.209

Once we obtain an instance where tb depends210

on ta, their positions can be swapped to obtain the211

opposing dependency category. Finally, we con-212

struct the instances without tool dependencies by213

breaking up and shuffling the tool pairs to make ta214

and tb independent. The statistics of the pretraining215

part of TDI300K are shown in Table 1. Notice that216

here we keep three categories balanced to ensure a217

comprehensive learning of our discriminator on all218

three categories.219

The pretraining process is a 3-class classifica-220

tion task, where we concatenate the documents of221

ta and tb and separate them with a special token222

[SEP], following Devlin et al. (2019). Besides, we223

add a special classification token [CLS] before the224

input sequence, whose final hidden state is used for225

the classification task. With ŷ denoting the model226

prediction, we define the following cross-entropy227

training objective:228

L(y, ŷ) = −
3∑

k=1

yk log(ŷk). (1)229

Finetuning To enhance the ability of the discrim-230

inator, we further finetune it on a manually con-231

structed dataset with imbalanced category propor-232

tions which is more consistent with the real appli-233

cation scenario. First, we collect real function tools234

from open-source datasets, projects, and libraries3.235

Then, we write documents for these function tools236

3The sources include datasets like the training dataset of
ToolBench, projects like online shopping, and libraries like
OpenGL.

with the same format as those in the pretraining 237

dataset. Subsequently, these tools are organized as 238

several tool sets to facilitate dependency annota- 239

tion. Based on the definition of tool dependency 240

mentioned above, we manually annotate the depen- 241

dency categories given a pair of tools within a tool 242

set. The statistics of the result datasets are also 243

shown in Table 1. 244

From Table 1, we can clearly find that the imbal- 245

ance category proportions propose a challenge for 246

the discriminator. To deal with this problem and 247

avoid overfitting, we define the following category- 248

specific average training loss: 249

L(y, ŷ) = −
3∑

k=1

∑Nk
i=1 yi,k log(ŷi,k)

Nk
(2) 250

where Nk denotes number of instances with the 251

k-th dependency category. 252

Notably, during the practical finetuning process, 253

we split 20 percent of the whole dataset as the vali- 254

dation dataset, which is used to keep the checkpoint 255

with the best performance. We also manually con- 256

struct the testing dataset, which is derived from the 257

existing tools in API-Bank, and the dependency 258

categories are manually annotated. It contains 60, 259

500, and 60 samples for each category respectively. 260

Here we choose API-Bank as the source of the test 261

dataset since the tools are massive and the depen- 262

dencies are hard to annotate in ToolBench. The 263

performances of the discriminator on the validation 264

and testing dataset will be presented in Section 4.2. 265

3.2 Graph-Based Tool Encoding 266

With the above tool dependency discriminator, we 267

use it to identify the dependencies among the tool 268

set and then construct a tool dependency graph. 269

Formally, our graph is directed and can be formal- 270

ized as G = (V,E). In the node set V , each node 271

represents a candidate tool. As for the edge set 272

E, if the tool ta depends on the tool tb, the node 273

of ta will be linked to that of tb, forming an edge. 274

Let us revisit the graph in Figure 2. In this graph, 275

we include the tools “Validate”, “Login”, and “Up- 276

dateEmail” as separate nodes, and construct two 277

edges linking the tool nodes: “Login” to “Validate”, 278

“UpdateEmail” to “Login”, respectively. 279

Then, based on the tool dependency graph, we 280

adopt graph convolution (Kipf and Welling, 2017) 281

to learn tool representations, where the tool de- 282

pendency information is fully incorporated. For- 283

mally, we follow Kipf and Welling (2017) to con- 284
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duct graph-based tool encoding in the following285

way:286

G(X,A) = D− 1
2 (A+ I)D− 1

2X. (3)287

Here X stands for the tool embedding matrix. A288

and D denote the adjacency matrix and degree ma-289

trix of the graph respectively. There are several290

ways to initialize the tool embeddings here. For291

latter experiment, we follow Qin et al. (2023) to292

use the retriever to encode the tool documents with293

a specific format for ToolBench to embeddings.294

While for API-Bank, we only encode the tool de-295

scriptions to mitigate the difference between the296

query domain and tool document domain. It is also297

worth noting that Equation 3 removes the trainable298

parameters of GCN (Kipf and Welling, 2017) to299

accelerate the retrieval process.300

3.3 Online Retrieval301

The final process of TGR is to retrieve tools with302

the updated tool representations, which have in-303

corporated the dependency information. Specifi-304

cally, given a user query, we encode the query to305

an embedding vector with the same dimension as306

the updated tool representations. Following Qin307

et al. (2023), we compute the similarities between308

the embeddings of queries and tools as the retrieval309

score. Subsequently, we rank all the candidate tools310

in descending order and return top-k tools with the311

highest scores.312

4 Experiment313

In this section, we conduct comprehensive experi-314

ments and in-depth analyses to evaluate the effec-315

tiveness of TGR.316

4.1 Setup317

Datasets We carry out experiments on two318

commonly-used datasets:319

• API-Bank (Li et al., 2023). The test dataset of320

API-Bank involves 3 levels, including a total321

of 311 test samples which are composed of the322

user query, the corresponding tools, and the323

final execution results. During the evaluation,324

we extract user queries and the correspond-325

ing tool retrieval results to quantify the tool326

retrieval performance.327

• ToolBench (Qin et al., 2023). Considering the328

massive number of APIs and time complex-329

ity, we conduct experiments with the Tool-330

Bench instances at the I1 level4. Given the 331

category information about the APIs in Tool- 332

Bench, we first group these APIs based on 333

their categories. Subsequently, we identify 334

the dependencies between APIs within each 335

group and build a graph. Finally, on the ba- 336

sis of the graph, all API representations are 337

updated for retrieval. 338

Baselines We compare TGR with several com- 339

monly used retrieval baselines, which can be 340

mainly divided into the following two categories: 341

• Word frequency-based retrieval methods. 342

Typically, these methods compute the similar- 343

ities between the queries and tool descriptions 344

according to the word frequency. In this cat- 345

egory, the commonly used methods include 346

BM25 (Robertson et al., 2009) and TF-IDF 347

(Ramos et al., 2003). 348

• Text embedding-based retrieval methods. 349

The methods we consider in this category 350

involve different text embedding models: 351

Paraphrase MiniLM-L3-v2 (Reimers and 352

Gurevych, 2019) and ToolBench-IR (Qin 353

et al., 2023), which have been used in API- 354

Bank and ToolBench as tool retrievers respec- 355

tively. 356

Implementation Details We use BERT-base- 357

uncased (Devlin et al., 2019) as the base model 358

of the discriminator. As described in Section 3.1, 359

we first pretrain the discriminator on the category- 360

balanced pretraining dataset, and then finetune it on 361

the category-imbalanced finetuning dataset. During 362

this process, we keep the checkpoint with the best 363

performance on the validation dataset and evaluate 364

its performance on the test dataset. Finally, we use 365

Precision, Recall, and F1 score as the evaluation 366

metrics for the discriminator. 367

As for the tool retrieval experiment on API-Bank, 368

we simply use the description of tools for retrieval. 369

For ToolBench, we follow Qin et al. (2023) to use 370

a structured document format of tools containing 371

names, descriptions, and parameters for retrieval. 372

Lastly, following Qu et al. (2024), we consider 373

three metrics: Recall, NDCG, and Pass Rate at the 374

settings of top-5 and top-10 for both API-Bank and 375

4At I2 and I3 levels, each query involves APIs across
different categories, which proposes challenges of high time
complexity for constructing graphs. Thus, we leave extending
our retrieval to other levels as future work.
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Dataset Method
Recall NDCG Pass Rate

@5 @10 @5 @10 @5 @10

API-Bank

BM25 (Robertson et al., 2009) 0.391 0.493 0.353 0.394 0.228 0.302

TF-IDF (Ramos et al., 2003) 0.566 0.746 0.501 0.573 0.383 0.605

PMLM-L3-v2 (Reimers and Gurevych, 2019) 0.659 0.763 0.569 0.609 0.479 0.592

PMLM-L3-v2+TGR 0.736 0.834 0.622 0.659 0.576 0.698
ToolBench-IR (Qin et al., 2023) 0.714 0.790 0.639 0.670 0.531 0.624

ToolBench-IR+TGR 0.761 0.878 0.664 0.712 0.595 0.788

ToolBench-I1

BM25 (Robertson et al., 2009) 0.175 0.218 0.224 0.221 0.030 0.090

TF-IDF (Ramos et al., 2003) 0.406 0.525 0.442 0.473 0.210 0.330

PMLM-L3-v2 (Reimers and Gurevych, 2019) 0.365 0.468 0.399 0.421 0.140 0.250

PMLM-L3-v2+TGR 0.429 0.556 0.451 0.483 0.240 0.450
ToolBench-IR (Qin et al., 2023) 0.709 0.841 0.791 0.807 0.460 0.690

ToolBench-IR+TGR 0.742 0.868 0.811 0.829 0.510 0.730

Table 2: Evaluation results on API-Bank and ToolBench-I1.

Valid Test

Precison 0.775 0.893

Recall 0.814 0.760

F1 0.792 0.817

Table 3: Performance of the tool dependency discrimi-
nator. We evaluate the Precision, Recall, and F1 score
on the train, valid, and test datasets.

ToolBench. Here we define the Pass Rate as the376

proportion of test samples whose required tools are377

totally retrieved successfully, which can be formal-378

ized as follows:379

pass@k =
1

|Q|

Q∑
q

I(Φ(q) ⊆ Ψk(q)) (4)380

where Φ(q) denotes the set of ground-truth tools for381

query q, Ψk(q) represents the top-k tools retrieved382

for query q, and I(·) is an indicator function that383

returns 1 if the retrieval results include all ground-384

truth tools within the top-k results for query q, and385

0 otherwise.386

A higher Recall demonstrates that more required387

tools are successfully retrieved, a higher NDCG388

score indicates that the target tools achieve higher389

ranks, and a higher Rass Rate signifies that more390

queries are completed with all the required tools391

retrieved.392

API-Bank ToolBench

#Total 119 10,439

#Connected 50 8,600

Proportion 0.420 0.824

Table 4: The proportion of connected graph nodes in
API-Bank and ToolBench.

4.2 Discriminator Performance 393

In this group of experiments, we first focus on the 394

quality of the constructed tool dependency graph, 395

which, intuitively, greatly depends on the discrimi- 396

nator and is crucial for the performance of TGR. 397

To this end, we present the Precision, Recall, 398

and F1 score of our discriminator across the vali- 399

dation and testing datasets in Table 3. Overall, our 400

discriminator can achieve decent performance on 401

two datasets. Additionally, the resulting graphs are 402

visualized in Appendix C. 403

Furthermore, we calculate the proportions of 404

connected nodes in the tool dependency graphs, 405

as shown in Table 4. We note that the proportions 406

of connected graph nodes differ between the two 407

datasets, which is influenced by the granularity of 408

tool functions because fully-featured tools are less 409

likely to depend on others while specialized tools 410

designed with fine-grained functions usually have 411

more intensive dependencies. 412

6



Method
Recall NDCG Pass Rate

@5 @10 @5 @10 @5 @10

PMLM-L3-v2
(Reimers and Gurevych, 2019)

+TGR-d 0.736 0.834 0.622 0.659 0.576 0.698

+TGR-m 0.745 0.846 0.634 0.672 0.592 0.711

ToolBench-IR
(Qin et al., 2023)

+TGR-d 0.761 0.878 0.664 0.712 0.595 0.788

+TGR-m 0.788 0.893 0.698 0.741 0.646 0.817

Table 5: Performance comparison between different TGRs, of which tool dependency graphs are constructed by
our discriminator (represented as +TGR-d) and manual annotations (represented as +TGR-m). These group of
experiments are conducted on the API-Bank (Li et al., 2023).

4.3 Main Results413

The results of tool retrieval are presented in Table 2,414

showing that on all three metrics, TGR significantly415

improves the performance of base text embedding416

models and outperforms word frequency-based re-417

trieval methods to a large extent. This indicates that418

incorporating tool dependency as additional infor-419

mation greatly enhances the effectiveness of tool420

retrieval. Furthermore, we arrive at the following421

interesting conclusions.422

Firstly, when applying TGR to ToolBench-IR,423

which is finetuned specifically for the tool retrieval424

task, it can achieve the SOTA performance on both425

datasets. Therefore, we believe that finetuning and426

TGR are two methods that are compatible with427

each other and thus can be used to improve the428

performance of tool retrieval simultaneously.429

It can also be seen that the methods based on430

ToolBench-IR greatly surpass others on ToolBench.431

This is because the tool documents in ToolBench432

have a specific format that only ToolBench-IR can433

fit well since it is finetuned on the training set of434

ToolBench.435

4.4 Effect of Different Dependency Graph436

In this subsection, we study the effect of the graph437

construction quality for TGR. Due to the extensive438

number of tools in ToolBench, which makes man-439

ual annotation of the entire graph impractical, we440

choose API-Bank and the same two text embed-441

ding models: Paraphrase MiniLM-L3-v2 (Reimers442

and Gurevych, 2019) and ToolBench-IR (Qin et al.,443

2023) for this experiment. We also use the same444

metric as the main experiments in Section 4.3.445

Table 5 lists the experimental results. To avoid446

confusion, we term the TGR based on the discrim-447

inator as +TGR-d and on manual annotation as448

Figure 4: The relationship between the density of the
tool dependency graph and the recall increment.

+TGR-m. From this table, we can clearly observe 449

that +TGR-m performs better than +TGR-d, no 450

matter which embedding model is used. In our 451

opinion, this result is reasonable because the quality 452

of the manually-constructed tool dependency graph 453

is higher than that of the discriminator-constructed 454

graph. Thus, we believe that how to improve the 455

performance of our discriminator is very important 456

for the further improvement of TGR. 457

4.5 Effect of Graph Density 458

In this subsection, we evaluate the effect of the den- 459

sity of the tool dependency graph on tool retrieval. 460

Specifically, we collate all the tools in ToolBench 461

by their categories and rank the categories accord- 462

ing to their graph density, which is measured by 463

the proportion of connected tool nodes. Due to the 464

limited size of the test set, we extract 100 queries 465

for each category from the train set for evaluation, 466

which are completely unused during the procedure 467

of discriminator dataset construction. For the evalu- 468

ation metric, we measure the recall increment of the 469
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Query
Can you please help me delete my
account? My username is foo and
my password is bar.

Ground Truth
GetUserToken
DeleteAccount

Dependency DeleteAccount→ GetUserToken

ToolBench-IR

1. DeleteAccount
2. AccountInfo
3. DeleteReminder
4. DeleteBankAccount
5. DeleteScene

Toolbench-IR+TGR

1. GetUserToken
2. Transfer
3. OpenBankAccount
4. RegisterUser
5. DeleteAccount

Table 6: Case study of tool retrieval on API-Bank. Cor-
rect APIs are highlighted in blue.

TGR-enhanced text embedding model over the base470

text embedding model at the top-5 setting. Here we471

use the ToolBench-IR as the text embedding model472

considering its excellent retrieval performance.473

The result is shown in Figure 4. We can see474

that as the density of the graph increases, the recall475

increment also exhibits an upward trend, which val-476

idates that dependencies between tools indeed help477

to improve the performance of tool retrieval. It also478

demonstrates that TGR is highly robust and more479

effective for dependency-intensive tool retrieval.480

4.6 Case Study481

Finally, we provide two examples to further illus-482

trate how TGR improves the performance of tool483

retrieval. We conduct case studies on both API-484

Bank and ToolBench with ToolBench-IR as the485

base text embedding model, since it achieves the486

best performance in our main experiments.487

Table 6 presents the first example in API-Bank,488

where the tool “DeleteAccount” requires the re-489

sult (the user token) from the tool “GetUserToken”490

as an input parameter. We display the retrieval491

results by their ranking orders. The retrieval re-492

sults of ToolBench-IR contain only one correct API493

“DeleteAccount” with the top rank due to its high se-494

mantic similarity with the query. With the enhance-495

ment of TGR, “GetUserToken”, which “DeleteAc-496

count” depends on, incorporates the information497

from “DeleteAccount” and is also retrieved with a498

high rank.499

Table 7 presents the second example in Tool-500

Query

Which football leagues’ predictions are
available for today? I want to explore
the predictions for the Premier League
and La Liga.

Ground Truth
Get Today’s Predictions
Get Next Predictions

Dependency
Get Next Predictions → Get Today’s
Predictions

ToolBench-IR

1. Daily Predictions
2. Football predictions by day
3. Get Next Predictions
4. VIP Scores
5. Prediction DetPredictionails

ToolBench-IR+TGR

1. Football predictions by day
2. Basketball predictions by day
3. Get Today’s Predictions
4. Get Next Predictions
5. Sample predictions

Table 7: Case study of tool retrieval on ToolBench.
Correct APIs are highlighted in blue.

Bench. It is obvious that the base ToolBench-IR 501

misses the required API “Get Today’s Prediction”. 502

Given the relationship that “Get Next Prediction” 503

depends on “Get Today’s Prediction”, the TGR- 504

enhanced ToolBench-IR succeeds in retrieving the 505

missing tool. 506

5 Conclusion 507

In this paper, we introduce Tool Graph Retriever 508

(TGR), leveraging tool dependencies to enhance 509

the tool retrieval process for LLMs. We first de- 510

fine the criteria for tool dependency and establish a 511

dataset to train a discriminator for identifying tool 512

dependencies. Then, we use this discriminator to 513

handle candidate tools, forming a tool dependency 514

graph. Subsequently, via graph convolution, we 515

perform tool encoding based on this graph, where 516

the updated tool representations can be used for 517

the final tool retrieval. Experimental results and 518

in-depth analyses strongly demonstrate the effec- 519

tiveness of TGR across multiple datasets. 520

In the future, we will explore more features to 521

improve our discriminator, which has a significant 522

impact on the performance of our TGR. Besides, 523

we will try some efficient graph networks to obtain 524

better tool representations. Finally, how to further 525

enhance the generalization of our TGR is also one 526

of our future research focuses. 527
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Limitations528

In our opinion, due to the absence of a tool de-529

pendency identification dataset, the accuracy of530

the discriminator is somewhat limited. The time531

complexity of graph construction is O(N2), which532

could be optimized by developing prior rules to533

filter out tools with no apparent dependency.534
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A Evaluation on Different Similarity 602

Computing Methods 603

We evaluate the effect of different similarity com- 604

puting methods, including cosine similarity, dot 605

product similarity, L1 distance, and L2 distance. 606

The experiment is conducted on both API-Bank 607

and ToolBench using Paraphrase-MiniLM-L3-v2 608

and ToolBench-IR as the text-embedding models. 609

From Figure 5, we can see that cosine similarity 610

performs the best, while L1 and L2 distance have 611

relatively lower performance. In our opinion, it is 612

because the L1 and L2 distance ignore the angles 613

between vectors, thus losing some features. 614

B Prompts for LLMs during Dataset 615

Construction 616

Here we provide the prompts we used for each 617

LLM in the dataset construction pipeline we men- 618

tioned in Section 3.1. The prompts are shown in 619

Figure 6, 7, and 8 respectively. 620

C Visualization of the Graph 621

We also visualize the tool dependency graph. Con- 622

sidering aesthetics and simplicity, we display part 623

of the graph in API-Bank and ToolBench con- 624

structed by the discriminator. The graph is shown 625

in Figure 9 and 10. 626
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Figure 5: Evaluation on different similarity computing methods.

Figure 6: The prompt for the LLM to extract API documentation.
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Figure 7: The prompt for the LLM to generate API documentation of a dependent tool function.
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Figure 8: The prompt for the LLM to verify the dependency between two tools with the format of API documentation.

Figure 9: Visualization of the part of our constructed tool dependency graph in API-Bank (Li et al., 2023). The
directed edge from ta to tb means ta is the prerequisite of tb, i.e. the calling of tb depends on ta.
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Figure 10: Visualization of the part of our constructed tool dependency graph in Toolbench (Qin et al., 2023).
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