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Abstract

Existing super-resolution (SR) methods optimize all model weights equally using
L1 or L2 losses by uniformly sampling image patches without considering dataset
imbalances or parameter redundancy, which limits their performance. To address
this issue, we formulate the image SR task as an imbalanced distribution transfer
learning problem from a statistical probability perspective and propose a plug-
and-play Weight-Balancing framework (WBSR) for image SR to achieve balanced
model learning without changing the original model structure or training data.
Specifically, we develop a Hierarchical Equalization Sampling (HES) strategy to
address data distribution imbalances, enabling better feature representation from
texture-rich samples. To tackle model optimization imbalances, we propose a
Balanced Diversity Loss (BDLoss) function, focusing on learning texture regions
while disregarding redundant computations in smooth regions. After joint training
of HES and BDLoss to rectify these imbalances, we present a gradient projection
dynamic inference strategy to facilitate accurate and efficient reconstruction during
inference. Extensive experiments across various models, datasets, and scale factors
demonstrate that our method achieves comparable or superior performance to
existing approaches with approximately a 34% reduction in computational cost.
The code is available at https://github.com/aipixel/WBSR.

1 Introduction

Image super-resolution (SR) aims to reconstruct high-resolution (HR) images with more details
from low-resolution (LR) images. Recently, deep learning-based image SR methods have made
significant progress in reconstruction performance through deeper network models and large-scale
training datasets, but these improvements place higher demands on both computing power and
memory resources, thus requiring more efficient solutions. Therefore, various techniques such
as pruning [36, 53, 55], quantization [34, 39, 5], knowledge distillation [18, 45], and designing
lightweight architectures [17, 25, 40] have been widely researched to accelerate inference and meet
the requirements of deployment inference on resource-constrained platforms. However, these methods
rely on static networks to process all input samples fairly, ignoring the different requirements of
diverse samples for network computational cost, which limits the representation ability of the model.

In contrast, dynamic neural network based methods [4, 42, 54, 48] can dynamically adjust the network
structure or parameters and reduce the average computational cost, becoming a mainstream research
focus in recent years. These methods can adaptively allocate networks with suitable computational
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Figure 1: Illustration of (a) the data distribution from the widely used DIV2k [1] training set, (b) the
reconstruction results of RCAN [51] model, and (c) the proposed weight-balancing framework.

costs according to the content of the input samples during inference. Despite the advancements in
these dynamic network solutions, practical applications are still hindered by two prevalent limitations:

Data Distribution Imbalance. Existing SR methods [51, 52, 4, 26] mostly use uniformly sampled
LR-HR patch pairs instead of the entire image to train models due to the limitation of memory
resources. However, they ignore the underlying fact that patch contents in images exhibit imbalanced
distributions (i.e., the abundant easily reconstructed smooth flat patches and rare hardly reconstructed
edge texture patches), resulting in inherent data bias. Figure 1 (a) shows that the number proportion
of easy flat patches (48.8%) is much larger than that of hard textured patches (16.6%).

Model Optimization Imbalance. Current SR methods [27, 6, 12, 33] typically employ L1 or L2

losses to treat all patch areas and optimize each weight equally, which lacks reasonable optimization
for their model training. Since the details lost in low-resolution images mainly exist in edges and
texture locations, fewer computational resources of the model are required for those flat patches.
Therefore, existing SR methods involve redundant calculations in flat areas, which leads to imbalanced
inference performance where the model overfits in simple areas and underfits in complex ones and
results in uneven distribution of model computational resources as shown in Figure 1 (b). For the
same image, the optimized RCAN [51] model exhibits overfitting in the smooth background area
(green box, with error pixels accounting for only 0.08%), while it shows obvious underfitting in the
textured foreground area (red box, with error pixels accounting for up to 52%).

Overall, these prevalent imbalance problems of data distribution and model optimization in the real
world limit the performance of current image SR algorithms. As motivated, although this imbalance
is a well-known observation in the classification task [3, 46, 21], we formulate the image SR task as
an imbalanced distribution transfer learning problem from a statistical probability perspective. To
mitigate the gap, we propose a plug-and-play weight-balancing framework, dubbed WBSR, to achieve
balanced model learning without additional computation costs, which improves the restoration effect
and inference efficiency of models without changing the original model structure and training data,
as shown in Figure 1 (c). Specifically, to address the imbalance problem of data distribution, we
develop a Hierarchical Equalization Sampling (HES) strategy, enabling better feature representation
from texture-rich samples to mitigate data biases. Then, to solve the imbalance problem of model
optimization, we propose a Balanced Diversity Loss (BDLoss) function, focusing on learning texture
areas while disregarding redundant computations in smooth areas. After joint training of HES
and BDLoss within WBSR to rectify these imbalances, we present a gradient projection dynamic
inference strategy to facilitate accurate and efficient inference.

In summary, we make the following three key contributions: (1) This paper is the first attempt to
explore the imbalance in the image super-resolution field and gives a reasonable analysis from a
perspective of probability statistics, i.e., the imbalance of data distribution and model optimization
limits the algorithm performance. (2) We propose a plug-and-play weight-balancing framework
dubbed WBSR upon HES and BDLoss to achieve balance training without additional computation
costs, which improves the restoration effect and inference efficiency of models without changing
the original model structure and training data. (3) Extensive experiments across various models,
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datasets, and scale factors demonstrate that our achieves comparable or superior performance to
existing methods with less computational cost.

2 Related Work
2.1 Deep Imbalanced Learning

Deep imbalanced learning has attracted widespread attention due to the imbalanced data distribution
caused by the dif�culty of data acquisition in practical applications [20, 47]. The data imbalance
problem presents a signi�cant challenge in deep learning, when some classes have fewer samples than
others, resulting in poorer model prediction performance for the minority class. Previous imbalanced
learning methods [43, 50] have mainly studied data resampling techniques to solve this problem.
For example, over-sampling minority classes [30, 3] and under-sampling common classes [2, 44].
However, oversampling increases memory storage and training time, while under-sampling causes
over�tting problems [10, 5, 29]. Recently, several works [41, 49] attempt to develop data resampling
methods as data augmentation strategies for the image super-resolution task to compensate for the
imbalance of training patches between different classes.

Another category of class-imbalanced learning methods is reweighting techniques. Recent reweight-
ing methods assign weights to different classes [14, 7, 28] and training examples [15, 13, 38], which
aim to modify their gradients to make models balance. [19] process from a domain adaptation
perspective and enhance classic class-balanced learning by explicitly estimating the differences
between different class distributions using meta-learning methods. In contrast, these methods balance
the data loss by reweighting each class instead of sampling to achieve a balanced data distribution.

2.2 Dynamic Network for Ef�cient Image Super-Resolution

Recent researches address this problem with ef�cient dynamic network frameworks, which mostly
adopt content-aware modules to dynamically send image patches to sub-networks with different
complexities to accelerate model inference. ClassSR [23] combines classi�cation and SR in a uni�ed
framework, which uses an additional class module to classify image patches into different classes, and
then applies the subnets to perform SR on different classes. ARM [4] further adopts the validation set
to build an Edge-to-PSNR lookup table by mapping edge scores of image patches to the performance
of each sub-network to select appropriate subnets to further improve ef�ciency. PathRestore [48]
introduces a path�nder to implement a multi-path CNN, which can dynamically select appropriate
routes for different image areas according to the dif�culty of restoration. However, these techniques
still have two key problems. One is the additional amount of parameters and calculations brought by
the introduction of classi�ers or selectors, and the other is the neglect of data and network imbalance
that affects the performance of the model.

3 Theoretical Analysis

Let x andy denote LR and HR patches andL 1 loss as an example (Note that the theoretical applies
to theL 2), the optimization object of SR task can be written as

min
�

E(x;y ) jpdata jj y � ŷjj1 (1)

whereŷ = f � (x) represents the SR result estimated from LRx with SR modelf � . � denotes the
model parameters.pdata indicates the data distribution space. It aims to minimize all absolute
errors between predicted images and ground-truth images from the whole data. From the natural
assumption that the distribution of the training set is imbalanced, whereas the independent testing set
is balanced [11, 14, 10], so we set the training data and testing data are drawn from different joint
data distributions,ptrain (x; y) andpbal (x; y), respectively. The conditional probabilityp(xjy) is the
same in both training and testing sets due to the �xed downsampling degradation in the SR task.

From the probabilistic view, the prediction̂y of the SR network is considered as the mean of a noisy
prediction distribution, which can be modeled as a Gaussian distribution

p(yjx; � ) = N (y; ŷ; � 2
noise I) (2)

where� 2
noise indicates the variance of the independently distributed error term. The predictionŷ can

be treated as the mean of a noisy prediction distribution. Eq. 2 can be interpreted as the distribution
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form of Eq. 1, corresponding to the maximized negative log-likelihood (NLL) loss in the regression
of the prediction distribution. Consequently, the prediction model trained byL 1 actually captures the
mean value of the entire solution space, i.e., the distribution of the training set.

Theorem 1(Distribution Transformation). Considering the discordance betweenptrain (yjx) and
pbal (yjx) attributable to the distribution shift. Given the identical conditional probabilityp(xjy)
across both the training and testing sets, we leverage the Bayes rulep(yjx) / p(xjy) � p(y) to
establish the relationship through variable substitution as follows

ptrain (yjx) = ptrain (y) �
pbal (yjx)
pbal (y)

�
pbal (x)

ptrain (x)
(3)

This theorem reveals that the existence of imbalance issues stems from the direct proportionality
betweenptrain (yjx) andptrain (y) with a ratio of pbal (x )

ptrain (x ) . When a speci�c type of patch sample is
infrequently present in the training set, i.e., whenptrain (y) is low, the value ofptrain (yjx) decrease
as well, which results in a decrease in the accuracy of predictions. As a consequence, the trained
SR model tends to underestimate the occurrence of rare patches during prediction. Meanwhile,
considering that the integral ofptrain (yjx) equals1, we can obtain

ptrain (yjx) =
ptrain (yjx)R

Y ptrain (y0jx)dy0
(4)

whereY denotes the entire training sample space. Then, we substitute Eq. 3 into Eq. 4 to model the
relationship between the two distributions through explicit distribution transformation

ptrain (yjx) =
pbal (yjx) � ptrain (y)R

Y pbal (y0jx) � ptrain (y0)dy0
(5)

wherey0 denotes the integral variable. Diverging from previous works that focus on modeling
ptrain(yjx), our objective is to estimatepbal (yjx) for achieving balanced prediction on the testing set.
The detailed proof is available in the supplementary materials. The aforementioned theory proves
that the imbalanced model optimization caused by imbalanced data distribution and loss function is
reasonable. Therefore, our approach aims to correct this imbalance without introducing additional
datasets or computational costs.

4 Methodology

4.1 Weight-Balancing Training Framework

Based on the observed phenomenon and analysis, the imbalanced model optimization of image SR
undoubtedly limits the reconstruction performance of the model, especially for rare hard texture
patches. We consider attaining a robust model representation with balanced weights from the
perspective of two aspects: data sampling and optimization function. Figure 2 (a) illustrates the
training process of the proposed framework, dubbed WBSR, which consists of two main components:
Hierarchical Equalization Sampling (HES) and Balanced Diversity Loss (BDLoss). Given input LR
patches from the training set, we employ HES to sample a batch of approximately balanced patches
to optimize each subnet model with our BDLossL bd. The overall optimization objective is

min
�

E(x;y ) jptrain L bd(y � S m � (x)) (6)

whereSm � represents them-th subnet in the supernet with parameters� m . We employ a divide-and-
conquer optimization strategy to learn nearly balanced weights, minimizing the overall objective by
ensuring that each individual subnet within the supernet is well-optimized. Each subnet with varying
computational cost shares the weights of the supernet and is intended to handle image patches of
different complexities, which does not introduce additional complexity that impedes the inference
speed. In the following, we describe the details of our HES and BDLoss, respectively.

4.1.1 Hierarchical Equalization Sampling

Without prior data classi�cation, we propose a simple yet effective Hierarchical Equalization Sampling
(HES) strategy, which utilizes inherent gradient information of patches to perform sample-level
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Figure 2: Illustration of the proposed weight-balancing framework. (a) The training stage combines
hierarchical equalization sampling and balanced diversity loss to jointly train a supernet model with
balanced weights. (b) The testing stage adopts the gradient projection dynamic inference with a
gradient projection map and multiple dynamic subnets for ef�cient inference.

sampling and class-level sampling of dif�cult and easy classes to achieve equalization between the
abundant simple samples and rare dif�cult samples.

Sample-Level Samplingrefers to uniformly sampling patches from the training dataset. Each sample
is sampled with equal probability during the training stage, whose probability isPi = 1

N . i indicates
thei -th samples.N denotes the total number of training patch samples. It ensures that the model
learns stable initial weights early in training, capturing general features across different sample types.

Class-Level Samplingaims to assign a higher sampling probability to rare dif�cult samples. Unlike
the image classi�cation task where the number of categories is determined, samples in image SR
are unclassi�ed and the number is unknown. To address it, we calculate the gradient vectors online
consisting of the mean and standard deviation of the gradient magnitude of the input samples in the
horizontal and vertical directions, which assess the reconstruction dif�culty of samples and then
classify them using vector thresholdst to obtain the sampling probability. The threshold for thek-th
class is de�ned as follows

tk = t[
k � N

K
]; k 2 [1; K ] (7)

whereK is the number of classes.t1 andtK represent the gradient threshold of the simplest and
most dif�cult classes, respectively. The number of samples for thek-th class corresponds to theNk
samples whose gradient vectors fall within the range fromtk � 1 to tk . The sampling possibilityPk
can be calculated by

Pk =

P K
j =1

1
N j

Nk � � k (8)

where� 2 (0; 1) indicates the exponential factor to avoid over�tting simple data by reducing the
number of samples. It enables the sampled batch training data containing samples from dif�cult
classes, thereby achieving equalized data sampling.

The core concept of the proposed hierarchical equalization sampling strategy is to reconcile the data
bias caused by the inherent imbalance, i.e., dif�cult samples are visually more important than smooth
samples. During training and testing, the gradient vectors of image patches can be quickly exported
using existing gradient operator [32]. Therefore, our HES method does not impose any additional
computational burden and effectively leverages dataset information to enhance the model's feature
representation capabilities for hard samples.
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4.1.2 Balanced Diversity Loss

The commonly usedL 1 andL 2 losses of previous methods treat all patches equally and perform
gradient updates on each weight parameter, which ignores parameter redundancy and leads to
over�tting on simple patches and under�tting on rare hard patches. To achieve reasonable optimization
of models for diversity patches, we propose a novel Balanced Diversity Loss (BDLoss) to learn
approximate balanced model weights, which performs distribution transformation by exploiting the
training distribution without additional data to achieve balanced predictions. In accordance with
Theorem 1, we �rst estimate the desiredpbal (yjx) by minimizing the NLL loss

pbal (yjx; � ) = N (y; ŷ; � 2
noise I) (9)

De�nition 1. To balance the uncertainty of model diversity predictions and avoid excessive optimiza-
tion, our BDLoss is de�ned as the likelihood function

L bd = � logptrain (yjx; � ) + � jj � jj2 (10)

wherelogptrain (yjx; � ) denotes the converted conditional probability aimed to obtain balanced model
weights� . jj � jj 2 indicates theL 2 regularization function to prevent model over�tting.� represents a
regularization coef�cient. Next, we derive the implementation ofL bd based on Eq. 9

logptrain (yjx; � ) = log
pbal (yjx; � ) � ptrain (y)R

Y pbal (y0jx; � ) � ptrain (y0)dy0

= log N (y; ŷ; � 2
noise I) + log ptrain (y) � log

Z

Y
N (y0; ŷ; � 2

noise I ) � ptrain (y0)dy0
(11)

wherelogptrain (y) is constant term that can be omitted. The �rst remaining term is a probability
form of L 1 loss as Eq. 2. The last term oflog

R
Y N (y0; ŷ; � 2

noise I ) � ptrain (y0)dy0 indicates the key
diversity balancing term that obeys Gaussian distribution, which involves the integral operation and
necessitates �nding a closed-form expression.

Building upon the design of previous classi�cation tasks [15, 19, 35], we utilize the Gaussian Mixture
Model (GMM) technique to represent the constant term

ptrain (y) =
LX

i =1

� i N (y; � i ; � i ) (12)

whereL denotes the number of Gaussian components.� , � , � indicate the weights, means and
covariances of multi-dimensional GMM, respectively. As the multiplication of two Gaussian functions
results in another unnormalized Gaussian, the diversity balancing term can be expressed as

Z

Y
N (y; ŷ; � 2

noise I) �
LX

i =1

� i N (y; � i ; � i )dy =
LX

i =1

� i si

Z

Y
N (y; ~� i ; ~� i )dy (13)

wheresi , ~� , and~� are the norms, means, and covariances of the resulting unnormalized Gaussian,
respectively. Now, the integral of the balanced diversity term adheres to a Gaussian distribution and
is solved straightforwardly, so the BDLoss of Eq. 10 can be derivable as follows

L bd = � logN (y; ŷ; � 2
noise I ) + log

LX

i =1

� i � N (ŷ; � i ; � i + � 2
noise I ) + � jj � jj2 (14)

4.2 Gradient Projection Dynamic Inference

Figure 2 (b) illustrates the testing process of our WBSR framework, we propose a gradient projection
dynamic inference strategy to achieve a dynamic balance of ef�ciency and performance. It adaptively
allocates the subnet model without any increase in additional parameters by calculating the gradient
projection map based on the input content.

Gradient Projection. We observe that patches with complex (simple) structures exhibit high (low)
image gradient magnitude and do not suffer more (less) score degradation with SR scale changes.
Following the approach described in Section 4.1.1, we calculate gradient vectors to measure the
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complexity of the patch contents and construct a gradient projection map online to project the gradient
vector of an image patch to the selection of each subnet model. At inference time, each patch can
select a suitable subnet upon its gradient vector. When low-resolution noise exists in image patches,
the edge detection methods [37, 8] ignore the local complexity of the patch and result in missed
detections, thereby erroneously categorizing the patch as a simple sample. We count the changes in
gradient strength by calculating the standard deviation directly, when there is a large amount of noise
or texture changes of varying intensity in the local area of the patch, it can still be correctly assigned
as a dif�cult sample. As shown in Figure 3, yellow boxes represent areas of local texture change,
such as the clouds in the previous row and the railings in the next row. It can be intuitively seen that
our gradient projection method can accurately distinguish local smooth regions or textured regions
and assign them to the corresponding small or large subnets.

Dynamic Inference. To facilitate the deployment of the model across any hardware resources,
our dynamic supernet contains multiple subnets by gradually shrinking the model calculation
with structured iteration to dynamically adapt various computational and performance require-
ments. During inference, we adopt the dynamic supernet to individually distribute image patches
of K classes toM subnets to obtain better computational performance trade-offs. Given a
new LR patch, we �rst calculate its gradient vector and derive its classk̂ according to the
thresholdt. Then, the selected subnet for inference can be easily obtained by equally split-
ting the gradient vector interval into a total ofM subintervals, which can be expressed as

Figure 3: Visualizations of (a) the edge detection results, (b)
the gradient magnitude results, and (c) the projected subnet
selection. For ease of observation, we visualize three as-
signed subnets with small, medium, and large computational
costs as green, yellow, and red, respectively.

m = d
k̂ � M

K
e (15)

wherem 2 [1; M ] denotes the index
of the selected subnet to reconstruct
this LR patch.d�eindicates the ceiling
function that tends to select the larger
subnet. However, the larger subnet
selection leads to better performance
with heavier computation, we further
consider selecting the inference sub-
net under the limited computational
resourcesCt

m̂ = arg min
m

j� �
k̂ � Cm

K
� Ct j (16)

wherem̂ indicates the selected opti-
mal subnet under resource constraints.Cm denotes the computational cost of them-th subnet.� is a
hyperparameter that is utilized to strike a balance between the computational cost and performance,
where higher values prioritize improved performance, while lower values favor reduced computational
overhead. Consequently, our WBSR framework can be �exibly adjusted to accommodate diverse
application scenarios based on actual performance and hardware resource requirements.

5 Experiments

5.1 Experimental Details

Datasets and Metrics.Following the previous works [23, 4], we apply DIV2K [1] as the training
dataset widely used for image SR, which includes 800 high-quality images with diverse contents and
texture details. To verify the model performance under different image content distributions, four
datasets are employed for model testing, including B100 [31], Urban100 [16], Test2K, and Test4K.
Test2K and Test4K are downsampled from DIV8K [9]. For metrics, we adopt peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) to quantitatively evaluate all methods. Additionally,
the FLOPs are calculated as the average results of all patches in the entire test dataset images.

Implementation Details. Our proposed WBSR can be easily incorporated into existing CNN-based
SR networks to achieve ef�cient inference. SRResNet [24] and RCAN [51] are selected as two
baselines in our experiments for a fair comparison, we conduct extensive experiments on four datasets
of different SR scales to verify the effectiveness of our framework. During training, we set nine
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Scale Method #Pramas (M) B100 [31] Urban100 [16] Test2K [9] Test4K [9]
PSNR" #FLOPs (G) PSNR" #FLOPs (G) PSNR" #FLOPs (G) PSNR" #FLOPs (G)

×2

SRResNet [24] 1.52 32.19 20.78 (100%) 32.11 20.78 (100%) 30.39 20.78 (100%) 31.90 20.78 (100%)
+ClassSR [23] 3.12 31.68 14.75 (71%) 31.15 16.21 (78%) 30.24 14.13 (68%) 31.89 13.51 (65%)

+ARM [4] 1.52 31.69 16.21 (78%) 31.16 16.83 (81%) 30.26 15.59 (75%) 31.90 13.71 (66%)
+WBSR (Ours) 1.52 32.15 12.26 (59%) 31.98 13.30 (64%) 30.41 12.05 (58%) 32.02 12.68 (61%)

RCAN [51] 15.59 32.40 130.40 (100%) 32.33 130.40 (100%) 30.86 130.4 (100%) 32.26 130.40 (100%)
+ClassSR [23] 30.10 31.88 91.28 (70%) 31.72 103.02 (79%) 30.79 83.46 (64%) 32.24 83.46 (64%)

+ARM [4] 15.59 31.89 99.10 (76%) 31.74 109.54 (84%) 30.80 105.62 (81%) 32.24 97.80 (75%)
+WBSR (Ours) 15.59 32.34 88.67 (68%) 32.31 96.50 (74%) 30.91 75.63 (58%) 32.37 77.65 (60%)

×4

SRResNet [24] 1.52 27.34 5.19 (100%) 25.30 5.19 (100%) 26.19 5.19 (100%) 27.65 5.19 (100%)
+ClassSR [23] 3.12 26.53 3.83 (74%) 24.53 4.23 (81%) 26.20 3.62 (70%) 27.66 3.30 (63%)

+ARM [4] 1.52 26.53 4.34 (83%) 24.54 4.48 (86%) 26.21 3.76 (72%) 27.66 3.33 (64%)
+WBSR (Ours) 1.52 27.36 3.99 (77%) 25.32 4.36 (84%) 26.26 3.37 (65%) 27.73 3.22 (62%)

RCAN [51] 15.59 27.76 32.60 (100%) 25.82 32.60 (100%) 26.39 32.60 (100%) 27.89 32.60 (100%)
+ClassSR [23] 30.10 26.70 22.82 (70%) 25.13 26.08 (80%) 26.39 21.22 (65%) 27.88 19.49 (60%)

+ARM [4] 15.59 26.74 25.75 (79%) 25.14 28.36 (87%) 26.39 26.70 (82%) 27.88 25.10 (77%)
+WBSR (Ours) 15.59 27.75 25.10 (77%) 25.81 27.01 (83%) 26.45 18.52 (57%) 27.94 19.40( 59%)

Table 1: Quantitative comparison results of our method and other SOTA methods on the GoPro and
H2D datasets. Theoptimal andsuboptimal results are highlighted.

subnets (i=9) with different parameters� i in each supernet. For SRResNet, the widths and depths of
the subnets are set as ([36, 52, 64]) and ([4, 8, 16]), respectively. As for RCAN, the widths and depths
of the subnets are con�gured as ([36, 52, 64]) and ([5, 10, 20]), respectively. The compared width
adaptation algorithms [23, 4] also follow such model width con�guration to ensure a fair comparison.
All methods are implemented using PyTorch and trained on an NVIDIA GeForce RTX 3090 for 100
epochs with 16 batch sizes, where the �rst 70 epochs are sample-level sampling and the rest are
class-level sampling. The former aims to maintain the original data distribution of the entire dataset,
ensuring a stable and comprehensive feature representation. The latter focuses on correcting the
imbalance of dataset and enhancing the model's ability to represent dif�cult texture samples. The
training times of SRResNet and RCAN are 25 and 28 GPU hours using a single GPU, respectively
The training patch size is set to 128� 128 and augmented by horizontal and vertical �ipping to
enhance its robustness. We utilize ourL bd loss along with the Adam optimizer [22], setting� 1 = 0 :9
and� 2 = 0 :999. To adjust the learning rate, we apply a cosine annealing learning strategy, starting
with an initial learning rate of2 � 10� 4 and decaying to10� 7.

5.2 Comparison results
Table 1 shows the quantitative performance of our approach coupled with various SR baselines in
terms of the metrics, parameter number, and computational cost. ClassSR [23] with an additional
classi�er module has more parameters, resulting in additional computational and parameter costs.
ARM [4] adopts the validation set to build an Edge-to-PSNR lookup table, which generates additional
inference time and parameter storage overhead. In comparison, our framework achieves superior
performance with less computation (average 62%) than baselines, without incurring additional
parameters or computational costs. When tested on unseen datasets such as B100 and Urban100,
which lie outside the trained distribution, the compared methods exhibit performance degradation due
to over�tting to speci�c features of the original training dataset and a lack of generalization ability to
diverse data. In contrast, our method maintains comparable performance to the original model with
lower computational costs (averaging 70%), bene�ting from our balanced sampling and optimization
strategies during training.

Figure 4 shows visual comparisons across four testing datasets. The SR images produced by ClassSR
and ARM exhibit structural blur and noise. In contrast, our method recovers more detailed information,
resulting in better outcomes that are more faithful to the HR ground truth.

5.3 Ablation Studies

To verify the effectiveness of our WBSR upon HES and BDLoss, we conduct ablation studies on
Tesk2K and Test4K with sclae factor of� 4, as shown in Table 2.

Effectiveness of HES.During model training, we replace the original uniform sampling in baseline
with our HES strategy. As the method “+HES” shown in Table 2, HES achieves a 0.05 dB average
improvement in terms of PSNR compared with the baseline, which bene�ts from enhanced feature
representations in hard texture patches.
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Figure 4: Qualitative comparison results of our method with other methods for� 4 SR on the four
testing datasets. Please zoom in for details.

Table 2: Ablation studies of our WBSR on two benchmarks of� 4 SR.y indicates using the whole
network with 100% FLOPs for inference. Theoptimal andsuboptimal results are highlighted.

Method (×4)
Test2K [9] Test4K [9]

PSNR" SSIM" #FLOPs (G) PSNR" SSIM" #FLOPs (G)

SRResNet [24] 26.19 0.7624 5.19 (100%) 27.65 0.7966 5.19 (100%)
+HES 26.24 0.7665 3.58 (69%) 27.71 0.7986 3.43 (66%)
+L bd 26.21 0.7658 3.58 (69%) 27.70 0.7984 3.43 (66%)

+WBSR 26.26 0.7673 3.37 (65%) 27.73 0.7993 3.22 (62%)
+WBSRy 26.38 0.7684 5.19 (100%) 27.80 0.8026 5.19 (100%)

RCAN [51] 26.39 0.7706 32.60 (100%) 27.89 0.8058 32.60 (100%)
+HES 26.43 0.7748 20.86 (64%) 27.92 0.8086 19.89 (61%)
+L bd 26.42 0.7746 20.86 (64%) 27.91 0.8077 19.89 (61%)

+WBSR 26.45 0.7755 18.52 (57%) 27.94 0.8106 19.40 (59%)
+WBSRy 26.51 0.7756 32.60 (100%) 28.10 0.8138 32.60 (100%)

Furthermore, we conduct additional experiments to compare our HES with existing sampling
works [41, 49, 29] in Table 3. It shows that our HES outperforms the previous best sampling
method BSPA of an average of 0.1dB in terms of PSNR and demonstrates the superiority and gener-
alization capabilities of our HES. In “+WBSR†”, we can achieve even greater performance gains of
0.18 dB by integrating our HES with our BDLoss. HES �rst performs more sample-level sampling to
learn generalized feature representations followed by fewer selective class-level sampling to focus on
texture-rich regions to correct sample bias with stable learning and prevent the model's over�tting,
which mitigates the model oscillation and addresses the over�tting problem. Furthermore, our HES
achieves balanced stable training with our BDLoss for diverse samples in each training step, which
solves the instability and training bias issues.

Effectiveness of BDLoss.To demonstrate the effect of BDLoss, we train the SR model using uniform
sampling and replace only theL 1 loss withL bd. As shown for method “+L bd ” in Table 2, the PSNR

9



Table 3: Quantitative comparison results of our method with other sampling strategies.

Method
B100 [31] Urban100 [16]

PSNR̂ SSIM^ #FLOPs (G) PSNR̂ SSIM^ #FLOPs (G)

RCAN 27.40 0.7306 32.60 (100%) 25.54 0.7684 32.60 (100%)
+BSPA [29] 27.54 0.7348 32.60 (100%) 26.02 0.7839 32.60 (100%)

+SamplingAug [41] 27.47 0.7323 32.60 (100%) 25.80 0.7771 32.60 (100%)
+DDA [49] 27.51 - 32.60 (100%) 25.89 - 32.60 (100%)

+HES 27.73 0.7388 32.60 (100%) 26.04 0.7863 32.60 (100%)
+WBSRy 27.81 0.7402 32.60 (100%) 26.10 0.7889 32.60 (100%)
+WBSR 27.77 0.7391 26.41 (81%) 26.03 0.7850 29.67 (91%)

improved by balanced training is 0.06 dB with an average 65% computing cost compared to the
baseline model, which demonstrates the superiority of our BDLoss.

Effectiveness of Joint Training.When applying joint training of HES and BDLoss within WBSR to
the baseline network, we can further improve the PSNR and SSIM results by 0.13 dB and 0.0043,
respectively, which achieve an overall performance improvement with average66% calculation.
Furthermore, to fully demonstrate the effectiveness of our WBSR, we adopt the weight-balancing
framework to retrain the full baseline model instead of the dynamic supernet model. It can be seen
from the “+WBSRy”method of Table 2, our WBSR with a computational cost comparable to baseline
obtains average PSNR and SSIM gains of 0.33 dB and 0.0078, respectively. Models trained using
our WBSR show consistent performance improvements that are not affected by the skewness of the
training sample distribution. In Figure 5, the SR performance on rare samples obtains gains, while
the performance on abundant samples remains the same or slightly decreases, which proves that our
weight-balancing strategy not only enhances the learning of texture areas and reduces redundant
computation of �at areas. Additional experimental results are placed in supplementary materials.

6 Conclusion

Figure 5: Illustration of the gain of our weight-
balancing framework relative to the baseline model
and its weight recti�cation diagram.

In this paper, we rethink the imbalance prob-
lem in image SR from a statistical probability
perspective and propose a plug-and-play Weight-
Balancing framework (WBSR) to achieve bal-
anced model learning without changing the orig-
inal model structure and training data. Specif-
ically, to tackle the imbalance problem of data
distribution, we propose a Hierarchical Equal-
ization Sampling strategy (HES) to enhance the
model's capability to extract features from dif-
�cult samples to mitigate inherent data biases.
Then, to solve the imbalance problem of model
optimization, we propose a Balanced Diversity
Loss (BDLoss) function to focus on learning tex-
ture regions and ignore redundant computations
in those smooth regions. After joint training of
HES and BDLoss, our WBSR recti�es the imbalance to achieve accurate and ef�cient inference via a
gradient projection dynamic inference strategy. Extensive qualitative and quantitative experiments
across various models, datasets, and scaling factors demonstrate that our method achieves comparable
or superior performance to existing approaches with less computational cost.
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A Derivations and Proofs

In this supplementary material, we give a detailed derivation of Theorem 1 from Eq. 4 to Eq. 5

ptrain (yjx) =
ptrain (yjx)R

Y ptrain (y0jx)dy0

=
pbal (yjx) � pbain (y )

pbal (y ) � pbal (x )
pbain (x )

R
Y pbal (y0jx) � pbain (y0)

pbal (y0) � pbal (x )
pbain (x ) dy0

=
pbal (yjx) � pbain (y )

pbal (y )
R

Y pbal (y0jx) � pbain (y0)
pbal (y0) dy0

=
pbal (yjx) � ptrain (y)R

Y pbal (y0jx) � ptrain (y0)dy0

(17)

Then, we give a derivation from Eq. 13 to Eq. 14. Sincesi in Eq. 13 indicates the norm of the product
of multi Gaussians, its inherent characteristic can also be delineated as a Gaussian distribution

si = N (ŷ; � i ; � i + � 2
noisc I ) (18)

whereN denotes the probability density function of a Gaussian distribution parameterized by a
mean vector� i and a covariance matrix� i + � 2

noisc I . I denotes the identity matrix, ensuring that the
covariance matrix remains positive de�nite. Building upon this foundation, the weighted Gaussian
terms can be expressed as

LX

i =1

� i si =
LX

i =1

� i

Z

Y
N (ŷ; � i ; � i + � 2

noisc I )dy (19)

where� i denotes the weight of individual Gaussian components. This weighting mechanism al-
lows the model to �exibly learn balanced optimization of parameters based on the different data
characteristics.

Subsequently, we substitute Eq. 19 and Eq. 12 into Eq. 13 to derive the pivotal diversity balancing
term, which integrates the principles of predictive uncertainty with the underlying training distribution

log
Z

Y
N (y0; ŷ; � 2

moisc I ) � ptrain (y0)dy0 = log
LX

i =1

� i � N (ŷ; � i ; � i + � 2
noise I) (20)

Finally, we integrate Eq. 20 into the ourL bd formula from Eq. 11 to obtain the �nal loss function
expression

L bd = � logN (y; ŷ; � 2
noise I ) + log

LX

i =1

� i � N (ŷ; � i ; � i + � 2
noise I ) + � jj � jj2 (21)

where balance weights� are recti�ed through the joint optimization of two key terms with the loss:
the diversity balancing term to ensure balanced optimization, and the regularization term to prevent
over�tting.

B Ablation Studies

Visualization comparison of ablation. To further verify the feature representation ability of our
BDLoss on hard texture patches, we also visualize the error map of SR results with GT images in
Figure 6. As can be seen from the yellow box area, the error of the model trained withL bd on the
texture area is signi�cantly smaller than that ofL 1, indicating that ourL bd function improves the
�tting accuracy in challenging texture regions. In addition, the effectiveness of our gradient projection
strategy can also be proved according to the subnet allocation map, which reasonably allocates large
subnets (i.e., green masks) to complex texture areas. This demonstrates that our gradient projection
strategy can effectively enhance the model's ability to handle complex textures.
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M 3 6 9 12 16
W&D 3&1 3&2 3&3 4&3 4&4

PSNR" 26.28 26.26 26.26 26.13 26.12
SSIM" 0.7678 0.7675 0.7673 0.7657 0.7654

Table 4: In�uence of different numbersM of subnets.W represents the number of subnet widths,
andD represents the number of subnet depths, constituting subnets with varying parameters and
computational costs.

Figure 6: Visual comparison of error map from SR model trained byL 1 and ourL bd.

Analysis of the numberM of subnets.We verify the impact of the number of subnets on network
inference performance in Table 4. As the number of subnets increases, the inference effect will
decrease to a certain extent because the �xed training epochs cause the extra subnets to not be fully
trained. Increasing the number of training epochs will solve this problem to a certain extent. However,
to achieve a trade-off between performance and ef�ciency, we adopt a total of nine subnet branches
of three widths and three depths to process different image patches.

Analysis of the classk of samples.To analyze the impact of the number of sample categories, we
visualize the variation curves of computational cost GFLOPs and performance PSNR under different
K classes in Figure 7. When theK = 5 value is small, the results of gradient vector projection of

Figure 7: Effectiveness of different class valuesk of samples.

different patches are too concentrated, which will lead to inaccurate network division. Increasing the
value ofK results in a more suitable subnet selection. Considering the memory limitation, we set the

16



number of batches to 16 in per training step, and the number K of class at each training step in all
experiments is set to 10 to achieve a better trade-off of performance and efficiency.

C More Qualitative Results

In Figures 8 - 11, we present more visual comparison results of our WBSR and other SOTA meth-
ods [23, 4] on different testing datasets at different scales. It can be seen that our algorithm can
accurately reconstruct more spatial structures and more texture details and other algorithms suffer
from loss of detail on difficult texture patches, which demonstrates the superiority of our algorithm.

ClassSR ARM Ours HRB100 LR 

Figure 8: Qualitative comparison results of ×4 on B100 [31] dataset between our method and other
methods. Please zoom in for details.

ClassSR ARM Ours HRUrban100 LR 

Figure 9: Qualitative comparison results of ×2 on Urban100 [16] dataset between our method and
other methods. Please zoom in for details.
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ClassSR ARM Ours HRTesk2K LR 

Figure 10: Qualitative comparison results of ×4 on Test2K [9] dataset between our method and
other methods. Please zoom in for details.

ClassSR ARM Ours HRTesk4K LR 

Figure 11: Qualitative comparison results of ×2 on Test4K [9] dataset between our method and
other methods. Please zoom in for details.
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