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Abstract

Existing super-resolution (SR) methods optimize all model weights equally using
L1 or L2 losses by uniformly sampling image patches without considering dataset
imbalances or parameter redundancy, which limits their performance. To address
this issue, we formulate the image SR task as an imbalanced distribution transfer
learning problem from a statistical probability perspective and propose a plug-
and-play Weight-Balancing framework (WBSR) for image SR to achieve balanced
model learning without changing the original model structure or training data.
Specifically, we develop a Hierarchical Equalization Sampling (HES) strategy to
address data distribution imbalances, enabling better feature representation from
texture-rich samples. To tackle model optimization imbalances, we propose a
Balanced Diversity Loss (BDLoss) function, focusing on learning texture regions
while disregarding redundant computations in smooth regions. After joint training
of HES and BDLoss to rectify these imbalances, we present a gradient projection
dynamic inference strategy to facilitate accurate and efficient reconstruction during
inference. Extensive experiments across various models, datasets, and scale factors
demonstrate that our method achieves comparable or superior performance to
existing approaches with approximately a 34% reduction in computational cost.
The code is available at https://github.com/aipixel/WBSR.

1 Introduction

Image super-resolution (SR) aims to reconstruct high-resolution (HR) images with more details
from low-resolution (LR) images. Recently, deep learning-based image SR methods have made
significant progress in reconstruction performance through deeper network models and large-scale
training datasets, but these improvements place higher demands on both computing power and
memory resources, thus requiring more efficient solutions. Therefore, various techniques such
as pruning [36, 53, 55], quantization [34, 39, 5], knowledge distillation [18, 45], and designing
lightweight architectures [17, 25, 40] have been widely researched to accelerate inference and meet
the requirements of deployment inference on resource-constrained platforms. However, these methods
rely on static networks to process all input samples fairly, ignoring the different requirements of
diverse samples for network computational cost, which limits the representation ability of the model.

In contrast, dynamic neural network based methods [4, 42, 54, 48] can dynamically adjust the network
structure or parameters and reduce the average computational cost, becoming a mainstream research
focus in recent years. These methods can adaptively allocate networks with suitable computational
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Figure 1: Illustration of (a) the data distribution from the widely used DIV2k [1] training set, (b) the
reconstruction results of RCAN [51] model, and (c) the proposed weight-balancing framework.

costs according to the content of the input samples during inference. Despite the advancements in
these dynamic network solutions, practical applications are still hindered by two prevalent limitations:

Data Distribution Imbalance. Existing SR methods [51, 52, 4, 26] mostly use uniformly sampled
LR-HR patch pairs instead of the entire image to train models due to the limitation of memory
resources. However, they ignore the underlying fact that patch contents in images exhibit imbalanced
distributions (i.e., the abundant easily reconstructed smooth flat patches and rare hardly reconstructed
edge texture patches), resulting in inherent data bias. Figure 1 (a) shows that the number proportion
of easy flat patches (48.8%) is much larger than that of hard textured patches (16.6%).

Model Optimization Imbalance. Current SR methods [27, 6, 12, 33] typically employ L1 or L2

losses to treat all patch areas and optimize each weight equally, which lacks reasonable optimization
for their model training. Since the details lost in low-resolution images mainly exist in edges and
texture locations, fewer computational resources of the model are required for those flat patches.
Therefore, existing SR methods involve redundant calculations in flat areas, which leads to imbalanced
inference performance where the model overfits in simple areas and underfits in complex ones and
results in uneven distribution of model computational resources as shown in Figure 1 (b). For the
same image, the optimized RCAN [51] model exhibits overfitting in the smooth background area
(green box, with error pixels accounting for only 0.08%), while it shows obvious underfitting in the
textured foreground area (red box, with error pixels accounting for up to 52%).

Overall, these prevalent imbalance problems of data distribution and model optimization in the real
world limit the performance of current image SR algorithms. As motivated, although this imbalance
is a well-known observation in the classification task [3, 46, 21], we formulate the image SR task as
an imbalanced distribution transfer learning problem from a statistical probability perspective. To
mitigate the gap, we propose a plug-and-play weight-balancing framework, dubbed WBSR, to achieve
balanced model learning without additional computation costs, which improves the restoration effect
and inference efficiency of models without changing the original model structure and training data,
as shown in Figure 1 (c). Specifically, to address the imbalance problem of data distribution, we
develop a Hierarchical Equalization Sampling (HES) strategy, enabling better feature representation
from texture-rich samples to mitigate data biases. Then, to solve the imbalance problem of model
optimization, we propose a Balanced Diversity Loss (BDLoss) function, focusing on learning texture
areas while disregarding redundant computations in smooth areas. After joint training of HES
and BDLoss within WBSR to rectify these imbalances, we present a gradient projection dynamic
inference strategy to facilitate accurate and efficient inference.

In summary, we make the following three key contributions: (1) This paper is the first attempt to
explore the imbalance in the image super-resolution field and gives a reasonable analysis from a
perspective of probability statistics, i.e., the imbalance of data distribution and model optimization
limits the algorithm performance. (2) We propose a plug-and-play weight-balancing framework
dubbed WBSR upon HES and BDLoss to achieve balance training without additional computation
costs, which improves the restoration effect and inference efficiency of models without changing
the original model structure and training data. (3) Extensive experiments across various models,
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datasets, and scale factors demonstrate that our achieves comparable or superior performance to
existing methods with less computational cost.

2 Related Work
2.1 Deep Imbalanced Learning

Deep imbalanced learning has attracted widespread attention due to the imbalanced data distribution
caused by the difficulty of data acquisition in practical applications [20, 47]. The data imbalance
problem presents a significant challenge in deep learning, when some classes have fewer samples than
others, resulting in poorer model prediction performance for the minority class. Previous imbalanced
learning methods [43, 50] have mainly studied data resampling techniques to solve this problem.
For example, over-sampling minority classes [30, 3] and under-sampling common classes [2, 44].
However, oversampling increases memory storage and training time, while under-sampling causes
overfitting problems [10, 5, 29]. Recently, several works [41, 49] attempt to develop data resampling
methods as data augmentation strategies for the image super-resolution task to compensate for the
imbalance of training patches between different classes.

Another category of class-imbalanced learning methods is reweighting techniques. Recent reweight-
ing methods assign weights to different classes [14, 7, 28] and training examples [15, 13, 38], which
aim to modify their gradients to make models balance. [19] process from a domain adaptation
perspective and enhance classic class-balanced learning by explicitly estimating the differences
between different class distributions using meta-learning methods. In contrast, these methods balance
the data loss by reweighting each class instead of sampling to achieve a balanced data distribution.

2.2 Dynamic Network for Efficient Image Super-Resolution

Recent researches address this problem with efficient dynamic network frameworks, which mostly
adopt content-aware modules to dynamically send image patches to sub-networks with different
complexities to accelerate model inference. ClassSR [23] combines classification and SR in a unified
framework, which uses an additional class module to classify image patches into different classes, and
then applies the subnets to perform SR on different classes. ARM [4] further adopts the validation set
to build an Edge-to-PSNR lookup table by mapping edge scores of image patches to the performance
of each sub-network to select appropriate subnets to further improve efficiency. PathRestore [48]
introduces a pathfinder to implement a multi-path CNN, which can dynamically select appropriate
routes for different image areas according to the difficulty of restoration. However, these techniques
still have two key problems. One is the additional amount of parameters and calculations brought by
the introduction of classifiers or selectors, and the other is the neglect of data and network imbalance
that affects the performance of the model.

3 Theoretical Analysis

Let x and y denote LR and HR patches and L1 loss as an example (Note that the theoretical applies
to the L2), the optimization object of SR task can be written as

min
θ

E(x,y)|pdata
||y − ŷ||1 (1)

where ŷ = fθ(x) represents the SR result estimated from LR x with SR model fθ. θ denotes the
model parameters. pdata indicates the data distribution space. It aims to minimize all absolute
errors between predicted images and ground-truth images from the whole data. From the natural
assumption that the distribution of the training set is imbalanced, whereas the independent testing set
is balanced [11, 14, 10], so we set the training data and testing data are drawn from different joint
data distributions, ptrain(x, y) and pbal(x, y), respectively. The conditional probability p(x|y) is the
same in both training and testing sets due to the fixed downsampling degradation in the SR task.

From the probabilistic view, the prediction ŷ of the SR network is considered as the mean of a noisy
prediction distribution, which can be modeled as a Gaussian distribution

p(y|x; θ) = N (y; ŷ, σ2
noiseI) (2)

where σ2
noise indicates the variance of the independently distributed error term. The prediction ŷ can

be treated as the mean of a noisy prediction distribution. Eq. 2 can be interpreted as the distribution
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form of Eq. 1, corresponding to the maximized negative log-likelihood (NLL) loss in the regression
of the prediction distribution. Consequently, the prediction model trained by L1 actually captures the
mean value of the entire solution space, i.e., the distribution of the training set.
Theorem 1 (Distribution Transformation). Considering the discordance between ptrain(y|x) and
pbal(y|x) attributable to the distribution shift. Given the identical conditional probability p(x|y)
across both the training and testing sets, we leverage the Bayes rule p(y|x) ∝ p(x|y) · p(y) to
establish the relationship through variable substitution as follows

ptrain(y|x) = ptrain(y) ·
pbal(y|x)
pbal(y)

· pbal(x)

ptrain(x)
(3)

This theorem reveals that the existence of imbalance issues stems from the direct proportionality
between ptrain(y|x) and ptrain(y) with a ratio of pbal(x)

ptrain(x)
. When a specific type of patch sample is

infrequently present in the training set, i.e., when ptrain(y) is low, the value of ptrain(y|x) decrease
as well, which results in a decrease in the accuracy of predictions. As a consequence, the trained
SR model tends to underestimate the occurrence of rare patches during prediction. Meanwhile,
considering that the integral of ptrain(y|x) equals 1, we can obtain

ptrain(y|x) =
ptrain(y|x)∫

Y
ptrain(y′|x)dy′

(4)

where Y denotes the entire training sample space. Then, we substitute Eq. 3 into Eq. 4 to model the
relationship between the two distributions through explicit distribution transformation

ptrain(y|x) =
pbal(y|x) · ptrain(y)∫

Y
pbal(y′|x) · ptrain(y′)dy′

(5)

where y′ denotes the integral variable. Diverging from previous works that focus on modeling
ptrain(y|x), our objective is to estimate pbal(y|x) for achieving balanced prediction on the testing set.
The detailed proof is available in the supplementary materials. The aforementioned theory proves
that the imbalanced model optimization caused by imbalanced data distribution and loss function is
reasonable. Therefore, our approach aims to correct this imbalance without introducing additional
datasets or computational costs.

4 Methodology

4.1 Weight-Balancing Training Framework

Based on the observed phenomenon and analysis, the imbalanced model optimization of image SR
undoubtedly limits the reconstruction performance of the model, especially for rare hard texture
patches. We consider attaining a robust model representation with balanced weights from the
perspective of two aspects: data sampling and optimization function. Figure 2 (a) illustrates the
training process of the proposed framework, dubbed WBSR, which consists of two main components:
Hierarchical Equalization Sampling (HES) and Balanced Diversity Loss (BDLoss). Given input LR
patches from the training set, we employ HES to sample a batch of approximately balanced patches
to optimize each subnet model with our BDLoss Lbd. The overall optimization objective is

min
θ

E(x,y)|ptrain
Lbd(y − Smθ

(x)) (6)

where Smθ
represents the m-th subnet in the supernet with parameters θm. We employ a divide-and-

conquer optimization strategy to learn nearly balanced weights, minimizing the overall objective by
ensuring that each individual subnet within the supernet is well-optimized. Each subnet with varying
computational cost shares the weights of the supernet and is intended to handle image patches of
different complexities, which does not introduce additional complexity that impedes the inference
speed. In the following, we describe the details of our HES and BDLoss, respectively.

4.1.1 Hierarchical Equalization Sampling

Without prior data classification, we propose a simple yet effective Hierarchical Equalization Sampling
(HES) strategy, which utilizes inherent gradient information of patches to perform sample-level
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Figure 2: Illustration of the proposed weight-balancing framework. (a) The training stage combines
hierarchical equalization sampling and balanced diversity loss to jointly train a supernet model with
balanced weights. (b) The testing stage adopts the gradient projection dynamic inference with a
gradient projection map and multiple dynamic subnets for efficient inference.

sampling and class-level sampling of difficult and easy classes to achieve equalization between the
abundant simple samples and rare difficult samples.

Sample-Level Sampling refers to uniformly sampling patches from the training dataset. Each sample
is sampled with equal probability during the training stage, whose probability is Pi =

1
N . i indicates

the i-th samples. N denotes the total number of training patch samples. It ensures that the model
learns stable initial weights early in training, capturing general features across different sample types.

Class-Level Sampling aims to assign a higher sampling probability to rare difficult samples. Unlike
the image classification task where the number of categories is determined, samples in image SR
are unclassified and the number is unknown. To address it, we calculate the gradient vectors online
consisting of the mean and standard deviation of the gradient magnitude of the input samples in the
horizontal and vertical directions, which assess the reconstruction difficulty of samples and then
classify them using vector thresholds t to obtain the sampling probability. The threshold for the k-th
class is defined as follows

tk = t[
k ·N
K

], k ∈ [1,K] (7)

where K is the number of classes. t1 and tK represent the gradient threshold of the simplest and
most difficult classes, respectively. The number of samples for the k-th class corresponds to the Nk

samples whose gradient vectors fall within the range from tk−1 to tk. The sampling possibility Pk

can be calculated by

Pk =

∑K
j=1

1
Nj

Nk · δk
(8)

where δ ∈ (0, 1) indicates the exponential factor to avoid overfitting simple data by reducing the
number of samples. It enables the sampled batch training data containing samples from difficult
classes, thereby achieving equalized data sampling.

The core concept of the proposed hierarchical equalization sampling strategy is to reconcile the data
bias caused by the inherent imbalance, i.e., difficult samples are visually more important than smooth
samples. During training and testing, the gradient vectors of image patches can be quickly exported
using existing gradient operator [32]. Therefore, our HES method does not impose any additional
computational burden and effectively leverages dataset information to enhance the model’s feature
representation capabilities for hard samples.

5



4.1.2 Balanced Diversity Loss

The commonly used L1 and L2 losses of previous methods treat all patches equally and perform
gradient updates on each weight parameter, which ignores parameter redundancy and leads to
overfitting on simple patches and underfitting on rare hard patches. To achieve reasonable optimization
of models for diversity patches, we propose a novel Balanced Diversity Loss (BDLoss) to learn
approximate balanced model weights, which performs distribution transformation by exploiting the
training distribution without additional data to achieve balanced predictions. In accordance with
Theorem 1, we first estimate the desired pbal(y|x) by minimizing the NLL loss

pbal(y|x; θ) = N (y; ŷ, σ2
noiseI) (9)

Definition 1. To balance the uncertainty of model diversity predictions and avoid excessive optimiza-
tion, our BDLoss is defined as the likelihood function

Lbd = − log ptrain(y|x; θ) + λ||θ||2 (10)

where log ptrain(y|x; θ) denotes the converted conditional probability aimed to obtain balanced model
weights θ. || · ||2 indicates the L2 regularization function to prevent model overfitting. λ represents a
regularization coefficient. Next, we derive the implementation of Lbd based on Eq. 9

log ptrain(y|x; θ) = log
pbal(y|x; θ) · ptrain(y)∫

Y
pbal(y′|x; θ) · ptrain(y′)dy′

= logN (y; ŷ, σ2
noiseI) + log ptrain(y)− log

∫
Y

N (y′; ŷ, σ2
noiseI) · ptrain(y′)dy′

(11)

where log ptrain(y) is constant term that can be omitted. The first remaining term is a probability
form of L1 loss as Eq. 2. The last term of log

∫
Y
N (y′; ŷ, σ2

noiseI) · ptrain(y′)dy′ indicates the key
diversity balancing term that obeys Gaussian distribution, which involves the integral operation and
necessitates finding a closed-form expression.

Building upon the design of previous classification tasks [15, 19, 35], we utilize the Gaussian Mixture
Model (GMM) technique to represent the constant term

ptrain(y) =

L∑
i=1

ϕiN (y;µi, σi) (12)

where L denotes the number of Gaussian components. ϕ, µ, σ indicate the weights, means and
covariances of multi-dimensional GMM, respectively. As the multiplication of two Gaussian functions
results in another unnormalized Gaussian, the diversity balancing term can be expressed as∫

Y

N (y; ŷ, σ2
noiseI) ·

L∑
i=1

ϕiN (y;µi,Σi)dy =

L∑
i=1

ϕisi

∫
Y

N (y; µ̃i, Σ̃i)dy (13)

where si, µ̃, and Σ̃ are the norms, means, and covariances of the resulting unnormalized Gaussian,
respectively. Now, the integral of the balanced diversity term adheres to a Gaussian distribution and
is solved straightforwardly, so the BDLoss of Eq. 10 can be derivable as follows

Lbd = − logN (y; ŷ, σ2
noiseI) + log

L∑
i=1

ϕi · N (ŷ;µi,Σi + σ2
noiseI) + λ||θ||2 (14)

4.2 Gradient Projection Dynamic Inference

Figure 2 (b) illustrates the testing process of our WBSR framework, we propose a gradient projection
dynamic inference strategy to achieve a dynamic balance of efficiency and performance. It adaptively
allocates the subnet model without any increase in additional parameters by calculating the gradient
projection map based on the input content.

Gradient Projection. We observe that patches with complex (simple) structures exhibit high (low)
image gradient magnitude and do not suffer more (less) score degradation with SR scale changes.
Following the approach described in Section 4.1.1, we calculate gradient vectors to measure the
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complexity of the patch contents and construct a gradient projection map online to project the gradient
vector of an image patch to the selection of each subnet model. At inference time, each patch can
select a suitable subnet upon its gradient vector. When low-resolution noise exists in image patches,
the edge detection methods [37, 8] ignore the local complexity of the patch and result in missed
detections, thereby erroneously categorizing the patch as a simple sample. We count the changes in
gradient strength by calculating the standard deviation directly, when there is a large amount of noise
or texture changes of varying intensity in the local area of the patch, it can still be correctly assigned
as a difficult sample. As shown in Figure 3, yellow boxes represent areas of local texture change,
such as the clouds in the previous row and the railings in the next row. It can be intuitively seen that
our gradient projection method can accurately distinguish local smooth regions or textured regions
and assign them to the corresponding small or large subnets.

Dynamic Inference. To facilitate the deployment of the model across any hardware resources,
our dynamic supernet contains multiple subnets by gradually shrinking the model calculation
with structured iteration to dynamically adapt various computational and performance require-
ments. During inference, we adopt the dynamic supernet to individually distribute image patches
of K classes to M subnets to obtain better computational performance trade-offs. Given a
new LR patch, we first calculate its gradient vector and derive its class k̂ according to the
threshold t. Then, the selected subnet for inference can be easily obtained by equally split-
ting the gradient vector interval into a total of M subintervals, which can be expressed as

(b) Gradient (c) Projected Patches(a) Edge

Figure 3: Visualizations of (a) the edge detection results, (b)
the gradient magnitude results, and (c) the projected subnet
selection. For ease of observation, we visualize three as-
signed subnets with small, medium, and large computational
costs as green, yellow, and red, respectively.

m = ⌈ k̂ ·M
K

⌉ (15)

where m ∈ [1,M ] denotes the index
of the selected subnet to reconstruct
this LR patch. ⌈·⌉ indicates the ceiling
function that tends to select the larger
subnet. However, the larger subnet
selection leads to better performance
with heavier computation, we further
consider selecting the inference sub-
net under the limited computational
resources Ct

m̂ = argmin
m

|α · k̂ · Cm

K
−Ct| (16)

where m̂ indicates the selected opti-
mal subnet under resource constraints. Cm denotes the computational cost of the m-th subnet. α is a
hyperparameter that is utilized to strike a balance between the computational cost and performance,
where higher values prioritize improved performance, while lower values favor reduced computational
overhead. Consequently, our WBSR framework can be flexibly adjusted to accommodate diverse
application scenarios based on actual performance and hardware resource requirements.

5 Experiments

5.1 Experimental Details

Datasets and Metrics. Following the previous works [23, 4], we apply DIV2K [1] as the training
dataset widely used for image SR, which includes 800 high-quality images with diverse contents and
texture details. To verify the model performance under different image content distributions, four
datasets are employed for model testing, including B100 [31], Urban100 [16], Test2K, and Test4K.
Test2K and Test4K are downsampled from DIV8K [9]. For metrics, we adopt peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) to quantitatively evaluate all methods. Additionally,
the FLOPs are calculated as the average results of all patches in the entire test dataset images.

Implementation Details. Our proposed WBSR can be easily incorporated into existing CNN-based
SR networks to achieve efficient inference. SRResNet [24] and RCAN [51] are selected as two
baselines in our experiments for a fair comparison, we conduct extensive experiments on four datasets
of different SR scales to verify the effectiveness of our framework. During training, we set nine
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Scale Method #Pramas (M) B100 [31] Urban100 [16] Test2K [9] Test4K [9]
PSNR↑ #FLOPs (G) PSNR↑ #FLOPs (G) PSNR↑ #FLOPs (G) PSNR↑ #FLOPs (G)

×2

SRResNet [24] 1.52 32.19 20.78 (100%) 32.11 20.78 (100%) 30.39 20.78 (100%) 31.90 20.78 (100%)
+ClassSR [23] 3.12 31.68 14.75 (71%) 31.15 16.21 (78%) 30.24 14.13 (68%) 31.89 13.51 (65%)

+ARM [4] 1.52 31.69 16.21 (78%) 31.16 16.83 (81%) 30.26 15.59 (75%) 31.90 13.71 (66%)
+WBSR (Ours) 1.52 32.15 12.26 (59%) 31.98 13.30 (64%) 30.41 12.05 (58%) 32.02 12.68 (61%)

RCAN [51] 15.59 32.40 130.40 (100%) 32.33 130.40 (100%) 30.86 130.4 (100%) 32.26 130.40 (100%)
+ClassSR [23] 30.10 31.88 91.28 (70%) 31.72 103.02 (79%) 30.79 83.46 (64%) 32.24 83.46 (64%)

+ARM [4] 15.59 31.89 99.10 (76%) 31.74 109.54 (84%) 30.80 105.62 (81%) 32.24 97.80 (75%)
+WBSR (Ours) 15.59 32.34 88.67 (68%) 32.31 96.50 (74%) 30.91 75.63 (58%) 32.37 77.65 (60%)

×4

SRResNet [24] 1.52 27.34 5.19 (100%) 25.30 5.19 (100%) 26.19 5.19 (100%) 27.65 5.19 (100%)
+ClassSR [23] 3.12 26.53 3.83 (74%) 24.53 4.23 (81%) 26.20 3.62 (70%) 27.66 3.30 (63%)

+ARM [4] 1.52 26.53 4.34 (83%) 24.54 4.48 (86%) 26.21 3.76 (72%) 27.66 3.33 (64%)
+WBSR (Ours) 1.52 27.36 3.99 (77%) 25.32 4.36 (84%) 26.26 3.37 (65%) 27.73 3.22 (62%)

RCAN [51] 15.59 27.76 32.60 (100%) 25.82 32.60 (100%) 26.39 32.60 (100%) 27.89 32.60 (100%)
+ClassSR [23] 30.10 26.70 22.82 (70%) 25.13 26.08 (80%) 26.39 21.22 (65%) 27.88 19.49 (60%)

+ARM [4] 15.59 26.74 25.75 (79%) 25.14 28.36 (87%) 26.39 26.70 (82%) 27.88 25.10 (77%)
+WBSR (Ours) 15.59 27.75 25.10 (77%) 25.81 27.01 (83%) 26.45 18.52 (57%) 27.94 19.40( 59%)

Table 1: Quantitative comparison results of our method and other SOTA methods on the GoPro and
H2D datasets. The optimal and suboptimal results are highlighted.

subnets (i=9) with different parameters θi in each supernet. For SRResNet, the widths and depths of
the subnets are set as ([36, 52, 64]) and ([4, 8, 16]), respectively. As for RCAN, the widths and depths
of the subnets are configured as ([36, 52, 64]) and ([5, 10, 20]), respectively. The compared width
adaptation algorithms [23, 4] also follow such model width configuration to ensure a fair comparison.
All methods are implemented using PyTorch and trained on an NVIDIA GeForce RTX 3090 for 100
epochs with 16 batch sizes, where the first 70 epochs are sample-level sampling and the rest are
class-level sampling. The former aims to maintain the original data distribution of the entire dataset,
ensuring a stable and comprehensive feature representation. The latter focuses on correcting the
imbalance of dataset and enhancing the model’s ability to represent difficult texture samples. The
training times of SRResNet and RCAN are 25 and 28 GPU hours using a single GPU, respectively
The training patch size is set to 128 × 128 and augmented by horizontal and vertical flipping to
enhance its robustness. We utilize our Lbd loss along with the Adam optimizer [22], setting β1 = 0.9
and β2 = 0.999. To adjust the learning rate, we apply a cosine annealing learning strategy, starting
with an initial learning rate of 2× 10−4 and decaying to 10−7.

5.2 Comparison results
Table 1 shows the quantitative performance of our approach coupled with various SR baselines in
terms of the metrics, parameter number, and computational cost. ClassSR [23] with an additional
classifier module has more parameters, resulting in additional computational and parameter costs.
ARM [4] adopts the validation set to build an Edge-to-PSNR lookup table, which generates additional
inference time and parameter storage overhead. In comparison, our framework achieves superior
performance with less computation (average 62%) than baselines, without incurring additional
parameters or computational costs. When tested on unseen datasets such as B100 and Urban100,
which lie outside the trained distribution, the compared methods exhibit performance degradation due
to overfitting to specific features of the original training dataset and a lack of generalization ability to
diverse data. In contrast, our method maintains comparable performance to the original model with
lower computational costs (averaging 70%), benefiting from our balanced sampling and optimization
strategies during training.

Figure 4 shows visual comparisons across four testing datasets. The SR images produced by ClassSR
and ARM exhibit structural blur and noise. In contrast, our method recovers more detailed information,
resulting in better outcomes that are more faithful to the HR ground truth.

5.3 Ablation Studies

To verify the effectiveness of our WBSR upon HES and BDLoss, we conduct ablation studies on
Tesk2K and Test4K with sclae factor of ×4, as shown in Table 2.

Effectiveness of HES. During model training, we replace the original uniform sampling in baseline
with our HES strategy. As the method “+HES” shown in Table 2, HES achieves a 0.05 dB average
improvement in terms of PSNR compared with the baseline, which benefits from enhanced feature
representations in hard texture patches.
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Figure 4: Qualitative comparison results of our method with other methods for × 4 SR on the four
testing datasets. Please zoom in for details.

Table 2: Ablation studies of our WBSR on two benchmarks of × 4 SR. † indicates using the whole
network with 100% FLOPs for inference. The optimal and suboptimal results are highlighted.

Method (×4)
Test2K [9] Test4K [9]

PSNR ↑ SSIM↑ #FLOPs (G) PSNR↑ SSIM↑ #FLOPs (G)

SRResNet [24] 26.19 0.7624 5.19 (100%) 27.65 0.7966 5.19 (100%)
+HES 26.24 0.7665 3.58 (69%) 27.71 0.7986 3.43 (66%)
+Lbd 26.21 0.7658 3.58 (69%) 27.70 0.7984 3.43 (66%)

+WBSR 26.26 0.7673 3.37 (65%) 27.73 0.7993 3.22 (62%)
+WBSR† 26.38 0.7684 5.19 (100%) 27.80 0.8026 5.19 (100%)

RCAN [51] 26.39 0.7706 32.60 (100%) 27.89 0.8058 32.60 (100%)
+HES 26.43 0.7748 20.86 (64%) 27.92 0.8086 19.89 (61%)
+Lbd 26.42 0.7746 20.86 (64%) 27.91 0.8077 19.89 (61%)

+WBSR 26.45 0.7755 18.52 (57%) 27.94 0.8106 19.40 (59%)
+WBSR† 26.51 0.7756 32.60 (100%) 28.10 0.8138 32.60 (100%)

Furthermore, we conduct additional experiments to compare our HES with existing sampling
works [41, 49, 29] in Table 3. It shows that our HES outperforms the previous best sampling
method BSPA of an average of 0.1dB in terms of PSNR and demonstrates the superiority and gener-
alization capabilities of our HES. In “+WBSR†”, we can achieve even greater performance gains of
0.18 dB by integrating our HES with our BDLoss. HES first performs more sample-level sampling to
learn generalized feature representations followed by fewer selective class-level sampling to focus on
texture-rich regions to correct sample bias with stable learning and prevent the model’s overfitting,
which mitigates the model oscillation and addresses the overfitting problem. Furthermore, our HES
achieves balanced stable training with our BDLoss for diverse samples in each training step, which
solves the instability and training bias issues.

Effectiveness of BDLoss. To demonstrate the effect of BDLoss, we train the SR model using uniform
sampling and replace only the L1 loss with Lbd. As shown for method “+Lbd ” in Table 2, the PSNR

9



Table 3: Quantitative comparison results of our method with other sampling strategies.

Method
B100 [31] Urban100 [16]

PSNR↑ SSIM↑ #FLOPs (G) PSNR↑ SSIM↑ #FLOPs (G)

RCAN 27.40 0.7306 32.60 (100%) 25.54 0.7684 32.60 (100%)
+BSPA [29] 27.54 0.7348 32.60 (100%) 26.02 0.7839 32.60 (100%)

+SamplingAug [41] 27.47 0.7323 32.60 (100%) 25.80 0.7771 32.60 (100%)
+DDA [49] 27.51 - 32.60 (100%) 25.89 - 32.60 (100%)

+HES 27.73 0.7388 32.60 (100%) 26.04 0.7863 32.60 (100%)
+WBSR† 27.81 0.7402 32.60 (100%) 26.10 0.7889 32.60 (100%)
+WBSR 27.77 0.7391 26.41 (81%) 26.03 0.7850 29.67 (91%)

improved by balanced training is 0.06 dB with an average 65% computing cost compared to the
baseline model, which demonstrates the superiority of our BDLoss.

Effectiveness of Joint Training. When applying joint training of HES and BDLoss within WBSR to
the baseline network, we can further improve the PSNR and SSIM results by 0.13 dB and 0.0043,
respectively, which achieve an overall performance improvement with average 66% calculation.
Furthermore, to fully demonstrate the effectiveness of our WBSR, we adopt the weight-balancing
framework to retrain the full baseline model instead of the dynamic supernet model. It can be seen
from the “+WBSR†”method of Table 2, our WBSR with a computational cost comparable to baseline
obtains average PSNR and SSIM gains of 0.33 dB and 0.0078, respectively. Models trained using
our WBSR show consistent performance improvements that are not affected by the skewness of the
training sample distribution. In Figure 5, the SR performance on rare samples obtains gains, while
the performance on abundant samples remains the same or slightly decreases, which proves that our
weight-balancing strategy not only enhances the learning of texture areas and reduces redundant
computation of flat areas. Additional experimental results are placed in supplementary materials.

6 Conclusion

1 2 3 4 5 n···

Naïve Weights

1 2 3 4 5 n
···

Weight Balancing

1 2 3 4 5 n

···

Balanced Weights

Naïve Performance

Gain w/ WBSR (66%)
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R
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B

)

Figure 5: Illustration of the gain of our weight-
balancing framework relative to the baseline model
and its weight rectification diagram.

In this paper, we rethink the imbalance prob-
lem in image SR from a statistical probability
perspective and propose a plug-and-play Weight-
Balancing framework (WBSR) to achieve bal-
anced model learning without changing the orig-
inal model structure and training data. Specif-
ically, to tackle the imbalance problem of data
distribution, we propose a Hierarchical Equal-
ization Sampling strategy (HES) to enhance the
model’s capability to extract features from dif-
ficult samples to mitigate inherent data biases.
Then, to solve the imbalance problem of model
optimization, we propose a Balanced Diversity
Loss (BDLoss) function to focus on learning tex-
ture regions and ignore redundant computations
in those smooth regions. After joint training of
HES and BDLoss, our WBSR rectifies the imbalance to achieve accurate and efficient inference via a
gradient projection dynamic inference strategy. Extensive qualitative and quantitative experiments
across various models, datasets, and scaling factors demonstrate that our method achieves comparable
or superior performance to existing approaches with less computational cost.
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A Derivations and Proofs

In this supplementary material, we give a detailed derivation of Theorem 1 from Eq. 4 to Eq. 5

ptrain(y|x) =
ptrain(y|x)∫

Y
ptrain(y′|x)dy′

=
pbal(y|x) · pbain(y)

pbal(y)
· pbal(x)
pbain(x)∫

Y
pbal(y′|x) · pbain(y′)

pbal(y′) · pbal(x)
pbain(x)

dy′

=
pbal(y|x) · pbain(y)

pbal(y)∫
Y
pbal(y′|x) · pbain(y′)

pbal(y′) dy
′

=
pbal(y|x) · ptrain(y)∫

Y
pbal(y′|x) · ptrain(y′)dy′

(17)

Then, we give a derivation from Eq. 13 to Eq. 14. Since si in Eq. 13 indicates the norm of the product
of multi Gaussians, its inherent characteristic can also be delineated as a Gaussian distribution

si = N (ŷ;µi,Σi + σ2
noiscI) (18)

where N denotes the probability density function of a Gaussian distribution parameterized by a
mean vector µi and a covariance matrix Σi + σ2

noiscI. I denotes the identity matrix, ensuring that the
covariance matrix remains positive definite. Building upon this foundation, the weighted Gaussian
terms can be expressed as

L∑
i=1

ϕisi =

L∑
i=1

ϕi

∫
Y

N (ŷ;µi,Σi + σ2
noiscI)dy (19)

where ϕi denotes the weight of individual Gaussian components. This weighting mechanism al-
lows the model to flexibly learn balanced optimization of parameters based on the different data
characteristics.

Subsequently, we substitute Eq. 19 and Eq. 12 into Eq. 13 to derive the pivotal diversity balancing
term, which integrates the principles of predictive uncertainty with the underlying training distribution

log

∫
Y

N (y′; ŷ, σ2
moiscI) · ptrain(y′)dy′ = log

L∑
i=1

ϕi · N (ŷ;µi,Σi + σ2
noiseI) (20)

Finally, we integrate Eq. 20 into the our Lbd formula from Eq. 11 to obtain the final loss function
expression

Lbd = − logN (y; ŷ, σ2
noiseI) + log

L∑
i=1

ϕi · N (ŷ;µi,Σi + σ2
noiseI) + λ||θ||2 (21)

where balance weights θ are rectified through the joint optimization of two key terms with the loss:
the diversity balancing term to ensure balanced optimization, and the regularization term to prevent
overfitting.

B Ablation Studies

Visualization comparison of ablation. To further verify the feature representation ability of our
BDLoss on hard texture patches, we also visualize the error map of SR results with GT images in
Figure 6. As can be seen from the yellow box area, the error of the model trained with Lbd on the
texture area is significantly smaller than that of L1, indicating that our Lbd function improves the
fitting accuracy in challenging texture regions. In addition, the effectiveness of our gradient projection
strategy can also be proved according to the subnet allocation map, which reasonably allocates large
subnets (i.e., green masks) to complex texture areas. This demonstrates that our gradient projection
strategy can effectively enhance the model’s ability to handle complex textures.
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M 3 6 9 12 16
W&D 3&1 3&2 3&3 4&3 4&4

PSNR↑ 26.28 26.26 26.26 26.13 26.12
SSIM↑ 0.7678 0.7675 0.7673 0.7657 0.7654

Table 4: Influence of different numbers M of subnets. W represents the number of subnet widths,
and D represents the number of subnet depths, constituting subnets with varying parameters and
computational costs.

Error map w/o BDLoss Error map w/ BDLoss Subnet Allocation Map

Figure 6: Visual comparison of error map from SR model trained by L1 and our Lbd.

Analysis of the number M of subnets. We verify the impact of the number of subnets on network
inference performance in Table 4. As the number of subnets increases, the inference effect will
decrease to a certain extent because the fixed training epochs cause the extra subnets to not be fully
trained. Increasing the number of training epochs will solve this problem to a certain extent. However,
to achieve a trade-off between performance and efficiency, we adopt a total of nine subnet branches
of three widths and three depths to process different image patches.

Analysis of the class k of samples. To analyze the impact of the number of sample categories, we
visualize the variation curves of computational cost GFLOPs and performance PSNR under different
K classes in Figure 7. When the K = 5 value is small, the results of gradient vector projection of

GFLOPs

P
SN

R
 (

d
B

)

Figure 7: Effectiveness of different class values k of samples.

different patches are too concentrated, which will lead to inaccurate network division. Increasing the
value of K results in a more suitable subnet selection. Considering the memory limitation, we set the

16



number of batches to 16 in per training step, and the number K of class at each training step in all
experiments is set to 10 to achieve a better trade-off of performance and efficiency.

C More Qualitative Results

In Figures 8 - 11, we present more visual comparison results of our WBSR and other SOTA meth-
ods [23, 4] on different testing datasets at different scales. It can be seen that our algorithm can
accurately reconstruct more spatial structures and more texture details and other algorithms suffer
from loss of detail on difficult texture patches, which demonstrates the superiority of our algorithm.

ClassSR ARM Ours HRB100 LR 

Figure 8: Qualitative comparison results of ×4 on B100 [31] dataset between our method and other
methods. Please zoom in for details.

ClassSR ARM Ours HRUrban100 LR 

Figure 9: Qualitative comparison results of ×2 on Urban100 [16] dataset between our method and
other methods. Please zoom in for details.
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ClassSR ARM Ours HRTesk2K LR 

Figure 10: Qualitative comparison results of ×4 on Test2K [9] dataset between our method and
other methods. Please zoom in for details.

ClassSR ARM Ours HRTesk4K LR 

Figure 11: Qualitative comparison results of ×2 on Test4K [9] dataset between our method and
other methods. Please zoom in for details.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discuss the limitations of the work performed by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: This work provide the full set of assumptions and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper fully disclose all the information needed to reproduce the main
experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Data and code of this paper will be published upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper specifies all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.)
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper report error bars suitably and correctly defined about the statistical
significance of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This paper provide sufficient information on the computer resources (type of
compute workers, memory, time of execution) needed to reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper discuss both potential positive societal impacts and negative societal
impacts of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper not adopts pretrained language models, image generators, or scraped
datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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