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Abstract

Differentiable structure learning of causal di-
rected acyclic graphs (DAGs) is an emerging field
in causal discovery, leveraging powerful neural
learners. However, the incorporation of ances-
tral constraints, essential for representing abstract
prior causal knowledge, remains an open research
challenge. This paper addresses this gap by intro-
ducing a generalized framework for integrating
ancestral constraints. Specifically, we identify
two key issues: the non-equivalence of relaxed
characterizations for representing path existence
and order violations among paths during optimiza-
tion. In response, we propose a binary-masked
characterization method and an order-guided opti-
mization strategy, tailored to address these chal-
lenges. We provide theoretical justification for
the correctness of our approach, complemented
by experimental evaluations on both synthetic and
real-world datasets.

1. Introduction
Structure learning of causal DAGs is a fundamental task for
uncovering causal relationships among variables from data
(Pearl, 2000). Recent advances have reformulated this task
as a continuous optimization problem by representing the
discrete acyclicity constraint of the graph as a smooth equal-
ity, a technique known as differentiable structure learning
(Zheng et al., 2018). This approach facilitates the use of
powerful neural learners and gradient-based optimization
methods to model complex causal mechanisms (Zheng et al.,
2020; Yu et al., 2019), significantly advancing the fields of
causal discovery and trustworthy AI (Zhang et al., 2021;
Dai & Chen, 2022; Ruan et al., 2022; Wei et al., 2022).
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In practice, it is common to have prior knowledge about the
presence or absence of causal relationships, which must be
incorporated into structure learning to accurately recover the
underlying causal mechanisms (Constantinou et al., 2023;
Amirkhani et al., 2016). When prior knowledge is abstract
and does not directly identify a specific causal interaction in
the data, ancestral constraints, which specify the existence
or absence of either edges or indirect paths, provide a robust
way to encode such abstract knowledge (Li & Beek, 2018).

For traditional structure learning methods based on score-
and-search, ancestral constraints can be incorporated by
verifying path presence conditions in a graph and eliminat-
ing graphs that violate the constraints (Chen et al., 2016), or
by re-scoring graphs with additional bonuses for adherence
to prior knowledge (O’Donnell et al., 2006).

In contrast, differentiable structure learning of causal DAGs
relies on gradient-based optimization, which demands a
smooth characterization that equivalently represents path
presence conditions. Furthermore, the optimization pro-
cess must be effectively guided toward favorable optima
under continuous ancestral constraints, avoiding the risk of
convergence to suboptimal points. These two distinctive
requirements pose significant challenges to the integration
of ancestral constraints in differentiable structure learning,
leaving it an open research question in the field.

To address this research gap, we propose a generalized
framework for integrating ancestral constraints into differ-
entiable structure learning. First, we identify the issue of
non-equivalence in continuous relaxed characterizations for
representing path existence and propose a binary-masked
characterization that accurately and equivalently represents
path existence. Next, we address the order-violating issue
among individual paths specified in the constraints, which
can result in incomplete adherence to the constraints and
lead to suboptimal optimization. To guide the optimization
process toward a favorable optima, we propose an order-
guided optimization strategy. It begins by enforcing partial
order constraints implied by path existence, deriving a DAG
that satisfies all specified path orders. The resulting order-
consistent DAG is then used as the initial adjacency matrix
to optimize the path existence-constrained problem.

We provide the necessary theoretical analysis and compre-
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hensive empirical evidence on both synthetic and real-world
datasets to validate our approach. Additionally, related
works, proofs of statements, and complete experimental
results are detailed in the appendix.

The main contributions are summarized as follows:

• To the best of our knowledge, this is the first paper
to systematically address the integration of ancestral
constraints into differentiable structure learning, en-
abling the use of abstract prior knowledge to guide the
discovery of fine-grained causal mechanisms.

• We analyze the issue of non-equivalence in represent-
ing path existence using continuous relaxed characteri-
zations and propose a binary-masked characterization
that equivalently represents path existence.

• We identify the order-violation issue among paths,
which can lead to suboptimal optimization, and in-
troduce an order-guided optimization strategy that ef-
fectively guides the process toward favorable optima.

2. Preliminaries
This section introduces key concepts and notations, pro-
vides an overview of differentiable structure learning, and
concludes with the connection between the smooth charac-
terization of acyclicity and path absence.

2.1. Notations

Let W ∈ Rd×d represent a weighted adjacency matrix, with
the graph it defines denoted as G(W ). The node set of
G(W ) is X = {xi}di=1, and the edge set is E(G(W )). The
existence of a directed path from xi to xj in G(W ) is repre-

sented by xi ⇝ xj , while xi
k
⇝ xj denotes a path of length

k. The symbol xi and its index i are used interchangeably
to denote a node.

For matrix operations, |W | denotes the element-wise abso-
lute value, W k represents the k-th power of W , and W k

i,j

refers to the (i, j)-th element of W k. Operations such as
W −a or aW , where a is a constant, are performed element-
wise as subtraction or multiplication by a, respectively.

2.2. Differentiable Structure Learning

Causal Graphical Model. We start by defining the causal
graphical model commonly used to model causal relation-
ships among continuous variables.
Definition 1 (Structural Equation Model (SEM)). An SEM
is a directed acyclic graph (DAG) G with a node set
X = {xi}di=1, representing random variables, and a set
of functions F = {fi}di=1, such that:

xi = fi(paGi , zi), (1)

where paGi denotes the parent node set of xi in G, and zi
represents independent zero-mean noise terms {zi}di=1.

Traditional Structure Learning. Structure learning for
an SEM ⟨G,F ⟩ involves recovering the graph structure G
from a dataset D ∈ Rd×d generated based on G and F .
Assume the SEM is parameterized by θ, where the graph G
is represented by Wθ ∈ Rd×d, with (Wθ)i,j ̸= 0 indicating
an edge (xi, xj), and the functions F are represented by Fθ.
The structure learning task can be formulated as:

min
θ
∥Fθ(D,Wθ)−D∥ℓ2 + λ∥θ∥1,

subject to G(Wθ) ∈ DAG.
(2)

Here, ∥ ·∥ℓ2 denotes the least-squares loss, ∥ ·∥1 the ℓ1-norm,
and λ > 0 the regularization weight. For simplicity, we
focus on the linear case of structure learning, where the
model parameters can be directly represented by a weighted
adjacency matrix W ∈ Rd×d:

min
W∈Rd×d

∥DW −D∥ℓ2 + λ∥W∥1,

subject to G(W ) ∈ DAG.
(3)

Since the acyclicity constraint G(W ) ∈ DAG is discrete, tra-
ditional methods rely on combinatorial optimization (Chick-
ering, 2002) or other discrete approaches (Spirtes & Gly-
mour, 1991).

Smooth Characterization of Acyclicity. To address the
discrete nature of DAG structure learning, Zheng et al. in-
troduced NOTEARS, which provides a smooth characteri-
zation of acyclicity via the trace exponential function:

h(W ) ≡ Trace
(
eW◦W )− d = 0, (4)

where ◦ denotes the element-wise product, and d is the node
number. This characterization satisfies h(W ) = 0 if and
only if G(W ) is a DAG. Using this, the discrete optimization
problem in Equation (3) is reformulated as a continuous
optimization problem with an equality constraint:

min
W∈Rd×d

∥DW −D∥ℓ2 + λ∥W∥1, s.t. h(W ) = 0. (5)

Optimization and Thresholding. NOTEARS solves this
problem using the augmented Lagrangian method, ensuring
that h(W ) remains sufficiently small to enforce the acyclic-
ity constraint. The graph structure G(W ) is then derived by
applying a threshold to |W |. This framework has become
foundational in the field and is widely adopted in subsequent
work (Zheng et al., 2020; Sun et al., 2023).

2.3. Connection between Acyclicity and Path Absence

The function h(W ) representing the ayclicity degree of
G(W ) in Equation (4) is constructed following the idea of
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forbidding all paths from each node to itself (cycles):

G(W ) ∈ DAG ⇐⇒ ∀i, ¬ (xi ⇝ xi ∈ G(W )) . (6)

To derive the smooth characterization of acyclicity, we first
illustrate the characterization of path absence. Consider:

|W |ki,j =
∑

q1,q2,...,qk−1

|W |i,q1 |W |q1,q2 · · · |W |qk−1,j , (7)

where |W |ki,j represents the non-negative weighted sum of
all length-k paths from xi to xj , with each path’s weight
being the product of the edge weights along that path. Thus:

|W |ki,j = 0 ⇐⇒ ¬
(
xi

k
⇝ xj ∈ G(W )

)
, (8)

indicating the absence of a length-k path between xi and xj .
Extending this to paths of any length up to d, we derive:∑d

k=1 |W |ki,j = 0 ⇐⇒ ∀k < d, ¬
(
xi

k
⇝ xj ∈ G(W )

)
⇐⇒ ¬ (xi ⇝ xj ∈ G(W )) .

(9)

The second equivalence follows from the contrapositive of
the following proposition:

Proposition 1. If there exists a directed path (xi, xj) in a
directed graph G with d nodes, then there exists at least one
length-k path (xi, xj) in G such that k ≤ d.

Equation (9) characterizes the absence of paths. On this
basis, acyclicity in Equation (6), the absence of cycles, can
equivalently be expressed as a smooth equality:

∀i, ¬ (xi ⇝ xi ∈ G(W )) ⇐⇒
d∑

k=1

d∑
i=1

|W |ki,i = 0

⇐⇒
d∑

k=1

Trace
(
|W |k

)
= 0.

(10)

From this, we derive the general form of the smooth charac-
terization of acyclicity:

ĥ(W ) ≡ Trace

(
d∑

k=1

ck|W |k
)

= 0, ck > 0. (11)

Corollary 1. (Theorem 1 in (Wei et al., 2020)) A directed
graph G(W ) is a DAG if and only if ĥ(W ) = 0 for any ĥ
defined in Equation (11).

The acyclicity function h(W ) of NOTEARS in Equation
(4) is a special case of ĥ(W ), containing infinite terms to
forbid cycles of all lengths while being computationally
efficient for gradient-based optimization. Other acyclicity
functions, such as Trace((I + 1

dB)d − I) (Yu et al., 2019)
and − log det(sI −B) + d log s (Bello et al., 2022), have
also been proposed for efficient gradient calculation.

Remark 1. The above derivation provides an intuitive and
accurate characterization of path absence in Equation (9),
which underpins the construction of acyclicity characteri-
zations central to differentiable structure learning. While
path absence itself is not discussed further, it serves as a
foundational concept for path existence characterization.

3. Continuous Characterization of Path
Existence Constraints

This section begins by characterizing path existence through
continuous relaxation. We then analyze its non-equivalent
issue in representing path existences. To address this, we
introduce a binary-masked continuous relaxation that pro-
vides an equivalent representation. Finally, we formulate
the path existence-constrained task.

3.1. Continuous Relaxation of Path Existence

Characterization via Continuous Relaxation. We first
recall the continuous characterization of path absence:

(p(W ))i,j = 0 ⇐⇒ ¬(xi ⇝ xj ∈ G(W )),

where p(W ) ≡
d∑

k=1

|W |k.
(12)

Since p(W ) is non-negative, its contrapositive equivalence
provides a direct characterization of path existence:

(p(W ))i,j > 0 ⇐⇒ xi ⇝ xj ∈ G(W ), (13)

which states that a nonzero value in p(W ) implies the exis-
tence of the corresponding directed path.
Proposition 2. For a graph G(W ) where edge existence
follows Wi,j ̸= 0 ⇐⇒ (xi, xj) ∈ E(G(W )), at least one
directed path from xi to xj exists if and only if (p(W ))i,j >
0, where p(W ) is defined in Equation (12).

However, in the continuous optimization of structure learn-
ing, edge weights Wi,j are rarely exactly zero. Instead, a
threshold ϵ0 > 0 is used to determine edge existence:

|Wi,j | ≥ ϵ0 ⇐⇒ (xi, xj) ∈ E(G(W )). (14)

Similarly, path existence requires a threshold ϵ > 0, lead-
ing to the relaxed condition (p(W ))i,j ≥ ϵ. This can be
equivalently reformulated using an auxiliary function, as
employed in the work by Wang et al. (2024):

(p̄(W ))i,j = 0, where p̄(W ) ≡ ReLU (ϵ− p(W )) . (15)

Here, ReLU(·) is the element-wise ReLU function, defined
as ReLU(x) = max(0, x). The equality (p̄(W ))i,j = 0 is
equivalent to enforcing (p(W ))i,j ≥ ϵ.
Remark 2. We refer to ϵ0 as the edge threshold and ϵ
as the path threshold in the following discussion. Next,
we analyze why the path threshold-based characterization
(p̄(W ))i,j = 0 fails to equivalently represent path existence.
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Issue of Non-Equivalence to Path Existence. We show
that Equation (15) is not equivalent to the path existence
condition xi ⇝ xj ∈ G(W ) when G(W ) is constructed
using edge relaxation in Equation (14).

To begin with, we assume that elements in |W | are bounded
due to regularization and data approximation:

Assumption 1. There exists a constant σ > ϵ0, where ϵ0 is
the edge threshold, such that |W |i,j ≤ σ for all i, j.

Under this assumption, we establish the following result:

Lemma 1. (Sufficient Condition) There exists a finite thresh-
old f(ϵ0, σ) > ϵ0 such that (p̄(W ))i,j = 0 is sufficient to
guarantee path existence xi ⇝ xj ∈ G(W ) under edge
relaxation in Equation (14) if and only if ϵ ≥ f(ϵ0, σ).

This result indicates that if path threshold ϵ is not sufficiently
large, the condition (p̄(W ))i,j = 0 is insufficient to ensure
the existence of path xi ⇝ xj . Additionally, we have:

Lemma 2. (Necessary Condition) The continuous equality
(p̄(W ))i,j = 0 is necessary for the path existence xi ⇝
xj ∈ G(W ) under edge relaxation in Equation (14) if and
only if ϵ ≤ min(ϵ0, ϵ

d
0).

This result implies that when path threshold ϵ is slightly
larger, (p̄(W ))i,j = 0 is no longer necessary for path exis-
tence, potentially introducing extraneous constraints.

Lemma 1 and Lemma 2 establish the critical path threshold
ϵ values for the sufficiency and necessity of the continuous
relaxation p̄(W ) = 0 in representing path existence. How-
ever, no single ϵ satisfies both conditions simultaneously,
as f(ϵ0, σ) > min(ϵ0, ϵ

d
0). Consequently, p̄(W ) = 0 in

Equation (15) fails to equivalently represent path existence,
underscoring the need for further refinement.

3.2. Binary-Masked Continuous Relaxation for
Equivalent Path Existence Characterization

To equivalently represent the path existence constraint, we
introduce the following function:

p̂(W ) ≡ p̄(W ) ◦ b(W ),where p̄(W ) is defined in (15),

and b(W ) ≡ I

(
d∑

k=1

(I(|W | ≥ ϵ0))
k
= 0

)
.

(16)

Here, I(·) is an element-wise indicator function that returns
1 if the inner condition holds and 0 otherwise, and ◦ denotes
the element-wise product.

To interpret the overall operation of the function p̂(W ), it
selectively activates or deactivates path existence constraints
in p̄(W ) based on whether the constraint is already satisfied,
as determined by the binary mask b(W ):

Proposition 3. For b(W ) defined in Equation (16) and
G(W ) constructed with edge threshold ϵ0 in Equation (14),

(b(W ))i,j = 0 if there exists at least one directed path from
xi to xj in G(W ), and (b(W ))i,j = 1 if no such path exists.

This result ensures that p̂(W ) activates the influence of
(p̄(W ))i,j only if no directed path exists in G(W ). This
mechanism eliminates redundant constraints when path ex-
istence is already satisfied, thus preserving the necessity:

Lemma 3. (Necessity) For any ϵ, if there exists at least one
directed path from xi to xj in G(W ) for G(W ) constructed
by Equation (14), then (p̂(W ))i,j = 0.

Next, we establish the sufficiency condition when the path
threshold ϵ is large enough, i.e., ϵ > f(ϵ0, σ). Consider the
condition (p̂(W ))i,j = 0:

(p̂(W ))i,j = 0 =⇒ (b(W ))i,j · (p̄(W ))i,j = 0. (17)

If (b(W ))i,j = 0, Proposition 3 ensures that xi ⇝ xj ∈
G(W ). If (p̄(W ))i,j = 0, Lemma 1 guarantees that xi ⇝
xj ∈ G(W ). Thus, we obtain:

Lemma 4. (Sufficiency) For some finite f(ϵ0, σ) > ϵ0, if
ϵ ≥ f(ϵ0, σ), then (p̂(W ))i,j = 0 implies the existence of at
least one directed path from xi to xj in G(W ) constructed
with edge threshold ϵ0 in Equation (14).

Lemma 3 and Lemma 4 together establish the equivalence
of (p̂(W ))i,j = 0 in characterizing path existence when ϵ is
sufficiently large, as stated in the following result:

Theorem 1. There exists at least one directed path from
xi to xj in G(W ) constructed by Equation (14) if and only
if (p̂(W ))i,j = 0, where p̂(W ) is defined by Equation (16)
with ϵ ≥ f(ϵ0, σ) for some finite f(ϵ0, σ).

In summary, we introduce a binary mask b(W ) that com-
putes the path sum matrix using a binary adjacency matrix
representing thresholded edge presence. This mask accu-
rately determines whether a directed path already exists
between two nodes, thereby selectively avoiding the redun-
dant influence of the equality constraint (p̄(W ))i,j = 0.

Essentially, this operation removes the constraint on ϵ for
ensuring the necessity of path existence, making it valid for
any ϵ. Thus, a sufficiently large ϵ can be chosen to satisfy
both necessity and sufficiency, achieving equivalence.

Remark 3. See Section B in the Appendix for details on
the motivation and alternative explorations.

Task Formulation. Suppose the set of path existence con-
straints is represented by A ∈ {0, 1}d×d, where Ai,j = 1
indicates the constraint xi ⇝ xj ∈ G(W ). The task of
differentiable structure learning with A is formulated as:

min
W
∥DW −D∥ℓ2 + λ∥W∥1 + γ

∑
(p̂(W ) ◦A) ,

subject to ĥ(W ) = 0,
(18)
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where γ > 0 is the weight of the path existence loss, and∑
B represents

∑
i,j Bi,j .

In Equation (18), path existence constraints A are treated
as soft constraints by incorporating (p̂(W ))i,j as a loss
term rather than enforcing (p̂(W ))i,j = 0 strictly. This
relaxation is necessary due to the inherent conflict between
the path existence loss (p̂(W ))i,j and the acyclicity loss
ĥ(W ) during optimization, as stated in the following result:

Proposition 4. The losses (p̂(W ))i,j and ĥ(W ) exhibit a
gradient conflict, consistently pushing the parameters of W
in opposite directions during optimization:

∀u, v, ∇Wu,v
ĥ(W ) · ∇Wu,v

(p̂(W ))i,j ≤ 0. (19)

When optimizing conflicting losses, the process may con-
verge to a suboptimal compromise where neither loss is fully
minimized. To prevent violations of the acyclicity constraint,
the path existence term is incorporated as a loss rather than
an equality constraint. This approach ensures ĥ(W ) is fully
optimized, prioritizing the fundamental DAG assumption in
structure learning over prior knowledge constraints.

4. Order-Guided Optimization with Path
Existence Constraints

This section first analyzes the order-violation issue in opti-
mizing the path existence-based structure learning problem
in Equation (18). We then introduce an order-guided opti-
mization strategy to address this challenge.

4.1. Issue of Path Order Violation

When solving the path existence-based structure learning
problem in Equation (18), full adherence to path existence
constraints may fail, leading to suboptimal solutions. This
issue arises from two interrelated factors: 1) The path exis-
tence loss is highly sensitive to initial guesses, potentially
introducing order-violating paths. 2) In the augmented La-
grangian process, the weight of the acyclicity loss increases
over iterations, preventing the recovery of paths that violate
the graph’s existing order.

Partial Order Relations. The (partial) order of variables
refers to their position in a DAG’s topological ordering:

Definition 2 (Topological Order). A topological order of a
DAG is a permutation π of nodes such that for every directed
edge (i, j) in the DAG, π−1(i) < π−1(j), where π−1(x)
denotes the position of x in π.

Definition 3 (Partial Order). The partial order relation be-
tween nodes i and j, denoted as i ≺ j, implies that i pre-
cedes j in the topological order, i.e., π−1(i) < π−1(j).

By these definitions, the existence of a path xi ⇝ xj ∈ G

in a DAG implies a partial order xi ≺ xj . The path order
violation is subsequently defined as:
Definition 4 (Path Order Violation). Two directed paths
are in order violation if one path contains a sub-path that
implies the reverse partial order of the other. In this case,
the paths are said to be order-violating paths, or one path is
said to violate the order of the other.

A recovered path xi ⇝ xj from optimizing (p̂(W ))i,j may
be in order violation with other paths specified in the con-
straint. For illustration, consider the gradient of (p̂(W ))i,j
with respect to an arbitrary edge weight Wu,v:

∇|Wu,v|(p̂(W ))i,j = −
∑

p∈P(u,v)
i⇝j

∏
e∈p\{(u,v)}

|We|, (20)

where P(u,v)
i⇝j denotes the set of directed paths of length at

most k from xi to xj that include the edge (xu, xv), and
We represents the weight of edge e in W .

Equation (20) illustrates how the path existence loss
(p̂(W ))i,j influences the optimization of an arbitrary edge
(xu, xv). If a nearly complete path xi ⇝ xj exists except
for the missing edge (xu, xv), the loss strongly promotes
the inclusion of (xu, xv) in the structure. Consequently,
the optimization of (p̂(W ))i,j becomes highly sensitive to
initial conditions, as demonstrated in the following example:
Example 1. Consider two different initial weight matrices:

W1 =

 0 2 0.1
0.1 0 0.1
0.1 0.1 0

 ,W2 =

 0 0.1 2
0.1 0 0.1
0.1 0.1 0

 . (21)

With settings ϵ0 = 1 and ϵ = 9, optimizing:

min
W

(p̂(W ))1,3 + 0.1∥W∥1 s.t. ∀i, Wi,i = 0,

using gradient descent W t+1 = W t − α∇WL(W ) with
initial conditions W1 and W2 leads to:

W opt
1 =

 0 1.0 0.0
0.0 0 1.0
0.0 0.0 0

 ,W opt
2 =

 0 0.0 1.0
0.0 0 0.0
0.0 0.0 0

 . (22)

Here, different initial guesses lead to different recovered
edges in the optimal solution of the path existence loss.
In structure learning, this effect can override data approx-
imation, unintentionally introducing edges (or paths) that
violate the order of other paths. In the above example, if the
path existence constraints include x1 ⇝ x3 and x3 ⇝ x2,
then W opt

1 , where x1 ⇝ x3 contains the edge (x2, x3), in-
troduces an order x2 ≺ x3, violating the path x3 ⇝ x2.

In the augmented Lagrangian method commonly used for
structure learning, the acyclicity function ĥ(W ) is incorpo-
rated as a loss term with an increasing weight over iterations
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to ensure full optimization to zero. Consequently, when the
acyclicity weight becomes large, it prevents the recovery
of paths that contain order-violating paths in the current
structure, as stated below:

Proposition 5. Suppose the current graph G(W ) contains
a directed path from xj to xi, but there is no path from xi

to xj . In this case, the loss function:

L(D,W ) = F (W ;D) + λ∥W∥+ γ(p̂(W ))i,j + ρĥ(W )

prevents the addition of any edge (u, v) that would establish
a path from xi to xj in an updated graph G′, where G′ =
(X,E(G) ∪ {(u, v)}), as long as ρ is sufficiently large.

This result shows that if xi ⇝ xj conflicts with a reversed
path in the current graph, it will be forbidden, even if it was
originally part of path existence constraints.

For a broader perspective on the order-violation issue, the
acyclicity loss weight is initially small, allowing order-
violating paths to emerge due to the influence of initial
guesses. As the acyclicity loss strengthens, one of the con-
flicting order-violating paths is eliminated, preventing the
full satisfaction of the path existence constraint.

Algorithm 1 Differentiable Structure Learning with Path
Existence Constraints
Require: Data D, binary mask A ∈ {0, 1}d×d of path-

existence constraints, edge threshold ϵ0
1: Define backbone model: M⟨L, h,Wθ⟩, with data-fit

loss L, acyclicity loss h, and structure parameters Wθ.
2: Define path existence loss:

L′ = L+
∑

(p̂(W ) ◦A)

3: Define order-based acyclicity loss:

ho = h+
∑

(p(W ) ◦ (A+)T )

4: Solve order-based optimization (initializing from zero):

Wo ←Mo(D, 0), where Mo⟨L, ho,Wθ⟩

5: Solve path existence-based optimization using the order-
based optimization result Wo as initialization:

Wp ←Mp(D,Wo), where Mp⟨L′, h,Wθ⟩

6: Threshold learned structure:

W̄p ← I(|Wp| > ϵ0)

7: Return Final learned structure W̄p

4.2. Order-Guided Optimization

To address the order-violation issue in optimizing Equa-
tion (18), we propose an order-guided optimization strategy.
Specifically, we aim to derive a weight matrix W that satis-
fies all partial orders implied by the specified path existence
constraints and then use this W as the initial guess for the
path existence-constrained problem in Equation (18).

Since each path existence constraint xi ⇝ xj implies a
partial order xi ≺ xj , the set of partial orders, denoted as
O, coincides with the path existence set. To enforce these
constraints, we should ensure that each partial order xi ≺
xj is respected by forbidding its reversed path xj ⇝ xi.
However, because partial orders are transitive while path
absence is not, we must derive the complete set of partial
orders using transitive closure:

Definition 5 (Transitive Closure). The transitive closure of
a set S = {(x, y)}, denoted by S+, contains a pair (a, b) if
and only if there exists a sequence a = x0, x1, . . . , xk = b
such that (xi, xi+1) ∈ S for all i.

With this, we can equivalently enforce the partial order set
O using a set of path absence constraints:

Proposition 6 ((Ban et al., 2024, Proposition 2)). Given a
partial order set O = {xi ≺ xj}, a DAG G satisfies O if
and only if, for all xi ≺ xj in O+, there exists no directed
path from xj to xi in G.

By combining this statement with the continuous charac-
terization (p(W ))i,j = 0, defined in Equation (12) for path
absence, differentiable structure learning with the partial
order constraint set O can be formulated as:

min
W∈Rd×d

∥DW −D∥ℓ2 + λ∥W∥1,

subject to ĥ(W ) = 0, p(W ) ◦ (A+)T = 0,
(23)

where (·)T denotes matrix transposition, A is the mask of
the path existence set corresponding to O, and p(W ) ◦
(A+)T = 0 ensures the absence of all reversed paths associ-
ated with the indicated orders in the transitive closure O+.
The mask A+, corresponding to O+, is computed as:

A+ = I

(
d∑

k=1

Ak > 0

)
. (24)

Solving Equation (23) yields an outcome that satisfies the
partial order set O implied by the path existence constraints.
This outcome is then used as the initial guess for optimizing
path existence-constrained structure learning problem (18).

An overall illustration of differentiable structure learning
with path existence constraints is presented in Algorithm 1.
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Rationale Justification. During optimization, the partial
order loss and acyclicity loss are gradient-consistent, mean-
ing that they always push parameters in W in the same
direction. This consistency enables a fuller optimization of
both losses, ensuring that all partial orders implied by path
existence constraints are satisfied.

With an initial guess that adheres to all partial orders of
paths, the risk of generating order-violating paths is reduced.
This is due to the acyclicity loss discouraging the recovery of
paths with reversed orders relative to the initial guess. Con-
sequently, the optimization of the path existence-constrained
problem is guided toward recovering paths without violating
the order of each other, leading to a stronger adherence to
path existence conditions.

Furthermore, optimizing structure learning with path exis-
tence constraints while respecting all their partial orders
ensures that no erroneous orders are introduced. This helps
refine the optima space structure learning where each optima
corresponds to a topological order:

Proposition 7. Each optimal solution of the equality-
constrained problem (5) corresponds to the global optimum
of the following convex optimization problem:

min
W∈Rd×d

∥D(W ◦M)−D∥ℓ2 + λ∥W∥1, (25)

where Mi,j = 1 if π(i) < π(j) and Mi,j = 0 otherwise,
for a specific permutation π of {1, 2, . . . , d}.

Hence, the optima space is refined to a more accurate one,
thus improving the quality of the recovered structure.

In summary, the partial order-constrained initial guess en-
forces all partial orders implied by path existence con-
straints, thereby reducing the occurrence of order-violating
paths through the acyclicity loss. The resulting solution,
which adheres to all path existence constraints, avoids in-
troducing erroneous orders, ultimately leading to a more
accurate reconstruction of the true structure.

5. Experiments
We present partial experimental results and analysis here,
with the full results available in the appendix.

Synthetic Data. Random DAGs are generated using
Erdős-Rényi (ER) and scale-free (SF) models with node de-
grees in {2, 4} and numbers of nodes d in {10, 20, 30, 50}.
For observational data, uniformly random weights are
assigned to the weighted adjacency matrix B. Given
B, samples are generated using the structural equation
model X = BTX + z,X ∈ Rd, with noise models
{Gaussian (gauss), Exponential (exp)}. The sample size is
n = {20, 1000}. To generate constraints, we compute the
path mask WP from the ground truth adjacency mask W as

WP = I(
∑d

k=1 W
k > 0), representing all paths. We then

randomly select q% of these paths as constraints.

Real-World Data. We use real-world protein and phos-
pholipid expression data from (Sachs et al., 2005), which
measures interactions in human immune system cells. This
dataset is a standard benchmark in graphical modeling due
to its consensus network of 11 nodes and 17 edges, validated
through experimental annotations.

Methods. The backbone algorithms include NOTEARS
(Zheng et al., 2018; 2020), DAGMA (Bello et al., 2022), and
GOLEM (Ng et al., 2022). Path existence (PE)-based struc-
ture learning is denoted as ‘PE-alg’, where alg represents
the backbone algorithm used.

Metrics. We evaluate performance using structural Ham-
ming distance (SHD), true positive rate (TPR), false discov-
ery rate (FDR), F1 score, and path recovery rate (satisfied
constraints / total constraints).

Setup. Default parameters: edge threshold ϵ0 = 0.3, path
threshold ϵ = 10, L1 weight λ = 0.1, path existence weight
γ = 1, path percentage q = 80. Other parameters follow
defaults of backbone algorithms. Experiments run on an
AMD Ryzen 9 7950X (4.5 GHz) CPU, NVIDIA RTX 3090
GPU, and 32 GB RAM.

Figure 1. Comparison and ablation results of main metrics.

5.1. Comparison and Ablation Results

We compare our method (PE-NOTEARS) with standard
NOTEARS (without path existence constraints) and two ab-
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Table 1. Results of our method on the real-world Sach dataset with various sample sizes and PE constraint numbers.

Method Sachs-100 Sachs-200 Sachs-500 Sachs-902

SHD FDR TPR F1 SHD FDR TPR F1 SHD FDR TPR F1 SHD FDR TPR F1

NOTEARS 22 0.72 0.47 0.34 17 0.63 0.47 0.41 13 0.56 0.41 0.42 13 0.58 0.41 0.41
PE-NOTEARS-25 20 0.67 0.52 0.40 15 0.60 0.47 0.43 13 0.55 0.47 0.45 12 0.52 0.47 0.47
PE-NOTEARS-50 16 0.61 0.59 0.46 13 0.55 0.53 0.48 13 0.55 0.47 0.46 12 0.55 0.47 0.46
PE-NOTEARS-75 16 0.61 0.59 0.46 13 0.55 0.53 0.48 12 0.55 0.53 0.48 11 0.52 0.53 0.50
PE-NOTEARS-100 15 0.60 0.59 0.47 14 0.57 0.53 0.47 11 0.50 0.58 0.54 12 0.55 0.53 0.48

lation variants: PE-NOTEARS-zero, which uses the binary-
masked loss p̂ but initializes with a zero matrix, and PE-
NOTEARS-intuitive, which directly applies the continuous
relaxed loss p̄ from Equation (15) with a zero initial guess.

Results in Figure 1 show that our method significantly out-
performs the baseline and ablation variants. It achieves
lower SHD and higher F1 score, indicating better overall
quality. The FDR is lower, indicating less erroneous edge
recovery, while the path recovery rate is higher, ensuring
stronger adherence to path existence constraints. A lower
FDR confirms that using p̂ mitigates the redundancy issue in
p̄ for path existence characterization. A higher path recovery
rate highlights the effectiveness of the order-guided initial
guess in resolving order-violation issues in recovered paths.

5.2. Results on Real-World Data

We evaluate our method on the real-world Sachs dataset, ap-
plying different percentages p of path existence constraints,
denoted as PE-NOTEARS-p. Using a subset of Sachs’s cell
data with 902 samples, we vary the sample size n, denoted
as Sachs-n, by selecting the first n samples.

Table 1 shows that our method consistently outperforms the
data-driven baseline, with greater improvements as more
constraints are incorporated. Notably, using only 100 sam-
ples, our method achieves a higher F1 score than the baseline
trained on all 902 samples, demonstrating its potential for
reducing experimental resource requirements.

Figure 2. Ablation results on various initialization strategies.

5.3. Ablations on Order-Guided Optimization

We conduct an ablation study on different initialization
strategies to assess the effectiveness and robustness of order-
guided optimization. The evaluated strategies include: PE-
NOTEARS using the partial order-guided outcome, PE-
NOTEARS-random with a random initial guess, and PE-
NOTEARS-data using the NOTEARS outcome (without
prior) as the initial guess.

For each method, we randomly generate six initial guesses
and report their individual results on the same dataset, with
partial results shown in Figure 2. The partial order-guided
initialization achieves the best performance (lowest SHD,
highest F1) with the highest stability (lowest variance),
demonstrating its robustness and effectiveness.

Figure 3. Ablation results with varying path thresholds.

5.4. Ablations with Varying ϵ Settings

We conduct an ablation study on varying path thresholds
ϵ, a key hyperparameter for the path existence loss. The
evaluated methods include PE-NOTEARS, PE-NOTEARS-
zero, and PE-NOTEARS-intuitive, as introduced earlier,
along with a new variant, PE-NOTEARS-intuitive-order,
which applies p̄ as the PE loss with the order-guided initial
guess for a more comprehensive ablation. Results for ϵ
values ranging from 0.1 to 10 are shown in Figure 3.

Our method consistently outperforms the ablation versions
across different ϵ settings. Performance initially improves
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as ϵ increases, ensuring the sufficiency of p̂ in representing
path existence, and then stabilizes once p̂ fully aligns with
path existence. In contrast, other ablation variants show
initial improvement but degrade as ϵ increases, particularly
for p̄ (dotted lines), which loses necessity at large ϵ (Lemma
2), resulting in excessive extra edges. Additionally, versions
without order-guided optimization (red-series lines) exhibit
greater variance due to the sensitivity of the path existence
loss to initial guesses. These results align with our analysis.

5.5. Other Results and Analysis

The appendix provides additional evaluations on time com-
plexity, path absence constraints, nonlinear data, backbone
variations, and the effect of varying constraint numbers. Fur-
thermore, supplementary results covering additional metrics,
different graph settings, and ablation studies related to the
experiments in this section are also included.

6. Discussion
6.1. Limitations and Future Directions

The current path existence formulation lacks explicit mecha-
nisms to prevent path order violation and is computationally
slower than acyclicity losses. Future work may explore
more efficient and reliable characterization approaches.

6.2. Conclusion

This paper extends differentiable structure learning by in-
tegrating ancestral constraints, enabling the use of abstract
prior knowledge to enhance fine-grained causal discovery.
We identify key challenges in incorporating path existence
constraints into continuous optimization and propose a
binary-masked characterization with an order-guided op-
timization strategy to address them. Theoretical analysis
supports the correctness of our approach, which is validated
on both synthetic and real-world datasets.

Impact Statement
The proposed ancestral constraint-based differentiable struc-
ture learning framework combines the expressive power of
neural networks and GPU-accelerated optimization with the
reliability of knowledge-guided constraints. This integra-
tion enables efficient and accurate recovery of authentic,
previously unknown causal mechanisms.

The algorithm has broad applicability in scientific discovery
domains, where high-level prior knowledge about variable
interactions can guide the discovery of fine-grained causal
structures. Such domains include biology, medicine, and
social sciences, where partial knowledge is common but
direct causal relationships remain elusive.

Beyond scientific applications, this work contributes to
the broader AI landscape by advancing NOTEARS-based
causal analysis frameworks. Its ideas may benefit a wide
range of downstream tasks in fields such as computer vi-
sion, fault diagnosis, and multi-agent systems, where causal
reasoning plays an increasingly central role.
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Appendix

A. Related Work
This section reviews relevant studies related to this paper. We first provide a brief overview of traditional structure learning
methods and the integration of prior structural constraints. We then discuss differentiable structure learning approaches and
studies incorporating prior constraints in this field.

A.1. Traditional Structure Learning and Prior Constraint Integration

A.1.1. CAUSAL GRAPHICAL MODELS

Causal models are categorized based on graph type, including DAGs, undirected graphs, and mixed graphs.

Causal DAGs primarily encompass Bayesian networks (BNs) (Pearl, 2000) and structural equation models (SEMs) (Spirtes
et al., 2001). BNs represent causal relationships through conditional probabilities, P (xi | PaGi ), while SEMs model causality
via continuous functions, xi = f(PaGi , zi), where zi is a noise term. This paper conducts experiments with additive noise
models (ANMs), a subclass of SEMs where the noise term is additive, i.e., xi = f(PaGi ) + zi.

Undirected causal graphs primarily involve Markov Random Fields, which capture symmetric dependencies without causal
direction and are commonly used for modeling spatial or network-based relationships (Hinton et al., 2005).

Mixed graphs allow the coexistence of directed, undirected, and bidirected edges. These include maximal ancestral graphs
(MAGs) (Richardson & Spirtes, 2002), used to represent causal relationships in the presence of latent variables or selection
bias; ancestral graphs (Zhang, 2008), which generalize both DAGs and MAGs; and partial DAGs (Andersson et al., 1997),
which use undirected edges to represent ambiguous causal relationships.

A.1.2. TRADITIONAL STRUCTURE LEARNING.

Structure learning of causal DAGs aims to identify the model structure that best represents the distributions of observational
data (Scutari et al., 2019). Given the DAG constraint, traditional methods typically employ discrete approaches, including
constraint-based, score-based, and hybrid methods.

Constraint-based methods reconstruct the graph using conditional independence tests, followed by edge orientation within
the DAG constraint. Key algorithms include the Peter and Clark (PC) algorithm (Spirtes & Glymour, 1991) and the Fast
Causal Inference (FCI) algorithm (Spirtes et al., 1995).

Score-based methods evaluate DAGs using scoring functions that measure goodness-of-fit to data, followed by a search
for an optimal DAG. Popular scoring functions include Bayesian Information Criterion (BIC) (Schwarz, 1978), Bayesian
Dirichlet Equivalent Uniform (BDeu) (Heckerman & Geiger, 1995), and Minimum Description Length (MDL) (Rissanen,
1978). Search algorithms include Greedy Equivalence Search (GES) (Chickering, 2002), Hill Climbing (HC) (Neapolitan
et al., 2004), Simulated Annealing (Friedman et al., 1997), Tabu search (Li & Beek, 2018), etc.

Hybrid methods combine constraint-based and score-based techniques. Notable examples include Max-Min Hill-Climbing
(MMHC) (Tsamardinos et al., 2006) and Partitioned Hybrid Greedy Search (PHGS) (Huang & Zhou, 2022).

A.1.3. PRIOR CONSTRAINT INTEGRATION.

Structural constraints representing prior causal knowledge primarily fall into three categories:

1. Edge constraints specify the presence or absence of edges in the graph. While straightforward to integrate into
structure learning, they are often difficult to obtain, as they directly reveal causal interactions, the very objective of
structure learning. Relevant studies include (Amirkhani et al., 2016; de Campos & Castellano, 2007).

2. Ancestral constraints specify the existence of certain directed paths or the absence of all directed paths between
variables. These constraints capture abstract causal relationships that may be realized either directly or indirectly.
Ancestral constraints provide a robust way to encode prior causality, aligning well with the abstract nature of knowledge.
Related studies include (Li & Beek, 2018; Chen et al., 2016).

3. (Partial) order constraints define the ordering relationships among a subset (or all) of the variables. They are less
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restrictive than edge and ancestral constraints, as they only enforce topological relationships without necessarily
implying causal interactions. Given a total ordering, structure learning is reduced to a set of straightforward polynomial-
time problems, so we primarily focus on the integration of partial order constraints. Partial order constraints are
commonly integrated into order-based search algorithms, which assume a total variable ordering and then search for the
optimal ordering that yields the globally optimal DAG (Teyssier & Koller, 2005; Heckerman et al., 1995). Partial order
constraints help reduce the search space by eliminating conflicting orderings (Li & Beek, 2018; Deng et al., 2023a).

The integration of structural constraints into structure learning follows two main approaches: hard and soft integration. Hard
integration strictly enforces constraints by rejecting graphs that violate them. The aforementioned studies predominantly
follow this approach. Soft integration balances adherence to prior constraints with goodness-of-fit to data, typically by
modifying the scoring function to penalize constraint violations. CaMML (O’Donnell et al., 2006) is an open-source causal
discovery tool that employs soft constraint integration. A comprehensive review of prior constraint integration methods can
be found in (Constantinou et al., 2023). Interestingly, both hard and soft integration methods have direct counterparts in the
context of differentiable structure learning, as discussed in the main text.

A.2. Differentiable Structure Learning and Prior Constraint Integration

A.2.1. DIFFERENTIABLE STRUCTURE LEARNING.

Zheng et al. first introduced differentiable structure learning, extending score-based structure learning task:

max
G

σ(G;D), subject to G ∈ DAG. (26)

For continuous causal graphical models such as SEMs, the score function σ(G;D) can be formulated continuously using a
weighted adjacency matrix W ∈ Rd×d to represent the structure, leaving the DAG constraint as the only discrete component.
To address this, Zheng et al. proposed a smooth acyclicity characterization using the equality constraint:

h(W ) ≡ Trace(eW◦W )− d = 0. (27)

This formulation transforms structure learning into a continuous equality-constrained optimization problem:

min
W∈Rd×d

∥Fθ(W ;D)−D∥l2 + λ∥W∥, subject to h(W ) = 0. (28)

The augmented Lagrangian method is used to solve this problem, gradually increasing the weight of the acyclicity loss h(W )
over iterations to ensure convergence to a DAG. Optimization stops when h(W ) falls below a predefined threshold (10−8

by default) or when the loss weight reaches a maximum (1016 by default). A threshold ϵ0 is then applied to determine the
presence of edges in the learned structure. This optimization framework has been widely adopted in subsequent differentiable
structure learning approaches.

Existing research on differentiable structure learning can be categorized into four main directions:

1. Novel Learner Architectures θ. Zheng et al. introduced NOTEARS-MLP, an extension using multilayer perceptrons
for nonlinear structure learning. Yu et al. proposed DAG-GNN, a generative model leveraging graph neural networks and
data reconstruction properties. Other studies have explored reinforcement learning (Zhu et al., 2020) and adversarial neural
networks (Kalainathan et al., 2022) for differentiable structure learning.

2. Novel Acyclicity Characterizations h(W ). Yu et al. proposed a polynomial-based acyclicity function as an alternative
to the exponential formulation in NOTEARS. Wei et al. generalized polynomial-based characterizations using path (cycle)
absence principles. Lee et al. showed that polynomial-based constraints are equivalent to constraining the spectral radius to
zero and introduced a spectral radius-based acyclicity formulation. Bello et al. proposed DAGMA, a log-determinant-based
acyclicity characterization leveraging the nilpotency property of DAGs.

3. Novel Loss Formulations L(W,D). Ng et al. introduced GOLEM, a likelihood-based loss function that replaces the
least squares loss in NOTEARS. By incorporating soft sparsity and DAG penalties, GOLEM eliminates the need for a
hard equality constraint, simplifying and accelerating DAG learning. Reisach et al. analyzed the effect of data variance
on differentiable structure learning, introducing varsortability as a criterion to infer variable ordering. Their findings
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suggest that performance improvements may stem from the increasing marginal variance of descendant nodes. Deng et al.
further investigated this issue and proposed a likelihood-based scoring function with quasi-MCP regularization, ensuring
scale-invariant properties.

4. Applications in Causal Discovery. Some studies extend NOTEARS to broader causal discovery settings. Brouillard
et al. explored differentiable causal discovery in interventional and observational mixtures, a common real-world scenario.
Bhattacharya et al. extended the framework to settings with unobserved confounders. Gao et al. addressed structure learning
with missing data. Pamfil et al. applied differentiable causal discovery to dynamic time-series data. Some extensions apply
structure learning in other machine learning fields, such as multi-task learning (Chen et al., 2021), federated learning (Ng &
Zhang, 2022), representation learning (Yang et al., 2021), and transportable learning (Berrevoets et al., 2023).

Despite these advances, limited research has explored the integration of prior structural constraints in differentiable structure
learning, particularly beyond simple edge constraints. The next section discusses this gap.

A.2.2. PRIOR CONSTRAINT INTEGRATION IN DIFFERENTIABLE STRUCTURE LEARNING.

For a long period, studies of differentiable structure learning with prior knowledge only focus on the edge constraints.
Integrating the edge absence constraint can be implemented by directly freezing the corresponding parameters to 0 (a hard
constraint), or adding a loss penalizing |W |i,j when forbidding (xi, xj). For the edge existence, one can use the continuous
relaxed equality ReLU(ϵ0 − |W |i,j) = 0 to force the existence of edge (xi, xj), or adding the loss of ReLU(ϵ0 − |W |i,j).
Here are some related studies (Hasan & Gani, 2022; Sun et al., 2023; Wang et al., 2024; Ma et al., 2024).

For more complex constraints over edge constraints, a recent work by Ban et al. integrates the partial order constraints in
differentiable structure learning. The authors also formulate the partial order constraints as a set of path absence constraints,
as shown in Equation (23). They further propose an efficient characterization typically handling long sequential orderings.
We directly use the path absence-based characterization in this paper because the partial order constraints implied by path
existences do not typically form long sequences. Some studies propose order-based optimization methods for structure
learning, which can also integrate partial order constraints (Shahverdikondori et al., 2024; Deng et al., 2023b), despite in a
different task formulation of NOTEARS. Wang et al. study incorporating various structural constraints into differentiable
structure learning. However, the authors does not focus on the generalized forms of partial order or ancestral constraints,
who assume the total ordering for the order constraint which is straightforward and assume the knowledge of path lengths
for path existence constraints. Besides, their proposed characterization of path existence is still limited by the issue of
Non-Equivalence to represent path existence, as illustrated in Section 3.1 of the main text.

In comparison, this paper addresses the generalized form of path existence constraints without knowing any information of
the path. We propose an equivalent continuous characterization of the path existences with theoretical justification. We
further analyze the path order violation issue typically optimizing the problem with path existence constraints, and introduce
a stable optimization strategy by taking the solution of path existence-implied partial order-constrained structure learning
as the initial guess. In a word, this work first systematically discusses and addresses differentiable structure learning with
ancestral constraints, typically on the challenges related to continuous path existence constraints.

B. Motivation of Binary-Masked Characterization
This section explains the motivation behind our binary-masked characterization for representing path existence constraints.
Additionally, we discuss alternative approaches that were explored but ultimately failed, providing richer insight.

B.1. Motivation

The intuitive characterization of path existence is given by (p̄(W ))i,j = 0, where:

p̄(W ) ≡ ReLU

(
ϵ−

d∑
k

|W |k
)
. (29)

We have shown that this formulation cannot equivalently represent path existence for any choice of the path threshold ϵ. If ϵ
is too small, the edge weights along a path may not reach the edge threshold ϵ0, causing the path to be considered absent.
Conversely, if ϵ is too large, the constraint equality cannot be satisfied even when the path existence constraint is satisfied.
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Despite this theoretical limitation, practical experiments indicate that when ϵ is set to an appropriate intermediate value,
the algorithm still performs reasonably well (see Figure 3 in the main text). However, the optimal choice of ϵ is unknown
without access to the ground truth. The remaining aim is eliminating its dependence on an unpredictable and unstable ϵ.

Motivated by this idea, we propose removing the redundant influence of p̄(W ) once the path existence constraint is already
satisfied. If this can be achieved, we can set ϵ to a sufficiently large value to equivalently enforce path existence. This
approach is feasible because the exact conditions for edge existence are known, allowing us to derive a binary mask
indicating path presence.

A natural question arises: if we can compute path presence as a matrix b(W ), why not directly use it to constrain path
existence instead of relying on p̄(W )? Unfortunately, this approach fails in an optimization setting. When a path is absent,
the loss function b(W ) cannot propagate gradients to edge weights due to the ReLU function, which blocks gradient flow
when its argument is negative.

In summary, using b(W ) alone cannot enforce path existence when a path is missing, which can only enforce path absence
when a path is already present. This limitation explains why our approach integrates p̄(W ) with the binary mask to achieve
a robust path existence characterization.

B.2. Alternative Explorations

We also explored a more concise path existence characterization by constructing the path existence loss in a dual manner to
path absence. While theoretically appealing, this approach encountered practical challenges.

We begin by recalling the path absence loss:

(p(W ))i,j =

d∑
k=1

∑
p∈Pk

i,j

∏
(q,s)∈p

|W |q,s = 0, (30)

where Pk
i,j represents the set of all paths from xi to xj with length k.

Interpreting this loss from a logical perspective, we consider |W |i,j = 0 as an indicator of edge absence and |W |i,j > 0 as
an indicator of edge presence. Using numerical operations to represent logical expressions, where multiplication corresponds
to logical and (∧) and addition corresponds to logical or (∨), we can rewrite the loss as:

∨dk=1

(
∨p∈Pk

i,j

(
∧(q,s)∈p(|W |q,s > 0)

))
. (31)

Here, the inner expression ∧(q,s)∈p(|W |q,s > 0) enforces that all edges in p must exist, ensuring the presence of a path.
The outer logical or operations ensure that if at least one path from i to j exists, the entire expression evaluates to true.
Consequently, when this expression is false (numerically, (p(W ))i,j = 0), no path exists from xi to xj .

To enforce path existence, we considered imposing the following reversed constraint:

ReLU (ϵ− (p(W ))i,j) = 0. (32)

However, this approach suffers from the non-equivalence issue discussed in the main text. Logically, this discrepancy arises
because it does not accurately capture the existence condition for each edge, resulting in a mismatch between the numerical
loss and the logical presence of a path.

To resolve this, we sought a more precise condition for edge existence:

Ēi,j = ReLU(ϵ0 − |W |i,j), (33)

where Ēi,j = 0 indicates the presence of edge (i, j), and Ēi,j > 0 indicates its absence. Notably, we define this as a
complementary matrix to allow gradient propagation to edge weights when an edge is missing, which is particularly useful
for enforcing path existence.

Now, consider the following logical expression:

∧dk=1

(
∧p∈Pk

i,j

(
∨(q,s)∈p(Ēq,s > 0)

))
. (34)
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This expression states that for all paths p from xi to xj , at least one edge in p is absent (i.e., Ēq,s > 0 for some (q, s) ∈ p).
This is precisely the path absence condition. Therefore, its logical negation corresponds to the path existence condition.

By replacing logical operations with numerical ones, we derive the following continuous formulation:

(p⋆(W ))i,j =

d∏
k=1

∏
p∈Pk

i,j

∑
(q,s)∈p

ReLU(ϵ0 − |W |q,s). (35)

This leads to the following theoretical result:

Theorem 2. A directed path from xi to xj exists in G(W ) constructed using edge threshold ϵ0 if and only if (p⋆(W ))i,j = 0,
where p⋆ is defined by Equation (35).

Thus, we obtain a concise, continuous, and equivalent formulation for enforcing path existence constraints. However, despite
its theoretical soundness, this formulation suffers from numerical instability in practice. The product-based loss is prone to
vanishing gradients, making optimization difficult. Additionally, the magnitude of (p⋆(W ))i,j varies unpredictably: for
ϵ0 > 1, it may becomes excessively large, while for ϵ0 < 1/d, it collapses to near zero, losing its effectiveness in guiding
optimization. These practical issues also motivated our final binary-masked characterization, which maintains equivalence
while avoiding numerical instability.

C. Proof of Statements
Proposition 1. If there exists a directed path (xi, xj) in a directed graph G with d nodes, then there exists at least one
length-k path (xi, xj) in G such that k ≤ d.

Proof. Suppose, for the sake of contradiction, that the shortest directed path from xi to xj has length k with k > d. Label
this path

p = (l1, l2, . . . , lk+1),

where l1 = xi and lk+1 = xj . Since the path has k edges, it visits k + 1 vertices. Our assumption k > d implies

k + 1 > d+ 1,

so the path visits at least d+ 2 (not necessarily distinct) vertices. But G itself has only d vertices in total. By the pigeonhole
principle, at least one vertex must repeat in the interior of the path; formally, there exist indices

1 ≤ s < t ≤ k + 1

such that ls = lt and s ̸= 1, t ̸= k + 1. (In other words, the repeated node is not just the start or the end.)

The subpath
(ls, ls+1, . . . , lt)

thus forms a directed cycle. We can “shortcut” the path p by removing that cycle, obtaining a strictly shorter path from xi

to xj . This contradicts our choice of p as the shortest directed path. Consequently, no shortest path can exceed length d.
Therefore, if there exists a path at all, there must be one of length at most d.

Corollary 1. (Theorem 1 in (Wei et al., 2020)) A directed graph G(W ) is a DAG if and only if ĥ(W ) = 0 for any ĥ defined
in Equation (11).

Proof. Equation (10) shows that G is DAG equals that
∑d

k=1 Trace
(
|W |k

)
= 0. Given the non-negativity of Trace(|W |k),

we have that this condition also equals
∑d

k=1 ckTrace
(
|W |k

)
= 0 for ck > 0.

Proposition 2. For a graph G(W ) where edge existence follows Wi,j ̸= 0 ⇐⇒ (xi, xj) ∈ E(G(W )), at least one
directed path from xi to xj exists if and only if (p(W ))i,j > 0, where p(W ) is defined in Equation (12).

Proof. Equation (13) already indicates this result.
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Lemma 1. (Sufficient Condition) There exists a finite threshold f(ϵ0, σ) > ϵ0 such that (p̄(W ))i,j = 0 is sufficient to
guarantee path existence xi ⇝ xj ∈ G(W ) under edge relaxation in Equation (14) if and only if ϵ ≥ f(ϵ0, σ).

Proof. We aim to prove the statement

(p̄(W ))i,j = 0 =⇒
(
xi ⇝ xj

)
∈ G(W ) if and only if ϵ ≥ f(ϵ0, σ) > ϵ0, (36)

where f(ϵ0, σ) is some finite constant strictly exceeding ϵ0.

Step 1. Construction of f(ϵ0, σ). Consider a situation in which G(W ) does not have a path from xi to xj . Then by
definition of

(p(W ))i,j =
( d∑
k=1

|W |k
)
i,j
,

there must exist at least one edge in every candidate path (of length k ≤ d) with absolute weight < ϵ0. Consequently,

(p(W ))i,j =
( d∑
k=1

|W |k
)
i,j

<

d∑
k=1

∣∣∣pki,j∣∣∣ · ϵ0 · σ k−1, (37)

where pki,j is an arbitrary k-length directed path from xi to xj that contains no self-loop edges (xm, xm), and
∣∣pki,j∣∣ denotes

the number of such k-length paths. Here, at least one edge on each pki,j must have weight < ϵ0, and we let σ ≤ 1 (or some
suitable parameter) capture potential reductions in absolute weights for the remaining edges.

The right-hand side of (37) is a finite quantity (depending on d, ϵ0, σ, and the number of k-paths). Hence, we can set

f(ϵ0, σ) = sup
{
(p(W ))i,j

∣∣∣ ¬(xi ⇝ xj

)
∈ G(W )

}
.

Thus f(ϵ0, σ) is finite and moreover

f(ϵ0, σ) ≤
d∑

k=1

∣∣∣pki,j∣∣∣ ϵ0 σ k−1.

We must also show that f(ϵ0, σ) > ϵ0.

Step 2. Verifying f(ϵ0, σ) > ϵ0. We construct a specific W− such that G(W−) does not have a directed path from xi to xj

but (p(W−))i,j > ϵ0. For instance, define

W−
i,j = ϵ0 − ϵ−, W−

i,l = ϵ0 − ϵ−, W−
l,j = σ,

for some node xl (l ̸= j), where 0 < ϵ− < ϵ0 − ϵ0
1+σ . Set all other entries W−

u,v = 0. In this setup:

(p(W−))i,j =
( d∑
k=1

|W−|k
)
i,j

= W−
i,j +W−

i,l W
−
l,j = (ϵ0 − ϵ−)

(
1 + σ

)
.

Since
(
1 + σ

)
(ϵ0 − ϵ−) > ϵ0 by choice of ϵ−, we get

(p(W−))i,j > ϵ0.

Yet G(W−) has no directed path from xi to xj (for instance, if xl does not lead to xj or if additional zeros cut off the path).
Hence (p(W−))i,j ∈ { (p(W ))i,j | ¬(xi ⇝ xj) ∈ G(W )}, so in particular

f(ϵ0, σ) ≥ (p(W−))i,j > ϵ0.

Step 3. Showing the Sufficient Condition. By definition of p̄(W ),

(p̄(W ))i,j = ReLU
(
ϵ −

(
p(W )

)
i,j

)
.
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If (p̄(W ))i,j = 0, then
ϵ − (p(W ))i,j ≤ 0 =⇒ (p(W ))i,j ≥ ϵ.

Suppose now ϵ ≥ f(ϵ0, σ). Then
(p(W ))i,j ≥ ϵ ≥ f(ϵ0, σ),

implies that (p(W ))i,j cannot lie in the set {(p(W ))i,j | ¬(xi ⇝ xj) ∈ G(W )}, because the supremum (over graphs with
no xixj path) is f(ϵ0, σ). Hence, (p(W ))i,j must belong to the complementary set in which xi ⇝ xj in G(W ). Therefore,
when ϵ ≥ f(ϵ0, σ),

(p̄(W ))i,j = 0 =⇒ (p(W ))i,j ≥ ϵ ≥ f(ϵ0, σ) =⇒ xi ⇝ xj ∈ G(W ).

Thus (p̄(W ))i,j = 0 indeed implies the path existence xi ⇝ xj , establishing the “sufficiency” part under the condition
ϵ ≥ f(ϵ0, σ).

Step 4. Converse Argument. If ϵ < f(ϵ0, σ), we can select a W from the set { (p(W ))i,j | ¬(xi ⇝ xj) ∈ G(W )} with
(p(W ))i,j > ϵ. For that W , we have

ϵ < (p(W ))i,j =⇒ ϵ− (p(W ))i,j < 0 =⇒ (p̄(W ))i,j = 0,

yet by construction G(W ) has no directed path from xi to xj . This contradicts the statement that (p̄(W ))i,j = 0 would
imply xi ⇝ xj . Hence ϵ must be at least f(ϵ0, σ) for the “sufficiency” property to hold.

This completes the proof of Lemma 1.

Lemma 2. (Necessary Condition) The continuous equality (p̄(W ))i,j = 0 is necessary for the path existence xi ⇝ xj ∈
G(W ) under edge relaxation in Equation (14) if and only if ϵ ≤ min(ϵ0, ϵ

d
0).

Proof. Recall that (|W |k)i,j can be interpreted as the sum of products of absolute weights over all possible directed paths
of length k from xi to xj . Suppose every directed edge in G(W ) has absolute weight at least ϵ0. Consider a specific path
from xi to xj of length k. The product of its edge-weights (in absolute value) is then ≥ ϵk0 . Summing over all path lengths
1 ≤ k ≤ d, we get ( d∑

k=1

|W |k
)
i,j
≥ min

(
ϵ0, ϵ

2
0, . . . , ϵ

d
0

)
=

ϵd0, if 0 < ϵ0 < 1,

ϵ0, if ϵ0 ≥ 1.

Hence, in either case, ( d∑
k=1

|W |k
)
i,j
≥ min(ϵ0, ϵ

d
0).

By definition,

(p̄(W ))i,j = ReLU
(
ϵ −

( d∑
k=1

|W |k
)
i,j

)
.

If ϵ ≤ min(ϵ0, ϵ
d
0), then

ϵ −
( d∑
k=1

|W |k
)
i,j
≤ min(ϵ0, ϵ

d
0) − min(ϵ0, ϵ

d
0) = 0,

which implies ReLU(·) of a non-positive number is 0. Therefore, whenever xi ⇝ xj , we necessarily get (p̄(W ))i,j = 0.

Conversely, if ϵ > min(ϵ0, ϵ
d
0), then it is possible to have

ϵ −
( d∑
k=1

|W |k
)
i,j

> min(ϵ0, ϵ
d
0) − min(ϵ0, ϵ

d
0) = 0,

which yields (p̄(W ))i,j > 0. Thus, in this regime (ϵ > min(ϵ0, ϵ
d
0)), the value (p̄(W ))i,j need not be zero, even if xi ⇝ xj .

Therefore, (p̄(W ))i,j = 0 is forced (i.e., is necessary) by the existence of a directed path xi ⇝ xj if and only if
ϵ ≤ min(ϵ0, ϵ

d
0). This completes the proof.
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Proposition 3. For b(W ) defined in Equation (16) and G(W ) constructed with edge threshold ϵ0 in Equation (14),
(b(W ))i,j = 0 if there exists at least one directed path from xi to xj in G(W ), and (b(W ))i,j = 1 if no such path exists.

Proof. Recall the definition of b(W ):

b(W ) ≡ I
( d∑
k=1

(
I(|W | ≥ ϵ0)

)k
= 0

)
.

Let W e = I(|W | ≥ ϵ0) be the binary adjacency matrix of G(W ), so that

W e
i,j ̸= 0 ⇐⇒ (xi, xj) ∈ E(G(W )), and |W e| = W e.

Then,
(b(W ))i,j = 0 ⇐⇒ I

((
p(W e)

)
i,j

= 0
)

= 0 ⇐⇒
(
p(W e)

)
i,j

> 0.

By Proposition 2, we know (
p(W e)

)
i,j

> 0 ⇐⇒ xi ⇝ xj ∈ G(W ).

Hence,
(b(W ))i,j = 0 ⇐⇒ xi ⇝ xj ∈ G(W ).

Since b(W ) takes values in {0, 1}d×d, we immediately have

(b(W ))i,j = 1 ⇐⇒ ¬
(
xi ⇝ xj

)
∈ G(W ).

This completes the proof of Proposition 3.

Lemma 3. (Necessity) For any ϵ, if there exists at least one directed path from xi to xj in G(W ) for G(W ) constructed by
Equation (14), then (p̂(W ))i,j = 0.

Proof. From Proposition 3, we know

xi ⇝ xj ∈ G(W ) ⇐⇒
(
b(W )

)
i,j

= 0.

By the definition of p̂(W ), whenever
(
b(W )

)
i,j

= 0, it follows that(
p̂(W )

)
i,j

= 0.

Hence,
xi ⇝ xj ∈ G(W ) =⇒

(
p̂(W )

)
i,j

= 0,

which completes the proof.

Lemma 4. (Sufficiency) For some finite f(ϵ0, σ) > ϵ0, if ϵ ≥ f(ϵ0, σ), then (p̂(W ))i,j = 0 implies the existence of at least
one directed path from xi to xj in G(W ) constructed with edge threshold ϵ0 in Equation (14).

Proof. By Lemma 1, there exists a finite threshold f(ϵ0, σ) > ϵ0 such that for all ϵ > f(ϵ0, σ),

(p̄(W ))i,j = 0 =⇒ xi ⇝ xj ∈ G(W ).

Next, from Proposition 3, we have

(b(W ))i,j = 0 ⇐⇒ xi ⇝ xj ∈ G(W ).

By the definition of p̂(W ), we know

(p(W ))i,j = 0 ⇐⇒ (p̄(W ))i,j = 0 or (b(W ))i,j = 0.

Combining these facts, for ϵ > f(ϵ0, σ) we get

(p(W ))i,j = 0 =⇒
(
p̄(W )

)
i,j

= 0 or
(
b(W )

)
i,j

= 0 =⇒ xi ⇝ xj ∈ G(W ).

This completes the proof.
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Theorem 1. There exists at least one directed path from xi to xj in G(W ) constructed by Equation (14) if and only if
(p̂(W ))i,j = 0, where p̂(W ) is defined by Equation (16) with ϵ ≥ f(ϵ0, σ) for some finite f(ϵ0, σ).

Proof. Lemma 3 and Lemma 4 together derive this result.

Proposition 4. The losses (p̂(W ))i,j and ĥ(W ) exhibit a gradient conflict, consistently pushing the parameters of W in
opposite directions during optimization:

∀u, v, ∇Wu,v
ĥ(W ) · ∇Wu,v

(p̂(W ))i,j ≤ 0. (19)

Proof. Recall p̂(W ) = p̄(W ) ◦ b(W ), where b(W ) is a binary mask that does not affect the chain rule with respect to Wu,v .
Thus

∇Wu,v

(
p̂(W )

)
i,j

=

{
∇Wu,v

(
p̄(W )

)
i,j
, if (b(W ))i,j = 1,

0, if (b(W ))i,j = 0.

When (b(W ))i,j = 1 and (p̄(W ))i,j > 0,

∇Wu,v

(
p̂(W )

)
i,j

= −∇Wu,v

(
p(W )

)
i,j

= −
d∑

k=1

∇Wu,v

(
|W |k

)
i,j
.

Expanding each derivative over paths that include edge (xu, xv) yields

∇Wu,v

(
|W |k

)
i,j

= sign
(
Wu,v

) ∑
p∈P(u,v)

i
k
⇝j

∏
e∈p\{(u,v)}

|W |e,

where P(u,v)

i
k
⇝j

is the set of all k-length directed paths from xi to xj that include (xu, xv). Since
∏

e|W |e ≥ 0, factoring out

sign(Wu,v) gives

∇Wu,v

(
p̂(W )

)
i,j

= − sign
(
Wu,v

) d∑
k=1

∑
p∈P(u,v)

i
k
⇝j

∏
e∈p\{(u,v)}

|W |e.

Multiplying by sign(Wu,v), we obtain

∇Wu,v

(
p̂(W )

)
i,j
· sign

(
Wu,v

)
≤ 0, (38)

since the remaining sum is nonnegative.

Next, for

ĥ(W ) =

d∑
k=1

ck

( d∑
i=1

|W |ki,i
)
,

the gradient w.r.t. Wu,v similarly factors out sign(Wu,v):

∇Wu,v
ĥ(W ) = sign

(
Wu,v

) d∑
k=1

ck

d∑
i=1

∑
p∈P(u,v)

i
k
⇝i

∏
e∈p\{(u,v)}

|W |e,

where now P(u,v)

i
k
⇝i

runs over k-length loops through (xu, xv). Hence, we have:

∇Wu,v
ĥ(W ) · sign

(
Wu,v

)
≥ 0, (39)

under positive ck (e.g., all ck ≥ 0).

Combining Equations (38) and (39), we have:

∇Wu,v
ĥ(W ) · ∇Wu,v

(
p̂(W )

)
i,j
≤ 0,

which completes the proof.
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Proposition 5. Suppose the current graph G(W ) contains a directed path from xj to xi, but there is no path from xi to xj .
In this case, the loss function:

L(D,W ) = F (W ;D) + λ∥W∥+ γ(p̂(W ))i,j + ρĥ(W )

prevents the addition of any edge (u, v) that would establish a path from xi to xj in an updated graph G′, where
G′ = (X,E(G) ∪ {(u, v)}), as long as ρ is sufficiently large.

Proof. Denote by pj,i any directed path from xj to xi. We first analyze

∇|Wu,v|ĥ(W ) =

d∑
q=1

d∑
k=1

∇|Wu,v|
(
|W |kq,q

)
.

Because each |W |kq,q has nonnegative partial derivatives and |We| ≥ ϵ0 for edges present in G(W ), we get

∇|Wu,v|ĥ(W ) ≥
d∑

k=1

∇|Wu,v||W |
k
j,j ≥

∑
pj,i,pi,u, pv,j

ϵ
|pj,i|
0

∏
e∈pi,u

|We|
∏

e∈pv,j

|We|,

where pj,i ranges over paths xj ⇝ xi, |pj,i| denotes the length of the path, pi,u ranges over paths xi ⇝ xu and pv,j ranges
over paths xv ⇝ xj .

Assume there is no directed path xi ⇝ xj in G(W ), but adding the edge (xu, xv) would create one. Then G(W ) must
already contain at least one path xi ⇝ xu and one path xv ⇝ xj . Thus,

∇|Wu,v|ĥ(W ) ≥
∑

pj,i,pi,u, pv,j

ϵ
|pj,i|
0

∏
e∈pi,u

|We|
∏

e∈pv,j

|We| ≥ ϵ
|pj,i|+|pi,u|+|pv,j |
0 .

Denote k0 = |pj,i|+ |pi,u|+ |pv,j |.

Next, consider the overall gradient of

L(D,W ) = F (W ;D) + λ + γ
(
p̂(W )

)
i,j

+ ρ ĥ(W ).

Taking the partial w.r.t. |Wu,v|,

∇|Wu,v|L(D,W ) = ∇|Wu,v|F (W ;D) + λ+ γ∇|Wu,v|
(
p̂(W )

)
i,j︸ ︷︷ ︸

≡ α

+ ρ∇|Wu,v|ĥ(W ).

Since ∇|Wu,v|ĥ(W ) ≥ ϵk0
0 , we have

∇|Wu,v|L(D,W ) ≥ α + ρ ϵ k0
0 .

Hence, if

ρ ≥ |α|
ϵ k0
0

,

then∇|Wu,v|L(D,W ) ≥ 0, forcing the gradient update to reduce |Wu,v| (i.e., disfavor adding the edge (xu, xv)).

Thus, for all ρ above that finite threshold |α|/ϵk0
0 , the absolute weight of (xu, xv) is pushed down to forbid its presence in

G(W ). This completes the proof.

Proposition 6 ((Ban et al., 2024, Proposition 2)). Given a partial order set O = {xi ≺ xj}, a DAG G satisfies O if and
only if, for all xi ≺ xj in O+, there exists no directed path from xj to xi in G.
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Proof. We aim to establish the equivalence:

There exists at least one topological order π of G that satisfies O ⇐⇒ ∀xi ≺ xj ∈ O+, ¬(xj ⇝ xi) in G.

(=⇒): Assume there is a topological ordering π of G that satisfies O. By definition of topological ordering, if xi is an
ancestor of xj in G, then xi must appear before xj in π. Because π respects the constraints in O, for every (i, j) ∈ O+ we
have xi placed before xj in π. Suppose, for contradiction, that there is a directed path xj ⇝ xi in G. Then xj is an ancestor
of xi and should appear before xi in any topological ordering, contradicting the fact that xi is before xj in π. Hence, no
such path xj ⇝ xi exists, proving this direction.

(⇐=): Conversely, suppose that for every (i, j) ∈ O+, there is no directed path xj ⇝ xi in G. Since G is a DAG, it
possesses at least one topological ordering (constructible via, e.g., Kahn’s algorithm or a depth-first search approach). We
now argue that this ordering can be adjusted, or equivalently, we can choose a valid ordering outright, so that all pairs in O
are respected. Because the absence of a path xj ⇝ xi ensures no cycle is created by demanding xi precede xj , none of the
constraints in O+ is violated. Thus we can finalize a topological ordering π of G in which, for each (i, j) ∈ O+, xi appears
before xj . Hence G has a topological ordering that satisfies all order constraints in O.

Combining both directions, we conclude that the existence of a topological ordering of G satisfying O is equivalent to
having no path xj ⇝ xi in G for every (i, j) ∈ O+.

Proposition 7. Each optimal solution of the equality-constrained problem (5) corresponds to the global optimum of the
following convex optimization problem:

min
W∈Rd×d

∥D(W ◦M)−D∥ℓ2 + λ∥W∥1, (25)

where Mi,j = 1 if π(i) < π(j) and Mi,j = 0 otherwise, for a specific permutation π of {1, 2, . . . , d}.

Proof. We begin with the equality-constrained problem

min
W∈Rd×d

∥∥DW − D
∥∥ℓ
2
+ λ ∥W∥1, subject to h(W ) = 0. (40)

Let W ∗ be an optimal solution to (40). By feasibility, h(W ∗) = 0, and by the stationarity condition (assuming a Lagrangian
approach),

∇f
(
W ∗) + µ∇h

(
W ∗) = 0, (41)

where f(W ) = ∥DW −D∥ℓ2 + λ ∥W∥1 and µ is the Lagrange multiplier associated with h(W ) = 0.

By definition of h(·), the condition h(W ∗) = 0 means that G(W ) is DAG, and there is a permutation π of {1, 2, . . . , d}
such that

W ∗
i,j = 0 whenever π(i) ≥ π(j).

Equivalently, W ∗ is strictly upper-triangular up to reindexing of rows and columns by π. Define a binary matrix M ∈
{0, 1}d×d by

Mi,j =

{
1, if π(i) < π(j),

0, otherwise.

Then W ∗ ◦M = W ∗ because multiplying by Mi,j zeroes out all entries below or on the “π-diagonal.”

Consider the convex program

min
W∈Rd×d

∥∥∥D(W ◦M) − D
∥∥∥ℓ
2
+ λ ∥W∥1. (42)

Since W ◦M zeroes out the same pattern enforced by M , the feasible set effectively restricts (W ◦M) to that strict
upper-triangular shape under π. Let W ′ be an optimal solution to (42); by standard convexity arguments, stationarity implies

∇
∥∥∥D(W ′ ◦M

)
−D

∥∥∥ℓ
2
+ λ∇∥W ′∥1 = 0. (43)

23



Differentiable Structure Learning with Ancestral Constraints

(This is taken with respect to W ′, understanding that the chain rule also includes the elementwise product with M , but
crucially (W ′ ◦M) is valid for all nonzero coordinates consistent with the triangular structure.)

We claim W ∗ also satisfies the stationarity for (42). Note first that

W ∗ ◦M = W ∗.

The equality h(W ∗) = 0 (strict upper-triangular structure) also implies that any partial derivative of h(·) w.r.t. W ∗
i,j is zero

whenever π(i) < π(j). Concretely, if we treat h(·) as a sum of path-indicator terms, no path q ⇝ i and j ⇝ q can coexist
unless π(j) < π(q) < π(i), contradicting π(i) < π(j). Hence:

∇Wi,j
h
(
W ∗) = 0 for π(i) < π(j).

Because those are precisely the coordinates in which W ∗ could be nonzero, we get

∇h
(
W ∗ ◦M

)
= 0.

Returning to (41),
∇f
(
W ∗ ◦M

)
+ µ∇h

(
W ∗ ◦M

)
= 0 =⇒ ∇f

(
W ∗ ◦M

)
= 0.

Thus W ∗ satisfies the first-order condition for problem (42), i.e.

∇
∥∥∥D(W ∗ ◦M

)
−D

∥∥∥ℓ
2
+ λ∇∥W ∗∥1 = 0.

Since (42) is a convex optimization problem (sum of a smooth convex term and an ℓ1-regularization), any W that satisfies
the stationarity condition must be a global optimum. From (43) and the stationarity for W ∗, we see W ′ and W ∗ both satisfy
the same gradient condition. Therefore W ∗ = W ′.

We have shown that every global optimum W ∗ of (40) (with h(W ∗) = 0) coincides with the global optimum W ′ of the
convex problem (42) defined by the matrix M associated with the same permutation π. This completes the proof.

D. Complete Experimental Results and Analysis
This section provides a comprehensive analysis of our experimental results. First, we evaluate additional aspects not covered
in the main text, including time complexity, results on nonlinear data, the integration of path absence constraints, the results
of various backbone algorithms and the impact of varying constraint numbers. Then, we present supplementary results
under more extensive settings for the experiments discussed in the main text.

D.1. Time Complexity

The primary computational cost in our approach arises from matrix operations. The time complexity of a standard
matrix multiplication for a d × d matrix is O(d3). The key function in our proposed loss, p̂(W ), involves computing
p(W ) =

∑d
k=1 |W |k, which has a time complexity of O(d4). This exceeds the computational cost of commonly used

acyclicity losses, which are O(d3). However, this additional overhead can be mitigated through GPU acceleration.

To evaluate the efficiency of our method, we implemented two versions: one using a CPU for all computations and another
utilizing a GPU for computing the gradients of the newly introduced loss terms. The data approximation loss and acyclicity
loss were computed on the CPU in both cases.

We denote the process of solving the partial order-constrained problem as PO-NOTEARS and the process of using the
PO-NOTEARS result as an initial guess for solving the path existence-constrained problem as PE-NOTEARS-path. Note
that the sum of run time of PO-NOTEARS and PE-NOTEARS-path is the total time consumed by PE-NOTEARS, the
method used to integrate ancestral constraints.

Figure 4 compares the runtime of these approaches using both CPU and GPU implementations. The results indicate
that solving the PO-constrained problem is the most computationally expensive step, whereas solving the PE-constrained
problem is significantly faster, with a runtime comparable to the standard NOTEARS algorithm.

Additionally, GPU acceleration provides a large speedup, particularly as the number of nodes increases. This demonstrates
the potential for integrating our method into deep learning systems, where efficient GPU-based implementations are crucial.
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Figure 4. Comparison time between GPU and CPU versions of the proposed method.

D.2. Improved Time Complexity by Accelerating Matrix Power Iteration

Zhang et al. (2022) introduced an fast truncated matrix power iteration (fast TMPI) algorithm that is suitable for accelerating
the calculation of matrix power iteration defined in the path existence loss, which is in complexity O(d3 log d), comparable
with the complexity O(d3) of common acyclicity losses.

Below, we compare fast TMPI against the original direct matrix power operation under the following setting: ER2 graph,
linear SEM with Gaussian noise, and 80% prior paths. Results of the run time (in seconds) and F1 score are reported as
Direct Matrix Power / fast TMPI for PE-NOTEARS under varioud node numbers (@Node).

@Node 10 20 30 50

Time (s) 29.8 / 26.7 106.4 / 90.3 269.3 / 188.3 973.6 / 500.8
F1 Score 0.87 / 0.88 0.77 / 0.77 0.68 / 0.68 0.61 / 0.61

We observe that PE-NOTEARS with fast TMPI achieves a significant speedup on large-scale graphs while maintaining
comparable performance. This confirms that fast TMPI integrates effectively into our approach, reducing time complexity
from O(d4) to O(d3 log d), making it competitive with the O(d3) complexity of NOTEARS.

Figure 5. Comparison and ablation results on nonlinear data.
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D.3. Results on Nonlinear Data

This experiment evaluates our method on nonlinear data using NOTEARS-MLP (Zheng et al., 2020) as the backbone
algorithm. The nonlinear data is generated based on the binary mask of the ground truth structure W . Uniformly random
weights are assigned to the elements where Wi,j = 1, denoted as W1,W2,W3. Given these weights, samples are generated
according to the following nonlinear model:

D = tanh(DW1) + cos(DW2) + sin(DW3) + z, z ∼ N (0, 1). (44)

We compare the performance of the NOTEARS, PE-NOTEARS, and PE-NOTEARS-zero (which removes order-guided
optimization and uses a zero matrix as the initial guess), using MLP to fit data distributions (Zheng et al., 2020). The
results, reported in Figure 5, show that PE-NOTEARS consistently outperforms both NOTEARS and PE-NOTEARS-zero,
achieving lower SHD, higher F1-score, and lower FDR.

Additionally, PE-NOTEARS demonstrates a significantly higher TPR compared to NOTEARS, indicating that incorporating
path existence constraints effectively enhances the recovery of causal links. PE-NOTEARS-zero achieves higher TPR than
PE-NOTEARS but at the cost of recovering a large number of redundant edges, as reflected in its high SHD and FDR.

Regarding the path recovery rate, PE-NOTEARS consistently recovers the most paths from priors, confirming the effective-
ness of order-guided optimization in resolving prior violations. Notably, despite PE-NOTEARS-zero introducing many
redundant edges, it still fails to match PE-NOTEARS in satisfying path existence constraints. This further validates the
importance of using a partial order-guided initial guess to support path existence constraints.

Figure 6. Comparison results of the path absence-constrained to data-based structure learning.

D.4. Results on Path Absence Constraints

This experiment evaluates structure learning with path absence constraints. Since the characterization of path absence is
straightforward, we did not include these results in the main text.

Using the characterization (p(W ))i,j = 0, where p(W ) is defined as:

p(W ) ≡
d∑

k=1

|W |k. (45)

This condition is equivalent to enforcing the absence of a directed path xi ⇝ xj .
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Given a path absence mask B ∈ {0, 1}d×d, where Bi,j = 1 represents the constraint ¬(xi ⇝ xj) in G(W ), we formulate
the structure learning task as:

min
W∈Rd×d

∥DW −D∥ℓ2 + λ∥W∥1 + β ·
∑

(p(W ) ◦B) s.t. h(W ) = 0. (46)

The path absence loss weight is set to β = 1. We denote the method solving this task as PA-NOTEARS and compare it
with standard NOTEARS (without any prior constraints). The comparison results, with varying proportions of path absence
constraints on ER-2 graphs, are shown in Figure 6. The results indicate that PA-NOTEARS consistently outperforms
standard NOTEARS across all metrics, with greater improvements observed as the number of prior constraints increases.
This improvement is expected, as path absence constraints are inherently aligned with the acyclicity loss in gradient direction,
making them easy to enforce. The remaining unsatisfied constraints in the experiments are primarily due to the trade-off
between data approximation and path absence loss.

Discussion Notably, path absence constraints can be viewed as an extension of the acyclicity constraint that further reduces
the search space for optimal solutions. This connection aligns closely with the partial order constraints discussed in the main
text, reinforcing the effectiveness of integrating path absence information into differentiable structure learning.

Comparison with Path Existence A complete specification of path absence constraints effectively imposes a precise
restriction on the set of potential edges in the graph. Specifically, we consider edge absence constraints as a subset of
path absence constraints, since the absence of a path xi ⇝ xj implies the absence of a direct edge xi → xj . Thus, fully
specifying all path absence constraints narrows the possible edge set to only those in the ground truth. This makes path
absence constraints strictly stronger than total ordering constraints, as a total order defines the set of potential edges (i.e.,
those respecting the order), while path absence constraints further eliminate incorrect edges.

In contrast, path existence constraints do not offer the same level of restriction. Even when all path existence constraints are
specified, they do not uniquely determine any particular edge without additional assumptions. Moreover, path existence
constraints provide no information about edge absence, so the overall space of potential edges remains large. As a result, we
observe highly accurate outputs when many path absence constraints are available. However, such comprehensive prior
knowledge is rarely accessible in practice. For d variables, specifying O(d2) path absence constraints is required to achieve
this level of restriction, whereas significant improvements can be achieved with only O(d) path existence or partial order
constraints. For example, a total order requires just d− 1 partial orders or path existence constraints.

This comparison underscores the practical advantage of path existence constraints: while path absence provides stronger
theoretical restriction, path existence is far more scalable and feasible in real-world applications.

D.5. Results with Varying Numbers of Path Existence Constraints

This experiment examines the impact of different numbers of path existence constraints on structure learning performance.
We vary the prior percentage q and evaluate its influence on several PE-constrained approaches, including PE-NOTEARS-
intuitive (using p̄ as the path existence loss), PE-NOTEARS-zero (using zero initialization), and PE-NOTEARS (ours). The
results on ER-2 graphs are presented in Figure 7.

The findings indicate that PE-NOTEARS consistently outperforms other methods across different numbers of path constraints.
An exception occurs in cases with 10 nodes, where PE-NOTEARS-zero performs comparably to PE-NOTEARS. This is
because, with only 10 nodes, the ordering space is relatively simple, reducing the severity of order-violating issues even
without order-guided initialization.

As the number of prior paths increases, the performance of PE-NOTEARS further improves. Notably, despite incorporating
more prior path constraints, PE-NOTEARS is still accurate in edge recovery (as reflected in stable FDR and FPR values). In
contrast, both ablation variants exhibit a substantial increase in false discoveries with more constraints.

These results further validate the effectiveness of using p̂ as the path existence function and employing partial order-guided
optimization strategies for path existence-constrained structure learning.

D.6. Results on Various Backbone Algorithms

This section evaluates the effectiveness of integrating path existence constraints into different backbone differentiable
structure learning algorithms using our approach. The results for DAGMA and GOLEM are presented in Figures 8 and 9,
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Figure 7. Comparison and ablation results with varying path existence constraint numbers.

respectively.

The findings indicate that our method significantly enhances the performance of both DAGMA and GOLEM by effectively
incorporating path existence constraints. Additionally, the high path recovery rate demonstrates the effectiveness of
order-guided optimization in resolving conflicts among prior constraints across different approaches.

These results confirm the broad applicability of our method, showing that it generalizes well to various differentiable
structure learning frameworks for integrating path existence constraints.

D.7. Supplementary Results and Analysis from the Main Text

This section presents the complete experimental results corresponding to the settings discussed in the main text. The
supplementary results are shown in Figures 10, 11, 12, 13, 14, and 15.

The specific experimental settings for these supplementary results are detailed in the captions of the respective figures.
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Figure 8. Results of our approach with DAGMA.

Figure 9. Results of our approach with GOLEM.
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Figure 10. Supplementary comparison and ablations results with sample size n = 20.
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Figure 11. Supplementary comparison and ablations results with sample size n = 1000.
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Figure 12. Supplementary ablation results on initial random guesses with sample size n = 20. The suffix 0.5 and 10 in the method
reference is the value of path existence threshold ϵ.

32



Differentiable Structure Learning with Ancestral Constraints

Figure 13. Supplementary ablation results on initial random guesses with sample size n = 1000. The suffix 0.5 and 10 in the method
reference is the value of path existence threshold ϵ.
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Figure 14. Supplementary ablation results with varying path thresholds with sample size n = 20. PE-NOTEARS-intuitive-order refers to
the method using p̄ as path existence loss and the partial order-guided initial guess.
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Figure 15. Supplementary ablation results with varying path thresholds with sample size n = 1000. PE-NOTEARS-intuitive-order refers
to the method using p̄ as path existence loss and the partial order-guided initial guess.
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