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Abstract

Attention mechanism has shown great performance and efficiency in a lot of
deep learning models, in which relative position encoding plays a crucial role.
However, when introducing attention to manifolds, there is no canonical local
coordinate system to parameterize neighborhoods. To address this issue, we
propose an equivariant transformer to make our model agnostic to the orientation of
local coordinate systems (i.e., gauge equivariant), which employs multi-head self-
attention to jointly incorporate both position-based and content-based information.
To enhance expressive ability, we adopt regular field of cyclic groups as feature
fields in intermediate layers, and propose a novel method to parallel transport
the feature vectors in these fields. In addition, we project the position vector of
each point onto its local coordinate system to disentangle the orientation of the
coordinate system in ambient space (i.e., global coordinate system), achieving
rotation invariance. To the best of our knowledge, we are the first to introduce
gauge equivariance to self-attention, thus name our model Gauge Equivariant
Transformer (GET), which can be efficiently implemented on triangle meshes.
Extensive experiments show that GET achieves state-of-the-art performance on
two common recognition tasks.

1 Introduction

Recently, Transformer has dominated the area of Natural Language Processing [48]. Its key advantage
over previous methods is its ability to attend to the most relevant part in a given context. This is
largely attributed to its self-attention operator, which computes the similarity between representations
of words in sequences in the form of attention scores. Because of the superiority, researchers start to
apply Transformer to other learning areas, including Computer Vision [26, 53, 16, 59] and Graphs
[49].

In this work, we aim at applying Transformer to manifolds. Unlike regular data, such as images, where
each neighbor owns a clearly quantified relative position to its center in a canonical coordinate system,
irregular data do not have a uniquely defined local coordinate system for the neighbors, resulting in
the problem of orientation ambiguity, which directly obstructs the Transformer to numerically intake
the relative position information.

Several works have been proposed to deal with the rotation ambiguity problem, in which a promising
way is to exploit gauge equivariance. While most of them are not rotation invariant to global
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coordinate system, all of them are established on convolution, i.e., equal attention to neighboring
points and neglect to content-based information. So it is desirable to propose a gauge equivariant
transformer with the support of rotation invariance.

In this paper, we propose Gauge Equivariant Transformer, named GET for short, which employs
multi-head self-attention to simultaneously utilize position-based and content-based information, and
is both gauge equivariant and rotation invariant. To achieve rotation invariance, we first project xyz
coordinates in a global coordinate system onto a local coordinate frame, and then design equivariant
transformers to overcome the orientation ambiguity problem of local coordinate systems. We adopt
the regular field proposed in [13] as feature fields of intermediate layers, since the representation of
regular field commutes with element-wise activation functions. After that, we propose a novel method
to accommodate parallel transport of feature vectors in regular field with any rotation angles. Since
we adopt regular fields in intermediate layers, we make a relaxation such that they are equivariant
only for gauge transformations of angles that are multiples of 2π/N . Exact equivariance can be
guaranteed for gauge transformations at multiples of 2π/N , and an equivariance error bound can
be obtained for all other angles. In experiments, our model shows better performance and greater
parameter efficiency than all baseline methods. Our contributions can be summarized as follows:

• We propose GET, which incorporates attention and achieves both gauge equivariance and
rotation invariance with superior expressive power. GET is mathematically proven to be
exactly equivariant on angles that are multiples of 2π/N(N ∈ N∗), and an equivariance
error bound is derived for other angles to guarantee the overall approximate equivariance
property.

• We carefully design the model input to ensure that it is irrelevant to the global coordinate
system, only depending on the choice of gauge. Our model achieves rotation invariance
with the assistance of gauge equivariance.

• We propose a novel method to parallel transport the feature vectors in the regular field
by extending the representation of a cyclic group to any angle rotation group. Compared
to previous methods using truncation or interpolation, our extension can preserve more
geometric information.

• We elevate the model performance by designing a new approach which incorporates Taylor
expansion in solving the equivariance constraint, which has a better approximation ability in
local neighborhoods.

• We confirm the superiority of our model via extensive experiments. Our model outperforms
the HSN model on the SHREC dataset by 3.1% accuracy, and outperforms the MeshCNN
model on the Human Body Segmentation dataset by 0.3% accuracy with much fewer
parameters, presenting state-of-the-art performance.

2 Related Work

Geometric Deep Learning. Geometric deep learning is an emerging field concerning with adapting
neural networks to various data types [7], especially on irregular data. For research works on modeling
curved surfaces, common methods include view-based methods [46, 61, 51] and volumetric methods
[32, 40, 52]. To boost efficiency, some works define convolution on point clouds directly [37, 38], but
they are vulnerable to pose change since the coordinate inputs are dependent of the global coordinate
system. So it is highly desired to develop models that solely intake geometric information of surfaces.

Approaches that merely utilize intrinsic information of surfaces are called intrinsic methods. They use
local parameterization to assign each neighboring point with a coordinate for information aggregation.
A seminal work is Geodesic CNNs [31], which uses an exponential map to parameterize each local
neighborhood and takes the maximum response across multiple choices of local coordinate orientation.
While taking the maximum response direction discards the orientation information of feature maps,
as an alternative, aligning local coordinate with principle curvature direction is another approach to
deal with the ambiguity problem [33, 6]. But this approach can only be applied in limited cases as
the curvature direction may be ill-defined at some points or even areas of curved surfaces. MDGCNN
[35] and PFCNN [60] describes features by the so called directional functions. But both of them
adopt scalar equivariant kernels, resulting in limited expressive power.
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Equivariant Deep Learning. Success of CNNs has been attributed to translation equivariance,
which inspires researchers to implement more powerful equivariant models, including equivariance
of planar rotation [12, 15, 13, 58, 54, 44, 25], 3D space rotation [57, 19, 47, 36, 55, 35, 28, 2, 39],
sphere rotation [9, 17, 34, 18], and so on. All above works are about equivariance on homogeneous
space [29, 10]. Cohen et al. [11] further extend equivariance to manifolds, in which they identify a
new type of equivariance called gauge equivariance. The models in [56, 14] are successful extensions
of gauge equivariant CNNs on mesh surfaces. However, their model suffers from changes in the
orientation of global coordinate system.

Also, there are works proposed for equivariant attention. Romero et al. [43] propose co-attentive
equivariant networks, which effectively attends to co-occurring transformations. Romero et al. [41]
further propose attentive group equivariant convolutional networks. Besides this, transformers have
also been applied to group equivariant networks, where Fuchs et al. [21] do so via irreducible
representations, Hutchinson et al. [27] via Lie algebra, and Romero et al. [42] via generalization of
position encodings. All the models above are equivariant to symmetric groups, while currently gauge
equivariant attention is still lacking.

3 Preliminaries

Unlike regular data, in which coordinates (or pixels) are aligned in a global frame, there is no such
specific frame on general manifolds. To begin with, we briefly review and define some mathematical
concepts.

3.1 Basic Definitions

We restrict our attention to 2D manifolds in 3D Euclidean space. Consider a 2D smooth orientable
manifold M . For a point p in M , denote its tangent plane as TpM . Each point in TpM can be
associated with a coordinate by specifying a coordinate system. Namely, we can parameterize the
tangent plane TpM with a pointwise linear mapping wp : R2 → TpM , which is defined as the gauge
w at point p [11]. The gauge of manifold M is the set containing gauges at every point in M .

For planar data, a feature map is the set of features located at different positions on a plane. Similarly,
a feature field on a surface is a set of geometric quantities at different positions of the surface.
Note that these two concepts are similar but not the same. From the perspective of geometric deep
learning, a feature map is defined as numerical values of geometric quantities that may be gauge
dependent, while a feature field refers to geometric quantities themselves that are gauge independent.
For example, each point of the surface can be assigned with a tangent vector as its feature vector,
all of which form a feature field. As is shown in Figure 1, the tangent vector v itself is a geometric
quantity, which stays the same regardless of arbitrary gauge selection but takes different numerical
values in different gauges following an underlying rule. We use f to denote the feature field of a
manifold, fw : M → Rn denotes the feature map under the gauge w and fw(p) denotes the feature
map evaluated at point p.

Different gauges can be linked by gauge transformations. The gauge transformation at point p
is a frame transformation: gp ∈ SO(2), where SO(2) is the special orthogonal group consisting
of all 2D rotation transformation matrices. A new gauge w′p can be produced by applying gauge
transformation gp to the original gauge wp, i.e., w′p = gp · wp. Gauge transformation is usually
characterized by group representations. Group representation is a mapping ρ : G→ GL(n,R) where
GL(n,R) is the group of invertible n×n matrices, and ρ meets the condition ρ(g1)ρ(g2) = ρ(g1g2),
where g1, g2 ∈ G are the elements of the group, g1g2 are element product defined on the group,
and ρ(g1)ρ(g2) is matrix multiplication. Therefore, after applying the gauge transformation gp, the
feature vector value fw(p) transforms to fw′(p) = ρ

(
g−1p

)
fw(p). Here ρ is a group representation

of SO(2) which is called the type of the feature vector. If all the feature vectors share the same type
ρ, the feature field is called a ρ-field and ρ is called the representation type of the field. The above
definitions can also be at the manifold level, i.e., fw′ = ρ(g−1)fw. The notation kρ, where k is a
positive integer, refers to the group representation whose output is k-blocks diagonal matrix with
each block equals to ρ. In particular, if the representation of a feature field is ρ(g) = 1, then the
feature field becomes scalar field, denoted as ρ0.
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3.2 Gauge Equivariance

For a function φ, its input is a feature map fw, where f is a ρin-field, in order to make φ gauge
equivariant, and its output f̃w should be a feature map, where f̃ is a ρout-field. When φ is a layer of a
neural network, gauge equivariance implies that φ does not rely on the gauge in the forward process.

Suppose that there are two gauges w and w′ linked by a gauge transformation g: w′ = g · w,
we have fw′ = ρin(g−1)fw since f is a ρin-field. Gauge equivariance means that the outputs
f̃w = φ[fw] and f̃w′ = φ[fw′ ] are linked by the ρout representation of the same transformation g, i.e.
f̃w′ = ρout(g

−1)f̃w. Finally, we get:

ρout(g
−1)φ [fw] = φ

[
ρin(g−1)fw

]
. (1)

To sum up, a function φ is gauge equivariant if the above equation always holds for any feature field
f , gauge w and transformation g.

3.3 Riemannian Exponential Map

Transformers require encoding the relative position to propagate information. Note that in images,
there is still a local point parameterization, which is so natural that one even does not realize it.
For general manifolds, it is non-trivial to establish a parameterization criterion, at least in the local
frame. Among many charting-based methods, the mostly used one is the Riemannian exponential
map expp : TpM →M at point p, which is a mapping from the tangent plane to the surface. For a
coordinate vector v ∈ TpM , the output of the Riemannian exponential map is obtained by moving the
point p in the direction v along the geodesic curve with a distance of ‖v‖. Denoting the arrival point
as q, we have expp(v) = q. Figure 1 visualizes the exponential map as well as some basic definitions
introduced in Section 3.1. According to the inverse function theorem, expp is a local diffeomorphism
so can avoid metric distortion at the point p. The inverse of Riemannian exponential map is the
logarithmic map logp : M → TpM . Under the gauge wp, every point q in the neighborhood of p is
associated with coordinate w−1p · logp(q).

3.4 Parallel Transport

The self-attention operation is essentially an aggregation of local neighboring features. However, the
feature vectors of different points are from different spaces, thus they need to be parallel transported
to the same feature space before being processed. For a tangent vector s at point q, we parallel
transport it along the geodesic curve to another point p with respect to Levi-Civita connection [8],
which preserves the norm of the vector. Levi-Civita connection is an isometry from TqM to TpM
and determines the parallel transport of s, see Figure 2. In a gauge w, the parallel transport of tangent
vector corresponds to a 2D rotation gwq→p ∈ SO(2) which contains the relative orientation of gauges
in the neighborhood. For a general feature vector of ρ type, parallel transport can be expressed as
s′w = ρ(gwq→p)sw.

3.5 Self-attention

Attention enables the model to selectively concentrate on the most relevant parts based on their
content information [48, 53, 4, 22]. Consider a set of tokens t = {t1, t2, . . . , tT }, where ti ∈ RF .
Attention is composed of three parts, namely query, key and value, denoted by Q : RF → RFQ ,
K : RF → RFK , and V : RF → RFV , respectively. When Q, K and V are from the same source,
it is called self-attention. When there are multiple sets of Q, K and V ’s, it becomes multi-head
attention.

The output of a multi-head self-attention transformer at node i is the linear transformation of the
concatenation of the outputs at all the heads:

MHSA(t)i = WM

(∥∥
h

SA(t)
(h)
i

)
, (2)
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Figure 1: Illustration of basic definitions and Rie-
mannian exponential map. Here, wp (black) and
w′p (blue) are two gauges on the tangent plane
TpM and they are linked by the gauge transfor-
mation gp. The coordinate of v takes different
numerical values under wp and w′p, as is illus-
trated in lower part. The exponential map assigns
each vector v in TpM with corresponding point
q on the surface M .

Figure 2: Parallel transport. The tangent vector
s is parallel transported from q to p, resulting
in a new vector s′ at point p. The numerical
value change imposed by parallel transport is
jointly determined by the geometric property of
the surface, the Levi-Civita connection and the
underlying gauge w.

where
∥∥ is the vector concatenation operator. The single head attention output at head h is

SA(t)
(h)
i =

T∑
j=1

α
(h)
ij V

(h)(tj), (3)

where V (h) is the value function at the head h, and α(h)
ij is attention score computed by

α
(h)
ij =

S(K(h)(ti), Q
(h)(tj))∑T

j′=1 S(K(h)(ti), Q(h)(tj′))
, (4)

where K(h), Q(h) and S are the key function, query function and score function, respectively.

4 The Proposed GET

4.1 Gauge Equivariant Self-Attention Layers

Suppose that the dimensions of input feature field f and output feature field f̃ are Cin and Cout,
respectively. We define the gauge equivariant multi-head self-attention output at point p under the
gauge w as

f̃w(p) = MHSA(f)w(p) = WM

(∥∥
h

SA(f)(h)w (p)

)
, (5)

where WM is the linear transformation matrix. At the head h, the output is defined as

SA(f)(h)w (p) =

∫
‖u‖<σ

α(f)(h)p,quV
(h)
u (f ′w(qu))du, (6)

where u = (u1, u2)T ∈ R2, qu = expp wp(u), f ′w(qu) is the numerical value of parallel transported
feature vector from point qu to point p under the gauge w, and Vu is the value function incorporating
the position information u through an encoder matrix WV (u) ∈ RCout×Cin , i.e.

f ′w(qu) = ρin(gwqu→p)fw(qu), Vu(f ′w(qu)) = WV (u)f ′w(qu). (7)
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α is the attention score incorporating the content information, and is computed as:

α(f)(h)p,qu =
S(K(h)(fw(p)), Q(h)(f ′w(qu)))∫

‖v‖<σ S(K(h)(fw(p)), Q(h)(f ′w(qv)))dv
. (8)

We propose to enforce the attention score to be gauge invariant and the value function to be gauge
equivariant, to make the attention layer gauge equivariant. The details of constructing them are
presented in Sections 4.3 and 4.4, respectively.

4.2 Extension of Regular Representation

In our model, the feature fields in the intermediate layers are all regular fields (i.e., whose type
is regular representation). Regular representation is a special type of group representation of CN .
If we use Θk to denote the rotation matrix with angle of k · 2π/N , then CN can be expressed as
CN = {Θ0,Θ1, · · · ,ΘN−1}. For k = 0, 1, · · · , N − 1, the regular representation ρCN

reg(Θk) is an
N ×N cyclic permutation matrix which shifts the coordinates of feature vectors by k steps.

Regular representation provides transformation matrices when rotating by angles of multiples of
2π/N , but feature vectors can go through any rotation in SO(2) during parallel transport. Figure
3 illustrates this issue by giving an example in R5 with respect to ρC5

reg. We propose to extend the
regular representation of CN by finding an orthogonal representation ρ̃N of SO(2), such that it
behaves the same as regular representation for any element in CN , i.e.

∀Θ ∈ CN , ρ̃N (Θ) = ρCN
reg(Θ). (9)

As ρCN
reg takes different forms between odd values and even values of N , Theorem 1 shows that only

odd N ’s are vaild in our model.

Theorem 1 (i) If N is even, there is no such real representation ρ̃N of SO(2) that satisfies Eqn.
(9). (ii) If N is odd, there is a unique representation ρ̃N of SO(2) that satisfies Eqn. (9). (iii) The
representation ρ̃N in (ii) is an orthogonal representation.

Here we only show our method for constructing ρ̃N in Theorem 1. According to group representation
theory, regular representation ρCN

reg can be decomposed into irreducible representations (irrep for
short), i.e.,

ρCN
reg(Θ) = Adiag

(
ϕ0(Θ), ϕ1(Θ), · · · ,ϕN−1

2
(Θ)
)
A−1, (10)

where ϕ0, · · · , ϕ(N−1)/2 are the irreps of CN , and A ∈ GL(N,R). The irreps of CN take the
following form for odd N :

∀Θ ∈ CN , ϕ0(Θ) = 1, ϕk(Θ) =

[
cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

]
, (11)

where θ ∈ [0, 2π) is the rotation angle of the matrix Θ, i.e.

Θ =

[
cos θ − sin θ
sin θ cos θ

]
, (12)

and k = 1, · · · , N−12 . We extend the irreps to SO(2) as

∀Θ ∈ SO(2), ϕ̃0(Θ) = 1, ϕ̃k(Θ) =

[
cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

]
, (13)

where k = 1, · · · , N−12 . By substituting the ϕ’s in Eqn. (10) with ϕ̃’s, we get that for ∀θ ∈ SO(2),

ρ̃N (Θ) = Adiag
(
ϕ̃0(Θ), ϕ̃1(Θ), · · · , ϕ̃N−1

2
(Θ)
)
A−1. (14)

Obviously the representation ρ̃N satisfies the condition Eqn. (9). In this way, one can apply ρ̃N (gwq→p)
to feature vector of regular field during parallel transport.
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4.3 Gauge Equivariant Value Function

Inspired by [11], we choose the value function to be the numerical value of the parallel transported
feature vector multiplied by the value encoding matrix. For the value function to be gauge equivariant,
the necessary and sufficient condition is that Eqn. (15) always holds for any Θ ∈ SO(2):

WV (Θ−1u) = ρout(Θ
−1)WV (u)ρin(Θ). (15)

We propose a practical method to solve Eqn. (15). We first expand the Wv into taylor series:

WV (u) = W0 +W1u1 +W2u2 +W3u
2
1 +W4u1u2 +W5u

2
2 + · · · , (16)

whereWi ∈ RCout×Cin(i = 0, 1, · · · ) is the Taylor coefficient. Since we adopt regular representation
in this paper, Eqn. (15) only needs to hold for Θ ∈ CN . Plugging Eqn. (16) into Eqn. (15), by
comparing the coefficients, Wi’s need to satisfy that for any Θ ∈ CN ,

W0 = ρout(Θ
−1)W0ρin(Θ), (17a)

cos(θ)W1 − sin(θ)W2 = ρout(Θ
−1)W1ρin(Θ), (17b)

sin(θ)W1 + cos(θ)W2 = ρout(Θ
−1)W2ρin(Θ), (17c)

· · · .

To deal with the issue of having infinite terms in Eqn. (16), we may bypass it by simply truncating
the Taylor series. We use the second order Taylor expansion and omit higher order terms, i.e.,

WV (u) ,W0 +W1u1 +W2u2 +W3u
2
1 +W4u1u2 +W5u

2
2. (18)

It is worth emphasizing that making truncations does not affect the equivariance property in the
slightest, as the equations in (17) show the coupling characteristics.

Eqn. (17a) is the constraint on W0 in the order 0, Eqn. (17b) and Eqn. (17c) are the constraints on
W1 and W2 in order 1, and there are three more equations in Eqn. (17) constraining on W3, W4

and W5 in the order 2. We can see that only the Wi’s in the same order are coupled together. This
coupling property allows us not only to solve the equations in (17) in separate groups, but also to
make truncations in Eqn. (16) without affecting the equivariance property.

After truncation, we can get a set of solution bases of Taylor coefficients {W̃ (1), · · · , W̃ (m)} by
solving the first six linear equations in (17) which are separated into three independent groups,
where m is the dimension of solution space. Each W̃ (i) is a tuple consisting of six components,
W̃

(i)
0 , · · · , W̃ (i)

5 . The details in solving linear equations are provided in supplementary materials.
Then, the equivariant matrix basis W (i) has the following form:

W (i)(u) = W̃
(i)
0 + W̃

(i)
1 u1 + W̃

(i)
2 u2 + W̃

(i)
3 u21 + W̃

(i)
4 u1u2 + W̃

(i)
5 u22, (19)

which satisfies Eqn. (15) for all u. Their linear combination,
∑
ciW

(i), still meets Eqn. (15) and ci’s
can be set as learnable parameters during training. With WV =

∑
ciW

(i), the value function in Eqn.
(7) is exactly equivariant to gauge transformations at multiples of 2π/N .

It is remarkable that our method of solving the equivariance constraint Eqn. (15) is very general, as
the solution process can be applied to any groups, including ρin and ρout. Especially, it can avoid
solving analytic solutions when the group is very complex, like when the case is that the group is
a high dimensional orthogonal group. In addition, compared to Fourier series used in [54], Taylor
series is a better approximation in local neighborhoods. The omitted Taylor terms in Eqn. (18) is
O(σ3), which is negligible when the radius σ is small enough. So GET could achieve the same
performance with fewer parameters. In addition, we can avoid selecting radial profiles that introduce
extra hyperparameters.

4.4 Gauge Invariant Attention Score

In implementation, the manifold is discretized to mesh for computer processing. The discretiza-
tion details are provided in supplementary materials. Here we set the key and query function
to be structurally the same as Graph Attention Network [49], i.e., K(h)(fw(p)) = W

(h)
K fw(p),

7



Figure 3: Illustration for the reason of exten-
sion. f(q) is a feature vector of type ρC5

reg , which
takes numerical value fw(q) ∈ R5 under gauge
wq. Applying a gauge transformation with an-
gle 2π/5 to w′q , f(q) takes another value fw′(q),
which is a permutation of fw(q). The problem
here is what value does f(q) takes after it is par-
allel transported to point p.

Figure 4: Local coordinate projection. xp is the
position vector in the global coordinate system
marked in red. For better illustration it is moved
to the local coordinate system, marked in blue. In
the local coordinate system xp is projected onto
the directions of up, vp and np, respectively, and
the lengths of three directed line segments (in
green) form the input Xp.

Q(h)(f ′w(qu)) = W
(h)
Q f ′w(qu), where W (h)

K ∈ RN×Cin , W (h)
Q ∈ RN×Cin . The score function is

structurally similar to [49], which takes the following form:

S(K(·), Q(·)) = P (ReLU(K(·) +Q(·))). (20)

Here, ReLU is the Nonlinear Rectified Unit acting on each element of the N dimensions, and
P : RN → R is the average pooling function. The linear transformation matrices WK and WQ are
required to satisfy the constraint in Eqn. (17a) on CN for K and Q to be gauge equivariant. After
activation and pooling, the final attention score is gauge invariant.

With the gauge invariant attention score and gauge equivariant value function, the single head attention
Eqn. (6) is gauge equivariant. For the multi-head attention to be gauge equivariant, the transformation
matrix WM also needs to satisfy Eqn. (17a).

4.5 Rotation Invariance

The rotation invariance property of GET is accomplished by constructing a local coordinate system
for every point and making use of the gauge equivariance property. As is shown in Figure 4,
assuming that xp is the coordinate vector of p ∈ M in the global coordinate system, np is the
corresponding normal vector, and the gauge wp is ascertained by principal axes up and vp. By
projecting the raw data xp onto the local coordinate system, we get the local coordinate of point
p: Xp = (〈xp, up〉 , 〈xp, vp〉 , 〈xp, np〉), which relies on wp but is invariant to the choice of global
coordinate system. The insight is that X is actually a feature map whose corresponding feature field
is associated with representation ρlocal as:

ρlocal(Θ) =

[
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

]
. (21)

If we feed the local coordinates into an SO(2) gauge equivariant model whose outputs are scalar
fields, the result will be SO(3) rotation invariant.

4.6 Error Analysis

Following the conventions, GET stacks multiple self-attention layers with ReLU activation functions.
Even if discretized on triangle meshes, GET is still exactly equivariant to gauge transformations at
angles that are multiples of 2π/N .
Theorem 2 Assume a GET ψ, whose types of input, intermediate, and output feature fields are ρlocal,
kiρ

CN
reg and ρ0, respectively, where ki is the number of regular fields in the ith intermediate feature
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field. Denote f as the input feature field on triangle mesh M , and the norm of the feature map is
bounded by constant C. Gauges w and w′ are linked by transformation g. Further suppose that ψ is
Lipschitz continuous with constant L, then we have:

(i) If gp ∈ CN for every mesh vertex p ∈M , then ψ(fw) = ψ(fw′).

(ii) For general gp ∈ SO(2), we have ‖ψ(fw)− ψ(fw′)‖ ≤ πL
N C.

Theorem 2 provides a bound for gauge transformation with respect to any angles. Compared to
non-equivariant models, GET decreases the equivariance error by a factor of 1/N . In experiments,
we empirically show that the performance of our model increases as N increases.

5 Experiments

We conduct extensive experiments to evaluate the effectiveness of our model. We test the performance
of our model on two deformable domain tasks, and conduct parameter sensitivity analysis and
several ablation studies to make a comprehensive evaluation. Note that we use data preprocessing to
precompute some useful preliminary values in order to save training time. The details of preprocessing
can be found in supplementary materials.

5.1 Shape Classification

Our model used here is lightweight but powerful. The details of the architecture and training settings
are provided in supplementary materials. Under the same setting, we compare our model with HSN
[56], MeshCNN [24], GWCNN [20], GI [45] and MDGCNN [35], whose results are cited in [56].
As is shown in Table 5.2, our model achieves state-of-the-art performance on this dataset. GET
significantly improves the previous state-of-the-art model HSN by 3.1% in classification accuracy.
This may attribute to the attention mechanism and the intrinsic rotation invariance of our model,
while all other models are CNNs and directly accepts the raw coordinates xyz as input. Also, HSN is
the most parameter efficient model among the models we compared with. Our model consumes only
1/7 parameters of HSN (11K vs. 78K).

5.2 Shape Segmentation

A widely used task in 3D shape segmentation is Human Body Segmentation [30], in which the model
is to predict body-part annotation for each sampled point. The dataset consists of 370 training models
from MIT [50], FAUST [5], Adobe Fuse [1] and SCAPE [3] and 18 test models from SHREC07
[23]. The readers may refer to supplementary materials for details of neural network architecture and
hyperparameters.

Table 2 reports the percentage of correctly classified vertices across all samples in the test set.
The results of comparing models are cited from [56], [60] and [35]. Our model outperforms all
these models in the segmentation task. GET consumes only about 1/15 parameters compared with
MeshCNN (148K vs. 2.28M) but achieves higher performance.

Table 1: Model results on the SHREC dataset.
GET performs the best without rotation data aug-
mentation. The models trained without rotation
augmentation are rotation invariant intrinsically.

Model Rotation Aug. Acc. (%)

MDGCNN[35] ! 82.2

GI[45] ! 88.6

GWCNN[20] ! 90.3

MeshCNN[24] % 91.0

HSN[56] ! 96.1

GET (Ours) % 99.2

Table 2: Segmentation results on the Human
Body Segmentation dataset. Our GET performs
the best even without data augmentation by rota-
tions.

Model Rotation Aug. Acc. (%)

MDGCNN [35] ! 89.5

PointNet++ [38] ! 90.8

HSN [56] ! 91.1

PFCNN [60] % 91.5

MeshCNN [24] % 92.3

GET (Ours) % 92.6
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5.3 Parameter Sensitivity

Order of the Group CN . The hyperparameter N is a key factor to the model equivariance since
it controls both the dimension of regular field and the number of angles at which the our model
is exactly equivariant. Also, Theorem 2 asserts that the equivariance error is bounded by a factor
of 1/N compared to non-equivariant models. Here we study the effect of N on model accuracy
while keeping parameter numbers roughly the same. The results of the Human Body Segmentation
dataset with different N ’s are shown in Table 3. We can see that the model performance improves
considerably as N increases and stabilizes finally.

Table 3: Model accuracy and the number of parameters in the Human Body Segmentation task with
respect to different N ’s.

N 3 5 7 9 (Chosen) 11

Acc. (%) 91.2 92.0 92.4 92.6 92.5
# Params. 153K 149K 149K 148K 156K

5.4 Ablation Study

In this section, we perform a series of ablation studies to analyze individual parts of our model. All
the experiments are carried out on the Human Body Segmentation dataset under the same setting as
in Section 5.2. We evaluate the effectiveness of gauge equivariance, attention, local coordinate and
parallel transport method, with the latter two experiments provided in supplementary materials.

Gauge Equivariance and Attention. To confirm the effectiveness of gauge equivariance property
and attention mechanism, we design two baseline models with one not equivariant and the other
based on convolution. For the non-equivariant baseline, we use Graph Attention Networks [49]. For
the convolution-based model, we adopt a similar architecture as GET.

Table 4: Model accuracy in the Human Body Segmentation task with two baselines without gauge
equivariance and attention, respectively.

Model Gauge Equivariance Attention Acc. (%)

GET ! ! 92.6

Baseline 1 ! 81.1

Baseline 2 ! 92.3

Table 4 shows that GET both benefits from the power of gauge equivariance and attention. We can
see that both properties do contribute to the superiority of the model performance.

6 Conclusion

We propose GET, which firstly incorporates attention in gauge equivariance. GET introduces a new
input, which is invariant to rotation of the global coordinate system. GET employs a new parallel
transport approach, which is plausible for parallel transport between any two points. GET utilizes
Taylor expansion in solving equivariant constraints, achieving better approximation ability. GET
achieves state-of-the-art performances on several tasks and is efficient among the baselines.
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