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Abstract. Accurate multi-organ segmentation is essential for medical
image analysis but remains challenging across modalities with varying
image quality. In this work, we address cross-modality segmentation
from CT to MRI and CT to PET, and design two tailored frameworks
for these distinct tasks. On the public validation set, the CT-to-MR
model achieves an average DSC of 79.56% and NSD of 86.52%, while the
CT-to-PET model reaches DSC of 79.47% and NSD of 64.44%, demon-
strating stable performance across modalities. A key contribution of this
study is the PET segmentation pipeline, which adopts a straightforward
yet effective design: unlabeled PET scans are first processed through
a style translation module to reduce modality discrepancies, followed
by direct segmentation using a dedicated SegNet. Unlike conventional
semi-supervised strategies, this simplified pipeline reduces the number
of training stages while still achieving strong segmentation accuracy. In
addition, its streamlined structure offers notable computational advan-
tages, with an average inference time of 10.34 seconds per case and GPU
memory usage capped at 3.3 GB for all PET scans.

Keywords: Abdominal organs segmentation - Unsupervised domain adap-
tion - Style translation - PET scans.

1 Introduction

Automated segmentation of abdominal organs is a fundamental task in medical
image analysis, with widespread applications in diagnosis, treatment planning,
and image-guided intervention. Precise organ segmentation from imaging modal-
ities such as Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) has demonstrated substantial clinical value, especially for early disease
detection and longitudinal monitoring. Among these modalities, CT has been
most widely adopted due to its high spatial resolution, standardized imaging
protocols, and availability of annotated datasets.

Recent advances in deep learning have significantly improved the accuracy
of CT-based segmentation models. Large-scale initiatives such as the FLARE
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challenge, since 2021 [17], have released comprehensive CT datasets with high-
quality manual annotations, enabling the development of supervised and semi-
supervised segmentation approaches. These efforts have yielded state-of-the-art
results in multi-organ abdominal segmentation under fully annotated and par-
tially annotated conditions.

However, segmentation of other clinically important modalities, such as Positron
Emission Tomography (PET), remains highly challenging. PET scans are widely
used for functional imaging, especially in oncology, but are inherently limited by
low spatial resolution, low signal-to-noise ratio, and blurred anatomical bound-
aries. Moreover, due to the high cost and complexity of annotation, there exists
a severe lack of labeled PET datasets for training supervised models. As a re-
sult, conventional segmentation methods trained on PET either underperform
or require resource-intensive manual labeling.

To address the annotation scarcity in the target modality, Unsupervised Do-
main Adaptation (UDA) has been explored in recent literature. UDA aims to
transfer knowledge from a well-annotated source domain (e.g., CT) to an un-
labeled target domain (e.g., PET) by aligning feature representations or image
styles. Several recent works have demonstrated promising results using adversar-
ial learning, self-training, and style translation between CT and MRI or CT and
ultrasound. For example, SIFA [2| combined image- and feature-level adaptation
for cross-modality segmentation; SynSeg-Net [10] leveraged synthetic images to
train segmentation models without ground truth in the target domain. Despite
these advancements, few methods are designed explicitly for PET segmentation,
and many suffer from high computational overhead, making them less feasible
in time-critical clinical workflows.

In this study, we propose a simple, yet effective two-stage UDA framework
tailored for PET segmentation in the FLARE 2025 challenge. Our method ad-
dresses the modality gap and annotation scarcity by utilizing CT images and
leveraging style translation to create synthetic PET images:

— Style Translation Stage: We use a style transfer network to translate CT
images into PET-like images (fake PET) in an unsupervised manner. The
translation preserves anatomical structures while emulating the low-contrast,
noisy characteristics of PET images. This enhances the diversity of training
data and narrows the modality gap.

— Dual-Source Segmentation Training: A segmentation network is trained on
a mixture of annotated real CT images and corresponding fake PET images.
The network learns to generalize PET-style inputs while being supervised
only on the CT-derived labels. During inference, the model is directly applied
to real PET scans without any further adaptation.

2 Method

The FLARE2025 competition addresses the segmentation of both MRI and PET
scans. For the CT-MRI segmentation task, we adopt the complete implementa-
tion of the winning method from FLARE2024 [13], ensuring a strong and vali-
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dated baseline. Consequently, in the following sections we primarily focus on the
segmentation of PET scans, which constitutes the novel and central challenge of
our approach. To ensure higher accuracy, we make use of the full dataset, includ-
ing the psudo-labled CT scans generated by the FLARE22 winning algorithm [9]
and the best-accuracy-algorithm [22].

For CT-PET segmentation, We propose a lightweight and effective unsuper-
vised domain adaptation (UDA) framework for abdominal organ segmentation
on PET scans, designed to address the challenges posed by the low resolution and
lack of annotations in PET imaging (As shown in Fig 1). Our method consists of
two stages. First, we train a GAN-based image-to-image translation network to
convert labeled CT scans into synthetic PET-style images, preserving anatomical
semantics while emulating PET-specific visual characteristics such as low con-
trast and high noise. Second, we use these synthetic PET images—alongside the
original CT scans—to train a segmentation network in a joint supervision setting.
The segmentation model learns to generalize to the PET domain without ever
accessing real PET labels. During inference, the trained model is directly applied
to real PET scans, enabling accurate segmentation in a zero-shot manner. Our
method is simple, annotation-free in the target domain, and computationally
efficient.

Input
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Real PET S
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Style Translation SegNet

Fig. 1. Network architecture of our model, including a GAN-based style translation
and a SegNet for inference.
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2.1 Preprocessing

To ensure the stability and effectiveness of both the style translation and seg-
mentation stages, we design two distinct preprocessing pipelines tailored to their
specific input requirements and learning objectives.

For the style translation network, all CT and PET volumes are first spa-
tially normalized to a unified voxel spacing of [2, 2, 4 X original z-spacing].
These setting balances axial-plane resolution with z-axis compression, aligning
the data structure with the typical characteristics of PET imaging while im-
proving computational efficiency. CT intensity values are clipped to the range
[-350, 350] to focus on the relevant soft-tissue contrast and suppress the influ-
ence of bones or air regions. To ensure that the training data captures meaningful
anatomical structures, only those axial slices that contain all four target organs
are retained. This organ-aware filtering improves semantic coverage during the
translation process. Each axial slice is then resized or padded to a standard
256 x 256 shape, enforcing spatial consistency across samples. Following spatial
normalization, intensity values are rescaled to the range [-1, 1] using min-max
normalization. Finally, the 3D volumes are decomposed into individual 2D axial
slices, which serve as the input for the 2D translation network.

For the segmentation network, a separate preprocessing pipeline is employed
to prepare full 3D volumes suitable for volumetric analysis. First, all input vol-
umes are reoriented to a consistent canonical direction [1, 1, 1], ensuring anatom-
ical alignment across the dataset. The volumes are then resampled to a uniform
size of [256, 256, 96], which standardizes the input dimensions and facilitates
batch processing in the 3D segmentation model. To normalize intensity distri-
butions across subjects and modalities, z-score normalization is applied based
on the mean and standard deviation of the intensity values within each volume.
This step is particularly important for PET images, which exhibit substantial
variability in uptake values and noise levels. Overall, this preprocessing strategy
ensures that both CT and PET images are spatially and statistically compatible
across stages, laying the foundation for effective cross-domain learning.

2.2 Style Translation

To enable domain adaptation from CT to PET without access to PET labels,
we employ a style translation module based on DAR-Unet [25], a generative
adversarial framework that performs unsupervised image-to-image translation
through disentangled representation learning. The network architecture consists
of a content encoder that extracts modality-invariant anatomical features and a
style encoder that captures modality-specific appearance cues such as contrast,
texture, and noise patterns. These representations are combined by a decoder
to reconstruct or translate input images between domains. During training, the
network receives both CT and PET images and is optimized through a com-
bination of pixel-level and content-level adversarial objectives. The pixel-level
adversarial loss encourages the generation of realistic PET-like images, while
the content-level adversarial loss enforces alignment in the shared anatomical
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feature space across domains, ensuring that semantic structures such as organs
are preserved during translation. Additional reconstruction losses promote sta-
bility and identity consistency during training.

Once the translation model is trained, we generate synthetic PET images,
which referred to as Fake PET, by encoding the anatomical content from labeled
CT scans and combining it with style representations randomly sampled from
real PET images. This strategy produces a diverse set of PET-style images that
retain the anatomical structure of the source CT data. These Fake PET images
not only resemble real PET images in terms of visual characteristics but also
exhibit structural fidelity, including consistent organ shapes and positions, as
verified by visual inspection.

Figure 2 illustrates examples of such translated images, showing that the
generated Fake PET scans display a wide range of PET-specific styles while
maintaining the semantic integrity of the original CT images. The visual diver-
sity in style reflects the successful learning of the PET distribution, while the
preservation of organ boundaries and internal consistency indicates effective dis-
entanglement of content and style. This CT-Fake PET paired dataset can then
be directly used in the segmentation stage to train a model that learns to gener-
alize to the PET domain, effectively bridging the modality gap without relying
on any real PET annotations.

Fake PET

Fig. 2. An example of CT scan slice, corresponding fake PET slice by style translation,
and the sample slice of PET scan.

2.3 Segmentation

To achieve effective organ segmentation on unlabeled PET scans, we train a
3D segmentation model using the paired CT and Fake PET dataset generated
in the style translation stage. By combining CT images with known labels and
their style-transferred PET counterparts, the model learns to generalize across
modalities while preserving anatomical semantics. Notably, the segmentation
network is never exposed to any labeled PET data during training. Instead, it
relies entirely on supervision from the CT domain and the PET-style images
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synthesized to mimic the characteristics of the target domain. This allows for
direct inference on real PET scans in a zero-shot fashion.

Our segmentation architecture adopts a U-shaped encoder—decoder structure,
inspired by recent transformer-CNN hybrid networks. The encoder consists of
stacked convolutional blocks and Swin Transformer modules, which work in par-
allel to extract both local texture details and global contextual relationships from
the input volumes. The decoder mirrors the encoder with symmetric convolu-
tional, and transformer layers and uses skip connections to bridge corresponding
resolution levels. These skip connections facilitate the fusion of low-level spatial
features with high-level semantic information, enabling accurate delineation of
organ boundaries across varying PET appearances.

The model is trained end-to-end using both the original CT scans and their
corresponding Fake PET images. In this joint supervision setup, the CT im-
ages provide direct label supervision, while the Fake PET images—though unla-
beled—share the same spatial structures and are treated as inputs during train-
ing to improve the model’s ability to handle PET-specific noise, low contrast,
and modality shifts. Through this exposure, the model gradually learns PET-
invariant representations of abdominal organs.

This segmentation strategy is simple, efficient, and annotation-free in the tar-
get domain. By eliminating the need for pseudo-labeling or multi-stage training
schemes, we avoid the potential accumulation of error and maintain a stream-
lined pipeline. Despite the absence of real PET labels during training, the model
is able to perform accurate segmentation on real PET volumes by leveraging the
style-aligned representations learned from synthetic data.

2.4 Post-processing

Post-processing based on connected components is commonly used in medical
image segmentation. We eliminated false predictions in organ segmentation by
retaining only the connected component with the largest prediction for each
organ and removing all other components.

3 Experiments

3.1 Dataset and evaluation measures

The training dataset is curated from more than 30 medical centers under the
license permission, including TCIA [3], LiTS [1], MSD [21], KiTS [7,8], au-
toPET [6,5], AMOS [12], LLD-MMRI [14], TotalSegmentator [23], and AbdomenCT-
1K [20], and past FLARE Challenges [17,18,19]. The training set includes 2050
CT scans, 4817 MRI scans and 1000 PET scans. The core set includes 100 MRI
and 100 PET scans sampled from the original training set. The validation set
includes 160 MRI scans and 50 PET scans. The organ annotation process used
ITK-SNAP [26], nnU-Net [11], MedSAM [15], and Slicer Plugins [4,16].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
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measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04.6 LTS

CPU Two Intel(R) Xeon(R) Processor E5-2698 v4 CPUQ@2.20GHz
RAM 64GB 2400MT/s

GPU (number and type) Six NVIDIA GTX 1080 Ti 11G

CUDA version 11.3

Programming language Python 3.8.10

Deep learning framework torch 2.0, torchvision 0.13.0

Training protocols For SegNet training, we follow the hyperparameter settings
from [13], with the exception of setting the number of multi-head self-attention
heads to [3,6,12] across different encoder stages. To mitigate overfitting due
to limited training data, we employed several data augmentation techniques,
including random rotation, scaling, addition of white Gaussian noise, Gaussian
blurring, brightness and contrast adjustment, low-resolution simulation, gamma
transformation, and elastic deformation. The hyperparameters of the model are
shown in Table 2.

4 Results and discussion

4.1 Quantitative results on validation set

Table 3 and 4 show the final quantitative results on the public validation set.
The MRI sets have average DSC of 79.56% and NSD of %86.52, while PET sets
have average DSC of 79.47% and NSD of %64.44. It is noteworthy that, despite
not using any unlabeled data during the training of inference model, our method
achieves comparable average accuracy on PET scans to that on MRI scans. This
result is significant because PET images generally contain weaker anatomical
features and lower spatial resolution compared to MRI, which typically makes
organ boundary delineation more challenging. The consistent performance across
modalities demonstrates the robustness of our model in adapting to different
imaging characteristics without relying on additional unlabeled data.
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Table 2. Training protocols for the inference model.

Batch size 6x1

Network initialization "He" normal initialization
Patch size 96 %256 %256

Total epochs 500

Optimizer AdamW

Initial learning rate (Ir) Se-4

Lr decay schedule Cosline Annealing LR
Training time 48 hours

Number of model parameters 5.48M

Number of flops 261.62G

COzeq 37Kg

Table 3. Quantitative evaluation results of MRI scans

Target Validation Testing
DSC(%) NSD(%) |DSC(%) NSD (%)

Liver 95.04 + 2.05 95.59 + 4.06

Right kidney 94.89 £+ 3.15 93.84 £ 5.14

Spleen 95.41 4+ 2.82 96.78 + 4.40

Pancreas 77.90 + 11.34 89.87 + 12.01

Aorta 90.14 £+ 8.84 94.07 £ 9.62

Inferior vena cava | 84.22 + 8.43 87.05 &+ 9.95
Right adrenal gland|59.64 + 13.46 77.46 + 14.92
Left adrenal gland |62.31 4+ 17.94 76.48 + 20.73

Gallbladder 72.67 £+ 25.84 66.15 + 26.69
Esophagus 64.78 + 14.16 81.55 4+ 18.93
Stomach 80.72 £+ 13.68 84.63 4 15.28
Duodenum 61.33 4+ 13.23 85.65 £ 12.32
Left kidney 95.21 4+ 2.29 95.66 + 3.72
Average 79.56 £+ 18.45 86.52 + 16.45

Table 4. Quantitative evaluation results of PET scans.

Target Validation Testing
DSC(%) NSD(%) |DSC(%) NSD (%)

Liver 87.53 + 3.84 73.11 + 8.78

Right kidney|76.51 £ 12.25 60.73 £ 14.11

Spleen 79.16 + 11.54 60.81 + 13.85

Left kidney |74.67 + 19.70 63.09 + 18.54

Average 79.47 4+ 13.90 64.44 £+ 15.03
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We additionally experimented with applying an intensity-range-based ex-
pansion to the organ labels on the Fake PET images. The intuition was to
compensate for boundary under-segmentation by enlarging labels toward adja-
cent voxels within the predefined intensity ranges. However, as shown in Table 5,
this strategy degraded performance. We hypothesize that the limited contrast
between organs in PET scans makes intensity-based expansion unreliable, often
including non-target regions and introducing noise.

Table 5. Segmentation accuracy on the validation set with and without PET label
expansion. The results demonstrate that label expansion leads to a significant degra-
dation in segmentation performance.

Method Mean DSC(%) Mean NSD(%)
+ Fake PET label expansion 61.00 46.04
— Fake PET label expansion 79.47 64.44

Table 6 reveals the runtime and GPU memory usage for representative MRI
and PET cases. Overall, the framework demonstrates good computational ef-
ficiency, with MR inference time ranging from 7 to 14 seconds depending on
image size and resolution, and PET inference time all below 10 seconds. The
peak GPU memory consumption remains under 4 GB across all cases, while the
total allocated GPU memory scales with input size.

Table 6. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA 3080 Ti Laptop (16G).

Case ID Image Size  Running Time (s) Max GPU (MB) Total GPU (MB)
amos_ 0540 (192, 192, 100) 7.25 3061.79 6732.35
amos_ 7324 (256, 256, 80) 7.16 2943.10 6793.90
amos_ 0507 (320, 290, 72) 10.26 2956.03 7975.01
amos_ 7236 (400, 400, 115) 8.46 2840.91 7780.67
amos_ 7799 (432, 432, 40) 7.92 3195.10 7377.50
amos_ 0557 (512, 152, 512) 10.45 2946.85 11123.79
amos_ 0546 (576, 468, 72) 8.97 3190.91 8636.96
amos_ 8082 (1024, 1024, 82) 13.95 3181.10 15378.93

fdg 605369e88d (400, 400, 92) 9.16 3639.10 9906.56

fdg d95leeb735 (400, 400, 58) 8.41 3643.10 9378.71
psma

_ af293f5b5149087a (200, 200, 121) 8.02 3639.10 8651.15

4.2 Qualitative results on validation set

From a qualitative perspective, the majority of PET segmentation results suc-
cessfully capture the overall contours of key organs. However, the model struggles
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with fine-grained details. For example, the liver boundaries are sometimes coarse
and fail to follow subtle edge variations, while in the kidneys the model occa-
sionally misclassifies small spherical structures adjacent to left kidney or right
kidney as part of the organ, even though these are not true anatomical regions.

Another observation is that when the overall image quality or distinguisha-
bility is lower (for example the case fdg aea7906fd2 shown in Figure 3) the
segmentation of even large, normally well-performing organs becomes less accu-
rate. In these cases, the model tends to produce incomplete coverage, reflecting
its difficulty in handling weak global contrast and less distinctive anatomical
features.

Case #fdg d951eeb735 (slice #30)

Tane.
X it 4

Case #fdg_aca7906fd2 (slice #35)

N AN &N

Case #fdg bb6alee33ef (slice #34)

Y fTrm S e,

T T
e!o & éo

Image Ground Truth Segmentation

Fig. 3. Visualization of segmentation results of abdominal organs.

4.3 Results on final testing set

This is a placeholder. We will send you the testing results during MICCAI 2025.
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4.4 Limitation and future work

Although the proposed method demonstrates promising results on both MRI
and PET scans, several limitations remain:

— While overall organ shapes are well captured, boundary precision is limited.
Future work could incorporate boundary-aware loss functions or shape priors
to enhance edge delineation.

— The occasional inclusion of spherical structures near the kidneys highlights
the model’s sensitivity to unseen anatomical variations. Incorporating addi-
tional training cases with such variations or applying post-processing with
anatomical constraints could mitigate this issue.

— For PET segmentation, the current pipeline only leverages unlabeled PET
scans during the style translation process, but not in the training of the
segmentation model. In the future, these unlabeled PET scans could be
integrated into SegNet through semi-supervised learning, which may further
improve segmentation accuracy and robustness.

5 Conclusion

In this study, we evaluated the proposed segmentation framework on both MRI
and PET scans. The final results show that the model achieves an average DSC
of 79.56% and NSD of 86.52% on MRI, and an average DSC of 79.47% and NSD
of 64.44% on PET. These results confirm that the framework can deliver reliable
multi-organ segmentation performance across different imaging modalities.

A key innovation of this work lies in the PET segmentation pipeline. Unlike
MRI, the PET model was designed in a more straightforward manner and does
not rely on unlabeled scans during segmentation model training. Instead, unla-
beled PET scans were only utilized in the style translation stage, yet the model
still achieves strong segmentation accuracy. This demonstrates the effectiveness
of the proposed pipeline in handling images with weaker anatomical features and
lower spatial resolution, while maintaining computational efficiency suitable for
clinical use.
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Table 7. Checklist Table. Please fill out this checklist table in the answer column.
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A meaningful title Yes
The number of authors (<6) 1
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes

Introduction includes at least three parts:
background, related work, and motivation
A pipeline/network figure is provided 1
Pre-processing

Strategies to use the partial label
Strategies to use the unlabeled images.
Strategies to improve model inference
Post-processing

The dataset and evaluation metric section are presented 6, 8, 9
Environment setting table is provided 1

Yes
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Training protocol table is provided 2
Ablation study 5
Efficiency evaluation results are provided 6
Visualized segmentation example is provided 3
Limitation and future work are presented Yes

Reference format is consistent. Yes




