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ABSTRACT

We consider learning a stochastic bandit model, where the reward function be-
longs to a general class of uniformly bounded functions, and the additive noise
can be heteroscedastic. Our model captures contextual linear bandits and general-
ized linear bandits as special cases. While previous works (Kirschner & Krause,
2018; Zhou et al., 2021) based on weighted ridge regression can deal with linear
bandits with heteroscedastic noise, they are not directly applicable to our general
model due to the curse of nonlinearity. In order to tackle this problem, we pro-
pose a multi-level learning framework for the general bandit model. The core
idea of our framework is to partition the observed data into different levels ac-
cording to the variance of their respective reward and perform online learning at
each level collaboratively. Under our framework, we first design an algorithm that
constructs the variance-aware confidence set based on empirical risk minimiza-
tion and prove a variance-dependent regret bound. For generalized linear bandits,
we further propose an algorithm based on follow-the-regularized-leader (FTRL)
subroutine and online-to-confidence-set conversion, which can achieve a tighter
variance-dependent regret under certain conditions.

1 INTRODUCTION

Over the past decade, stochastic bandit algorithms have found a wide variety of applications in
online advertising, website optimization, recommendation system and many other tasks (Li et al.,
2010; McInerney et al., 2018). In the model of stochastic bandits, at each round, an agent selects
an action and observes a noisy evaluation of the reward function for the chosen action, aiming to
maximize the sum of the received rewards. A general reward function governs the reward of each
action from the eligible action set.

A common assumption used in stochastic bandit problems is that the observation noise is condition-
ally independent and satisfies a uniform tail bound. In real-world applications, however, the variance
of observation noise is likely to be dependent on the evaluation point (chosen action) (Kirschner &
Krause, 2018). Moreover, due to the dynamic environment in reality, the variance of each action may
also be different at each round. This motivates the studies of bandit problems with heteroscedastic
noise. For example, Kirschner & Krause (2018) introduced the heteroscedastic noise setting where
the noise distribution is allowed to depend on the evaluation point. They proposed weighted least
squares to estimate the unknown reward function more accurately in the setting where the under-
lying reward function is linear or lies in a separable Hilbert space (Section 5, Kirschner & Krause
2018).

In this paper, we consider a general setting, where the unknown reward function belongs to a known
general function class F with bounded eluder dimension (Russo & Van Roy, 2013). This captures
multi-armed bandits, linear contextual bandits (Abbasi-Yadkori et al., 2011) and generalized linear
bandits (Filippi et al., 2010) simultaneously. Since weighted least squares highly depends on the
linearity of the function class, we propose a multi-level learning framework for our general setting.
The underlying idea of the framework is to partition the observed data into various levels according
to the variance of the noise. The agent then estimates the reward function at each level independently
and then exploit all the levels when selecting an action at each round.
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While previous work by Kirschner & Krause (2018) considered sub-Gaussian noise with nonuniform
variance proxies, we only assume nonuniform variances of noise (Zhou et al., 2021; Zhang et al.,
2021), which brings a new challenge of exploiting the variance information of the noise to obtain
tighter variance-aware confidence sets.

Under our multi-level learning framework, we first design an algorithm based on empirical risk
minimization and Optimism-in-the-Face-of-Uncertainty (OFU) principle, and prove a variance-
dependent regret bound. For a special class of bandits namely generalized linear bandits with het-
eroscedastic noise, we further propose an algorithm using follow-the-regularized-leader (FTRL) as
an online regression subroutine and adopting the technique of online-to-confidence-set conversion
(Abbasi-Yadkori et al., 2012; Jun et al., 2017). This algorithm achieves a provaly tighter regret
bound when the range of the reward function is relatively wide compared to the magnitude of noise.

Our main contributions are summarized as follows:

• We develop a new framework called multi-level regression, which can be applied to heteroscedas-
tic bandits, even when the reward function class does not lie in a separable Hilbert space.

• Under our framework, we design tighter variance-aware upper confidence bounds for bandits
with general reward functions, and propose an bandit learning algorithm based on empirical risk
minimzation. We show that our algorithm enjoys variance-dependent regret upper bounds which
can be regarded as a strict extension of previous algorithms which obtain variance-dependent
regret bounds on simpler bandit models (Zhou et al., 2021; Zhang et al., 2021).

• For generalized linear bandits (Filippi et al., 2010; Jun et al., 2017), which is a special case of
our model class, we further propose an algorithm based on online-to-confidence-set conversion.
We first prove a variance-dependent regret bound for follow-the-regularized-leader (FTRL) for
the online regression problem derived from generalized linear function class, and then convert the
online learning regret bound to the bandit learning confidence set. We show that our algorithm
can achieve a tighter regret bound for generalized linear bandits.

• As a by-product, our regret bound for FTRL improves the state-of-the-art regret result Õ(d2R2)

obtained by stochastic online linear regression (Ouhamma et al., 2021) to Õ(dσ2
max) (omitting the

terms without dependence on d), where d is the dimension of contexts, R is the upper bound of
the sub-Gaussian norm of the noises at each step, and σmax is the upper bound of the variances of
the noises.

Table 1: A summary of our regret results and previous results under different settings.
Function Class Algorithm Regret Efficiency Unknown VAR

Linear Weighted OFUL
(Zhou et al., 2021) Õ

(
d
√
J +R

√
dT
) Computationally

efficient

Linear VOFUL
(Zhang et al., 2021) Õ

(
d4.5
√
J + d5R

)
Inefficient X

General ML2 + ERM
(This work)

Õ(
√

dimE log(Nα)J

+
√

dimE log(Nα)RT )

Oracle
efficient

G-Lin ML2 + GLOC
(This work)

Õ(K
κ
d
√
J

+ K
κ
(KAB +R)

√
dT )

Computationally
efficient

Refer to Section 3 for the definitions of dimE , σt, J and R, Section 6 for the definitions of κ,K,A,B. We
write general function class with eluder dimension dimE as ‘General’ and generalized linear function class as

‘G-Lin’ for short. Oracle efficiency refers to the computational efficiency given a regression oracle (i.e.,
empirical risk minimization) for the involved function class and an optimization oracle which maximizes the

reward function f(x) for a fixed x under some constraint set of f .

Notation. We use lower case letters to denote scalars, and use lower and upper case bold face
letters to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a vector
x ∈ Rd and matrix Σ ∈ Rd×d, a positive semi-definite matrix, we denote by ‖x‖2 the vector’s
Euclidean norm and define ‖x‖Σ =

√
x>Σx. For two positive sequences {an} and {bn} with

n = 1, 2, . . . , we write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn
holds for all n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that
an ≥ Cbn holds for all n ≥ 1. Let N (F , α, ‖ · ‖∞) denote the α-covering number of F in the
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sup-norm ‖ · ‖∞. If there is no ambiguity, we may write N (F , α, ‖ · ‖∞) as Nα for short. We use
Õ(·) to further hide the polylogarithmic factors other than log-covering numbers.

2 RELATED WORK

Learning with heteroscedastic noise. Heteroscedastic noise has been studied in many different
settings such as active learning Antos et al. (2010), regression (Aitken, 1936; Goldberg et al., 1997;
Chaudhuri et al., 2017; Kersting et al., 2007), principle component analysis (Hong et al., 2016; 2018)
and Bayesian optimization (Assael et al., 2014). However, only a few works have considered het-
eroscedastic noise in bandit settings. Cowan et al. (2015) considered a variant of multi-armed bandits
where the noise at each round is a Gaussian random variable with unknown variance. Kirschner &
Krause (2018) is the first to formally introduce the concept of stochastic bandits with heteroscedas-
tic noise. In their model, the variance of the noise at each round t is a function of the evaluation
point xt, ρt = ρ(xt), and they further assume that the noise is ρt-sub-Gaussian. ρt can either be
observed at time t or either be estimated from the obsevations. Zhou et al. (2021) considered linear
bandits with heteroscedastic noise and generalized the heteroscedastic noise setting in Kirschner &
Krause (2018) in the sense that they no longer assume the noise to be ρt-sub-Gaussian, but only
requires the variance of noise to be upper bounded by ρ2

t and the variances are arbitrarily decided
by the environment, which is not necessarily a function of the evaluation point. In the same setting
as in Zhou et al. (2021), Zhang et al. (2021) further considered a strictly harder setting where the
noise has unknown variance. They proposed an algorithm which can deal with unknown variance
through a computationally inefficient clip technique. Our work basically considers the noise setting
proposed by Zhou et al. (2021) and further generalizes their setting to bandits with general function
classes. We will consider to extend it to the harder setting as Zhang et al. (2021) as future work.

Bandits with known function classes. Moving beyond multi-armed bandits, there have been
significant theoretical advances on stochastic bandits with function approximation. Among them,
there is a huge body of literature on linear bandit problems where the reward function is assumed to
be a linear function of the feature vectors attached to the actions (Dani et al., 2008; Abbasi-Yadkori
et al., 2011; Chu et al., 2011; Li et al., 2019; 2021b). Generalizing the restrictive linear rewards,
there has also been a flurry of studies on generalized linear bandit problems (Filippi et al., 2010; Jun
et al., 2017; Li et al., 2017; Kveton et al., 2020).

As for stochastic bandits with general function classes, the seminal work by Russo & Van Roy
(2013) introduced the notion of eluder dimension to measure the complexity of the function class
and provided a general UCB-like algorithm that works for any given class of reward functions with
bounded eluder dimension. They further proved a regret upper bound of order Õ(

√
dimE logN · T )

for their proposed algorithm where dimE is the eluder dimension and logN stands for the log-
covering number of the funciton class. Linear bandits and generalized linear bandit problems can be
seen as special cases as their proposed general model.

Online-to-confidence-set conversion. Abbasi-Yadkori et al. (2012) may be the first one to intro-
duce the technique that takes in an online learning subroutine and turns the output of it into a con-
fidence set at each round. While Abbasi-Yadkori et al. (2012) considered applying this technique
in linear bandits, Jun et al. (2017) generalized and introduced the previous approach to Generalized
Linear Online-to-confidence-set Conversion (GLOC) and applied it to generalized linear bandits.

Online regression for linear functions. Online linear regression has long been studied in the
setting where the response variables (or labels) are bounded and chosen by an adversary (Bartlett
et al., 2015; Cesa-Bianchi et al., 1996; Kivinen & Warmuth, 1997; Littlestone et al., 1991; Malek &
Bartlett, 2018), to mention a few. A recent work (Ouhamma et al., 2021) considers the stochastic
setting where the response variables are unbounded and revealed by the environment with additional
random noise on the true labels. Ouhamma et al. (2021) discussed the limitations of online learning
algorithms in the adversarial setting and further advocates for the need of complementary analyses
for existing algorithms under stochastic unbounded setting.

3 MULTI-LEVEL LEARNING FRAMEWORK

We introduce the Multi-level learning framework in this section.
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3.1 PRELIMINARIES

General function class Following (Russo & Van Roy, 2013), we introduce the ε-dependence and
eluder dimension notion, which are used to measure the complexity of a general function class F .

Definition 3.1 (ε-dependence, Russo & Van Roy 2013). An action a ∈ A is ε-dependent on actions
{a1, a2, · · · , an} ∈ A with respect to F if any pair of functions f, f̃ ∈ F satisfying

∑n
i=1(f(ai)−

f̃(ai))
2 ≤ ε2 also satisfies f(a) − f̃(a) ≤ ε. Further, a is ε-independent of {a1, · · · , an} with

respect to F if a is not ε-dependent on {a1, · · · , an}.
Definition 3.2 (eluder dimension, Russo & Van Roy 2013). The ε-eluder dimension dimE(F , ε) is
the length d of the longest sequence of elements in A such that, for some ε′ ≥ ε, every element is
ε′-independent of its predecessors.

In this work we focus on general function class F with bounded eluder dimension, and we consider
generalized linear function class as a special case. We would like to point out that the function class
with small eluder dimension is strictly larger than linear and generalized linear bandits (Li et al.,
2021a), while neural networks with ReLU activation do not have a small eluder dimension (their
eluder dimension has an exponential dependence on the input dimension) (Dong et al., 2021). We
leave it as future work to consider even more general function classes.

Definition 3.3 (width). Let wF̃ (a) = supf,f∈F̃
(
f(a)− f(a)

)
. For an action set Ã ⊆ A, we use

wF̃ (Ã) to denote supa∈Ã wF̃ (a).

To deal with infinite or continuous action sets, we make the following assumption that the reward
function class is known in advance by the agent. Notice that for the finite multi-armed bandit case,
we can choose F as the set that includes all the eligible functions.

Assumption 3.4 (Known Reward Function Class). The unknown reward function f∗ belongs to an
accessible function class F = {fθ : A → R|θ ∈ Θ}.

Bandit models We consider a heteroscedastic variant of the classic stochastic bandit problem with
general function classes. At each round t ∈ [T ] (T ∈ N), the agent observes a decision set Dt ⊆ A
which is chosen by the environment. The agent then selects an action at ∈ Dt and observes reward
rt together with a corresponding variance upper bound σ2

t . We assume that rt = f∗(at) + εt where
f∗ : A → R is an underlying real-valued reward function which is unknown to the learner and εt is
a random noise. We make the following assumption on εt.

Assumption 3.5. For each t, εt satisfies that εt|a1:t, ε1:t−1 is a R-sub-Gaussian random variable
(R > σt) and E[εt|a1:t, ε1:t−1] = 0, E[ε2t |a1:t, ε1:t−1] ≤ σ2

t := σ2
t (a1:t, r1:t−1).

where σt can be either a constant or a random variable dependent on a1:t and r1:t−1.

Remark 3.6. σt can be seen as either a given information from the environment, or an estima-
tor of the noise variance at t-th round based on all past observations, as discussed in the in-
formation directed sampling bandit (Kirschner & Krause, 2018). For instance, we consider a
bandit problem with a two-point action distribution, where the variance of an action can be es-
timated through the estimation of the mean of the action. Similar estimation procedure has
been studied in Lattimore et al. (2015). The details are in Appendix C. We can further con-
sider the MDP setting. With a confidence set P that includes the true transition dynamic, the
conditional variances of the value functions V̄ at state s and action a can be estimated by
supp∈P

{∑
s′∈S p(s|s, a)V̄ 2(s′)−

[∑
s′∈S p(s

′|s, a)V̄ (s′)
]2}

. So the variances of value functions
can be efficiently estimated for the MDP setting.

For simplicity, let J =
∑T
t=1 σ

2
t . This assumption on εt is a slightly generalized version of that in

Zhou et al. (2021) in the sense that the noise is not necessarily bounded by R. The goal of the agent
is to minimize the following cumulative regret:

Regret(T ) :=
∑T
t=1[f∗(a∗t )− f∗(at)], (3.1)

where the optimal action a∗t at round t ∈ [T ] is defined as a∗t := argmaxa∈Dt
f∗(a).
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Algorithm 1 ML2 with OFU principle
1: Input: T,A,F , R, σ > 0.
2: Initialize: Set L← dlog2R/σe and C1,l ← F , Ψ1,l ← ∅ for all l ∈ [L].
3: for t = 1 · · ·T do
4: Observes Dt.
5: Choose action at = argmaxa∈Dt

minl∈[L] maxf∈Ct,l f(a).
6: Observe stochastic reward rt and σ2

t .
7: Find lt such that 2lt+1σ ≥ max(σ, σt) ≥ 2ltσ.
8: Update Ψt+1,lt ← Ψt,lt ∪ {t} and Ψt+1,l ← Ψt,l for all l ∈ [L]\{lt}.
9: Update Ct+1,l according to Ψt+1,l through a regression subroutine (e.g., Algorithm 2).

10: end for

3.2 MULTI-LEVEL LEARNING FRAMEWORK

Existing approach. To tackle the heteroscedastic bandit problem, for the case where the F is
the linear function class (i.e., f(a) = 〈θ∗, a〉 for some θ∗ ∈ Rd), a weighted linear regression
framework (Kirschner & Krause, 2018; Zhou et al., 2021) has been proposed. Generally speaking, at
each round t ∈ [T ], weighted linear regression constructs a confidence set Ct based on the empirical
risk minimizarion (ERM) for all previous observed actions as and rewards rs as follows:

θt ← argmin
θ∈Rd

λ‖θ‖22 +
∑
s∈[t] ws(〈θ, as〉 − rs)

2, Ct ←
{
θ ∈ Rd

∣∣∑t
s=1 ws(〈θ, as〉 − 〈θt, as〉)

2 ≤ βt
}
,

where ws is the weight, and βt, λ are some parameters to be specified. ws is selected in the order
of the inverse of the variance σ2

s at round s to let the variance of the rescaled reward
√
wsrs upper

bounded by 1. Therefore, after the weighting step, one can regard the heteroscedastic bandits prob-
lem as a homoscedastic bandits problem and apply existing theoretical results to it. To deal with the
general function case, a direct attempt is to replace the 〈θ, a〉 appearing in above construction rules
with f(a). However, such an approach requires that F is close under the linear mapping, which
does not hold for general function class F .

Multi-level Learning framework (ML2). To deal with the nonlinearity issue, we propose a novel
framework ML2 in Algorithm 1. At the core of our design is the idea of partitioning the observed
data into several levels and ‘packing’ data with similar variance upper bounds into the same level as
shown in line 7-8 of Algorithm 1. Note that we use a small real number σ to ensure that the number
of levels is bounded. Specifically, for any two data belong to the same level with variaces larger
than σ, their variance will be at most twice larger than the other. Next in line 9, our framework
calls a subroutine to estimate f∗ according to the data points in Ψt+1,l. Since the variances of the
data in the same level are nearly the same, we let algorithms that work for homoscedastic bandit
problem run on the data in the same level. Particularlly, we use the Empirical risk minimization
(ERM) algorithm as described in Algorithm 2 for Sections 4 and 5. In Section 6, we show the
power of using Algorithm 4 as the regression subroutine. Then in line 5, the agent makes use of L
confidence sets simultaneously to select an action based on the optimism-in-the-face-of-uncertainty
(OFU) principle over all L levels. More specifically, the algorithm chooses the action opmimisticly
according to each confidence set but inclines to select the confidence set with the most pessimistic
evaluation. In the following sections, we will consider several different settings to show the power
of ML2.

4 WARMUP: NOISE WITH ADDITIONAL SUB-GAUSSIAN ASSUMPTION

We first consider a simplified variant of our problem, where each noise is also sub-Gaussian.

Assumption 4.1 (Sub-Gaussianity of noise). εt is conditionally σt-sub-Gaussian on a1:t, ε1:t−1.

Such a sub-Gaussian assumption on noise has been considered by Kirschner & Krause (2018). Next
we show the regret upper bound for ML2 with ERM. For simplicity, in the following results, let
dimE denote dimE(F , 1/T 2).

Theorem 4.2 (Gap-independent regret bound for bandits with heteroscedastic sub-Gaussian noise).
Suppose Assumption 3.4 and 4.1 hold and |f∗(a)| ≤ C for all a ∈ A. For all t ∈ [T ], l ∈ [L] and
δ ∈ (0, 1), α > 0, σ > 0, if we apply Algorithm 2 as a subroutine of Algorithm 1 (in line 9) and set
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Algorithm 2 Empirical risk minimization (ERM) for partitioned data
1: Input: Level l, time t and set of data points Ψt+1,l.
2: Compute f̂t+1,l ← argminf∈F

∑
s∈Ψt+1,l

(f(as)− rs)2.

3: Return Ct+1,l ←
{
f ∈ F

∣∣∑
s∈Ψt+1,l

[
f(as)− f̂t+1,l(as)

]2
≤ βt+1,l

}
βt,l as the square root of

8(2l+1 · σ)2 log(2NαL/δ) + 4tα
(
C +

√
(2l+1 · σ)2 log(4t(t+ 1)L/δ)

)
, (4.1)

where Nα = N (F , α, ‖ · ‖∞) and L = dlog2R/σe (recall the definition of L in Algorithm 1), then
with probability at least 1− δ, the regret for the first T rounds is bounded as follows:

Regret(T ) ≤ L+ 2C dimE L+ 8
√

2LdimE(J + σ2T ) log(2NαL/δ)

+ 4
√
LdimE α

√
C + 2R

√
log(4T (T + 1)L/δ)T.

Corollary 4.3. Let the same conditions as in Theorem 4.2 hold. Set α = T−2 and σ =
dim−1

E (log(2NαL/δ)
√
T )−1. Then with probability at least 1 − δ, when T is large enough, the

regret for the first T rounds is bounded as Regret(T ) = Õ
(√

dimE log(N (F , T−2, ‖ · ‖∞))J
)

.

Remark 4.4. Our result is strictly tighter than the Õ
(
R
√

dimE log(N (F , T−2, ‖ · ‖∞))T
)

regret

achieved by Russo & Van Roy (2013) since J =
∑T
t=1 σ

2
t ≤ R2T . In the worst case, when

σ1 = · · · = σT = R, our result degrades to their result. Our improvement in regret is due to the
utilization of variance information. When the variance information is provided or can be estimated,
our algorithm can achieve better regrets for bandits with general function classes studied in this
paper, while existing algorithms cannot.
Remark 4.5. When restricted to linear contextual bandits with dimension d, since logN (F , T−2, ‖·
‖∞) = Õ(d),dimE = Õ(d) (Russo & Van Roy, 2013), our result can be written as Õ(d

√
J), which

matches the result of using weighted linear ridge regression for heteroscedastic linear bandit under
our assumptions on noise (Kirschner & Krause, 2018; Zhou et al., 2021).

We also provide a gap-dependent regret bound for general function class setting in section D, gen-
eralizing the previous gap-dependent regret bound in linear bandits (Abbasi-Yadkori et al., 2011).

5 GENERAL RESULTS FOR BANDITS WITH HETEROSCEDASTIC NOISE

In this section, we consider the original setting introduced in Section 3 without Assumption 4.1. In
the following subsections, we will show that Algorithm 2 still works with refined value of β.

5.1 VARIANCE-AWARE CONFIDENCE SET

In this genral setting, directly applying the confidence set used in the previous work (Russo &
Van Roy, 2013) gives no improvement since our confidence sets Ct,l do not adopt the variance
information. We show in the following theorem that our new designed Ct,l with a new confidence
radius β still ensures that the confidence set is large enough to contain f∗ with high probability, and
exploits the variance information at the same time.
Theorem 5.1 (Variance-dependent confidence sets). Suppose that |f∗(a)| ≤ C for all a ∈ A. For
any α > 0 and δ ∈ (0, 1/2), if we set βt,l as the square root of

12Cαt+ 4αRt+ 8/3 · CR log(2Nαt
2/δ) + 16 · (2l+1σ)2 log(2Nαt

2/δ),

where R = R
√

2 log(4t2/δ), Nα = N (F , α, ‖ · ‖∞), then f∗ ∈ Ct,l with probability at least 1−2δ
for any fixed t, l.

Remark 5.2. With a small α, we have βt,l = Õ(22lσ2 logNα + CR logNα). Compared with
the corresponding previous result Õ(R2 logNα) (Russo & Van Roy, 2013; Ayoub et al., 2020), our
confidence set is tighter when C is relatively small compared to R.
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5.2 REGRET UPPER BOUNDS FOR ML2 WITH ERM

We derive our general results with the variance-aware confidences sets described in the last subsec-
tion. In this part, we write dimE(F , T−1) as dimE for short.
Theorem 5.3 (Gap-independent regret bound for bandits with heteroscedastic noise). Suppose As-
sumption 3.4 holds and |f∗(a)| ≤ 1 for all a ∈ A. For all t ∈ [T ], l ∈ [L] and δ ∈ (0, 1), α > 0, σ >
0, if we apply Algorithm 2 as a subroutine of Algorithm 1 (in line 9) and set βt,l as the square root
of 12αt+4αRt+8/3 ·R log(2Nαt

2L/δ)+16 · (2l+1σ)2 log(2Nαt
2L/δ), where L = dlog2R/σe,

Nα = N (F , α, ‖ · ‖∞) and R = R
√

2 log(4t2L/δ) (with a slight abuse of notation), then with
probability at least 1− 2δ, the regret for the first T rounds is bounded as follows:

Regret(T ) ≤
√
L
(
2
√
dimE T + 1

)
+ 4
√
LdimE(log T + 1)α

√
3 +RT

+ 2

√
8

3
LdimE(log T + 1)R log(2Nαt2L/δ)T + 16

√
LdimE(log T + 1) log(2NαT 2L/δ)

√
J + Tσ2.

Corollary 5.4. Assume R = Ω(1). Let the same conditions as in Theorem 5.3 hold. Set α =
T−2, σ = 1. Then with probability at least 1− δ, when T is large enough, the regret for the first T
rounds is bounded as Regret(T ) = Õ

(√
dimE logNαJ +

√
R dimE logNαT

)
.

Remark 5.5. Compared with the result shown in Corollary 4.3, the additional term of order
Õ(
√

dimE logNαRT ) is due to a larger confidence set by the absence of Assumption 4.1.
Remark 5.6. When restricted to heteroscedastic linear contextual bandits of dimension d, our regret
bound can be written as Õ(d

√
J +
√
Rd
√
T ). With a slightly more restricted assumption on noise,

Zhou et al. (2021) achieved a result of order Õ(d
√
J + R

√
dT ). Our result is appealing when

the sub-Gaussian parameter of noise R is much larger than 1 (or the range of the reward function,
equivalently). When R is small, our result becomes sub-optimal due to the property of our variance-
aware confidence set.

We also provide a gap-dependent regret bound in Appendix D.

6 TIGHTER BOUNDS FOR GENERALIZED LINEAR BANDITS

Our general result shown in Theorem 5.3 has an additional term of order Õ(
√

dimE logNαRT )
which makes the result sub-optimal when R is close to the range of the reward function. In this
section, we consider a special case, generalized linear bandits with heteroscedastic noise. We show
how to get rid of the Õ(

√
dimE logNαRT ) term in the upper bound of the regret, and achieve a

better result when R is relatively small or close to the bound of the reward function.

6.1 GENERALIZED LINEAR BANDITS

Following Filippi et al. (2010); Jun et al. (2017), we consider the generalized linear function class
defined as follows.
Assumption 6.1 (Generalized linear function class). Action set A and Θ in Assumption 3.4 are
subsets of Rd. There exists a known link function h, such that ∀a ∈ A and fθ ∈ F , fθ(a) =
h(θ>a). Let f∗ = fθ∗ . Assume that ‖θ∗‖2 ≤ B, supa∈A ‖a‖2 ≤ A.

To make the problem tractable, we need the following assumption on h.
Assumption 6.2 (Assumption 1, Jun et al. 2017). h is K-Lipschitz on [−A · B,A · B] and con-
tinuously differentiable on (−A · B,A · B). Furthermore, infz∈(−A·B,A·B) h

′(z) = κ for some
κ > 0.

Next we propose the follow-the-regularized-leader (FTRL) framework (Shalev-Shwartz & Singer,
2007; Xiao, 2010; Hazan, 2019) in Algorithm 3, which is the key component of our final algo-
rithm. Note that when dealing with bandit setting, we maintain an independent process executing
Algorithm 3 for each variance level instead of feeding all the data points into a single FTRL online
learner. Here we number the data points with t = 1, 2, · · · for simplicity with a slight abuse of
notation. In Algorithm 3 we will use a loss function ` and a regularized function φ. φ is defined as

7
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Algorithm 3 Follow The Regularized Leader (FTRL)
1: Input: F , R.
2: for t ≥ 1 do
3: Output θt ← argminθ∈Rd φ(θ) +

∑t−1
s=1 `(θ

>as, rs).
4: Observe at, rt.
5: end for

φ(θ) = c · ‖θ‖22 where c is a constant which will be specified later in Theorem 6.5. To align with
our Assumption 6.1, we select the loss function as follows, following Jun et al. (2017):
Assumption 6.3 (Loss function, Jun et al. 2017). The loss function ` in Algorithm 3 is selected as
follows: `(z, r) = −rz +m(z), `t(θ) = `(θ>at, rt), where m(z) satisfies m′(z) = h(z).

6.2 VARIANCE-DEPENDENT REGRET FOR FTRL

Before proposing our final algorithm for generalized linear bandits, we first propose a variance-
dependent complexity result for FTRL, since it is already nontrivial and reveals some interesting
properties about our setting. We define a notion of regret of online regression, named by regt,
as follows. The concept of regret of online regression has been introduced in the previous work
(Abbasi-Yadkori et al., 2012; Jun et al., 2017). In detail, it is used to characterize the complexity for
FTRL to learn the generalized linear function.
Definition 6.4. Let regt =

∑t
s=1 `(a

>
s θs, rs)−

∑t
s=1 `(a

>
s θ
∗, rs).

Our definition of regret for online regression is slightly different that in prior works (Abbasi-Yadkori
et al., 2012; Jun et al., 2017). Here θ∗ is choosen to be the true parameter for the bandit model,
while θ∗ is often chosen as arg infθ∈Θ `s(θ) in Abbasi-Yadkori et al. (2012); Jun et al. (2017).
From the perspective of online learning, the algorithms and the corresponding analyses are usually
introduced for either the realizable setting where there exists an underlying θ∗ that incurs zero loss,
or the adversarial setting where the bounded label rs in each round s can be arbitrarily chosen
by the adversary. As a result, the previous approaches by Abbasi-Yadkori et al. (2012); Jun et al.
(2017) do not exploit the ‘stochastic’ property of the labels. Provided that the labels are sequentially
generated with additional stochastic noise, our definition is more reasonable and natural. A recent
work focusing on stochastic online linear regression also discussed the limitation of adversarial
setting (Section 2.2, Ouhamma et al. 2021).

Next we propose a bound for regt which adopts the variance information.
Theorem 6.5 (Regret of FTRL). Set φ(θ) = 2A2K2‖θ‖22/κ and assume that all the data points
fed into the algorithm are of noise variance bounded by σ2

max, then with probability at least 1− 3δ,
∀t ≥ 1, the regret of Algrithm 3 for the first t rounds is bounded as follows:

regt ≤
8A2K2B2

κ
+

9

2κ
R2 log2(4t2/δ) + 3

σ2
max

κ
d log

(
1 +

tAκ2

4dK2

)
.

Remark 6.6. Jun et al. (2017) analyzed the online learning regret for the same function class and
loss function with our setting. Their result yields a regt in the order of Õ(K

2A2B2+R2

κ d). Our result
improves their result in two aspects. First, R is strictly larger than σmax since a R-sub-Gaussian
random variable is definitely of variance lower than R2. Second, when we consider cases where
the bound of reward functions (i.e., KAB) is extremely large compared to R, their result becomes
Õ(K2A2B2d/κ), which has an additional linear dependence on d.

Remark 6.7. Consider a special case where κ = K = 1. Our result degrades to Õ(A2B2 +
R + σ2

maxd). This is essentially a regret upper bound for stochastic online linear regression with
square loss. Recently Ouhamma et al. (2021) studied this stochastic setting and managed to get
rid of the Õ(A2B2d) term in classic result for online linear regression considering adversarial set-
ting. Ouhamma et al. (2021) derived a high probability regret bound of Õ(R2d2) after omitting
the o(log(T )2) terms (Theorem 3.3, Ouhamma et al. 2021). Unlike their result, our result does
not suffer from the quadratic dependence on d, and our result depends on σ2

maxd rather than R2d2.
Therefore, our result is better than that in Ouhamma et al. (2021) when d is large. We also notice
that the discussion in Sec. 3.3 in Ouhamma et al. (2021) yields an improved expected regret of or-
der O(R2d log2 T +R2d2 log T log log T ), but the first term dominates the regret in the asymptotic
sense, i.e., only when T is very large (T ≥ (log T )d).

8
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Algorithm 4 GLOC with multi-level FTRL learners

1: Initialize: V0,l ← λI for all l ∈ [L].
2: while input t, lt,at, rt do
3: Set θt,lt following Algorithm 3, where θt,lt ← argminθ∈Rd φ(θ) +

∑
s∈Ψt+1,lt

`(θ>as, rs).

4: Find t′ = max Ψt,lt .
5: Update Vt,lt ← Vt′,lt + ata

>
t , zt,lt ← a>t θt,lt .

6: Compute θ̂t,lt ← V
−1

t,lt

(∑
s∈Ψt+1,lt

zs,lt · as
)

.

7: Define Ct,lt ← {θ ∈ Rd : ‖θ − θ̂t,lt‖2V−1
t,lt

≤ βt,l}.
8: Define Ct,l ← Ct−1,l for all l ∈ [L]\{lt}.
9: Return Ct,l ← {fθ ∈ F|θ ∈ Ct,l} for all l ∈ [L].

10: end while

6.3 REGRET BOUND OF ALGORITHM 1 WITH GLOC

With our new technical tool presented in the last subsection, we now show our final algorithm for
the generalized linear bandit setting. We propose our algorithm in Algorithm 4. Generally speaking,
Algorithm 4 is a multi-level version of the generalized linear online-to-confidence-set conversion
(GLOC) algorithm proposed by Jun et al. (2017), equipped with FTRL.

As shown in Algorithm 4, we maintain L FTRL online learners in parallel. Under our framework,
a single learner only receives data with similar variances of noise. As a result, we can make use of
the variance-dependent result shown in Theorem 6.5 to derive a tighter regret bound for generalized
linear bandits with heteroscedastic noises.
Theorem 6.8 (Regret bound for generalized linear bandits, informal). Suppose that Assumption 6.1
and 6.2 hold for the known reward function class F . If we apply Algorithm 4 as a subroutine of
Algorithm 1 (in line 9) and set βt,l to

1 +
32A2K2B2

κ2
+

26

κ2
R2 log2(4t2L/δ) + 12

22(l+1)σ2

κ2
d log

(
1 +

tAκ2

4dK2

)
+ λB2

for all t ∈ [T ], l ∈ [L], where L = dlog2R/σe, σ = R/
√
d, then with probability 1− 4δ, the regret

of Algorithm 1 for the first T rounds is bounded as follows:

Regret(T ) = Õ

(
K

κ
d
√
J +

K

κ
(K ·AB +R)

√
dT

)
.

Remark 6.9. In the worst case, i.e. σ1 = · · · = σT = R, our result degraded to Õ(KRd
√
T/κ +

K2AB
√
dT/κ), which still improves the Õ

(
K(KAB +R)d

√
T/κ

)
result provided by Jun et al.

(2017).

Remark 6.10. Applying the regret bound in Corollary 5.4 in generalized linear bandits, we obtain
a regret bound of Õ

(
K(d
√
J + d

√
RT )/κ

)
for the case where K ·A ·B = 1 and R = Ω(1). Our

bound here improved the general result when R = o(d).

Remark 6.11. When restricted to the heteroscedastic linear bandits by setting κ = K = 1, our
result becomes Õ

(
(R+A ·B)

√
dT + d

√
J
)

, which is the same as the Õ
(
R
√
dT + d

√
J
)

regret
in Zhou et al. (2021) when R = Ω(AB).

7 CONCLUSION AND FUTURE WORK

In this work we study heteroscedastic stochastic bandits problem for a general reward function class.
We propose a multi-level regression framework ML2 to deal with the heteroscedastic noises. Under
three different settings with additional assumptions on the noise and the function class, we study the
performance of ML2 and propose corresponding variance-dependent regret bounds, which strictly
improves previous algorithms for homoscedastic bandit setting. We leave to study the optimal regret
bound of heteroscedastic stochastic bandits for a general reward function class for future work.
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Figure 1: Cumulative regret comparison between ML2 and GLOC on a synthetic data.
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A EXPERIMENTS

In this section, we conduct some experiments of the proposed ML2+FTRL algorithm for generalized
linear bandits. We compare our results with GLOC proposed by Jun et al. (2017). For each trial,
the dimension of θ∗ is set to d = 20, and θ∗ is sampled uniformly from [−

√
1/d,

√
1/d]d. At each

round, the action set is of cardinality 100, where each action is uniformly sampled from [−1, 1]d

and normalized to have a unit `2 norm. The link function is set to be the sigmoid function h(z) =
1

1+e−z . The variance upper bound at each round is uniformly sampled from [0, 0.75]. To simulate
the variance bounded condition considered in this paper, our reward is not sampled from Bernoulli
distribution. Instead, at each round t, we sample a random variable ε′t from Poisson distribution, i.e.,
ε̃t ∼ Pois(σ2

t ) and ε′t = min{ε̃t, R} where R is set to 10. Our zero-mean noise εt is computed by
εt = ε′t − E[ε′t]. With this construction, it is not hard to see that εt satisfies Assumption 3.5 with
sub-Gaussian parameter R. We plot the cumulative regret of ML2 and GLOC in Figure 1. We can
see that by adapting the multi-level and variance-aware scheme, our ML2 algorithm outperforms the
previous GLOC algorithm by a large margin.

B PROOF SKECTCH OF THEOREM 5.3

Proof Sketch. We prove the result by showing the validity of the confidence sets and bounding the
sum of single-step regret incurred by each variance level. Step 1: Construction of confidence sets
We first show that the construction of Ct,l is big enough to contain f∗ with high probability. Recall
the definition of Ct,l as follows

Ct,l ←
{
f ∈ F

∣∣ ∑
s∈Ψt,l

[
f(as)− f̂t,l(as)

]2
≤ βt,l

}
(B.1)

Thus, it only suffices to show that f∗ satisfies the inequality in (B.1). According to our ERM sub-
routine, we have ∑

s∈Ψt,l

(f̂t,l(as)− f∗(as))2 + 2
∑
s∈Ψt,l

εs[f
∗(as)− f̂t,l(as)]

=
∑
s∈Ψt,l

(
f̂t,l(as)− rs

)2

−
∑
s∈Ψt,l

(f∗(as)− rs)2 ≤ 0,

12
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where the inequality holds since f̂t,l is the function which minimizes the cumulative squared loss
at level l, i.e.,

∑
s∈Ψt,l

(f(as)− rs)2. Therefore, to bound
∑
s∈Ψt+1,l

(f̂t+1,l(as) − f∗(as))
2, it

suffices to bound the absolute value of
∑
s∈Ψt,l

εs[f
∗(as)− f̂t,l(as)]. Since f̂ suffers from the mea-

surability issue, we use the concentration of self-normalized process with an α-cover discretization
argument to bound this term, which can finally show that f∗ satisfies (B.1). Step 2: Regret decom-
position With the confidence sets corresponding to different variance levels constructed in Step 1,
we decompose the final regret in the following way:

Regret(T ) ≤
∑
l∈[L]

∑
t∈ΨT+1,l

(f∗(a∗t )− f∗(at))

≤
∑
l∈[L]

∑
t∈ΨT+1,l

(
max
f∈Ct,l

f(at)− f∗(at)
)

≤
∑
l∈[L]

∑
t∈ΨT+1,l

wCt,l(at) (B.2)

where the second inequality holds due to the optimism principle for arm selection, the last one
holds due to the definition of width wCt,l(a) := maxf∈Ct,l f(a) −minf∈Ct,l f(a) and the fact that
f∗ ∈ Ct,l from Step 1. Step 3: Bounding the sum of widths From Step 2, the last step to bound
the regret is to bound the summation of the width wCt,l(at). According to the definition of eluder
dimension, we can further bound wCt,l(at) in terms of the eluder dimension of F and the value of β
(See Lemma E.3 for more details). According to the decomposition, we can first bound the regret at
each level l by a Õ(2l

√
|ΨT+1,l|) term (omitting the dependencies on d,R and σ̄) and then naturally

bound the total regret by Lemma E.3 and the Cauchy Schwartz inequality. The full proof is given in
Section F.

C EXAMPLE: VARIANCE-DEPENDENT REGRET BOUNDS FOR BERNOULLI
BANDITS

In this section, we consider the following specific Bernoulli multi-armed bandits with general func-
tion approximation, where the observed reward rt incurred by action at is subject to the following
Bernoulli distribution:

rt = f∗(at) +

{
1/f∗(at), with probability f∗(at)
−1/(1− f∗(at)), otherwise

, ξ ≤ f∗(at) ≤ 1/2. (C.1)

It is easy to see that the noise εt satisfiesR = 1/f∗(at) ≤ 1/ξ and σ2
t = 1/f∗(at)+1/(1−f∗(at)).

As discussed in Remark 3.6, we can use estimators of variance in Algorithm 1 instead of the true
variance at each round.

The following corollary is an illustration on how to apply Algorithm 1 when variance information is
not accessible but can be estimated through past observation.
Corollary C.1. Let the same conditions as in Theorem 5.3 hold. Set α = T−2, σ̄ = 1. At each
round, set σ2

t (at) to min{1, σ̂2(at) + 2/ξ2 · wCt,lt (at)} where σ̂2(at) := 1/f̂t,lt(at) − 1/(1 −
f̂t,lt(at)). Then with probability at least 1 − δ, when T is large enough, the regret of Algo-

rithm 1 for the first T rounds is bounded as Regret(T ) = Õ(
√

dimE logNα
∑T
t=1 Var[rt] +

ξ−3 dimE logNα + ξ−1/2
√

dimE logNαT ).

Proof. We suppose the event described in Theorem 5.1 holds and the conditions of Theorem 5.3
hold without the given variance at each round.

At each round t, we can upper bound the variance of εt := rt − f∗(at) by making use of Ct,l and
f̂t,l returned by Algorithm 2. Specifically, we estimate Var[rt] = σ2

t = 1/f∗(at) + 1/(1− f∗(at))
as 1/f̂t,lt(at)− 1/(1− f̂t,lt(at)) and bound the gap between σ̂2

t and Var[rt]:

|σ̂2
t (at)− Var[rt]| ≤ |1/f̂t,lt(at)− 1/f∗(at)|+ |1/(1− f̂t,l(at))− 1/(1− f∗(at))|
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≤ 2/ξ2 · |f̂t,lt(at)− f∗(at)|
≤ 2/ξ2 · wCt,lt (at). (C.2)

where the first inequality follows from the distribution of reward, and the last inequality holds ac-
cording to Theorem 5.1.

Therefore, it is valid to replace σ2
t by min{1, σ̂2

t + 2/ξ2 · wCt,lt (at)} in Algorithm 1.

Similar to the proof of Theorem 5.3, we have

J =

T∑
t=1

min{1, σ̂2
t + 2/ξ2 · wCt,lt (at)}

≤
T∑
t=1

min{1,Var[rt] + 4/ξ2 · wCt,lt (at)}

≤
T∑
t=1

Var[rt] + 4/ξ2 ·
∑
l∈[L]

∑
s∈ΨT+1,l

wCs,l(as)

≤
T∑
t=1

Var[rt] + 4/ξ2 · L
(

1/T + d+ 4βT,L
√
dT
)

where the first equality follows from the definition of J , the first inequality follows from (C.2), the
last inequality holds due to Lemma E.2.

Hence J is of order Õ(
∑T
t=1 Var[rt] + 1/ξ3 ·

√
d logNαT ).

According to Theorem 5.3, the regret bound of Algorithm 1 for this Bernoulli bandit problem is of
order

Õ(

√
dimE logNα

∑T
t=1Var[rt] + 1/ξ3/2 · dim

3/4
E (logNα)3/4T 1/4 +

√
ξ−1 dimE logNαT )

≤ Õ(

√
dimE logNα

∑T
t=1Var[rt] + ξ−3 dimE logNα + ξ−1/2

√
dimE logNαT ).

This completes the proof.

D GAP-DEPENDENT REGRET BOUNDS

In this section, we provide gap-dependent regret bounds for Algorithm 1 with various subroutines.

Denote ∆t as the smallest gap between the reward of an optimal action and the reward of a sub-
optimal action:

∆t := min
a∈Dt,a/∈D∗t

[f∗(a∗t )− f∗(a)], (D.1)

where D∗t := argmaxa∈Dt
f∗(a). Let ∆ be the smallest gap in all the rounds: ∆ := mint∈[T ] ∆t.

Theorem D.1 (Gap-dependent regret bound for bandits with heteroscedastic sub-Gaussian noise).
Suppose Assumption 3.4 and 4.1 hold and |f∗(a)| ≤ C for all a ∈ A. Let σmax = maxt∈[T ] σt and
suppose σmax > σ. If we apply Algorithm 2 as a subroutine of Algorithm 1 (in line 9) and set βt,l
as the same value in Theorem 4.2, then with probability at least 1− δ, the regret of Algorithm 1 for
the first T rounds is bounded as follows:

Regret(T ) ≤ L

∆

(
4 dimE C

2 + 1/T
)

+ 16
LTαC

∆
dimE(log T + 1)

+ 128
L

∆
σ2

max log(2NαL/δ) dimE(log T + 1) + 32
L

∆
Tασmax

√
log(8T 2L/δ) dimE(log T + 1).

Corollary D.2. Let the same conditions as in Theorem D.1 hold. Set α = T−2. Then with proba-
bility at least 1− δ, when T is large enough, the regret for the first T rounds is bounded as follows:

Regret(T ) = Õ

(
σ2

max

∆
dimE log(N (F , T−2, ‖ · ‖∞))

)
.
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Remark D.3. Corollary D.2 immediately suggests an Õ(R2 dimE log(N (F , T−2, ‖·‖∞))/∆) gap-
dependent regret by the fact σmax = O(R), which provides a novel instance-dependent bound for
the original problem considered by Russo & Van Roy (2013). To our knowledge, this is the first
result of its kind for the general bandit model.
Remark D.4. When restricted to linear contextual bandits with dimension d, our result reduces to
Õ(σ2

maxd
2/∆), which matches the previous result derived in Abbasi-Yadkori et al. (2011).

Theorem D.5 (Gap-dependent regret bound for bandits with heteroscedastic noise, informal). Sup-
pose Assumption 3.4 holds and |f∗(a)| ≤ 1 for all a ∈ A. Let σmax = maxt∈[T ] σt (suppose
σmax > σ) and d = dimE(F , 1/T ). If we apply Algorithm 2 as a subroutine of Algorithm 1 (in
line 9) and set βt,l as the same value in Theorem 5.3, then with probability at least 1− 2δ, the regret
of Algorithm 1 for the first T rounds is bounded as follows:

Regret(T ) = Õ

(
σ2

max

∆
d logNα +

R

∆
d logNα

)
if T is large enough and we set α = T−2.
Remark D.6. Similar to Remark 5.5, compared with the regret in Corollary D.2, the regret in The-
orem D.5 has an additional term that depends on R.

E PROOFS FROM SECTION 4

Lemma E.1 (Proposition 3, Russo & Van Roy 2013). If (βt ≥ 0|t ∈ N) is a nondecreasing sequence

and Ft :=

{
f ∈ F :

∑t−1
s=1

(
f̂t(as)− f(as)

)2

≤ β2
t

}
, then

T∑
t=1

1(wFt
(at) > ε) ≤

(
4β2

T

ε2
+ 1

)
dimE(F , ε)

for all T ∈ N and ε > 0.
Lemma E.2 (Lemma 2, Russo & Van Roy 2013). If (βt ≥ 0|t ∈ N) is a nondecreasing sequence

and Ft :=

{
f ∈ F :

∑t−1
s=1

(
f̂t(as)− f(as)

)2

≤ β2
t

}
, then

T∑
t=1

wFt
(at) ≤

1

T
+ wF (A) · dimE(F , T−2) + 4βT

√
dimE(F , T−2)T

for all T ∈ N.

Instead of using the previous approach that bounds the sum of widths, we take another approach to
bound the sum of squared widths, which can further provide a novel gap-dependent result later.
Lemma E.3 (Bounding the sum of the square of widths). If (βt ≥ 0|t ∈ N) is a nondecreasing

sequence and Ft :=

{
f ∈ F :

∑t−1
s=1

(
f̂t(as)− f(as)

)2

≤ β2
t

}
, then

T∑
t=1

w2
Ft

(at) ≤ dimE(F , 1/
√
T )w2

F (A) + 1 + 4β2
T dimE(F , 1/

√
T )(log T + 1)

for all T ∈ N.

Proof. Following a similar approach as Russo & Van Roy (2013), we reorder the set {wFt
(at)}t∈[T ]

to {wt}t∈[T ], such that w1 ≥ w2 ≥ · · · ≥ wT .

Let T ′ = max{t ∈ [T ], wt ≥ 1
T }. By Lemma E.1,

t ≤
(

4β2
T

(wt − δ)2
+ 1

)
dimE(F , wt − δ) (E.1)
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for any δ ∈ (0, ε). Taking δ → 0, we have

w2
t ≤

4β2
T dimE(F , wt)

t− dimE(F , wt)
. (E.2)

Hence,

T∑
t=1

w2
Ft

(at) =

T∑
t=1

w2
t (E.3)

≤ dimE(F , 1/T )w2
F (A) + 1/T +

T ′∑
t=dimE(F,1/T )+1

w2
t

≤ dimE(F , 1/T )w2
F (A) + 1/T +

T ′∑
t=dimE(F,1/T )+1

4β2
T dimE(F , 1/T )

t− dimE(F , 1/T )

≤ dimE(F , 1/T )w2
F (A) + 1/T + 4β2

T dimE(F , 1/T )(log T + 1),

where the first inequality holds due to
∑T
t=T ′+1 w

2
t ≤ 1/T under our definition of T ′, the second

inequality follows from (E.2), the third inequality is derived by taking the integral.

With Assumption 4.1, we can directly apply the previous result on confidence set by replacing the
sub-Gaussianity η parameter by 2`+1σ. Previous result by Russo & Van Roy (2013) achieved a
confidence set of radius Õ(

√
η2 logNα + αt(C + η)). Ayoub et al. (2020) later provides a result

of the same order with improvement in terms of smaller constants.

Lemma E.4 (Theorem 5, Ayoub et al. 2020). Suppose that |f∗(a)| ≤ C for all a ∈ A. For any
α > 0, if we set

βt,l =

[
8(2l+1 · σ)2 log(2NαL/δ) + 4tα(C +

√
(2l+1 · σ)2 log(4t(t+ 1)L/δ))

]1/2

, (E.4)

then with probability at least 1− δ, for all t ≥ 1, l ∈ [L], f∗ ∈ Ct,l.
Theorem E.5 (Restatement of Theorem 4.2). Suppose Assumptions 3.4 and 4.1 hold and |f∗(a)| ≤
C for all a ∈ A. For all t ∈ [T ], l ∈ [L] and δ ∈ (0, 1), α > 0, σ > 0, if we apply Algorithm 2 as a
subroutine of Algorithm 1 (in line 9) and set βt,l as the square root of

8(2l+1 · σ)2 log(2NαL/δ) + 4tα(C +
√

(2l+1 · σ)2 log(4t(t+ 1)L/δ)),

where Nα = N (F , α, ‖ · ‖∞) and L = dlog2R/σe (recall the definition of L in Algorithm 1), then
with probability at least 1− δ, the regret for the first T rounds is bounded as follows:

Regret(T ) ≤ L+ 2C dimE L+ 8
√

2LdimE(J + σ2T ) log(2NαL/δ)

+ 4
√
LdimE α

√
C + 2R

√
log(4T (T + 1)L/δ)T.

Proof. For simplicity, let d = dimE(F , 1/T 2).

With probability at least 1− δ, we have

Regret(T ) =

T∑
t=1

(f∗(a∗t )− f∗(at)) (E.5)

=
∑
l∈[L]

∑
t∈ΨT+1,l

(f∗(a∗t )− f∗(at))

≤
∑
l∈[L]

∑
t∈ΨT+1,l

(
max
f∈Ct,l

f(at)− f∗(at)
)

16
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≤
∑
l∈[L]

(
1 + 2C · d+ 4βT,l

√
d|ΨT+1,l|

)

≤ L+ 2CdL+ 2

√
L
∑
l∈[L]

β2
T,ld|ΨT+1,l|

︸ ︷︷ ︸
I0

, (E.6)

where the first equality holds by the definition in (3.1), the second equality holds since ΨT+1,· forms
a partition of [T ], the first inequality holds due to Lemma E.4, the second inequality follows from
Lemma E.3, the third inequality is obtained by applying Cauchy-Schwarz inequality.

Then we continue to bound I0,

I0 =

√
L
∑
l∈[L]

∑
t∈ΨT+1,l

β2
T,ld

≤
√
Ld

√∑
l∈[L]

∑
t∈ΨT+1,l

8(2l+1 · σ)2 log(2NαL/δ)

+
√
Ld

√∑
l∈[L]

∑
t∈ΨT+1,l

4Tα(C +
√

(4R2 · log(4T (T + 1)L/δ))

≤
√
Ld

√∑
l∈[L]

∑
t∈ΨT+1,l

8(2l+1 · σ)2 log(2NαL/δ) + 2
√
αT

√
C + 2R

√
log(4T (T + 1)L/δ)


≤
√
Ld


√√√√ T∑

t=1

32(σ2
t + σ2) log(2NαL/δ) + 2

√
αT

√
C + 2R

√
log(4T (T + 1)L/δ)


≤
√

32Ld(J + σ2T ) log(2NαL/δ) + 2
√
Ldα

√
C + 2R

√
log(4T (T + 1)L/δ)T, (E.7)

where the first inequality follows from the definition of βT,l, the third inequality holds due to the
fact that

∀l ∈ [L], t ∈ ΨT+1,l, 2l+1σ = 2 · 2lσ ≤ 2 max{σ, σt} =
√

4 max{σ2, σ2
t } ≤

√
4(σ2 + σ2

t ),

the fourth inequality follows from the definition of J .

Substituting (E.7) into (E.6), we obtain

Regret(T ) ≤ L+ 2CdL+ 8
√

2Ld(J + σ2T ) log(2NαL/δ)

+ 4
√
Ldα

√
C + 2R

√
log(4T (T + 1)L/δ)T,

which completes the proof.

Theorem E.6 (Restatement of Theorem D.1). Suppose Assumptions 3.4 and 4.1 hold and |f∗(a)| ≤
C for all a ∈ A. Let σmax = maxt∈[T ] σt. If we apply Algorithm 2 as a subroutine of Algorithm
1 (in line 9) and set βt,l as the same value in Theorem 4.2, then with probability at least 1 − δ, the
regret of Algorithm 1 for the first T rounds is bounded as follows:

Regret(T ) ≤ L

∆

(
4 dimE C

2 + 1/T
)

+ 16
LTαC

∆
dimE(log T + 1)

+ 128
L

∆
σ2
max log(2NαL/δ) dimE(log T + 1)

+ 32
L

∆
Tασmax

√
log(8T 2L/δ) dimE(log T + 1).

Proof. For simplicity, let d = dimE(F , 1/T 2).
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Suppose the event described in Lemma E.4 holds. With probability at least 1− δ,

Regret(T )

=

T∑
t=1

(f∗(a∗t )− f∗(at))

=
∑
l∈[L]

∑
t∈ΨT+1,l

(f∗(a∗t )− f∗(at))

≤
∑
l∈[L]

∑
t∈ΨT+1,l

(f∗(a∗t )− f∗(at))
2
/∆

≤
∑
l∈[L]

∑
t∈ΨT+1,l

(
max
f∈Ct,l

f(at)− f∗(at)
)2

/∆

≤ 1

∆

∑
l∈[L]

∑
t∈ΨT+1,l

w2
Ct,l

(Dt)

≤ 1

∆

∑
l∈[L]

(
4dC2 + 1/T + 4β2

T,ld(log T + 1)
)

≤ L

∆
·
(
4dC2 + 1/T

)
+ 4

L

∆
d(log T + 1)

(
32σ2

max log(2NαL/δ) + 4Tα(C + 2
√
σ2
max log(4T (T + 1)L/δ))

)
where the first equality follows from the definition in (3.1), the second equality holds by the fact
that ΨT+1,l (l ∈ [L]) forms a partition of [T ], the first inequality holds due to the definition of ∆ in
Subsection 3.1, the second inequality follows from Lemma E.4, the fourth inequality holds due to
Lemma E.3 and the last inequality is derived by directly substituting the value of βT,l.

F PROOFS FROM SECTION 5

Lemma F.1 (Freedman 1975). LetM,v > 0 be fixed constants. Let {xi}ni=1 be a stochastic process,
{Gi}i be a filtration so that for all i ∈ [n], xi is Gi-measurable, while most surely E[xi|Gi−1] = 0,
|xi| ≤M and

n∑
i=1

E(x2
i |Gi) ≤ v.

Then, for any δ > 0, with probability 1− δ, for all t ∈ [n],

t∑
i=1

xi ≤
√

2v log(2t2/δ) + 2/3 ·M log(2t2/δ).

Lemma F.2. Suppose a, b ≥ 0. If x2 ≤ a+ b · x, then x2 ≤ 2b2 + 2a.

Proof. By solving the root of quadratic polynomial q(x) := x2−b·x−a, we obtain max{x1, x2} =

(b+
√
b2 + 4a)/2. Hence, we have x ≤ (b+

√
b2 + 4a)/2 provided that q(x) ≤ 0. Then we further

have

x2 ≤ 1

4

(
b+

√
b2 + 4a

)2

≤ 1

4
· 2
(
b2 + b2 + 4a

)
≤ 2b2 + 2a. (F.1)

Theorem F.3 (Restatement of Theorem 5.1). Suppose that |f∗(a)| ≤ C for all a ∈ A. For any
α > 0 and δ ∈ (0, 1/2), if we set βt,l as the square root of

12Cαt+ 4αRt+
8

3
CR log(2Nαt

2/δ) + 16 · (2l+1σ)2 log(2Nαt
2/δ)
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where

R = R
√

2 log(4t2/δ),

then f∗ ∈ Ct,l for all t with probability at least 1− 2δ for any fixed l.

Proof. By simple calculation, for all f ∈ F we have∑
s∈Ψt,l

(f(as)− f∗(as))2 + 2
∑
s∈Ψt,l

εs[f
∗(as)− f(as)]︸ ︷︷ ︸

I(f)

=
∑
s∈Ψt,l

(rs − f(as))
2 −

∑
s∈Ψt,l

(rs − f∗(as)2.

(F.2)

By sub-Gaussianity of εt we have

P
(
∃t ≥ 1, max

1≤s≤t
|εs| ≥ R

√
2 log(4t2/δ)

)
≤
∑
s≥1

P(|εs| ≥ R
√

2 log(4s2/δ)) ≤
∑
s≥1

δ/(2s2) ≤ δ.

(F.3)

For simplicity, let event EsubG :=
{
∀t ≥ 1,max1≤s≤t |εs| ≤ R

√
2 log(4t2/δ)

}
.

Let G(α) ⊂ F be an α-cover of F in ‖ · ‖∞.

From the definition of f̂t,l, we have∑
s∈Ψt,l

(f̂t,l(as)− f∗(as))2 + 2
∑
s∈Ψt,l

εs[f
∗(as)− f̂t,l(as)] = I(f̂t,l) ≤ 0. (F.4)

Let g = argminG(α) ‖f̂t,l − g‖∞.

We then bound the gap I(g)− I(f̂t,l) under event EsubG,

I(g)− I(f̂t,l) =
∑
s∈Ψt,l

[
(g(as)− f∗(as))2 − (f̂t,l(as)− f∗(as))2

]
+ 2

∑
s∈Ψt,l

εs[f̂t,l(as)− g(as)]

≤
∑
s∈Ψt,l

(g(as)− f̂t,l(as))(g(as) + f̂t,l(as)− 2f∗(as)) + 2
∑
s∈Ψt,l

αR
√

2 log(4t2/δ)

≤ 4Cαt+ 2αR
√

2 log(4t2/δ)t. (F.5)

Fix an f ∈ F . Applying Freedman’s inequality (Lemma F.1), with probability at least 1 − δ, we
have∑
s∈Ψt,l

εs · 1(EsubG)[f∗(as)− f(as)] ≥ −2/3R
√

2 log(4t2/δ)C log(2t2/δ)

−
√

2 · (2l+1σ)2
∑
s∈Ψt,l

(f(as)− f∗(as))2 log(2t2/δ).

(F.6)

for all t ≥ 1.

Using a union bound on all the f ∈ G(α) and EsubG, we further obtain that∑
s∈Ψt,l

εt[f
∗(as)− f(as)] ≥

− 2

3
R
√

2 log(4t2/δ)C log(2Nαt
2/δ)−

√
2(2l+1σ)2 log(2Nαt2/δ)

∑
s∈Ψt,l

(f(as)− f∗(as))2

(F.7)

for all f ∈ G(α) with probability at least 1− 2δ.

19



Under review as a conference paper at ICLR 2023

Substituting (F.7) into the definition of I(f), we have that for g, it holds for probability at least 1−2δ
that

4Cαt+ 2αR
√

2 log(4t2/δ)t ≥ I(g) (F.8)

≥ −4

3
R
√

2 log(4t2/δ)C log(2Nαt
2/δ) (F.9)

−
√

8 · (2l+1σ)2 log(2Nαt2/δ)
∑
s∈Ψt,l

(g(as)− f∗(as))2 (F.10)

+
∑
s∈Ψt,l

(g(as)− f∗(as))2 (F.11)

where the first inequality is obtained by substituting (F.5) and (F.4) into the inequality below

I(g) ≤ I(g)− I(f̂t,l) + I(f̂t,l),

the second inequality follows from the definition of I(f) and (F.7).

Using Lemma F.2, we can deduce that∑
s∈Ψt,l

(g(as)− f∗(as))2 ≤ 8Cαt+ 4αR
√

2 log(4t2/δ)t+
8

3
RC
√

2 log(4t2/δ) log(2Nαt
2/δ)

+ 16 · (2l+1σ)2 log(2Nαt
2/δ).

Then we can complete the proof by bounding the gap between
∑
s∈Ψt,l

(g(as) − f∗(as))
2 and∑

s∈Ψt,l
(f̂t,l(as)− f∗(as))2:∑

s∈Ψt,l

(f̂t,l(as)− f∗(as))2 ≤
∑
s∈Ψt,l

(g(as)− f∗(as))2

+

∣∣∣∣∣∣
∑
s∈Ψt,l

(g(as)− f∗(as))2 −
∑
s∈Ψt,l

(f̂t,l(as)− f∗(as))2

∣∣∣∣∣∣
≤ 12Cαt+ 4αR

√
2 log(4t2/δ)t+

8

3
RC
√

2 log(4t2/δ) log(2Nαt
2/δ)

+ 16 · (2l+1σ)2 log(2Nαt
2/δ).

Theorem F.4 (Restatement of Theorem 5.3). Suppose Assumption 3.4 holds and |f∗(a)| ≤ 1 for
all a ∈ A. For all t ∈ [T ], l ∈ [L] and δ ∈ (0, 1), α > 0, σ > 0, if we apply Algorithm 2 as a
subroutine of Algorithm 1 (in line 9) and set βt,l as the square root of

12αt+ 4αRt+
8

3
R log(2Nαt

2L/δ) + 16 · (2l+1σ)2 log(2Nαt
2L/δ)

where Nα = N (F , α, ‖ · ‖∞) and R = R
√

2 log(4t2L/δ) (with a slight abuse of notation), then
with probability at least 1− 2δ, the regret for the first T rounds is bounded as follows:

Regret(T ) ≤ 4
√
LdimE(log T + 1)α

√
3 +RT + 2

√
8

3
LdimE(log T + 1)R log(2Nαt2L/δ)T

+ 16
√
LdimE(log T + 1) log(2NαT 2L/δ)

√
J + Tσ2 +

√
L
(

2
√

dimE T + 1
)
.

Proof. For simplicity, let d = dimE(F , 1/T ).

Based on Theorem 5.1, for any fixed l, we have f∗ ∈ Ct,l with probability 1 − 2δ/L. Applying a
union bound on all l ∈ [L], we have f∗ ∈ Ct,l for all t, l with probability at least 1− 2δ.

Then we further obtain, with probability at least 1− 2δ,

Regret(T ) =

T∑
t=1

(f∗(a∗t )− f∗(at))
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=
∑
l∈[L]

∑
t∈ΨT+1,l

(f∗(a∗t )− f∗(at))

≤
∑
l∈[L]

∑
t∈ΨT+1,l

(
max
f∈Ct,l

f(at)− f∗(at)
)

=
∑
l∈[L]

∑
t∈ΨT+1,l

(
max
f∈Ct,l

f(at)− f∗(at)
)√
|ΨT+1,l| ·

1√
|ΨT+1,l|

≤
√
L ·
√∑
l∈[L]

|ΨT+1,l|
∑

t∈ΨT+1,l

w2
Ct,l(Dt)

≤
√
L ·
√∑
l∈[L]

|ΨT+1,l|
(

4d+ 1/T + 4β2
T,ld(log T + 1)

)
where the first equality follows from the definition in (3.1), the second equality holds by the fact
that ΨT+1,l (l ∈ [L]) forms a partition of [T ], the second inequality follows from Cauchy-Schwarz
inequality and Definition in (3.3), the third inequality follows from Lemma E.3.

Following the definition of βt,l, we further calculate

Regret(T ) ≤
√
L
(

2
√
dT + 1

)
+
√
L ·
√∑
l∈[L]

∑
t∈ΨT+1,l

64(2l+1σ)2 log(2NαT 2L/δ)d(log T + 1)

+ 2
√
Ld(log T + 1)T

√
12αT + 4αRT +

8

3
R log(2NαT 2L/δ)

≤
√
L
(

2
√
dT + 1

)
+ 4
√
Ld(log T + 1)α

√
3 +RT

+ 2

√
8

3
Ld(log T + 1)R log(2Nαt2L/δ)T

+
√
Ld(log T + 1) log(2NαT 2L/δ)

√√√√ T∑
t=1

256(σ2
t + σ2)

≤
√
L
(

2
√
dT + 1

)
+ 4
√
Ld(log T + 1)α

√
3 +RT

+ 2

√
8

3
Ld(log T + 1)R log(2Nαt2L/δ)T

+ 16
√
Ld(log T + 1) log(2NαT 2L/δ)

√
J + Tσ2,

where the first inequality holds by the definition of βt,l and the fact that
√
a+ b ≤

√
a +
√
b for

a, b > 0, the second inequality follows from the definition of lt, the third inequality follows from
the definition of J .

Theorem F.5 (Formal version of Theorem D.5). Suppose Assumption 3.4 holds and |f∗(a)| ≤ 1
for all a ∈ A. Let σmax = maxt∈[T ] σt and d = dimE(F , 1/T ). If we apply Algorithm 2 as
a subroutine of Algorithm 1 (in line 9) and set βt,l as the same value in Theorem 5.3, then with
probability at least 1− 2δ, the regret of Algorithm 1 for the first T rounds is bounded as follows:

Regret(T ) ≤ L

∆
(4d+ 1/T ) +

LαT

∆
d(log T + 1)(12 + 4R) +

32

3

L

∆
Rd(log T + 1) log(2NαT

2L/δ)

+ 256
L

∆
σ2

maxd(log T + 1) log(2NαT
2L/δ).

Proof. For simplicity, let d = dimE(F , 1/T ).

Basically following the previous approach in Theorem D.1, with probability 1− 2δ, we have

Regret(T ) =

T∑
t=1

(f∗(a∗t )− f∗(at))
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=
∑
l∈[L]

∑
t∈ΨT+1,l

(f∗(a∗t )− f∗(at))

≤
∑
l∈[L]

∑
t∈ΨT+1,l

(f∗(a∗t )− f∗(at))
2
/∆

≤
∑
l∈[L]

∑
t∈ΨT+1,l

(
max
f∈Ct,l

f(at)− f∗(at)
)2

/∆

≤ 1

∆

∑
l∈[L]

∑
t∈ΨT+1,l

w2
Ct,l(Dt)

≤ 1

∆

∑
l∈[L]

(
4 + 1/T + 4β2

T,ld(log T + 1)
)

≤ L

∆
· (4d+ 1/T )

+ 4
L

∆
d(log T + 1)

(
12αT + 4αRT +

8

3
R log(2NαT

2L/δ) + 64σ2
max log(2NαT

2L/δ)

)
=
L

∆
(4d+ 1/T ) +

LαT

∆
d(log T + 1)(12 + 4R) +

32

3

L

∆
Rd(log T + 1) log(2NαT

2L/δ)

+ 256
L

∆
σ2

maxd(log T + 1) log(2NαT
2L/δ),

where the first equality holds by the definition in (3.1), the second equality holds by the fact that
ΨT+1,l (l ∈ [L]) forms a partition of [T ], the first inequality follows from the definition of ∆ in
(D.1), the third inequality follows from Definition (3.3), the fourth inequality holds by Lemma E.3,
the fifth inequality follows from the definition of βT,l.

G PROOFS FROM SECTION 6

Lemma G.1. Let regt :=
∑t
s=1 `(a

>
s θ, rs) −

∑t
s=1 `(a

>
s θ
∗, rs). Following Algorithm 3, with

probability at least 1− δ,

t∑
s=1

(a>s (θs − θ∗))2 ≤ 4

κ
regt +

8R2

κ2
log(4t2/δ) (G.1)

for all t ≥ 1. We denote the corresponding event by E1.

Proof.

regt =

t∑
s=1

`(a>s θ, rs)−
t∑

s=1

`(a>s θ
∗, rs)

=

t∑
s=1

`′(a>s θ
∗, rs)a

>
s (θs − θ∗) +

`′′(ξs, rs)

2
(a>s θs − a>s θ

∗)2

≥ −
t∑

s=1

εsa
>
s (θs − θ∗) +

κ

2
(a>s θs − a>s θ

∗)2

where the first equality follows from Definition 6.4, the second equality holds by Taylor series
expansion and ξs is a point between a>s θ and a>s θ

∗, the first inequality follows from Assumption
6.2 and Assumption 6.3.

Further we obtain
t∑

s=1

(a>s (θs − θ∗))2 ≤ 2

κ

t∑
s=1

εsa
>
s (θs − θ∗) +

2

κ
regt
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≤ 2

κ
R

√√√√2

t∑
s=1

(a>s (θs − θ∗))2 log(2/δ) +
2

κ
regt

with probability 1− δ, where the second inequality follows from the sub-Gaussianity of εs.

Applying Lemma F.2, we obtain that with probability at least 1− δ,
t∑

s=1

(a>s (θs − θ∗))2 ≤ 4

κ
regt +

8

κ2
R2 log(2/δ).

Applying union bound on all t ≥ 1, we have with probability at least 1− δ,
t∑

s=1

(a>s (θs − θ∗))2 ≤ 4

κ
regt +

8

κ2
R2 log(4t2/δ) (G.2)

for all t ≥ 1.

Lemma G.2 (Lemma 11, Abbasi-Yadkori et al. 2011). For any λ > 0 and sequence {xt}Tt=1 ⊂ Rd
for t ∈ {0, 1, · · · , T}, define Zt = λI +

∑t
i=1 xix

>
i . Then, provided that ‖xt‖2 ≤ M for all

t ∈ [T ], we have
T∑
t=1

min{1, ‖xt‖2Z−1
t−1

} ≤ 2d log
dλ+ TM2

dλ
.

Lemma G.3. For any λ > 0 and sequence {xt}Tt=1 ⊂ Rd for t ∈ {0, 1, · · · , T}, define Zt =

λI +
∑t
i=1 xix

>
i . Then, provided that ‖xt‖2 ≤M for all t ∈ [T ], we have

T∑
t=1

‖xt‖2Z−1
t
≤ 2d log

dλ+ TM2

dλ
.

Proof. Applying matrix inversion lemma,
T∑
t=1

‖xt‖2Z−1
t

=

T∑
t=1

x>t Z−1
t xt

=

T∑
t=1

x>t

(
Z−1
t−1 −

Z−1
t−1xtx

>
t Z−1

t−1

1 + x>t Z−1
t−1xt

)
xt

=

T∑
t=1

‖xt‖2Z−1
t−1

1 + ‖xt‖2Z−1
t−1

≤
T∑
t=1

min{1, ‖xt‖2Z−1
t−1

}

≤ 2d log
dλ+ TM2

dλ
,

where the second equality follows from matrix inversion lemma, the second inequality holds by
Lemma G.2.

Lemma G.4. Let

Σt :=
4A2K2

κ
I + κ

t∑
i=1

ai · a>i ,

σmax := max
t≥1

σt.

Suppose Rt is an upper bound of max1≤s≤t |εs|. Then with probability at least 1 − δ, it holds
simultaneously for all t ≥ 1 that
t∑

s=1

(
ε2s − E[ε2s]

)
‖as‖2Σ−1

s
≤ σmaxRt

K

√
d log

(
1 +

tAκ2

4dK2
log(2t2/δ)

)
+

2

3κ

(
σ2

max +R
2

t

)
log(2t2/δ).
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Proof. To bound the sum of variance of each term, we caulculate
t∑

s=1

Var
[
ε2s − E[ε2s]

]
‖as‖4Σ−1

s
≤

t∑
s=1

E[ε4s]‖as‖4Σ−1
s

≤
t∑

s=1

κ

4K2
E[ε2s]R

2

t‖as‖2Σ−1
s

≤ σ2
max

R
2

t

2K2
d log

(
1 +

tAκ2

4dK2

)
,

where the second inequality follows from the definition of Σt, the third inequality holds by Lemma
G.2.

Also note that

max
1≤s≤t

(
ε2s − E[ε2s]

)
‖as‖2Σ−1

s
≤
(
σ2

max +R
2

t

) 1

κ

since Σt � 4A2K2

κ I + κas · a>s .

Then we apply Freedman’s inequality, which gives for arbitrary t ≥ 1,
t∑

s=1

(
ε2s − E[ε2s]

)
‖as‖2Σ−1

s
≤ σmaxRt

K

√
d log

(
1 +

tAκ2

4dK2

)
log(1/δ) + 2/3 · 1

κ

(
σ2

max +R
2

t

)
log(1/δ)

with probability at least 1− δ.

Applying a union bound on all t ≥ 1, we have with probability at least 1− δ,
t∑

s=1

(
ε2s − E[ε2s]

)
‖as‖2Σ−1

s
≤ σmaxRt

K

√
d log

(
1 +

tAκ2

4dK2

)
log(2t2/δ) +

2

3κ

(
σ2

max +R
2

t

)
log(2t2/δ)

(G.3)

since
∑
t≥1

δ
2t2 ≤ δ.

Theorem G.5 (Restatement of Theorem 6.5). If we set φ(θ) = 2A2K2

κ ‖θ‖22 and assume that all the
data points fed into the algorithm are of noise variance bounded by σ2

max, then with probability at
least 1− 3δ, ∀t ≥ 1, the regret of Algrithm 3 for the first t rounds is bounded as follows:

regt ≤
8A2K2B2

κ
+

9

2κ
R2 log2(4t2/δ) + 3

σ2
max

κ
d log

(
1 +

tAκ2

4dK2

)
.

Proof. For simplicity, let Lt(θ) =
∑t−1
s=1 `(θ

>as, rs) + φ(θ) and losst(θ) = Lt(θ)− φ(θ).

Suppose event E1, event EsubG :=
{
∀t ≥ 1,max1≤s≤t |εs| ≤ R

√
2 log(4t2/δ)

}
and the event de-

scribed in Lemma G.4 (denoted by E2) simultaneously hold in the following proof.

By sub-Gaussianity of εt we have

P
(
∃t ≥ 1, max

1≤s≤t
|εs| ≥ R

√
2 log(4t2/δ)

)
≤
∑
s≥1

P(|εs| ≥ R
√

2 log(4s2/δ)) ≤
∑
s≥1

δ/(2s2) ≤ δ.

(G.4)

Hence, P(EsubG) ≥ 1 − δ. Applying Lemma G.1 and Lemma G.4, we have that
P(EsubG ∩ E1 ∩ E2) ≥ 1− 3δ by union bound.

From the update rule of Algorithm 3, we calculate
t∑

s=1

`(a>s θs, rs)−
t∑

s=1

`(a>s θ
∗, rs)
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=

t∑
s=1

[losss(θs)− losss+1(θs+1) + `(a>s θs, rs)] + losst+1(θt+1)− losst+1(θ∗)

=

t∑
s=1

[Ls+1(θs)− Ls+1(θs+1)]− φ(θ1) + φ(θ∗) + Lt+1(θt+1)− Lt+1(θ∗)

≤ 2 max
θ∈Θ
|φ(θ)|+

t∑
s=1

[Ls+1(θs)− Ls+1(θs+1)]︸ ︷︷ ︸
I1

. (G.5)

where the first equality follows from the definition of loss, the second equality holds by the definition
of L, the first inequality holds since Lt+1(θt+1) = minθ∈Rd Lt+1(θ).

Then we continue to bound I1.

I1 =

t∑
s=1

[Ls+1(θs)− Ls+1(θs+1)]

=
t∑

s=1

[
−
〈
∂Ls+1

∂θ
(θs),θs+1 − θs

〉
− (θs+1 − θs)

>Hs+1(θ′s)(θs+1 − θs)

]

=

t∑
s=1

[
−(h(a>s θs)− rs) 〈as,θs+1 − θs〉 − (θs+1 − θs)

>Hs+1(θ′s)(θs+1 − θs)
]

≤ 1

4

t∑
s=1

(h(a>s θs)− rs)2‖as‖2H−1
s+1(θ′s)

≤ 1

2

t∑
s=1

(h(a>s θs)− h(a>s θ
∗))2‖as‖2H−1

s+1(θ′s)
+

1

2

t∑
s=1

ε2s‖as‖2H−1
s+1(θ′s)

≤ 1

2
K2

t∑
s=1

(a>s θs − a>s θ
∗)2‖as‖2H−1

s+1(θ′s)︸ ︷︷ ︸
I2

+
1

2

t∑
s=1

ε2s‖as‖2H−1
s+1(θ′s)︸ ︷︷ ︸

I3

(G.6)

where the second equality holds due to Taylor Expansion, (Let H be the Hessian matrix and
θ′s ∈ Rd), the third equality follows from the fact that ∂Ls

∂θ (θs) = 0 and ∂Ls+1

∂θ (θs) = ∂Ls

∂θ (θs) +
∂`(θ>as,rs)

∂θ (θs)the first inequality is obtained by solving the quadratic function with respect to
θs+1 − θs, the second inequality follows from (a+ b)2 ≤ 2a2 + 2b2.

From the definition of H, we calculate

Hs+1(θ) =
∂

∂θ
[∇θLs+1] (G.7)

=
∂

∂θ

[
s∑
i=1

(h(a>i θ)− ri) · ai +∇θφ

]
(G.8)

� 4A2K2

κ
I + κ

s∑
i=1

ai · a>i = Σs. (G.9)

From Lemma G.1,

I2 ≤
[

4

κ
regt +

8R2

κ2
log(4t2/δ)

]
κ

4K2

≤ 1

K2
regt +

2R2

κK2
log(4t2/δ). (G.10)

We bound I3 by decomposing it into its expected value and a zero-mean term.

I3 ≤
t∑

s=1

σ2
s‖as‖2H−1

s+1(θ′s)
+

t∑
s=1

(
ε2s − E[ε2s]

)
‖as‖2H−1

s+1(θ′s)
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≤
t∑

s=1

σ2
s‖as‖2Σ−1

s
+

t∑
s=1

(
ε2s − E[ε2s]

)
‖as‖2Σ−1

s

≤ 2
σ2

max

κ
d log

(
1 +

tAκ2

4dK2

)
+

t∑
s=1

(
ε2s − E[ε2s]

)
‖as‖2Σ−1

s︸ ︷︷ ︸
I4

, (G.11)

where the second inequality follows from (G.9), the third inequality holds by Lemma G.3.

Substituting (G.11) and (G.10) into (G.6), we have

I1 ≤
1

2
regt +

R2

κ
log(4t2/δ) +

σ2
max

κ
d log

(
1 +

tAκ2

4dK2

)
+

1

2
I4. (G.12)

Applying Lemma G.4 to bound I4, we calculate

I4 ≤
σmaxRt
K

√
d log

(
1 +

tAκ2

4dK2

)
log(2t2/δ) +

2

3κ

(
σ2

max +R
2

t

)
log(2t2/δ)

≤ σmaxR

K

√
2d log

(
1 +

tAκ2

4dK2

)
log(4t2/δ) + 2/3 ·

(
σ2

max + 2R2 log(4t2/δ)
) 1

κ
log(4t2/δ)

≤ σmaxR

K

√
2d log

(
1 +

tAκ2

4dK2

)
log(4t2/δ) +

2R2

κ
log2(4t2/δ), (G.13)

where the second inequality holds due to event EsubG, the third inequality follows from σmax ≤ R.

Substituting (G.13) into (G.12) , we have

I1 ≤
1

2
regt +

R2

κ
log(4t2/δ) +

σ2
max

κ
d log

(
1 +

tAκ2

4dK2

)
+
σmaxR

2K

√
2d log

(
1 +

tAκ2

4dK2

)
log(4t2/δ) +

R2

κ
log2(4t2/δ)

≤ 1

2
regt +

2R2

κ
log2(4t2/δ) +

σ2
max

κ
d log

(
1 +

tAκ2

4dK2

)
+

1

2κ
σ2

maxd log

(
1 +

tAκ2

4dK2

)
+

1

4κ
R2 log2(4t2/δ)

=
1

2
regt +

9

4κ
R2 log2(4t2/δ) +

3

2

σ2
max

κ
d log

(
1 +

tAκ2

4dK2

)
. (G.14)

Substituting the upper bound of I1 above to (G.5),

regt ≤ 2 max
θ∈Θ
|φ(θ)|+ 1

2
regt +

9

4κ
R2 log2(4t2/δ) +

3

2

σ2
max

κ
d log

(
1 +

tAκ2

4dK2

)
≤ 8A2K2B2

κ
+

9

2κ
R2 log2(4t2/δ) + 3

σ2
max

κ
d log

(
1 +

tAκ2

4dK2

)
, (G.15)

from which we can further complete the proof by the arbitrariness of t.

In the following lemma, we formally introduce the conversion from online learning regret to confi-
dence set in our setting. For simplicity in analysis, we omit the level subscript and suppose all the
data is fed into the same level.
Lemma G.6. Suppose we feed loss function {`s(θ)}ts=1 into a single online learner B. Assume
that B has an online learning (OL) regret bound regt: ∀t ≥ 1,

t∑
s=1

`s(θs)− `s(θ∗) ≤ regt. (G.16)
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Define Xt as the design matrix consisting of a1, · · · ,at, zt = [z1, · · · , zt]. Then, with probability
at least 1− 4δ,

∀t ≥ 1, ‖θ∗ − θ̂t‖2Vt
≤ 1 +

4

κ
regt +

8R2

κ2
log
(
4t2/δ

)
+ λB2 −

(
‖zt‖22 − θ̂>t X>t zt

)
. (G.17)

Proof. With Lemma G.1, we can prove this lemma by following nearly the same proof for Theorem
1 in Jun et al. (2017). (We can set β′t in their proof to be 1 + 4

κ regt + 8R2

κ2 log
(
4t2/δ

)
according to

Lemma G.1. )

Lemma G.7. For all t, with zt and Xt defined as in Lemma G.8, we have

‖zt‖22 − θ̂>t X>t zt ≥ 0.

Proof. After ridge regression, θ̂t = V
−1

t X>t zt where Vt := λI + X>t Xt.

Then we have

‖zt‖22 − θ̂tX
>
t zt = ‖zt‖22 −

(
V
−1

t X>t zt

)>
X>t zt

= ‖zt‖22 − z>t XtV
−1

t X>t zt (G.18)

We consider [
λI + X>t Xt X>t

Xt I

]
� [Xt I]

>
[Xt I] � 0. (G.19)

From Schur complement theorem, we have

I � (I + X>t Xt)
−1X>t = XtV

−1

t X>t . (G.20)

Then we can complete the proof by substituting (G.20) into (G.18).

Lemma G.8 (Variance-dependent confidence set for generalized linear bandits). Suppose that As-
sumption 6.1, 6.2, 6.3 hold. For any δ ∈ (0, 1/4), if we set

βt,l := 1 +
32A2K2B2

κ2
+

26

κ2
R2 log2(4t2L/δ) + 12

22(l+1)σ2

κ2
d log

(
1 +

tAκ2

4dK2

)
+ λB2,

(G.21)

then with probability at least 1− 4δ, we have θ∗ ∈ Ct,l for all t ≥ 1, l ∈ [L].

Proof. For any l ∈ [L], with probability at least 1− δ
L ,

‖θ∗ − θ̂t,l‖2Vt,l
≤ 1 +

4

κ
regt,l +

8R2

κ2
log
(
4t2L/δ

)
+ λB2,

making use of Lemma G.8 and Lemma G.7.

From Theorem 6.5, with probability at least 1− 3 δL , we can set

regt,l :=
8A2K2B2

κ
+

9

2κ
R2 log2(4t2L/δ) + 3

22(l+1)σ2

κ
d log

(
1 +

tAκ2

4dK2

)
. (G.22)

By Union Bound, with probability 1− 4δ, for all l ∈ [L],

‖θ∗ − θ̂t,l‖2Vt,l
≤ 1 +

32A2K2B2

κ2
+

18

κ2
R2 log2(4t2L/δ) + 12

22(l+1)σ2

κ2
d log

(
1 +

tAκ2

4dK2

)
+

8R2

κ2
log
(
4t2L/δ

)
+ λB2

= 1 +
32A2K2B2

κ2
+

26

κ2
R2 log2(4t2L/δ) + 12

22(l+1)σ2

κ2
d log

(
1 +

tAκ2

4dK2

)
+ λB2.
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Theorem G.9. Suppose that Assumptions 6.1 and 6.2 hold for the known reward function class F .
If we apply Algorithm 4 as a subroutine of Algorithm 1 (in line 9) and set βt,l to

1 +
32A2K2B2

κ2
+

26

κ2
R2 log2(4t2L/δ) + 12

22(l+1)σ2

κ2
d log

(
1 +

tAκ2

4dK2

)
+ λB2

for all t ∈ [T ], l ∈ [L], σ = R/
√
d, then with probability 1 − 4δ, the regret of Algorithm 1 for the

first T rounds is bounded as follows:

Regret(T ) = Õ

(
K

κ
d
√
J +

K

κ
(K ·AB +R)

√
dT

)
.

Proof.

Regret(T ) =
∑
t∈[T ]

h(x>t,∗θ
∗)− h(x>t θ

∗)

≤ K
∑
t∈[T ]

(x>t,∗θ
∗ − x>t θ

∗)

≤ K
∑
t∈[T ]

(
max

θ∈∩l∈[L]Ct−1,l

x>t θ − x>t θ
∗
)

≤ K
∑
l∈[L]

∑
t∈ΨT+1,l

(
max
θ∈Ct,l

x>t θ − x>t θ
∗
)

≤ K
∑
l∈[L]

∑
t∈ΨT+1,l

min

(
2AB, ‖xt‖V−1

t−1,l
max

θ1,θ2∈Ct−1,l

‖θ1 − θ2‖Vt−1,l

)
≤ 2K

∑
l∈[L]

∑
t∈ΨT+1,l

min
(
β

1/2
t,l ‖xt‖V−1

t−1,l
, AB

)
, (G.23)

where the first equality holds by the definition in (3.1), the first inequality follows from Assumption
6.2, the second inequality holds by Lemma G.8.

For an arbitrary l ∈ [L], let I1(l) :=
{
t ∈ ΨT+1,l

∣∣∣‖xt‖V−1
t−1,l

≤ 1
}

and I2(l) := ΨT+1,l\I1(l).

∑
t∈I1

min
(
β

1/2
t,l ‖xt‖V−1

t−1,l
, AB

)
≤ β1/2

T,l

∑
t∈I1

min(1, ‖xt‖V−1
t−1,l

)

≤
√
βT,l|ΨT+1,l|

∑
t∈I1

[min(1, ‖xt‖V−1
t−1,l

)]2

≤
√

2βT,l|ΨT+1,l|d log
dλ+ TA2

dλ
, (G.24)

where the second inequality holds by Cauchy-Schwartz inequality, the third inequality follows from
Lemma G.2.

Similarly, we calculate∑
t∈I2

min
(
β

1/2
t,l ‖xt‖V−1

t−1,l
, AB

)
≤ AB

∑
t∈I2

min(1, ‖xt‖V−1
t−1,l

)

≤ AB
√
|ΨT+1,l|

∑
t∈I1

[min(1, ‖xt‖V−1
t−1,l

)]2

≤ AB
√

2|ΨT+1,l|d log
dλ+ TA2

dλ
. (G.25)
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Substituting (G.24) and (G.25) into (G.23), we obtain

Regret ≤ 2K
∑
l∈[L]

(AB +
√
βT,l)

√
2|ΨT+1,l|d log

dλ+ TA2

dλ

≤ 2K

√√√√L
∑
l∈[L]

2(AB +
√
βT,l)2d|ΨT+1,l| log

dλ+ TA2

dλ

≤ 4K
√
L

√√√√A2B2dT log
dλ+ TA2

dλ
+
∑
l∈[L]

βT,ld|ΨT+1,l| log
dλ+ TA2

dλ

≤ 4K
√
L

(
1 +

4
√

2AKB

κ
+

6

κ
R log(4T 2L/δ) +

√
λB +AB

)√
dT log

dλ+ TA2

dλ

+ 4K
√
L

√√√√∑
l∈[L]

12
d2

κ2
(2l+1σ)2|ΨT+1,l| log

dλ+ TA2

dλ
log

(
1 +

tAκ2

4dK2

)

≤ 4K
√
L

(
1 +

4
√

2AKB

κ
+

6

κ
R log(4T 2L/δ) +

√
λB +AB

)√
dT log

dλ+ TA2

dλ

+ 4K

√
L log

dλ+ TA2

dλ
log

(
1 +

tAκ2

4dK2

)√√√√∑
l∈[L]

∑
t∈ΨT+1,l

12
d2

κ2
(2l+1σ)2

≤ 4K
√
L

(
1 +

4
√

2AKB

κ
+

6

κ
R log(4T 2L/δ) +

√
λB +AB

)√
dT log

dλ+ TA2

dλ

+ 4K

√
L log

dλ+ TA2

dλ
log

(
1 +

tAκ2

4dK2

)√√√√∑
t∈[T ]

48
d2

κ2
(σ2
t + σ2)

≤ 4K
√
L

(
1 +

4
√

2AKB

κ
+

6

κ
R log(4T 2L/δ) +

√
λB +AB

)√
dT log

dλ+ TA2

dλ

+ 24
K

κ
d

√
L log

dλ+ TA2

dλ
log

(
1 +

tAκ2

4dK2

)√
J + σ2T

where the second inequality holds due to Cauchy-Schwarz inequality, the fourth inequality fol-
lows from the definition of βt,l, the sixth inequality holds since lt in Algorithm 1 satisfies 2ltσ ≤
max{σt, σ}, the last inequality follows from the definition of J .
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