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ABSTRACT

Modular Reinforcement Learning, where the agent is assumed to be morpholog-
ically structured as a graph, for example composed of limbs and joints, aims to
learn a policy that is transferable to a structurally similar but different agent. Com-
pared to traditional Multi-Task Reinforcement Learning, this promising approach
allows us to cope with inhomogeneous tasks where the state and action space
dimensions differ across tasks. Graph Neural Networks are a natural model for
representing the pertinent policies, but a recent work has shown that their multi-
hop message passing mechanism is not ideal for conveying important information
to other modules and thus a transformer model without morphological informa-
tion was proposed. In this work, we argue that the morphological information is
still very useful and propose a transformer policy model that effectively encodes
such information. Specifically, we encode the morphological information in terms
of the traversal-based positional embedding and the graph-based relational em-
bedding. We empirically show that the morphological information is crucial for
modular reinforcement learning, substantially outperforming prior state-of-the-art
methods on multi-task learning as well as transfer learning settings with different
state and action space dimensions.

1 INTRODUCTION

Deep reinforcement learning (RL) has made remarkable successes over the last several years, achiev-
ing human-level performance in various tasks (Silver et al., 2016; Mnih et al., 2015). However, these
are limited by individually training policies for each task, often requiring a large amount of interac-
tion data. Multi-task learning, an approach to training a model jointly from diverse tasks in order
to improve learning efficiency and prediction accuracy of task-specific models by exploiting com-
monalities and differences across tasks, has become prevalent in computer vision (CV) (Dosovitskiy
et al., 2021) and natural language processing (NLP) (Devlin et al., 2019; Radford et al., 2019).

In this regard, Multi-Task Reinforcement Learning (MTRL) is a promising approach, but training
a policy for multiple tasks in the traditional manner is not straightforward in many cases, e.g., a
policy designed for a specific robot cannot be reused for another one with a different embodiment.
Therefore, most MTRL methods assume same state and action dimensions across tasks (Rusu et al.,
2016; Parisotto et al., 2016; Pinto & Gupta, 2017; Yang et al., 2020; Kalashnikov et al., 2021) and
define each task by its own reward function, e.g., grab a cup or move it with a robot arm. Instead,
we are interested in a more general setting where the tasks are inhomogeneous, i.e., of different state
and action space dimensions, also known as incompatible control (Kurin et al., 2021).

One of the popular approaches to inhomogeneous MTRL is to assume a graph structure for the agent,
depicted in Figure 1 as an example, where limbs and joints are represented as nodes and edges. In
this modular setting, Graph Neural Networks (GNNs) provide a natural choice for the model of the
policy, since (1) they can process graph-structured input of arbitrary sizes and connections, which
allows us to obtain a single policy model that can control any agent with various morphology leading
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Figure 1: Illustration of modular robot locomotion task. Each node is corresponded to a limb, and
each non-torso limb has an actuator to execute an action, which controls the torque of the joint
connecting two limbs.

to different state and action space dimensions, and (2) they natively exploit the inductive bias that
arises from the morphological structure through their message-passing (MP) scheme, i.e., messages
are allowed to be delivered only to nodes connected by edges. Hence, GNN-based approaches
have shown to yield significantly better results in inhomogeneous MTRL, compared to the vanilla
approaches that don’t take into account the morphological structure of the agent.

Recently, Kurin et al. (2021) posed a concern that the MP scheme in GNN is prone to over-
smoothing (Li et al., 2018), where the crucial information is washed out during the multi-hop
communication. They argued that the advantage of leveraging morphological information for in-
homogeneous MTRL was overshadowed by this problem. They therefore advocated adopting the
self-attention mechanism, which allows direct communications among nodes, while sacrificing the
morphological information. Yet, it is well known that injecting the structural inductive bias into
the self-attention mechanism, i.e., positional embedding, can help significantly improve the per-
formance (Vaswani et al., 2017). In the same context, the states of neighbor nodes may be more
important than those of non-neighbor nodes for determining actions in modular RL.

In this paper, we introduce Structure-aWAre Transformer (SWAT), a new modular method for in-
homogeneous MTRL that effectively incorporates the agent morphology into the transformer-based
policy. We propose two forms of structural embeddings of the morphology to be incorporated into
the transformer model: (1) traversal-based positional embedding (PE) which represents absolute po-
sitions of nodes via tree-traversal algorithms, and (2) graph-based relational embedding (RE) which
represents relative distances of node pairs reflecting their connectivity. These allow direct commu-
nication of messages among nodes while taking into account the agent morphology.

The experimental results on benchmark tasks for inhomogeneous MTRL strongly support the ef-
fectiveness of our structural embedding approach, outperforming prior state-of-the-art methods in
terms of sample efficiency and final performance. Through transfer learning experiments, we also
demonstrate that the structural information conveyed by our approach plays an important role for
downstream tasks.

2 BACKGROUND

2.1 INHOMOGENEOUS MTRL

We assume a Markov Decision Process (MDP) defined by tupleM = ( S;A; T ; �0; r; 
) to represent
an RL task, where S is the state space, A is the action space, T (st+1|st; at) is the state transition
probability, �0 is the initial state distribution, rt = r(st; at) ∈ R is the reward associated with
state and action, and 
 ∈ (0;1) is the discount factor. The objective of RL is to learn a probability
distribution over actions conditioned on states, i.e., policy �(at|st), which maximizes the expected
discounted returnR = E[

P
t� 0 


trt].
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In the inhomogeneous MTRL, the agent is tasked with a set of inhomogeneous MDPsM =
f M 1; M 2; � � � ; M K g. We say MDPs areinhomogeneouswhen any pair of MDPs have different
dimensionalities in their state or action spaces, i.e.,dim(Si ) 6= dim(Sj ) or dim(A i ) 6= dim(A j ),
whereM i ; M j 2 M andSi ; A i is the state and action space ofM i . In the context of MTRL, the goal
is to �nd a policy that maximizes the average expected discounted return over all the environments,
1
K

P K
i =1 E[R i ] whereR i denotes the expected discounted return in MDPM i .

We now describe modular RL, where the agent can be represented as an undirected graphG =
(V; E), e.g., the robotic agent withn limbs andl joints as in Figure 1. Each node (vertices)vi 2
V for i 2 1:::n represents a limb, and an undirected edgeei;j 2 E represents connectivity by
a joint between avi and vj . For the ease of notation, we assume an ordered set of nodes, i.e.,
a nodevi is i -th element in the ordered set.E can be represented as an adjacency matrixA 2
f 0; 1gn � n that describes the connectivity among nodes, i.e., ifvi ; vj are connected,A i;j = 1 andP

i;j A i;j = 2 l. Thus at each time stept, the agent observes the statest , which consists of local
sensory information of the limb such as limb type, coordinates, and angular velocity. Denoting the
local sensory information of the limbvi at time stept as vectorv i

t , the statest can be represented as
f v 1

t ; v 2
t ; : : : ; v n

t g with morphologyE. Givenst , the policy outputs the actionat = f a1
t ; a2

t ; : : : ; an
t g

whereai
t is the torque value for the corresponding actuator controlled by the limbvi .

2.2 POLICY MODELS FOR INHOMOGENEOUSMTRL

Traditional policy model for RL, e.g., multi-layer perceptron (MLP) policy, is not suitable for inho-
mogeneous MTRL since it can only handle the state and action spaces with the same dimension. In
this regard, GNNs (Hamilton et al., 2017; Wu et al., 2020) have been a natural choice for modeling
policies (Wang et al., 2018; Huang et al., 2020), since they can scale to different state and action
dimensions as well as incorporate the agent morphology in their message-passing (MP) scheme.

Let us assume a graphG = ( V; E) where each nodevi 2 V has the corresponding information, i.e.,
node representation or messagev i . The messages in GNNs are delivered as follows:

1. MESSAGE AGGREGATION: m i  � (f v j : j 2 N i g); 8vi 2 V

2. NODE UPDATE: v i
update f � (v i ; m i ); 8vi 2 V ;

(1)

whereN i is the indices of the neighborhood ofvi , � is a message aggregation function, e.g., average
or concatenation,f � is a parameterized node update function that computes a new message given the
original messagev i and aggregated messagem i . GNNs consist of the stack of multiple GNN-layers
for multi-hop communication, where a single layer operates a single iteration. GNNs are suitable for
inhomogeneous MTRL with various agent morphologies, since each node is processed in a modular
manner, allowing a single policy to be learned for diverse agents. In particular, Shared Modular
Policies (SMP) (Huang et al., 2020) assumes a tree morphology and adopts both-way MP scheme
where messages are delivered back and forth between a root and leaves, showing signi�cantly better
performance than a standard monolithic policy in inhomogeneous MTRL.

The self-attention mechanism, introduced in the transformer (Vaswani et al., 2017), is another way
of passing messages. Unlike GNNs, it assumes that all nodes in a graph are connected, even enabling
direct communication among distant nodes. Speci�cally, each node featurev i 2 Rdv is projected to
three vectors,q i ; k i 2 Rdk ; ~v i 2 Rdv , whereq i = v i W q , k i = v i W k , ~v i = v i W v are a query,
key, value vectors respectively, andW q ; W k 2 Rdv � dk ; W v 2 Rdv � dv are learnable projection
mappings. Messages are then delivered in the self-attention mechanism as:

� i;j =
q i k jT
p

dk
; wi;j =

exp(� i;j )
P

j 0 exp(� i;j 0)
; v i

update 
X

j

wi;j ~v j ; (2)

where� i;j is the unnormalized attention score, andwi;j is the attention weight.

When the agent morphology is a sparse graph, which is quite usual for many agents in nature,
the crucial information tends to be washed out during multi-hop communication, an undesirable
phenomenon known as over-smoothing. In order to avoid the issue, AMORPHEUS (Kurin et al.,
2021) adopts the self-attention mechanism and computes the attention weight over all nodes in the
graph, yielding better results than the previous GNN-based approaches. However, it discards the
morphological information although it is potentially very useful.
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2.3 POSITIONAL INFORMATION IN TRANSFORMERS

In the transformer, injecting the positional information is essential since the self-attention mecha-
nism is permutation invariant (Vaswani et al., 2017). In the case of NLP, a permutation of tokens
can change the whole context and meaning of a sentence. Thus, the structural bias, representing the
positions of tokens, is explicitly given as a form of positional embedding (PE), which is found to
be signi�cantly useful at learning the contextual representations of words in different positions (Ke
et al., 2021; Wang & Chen, 2020). To be speci�c, the absolute positional information for thei -th
tokenvi in the sequence is given by the absolute PE vectorp i and it is added to the corresponding
token embeddingv i . On the other hand, the relative positional information between two tokens,
e.g., relative distance(i � j ), is given by relational embedding (RE),r i;j 2 R, which is added to the
attention score as� i;j = q i k jT =

p
dk + r i;j (Raffel et al., 2020; Shaw et al., 2018).

3 MOTIVATION FOR STRUCTURAL BIAS

Figure 2: Training curve
onAnimal-Walkers

AMORPHEUS (Kurin et al., 2021) proposes a plain transformer
model without morphological information due to the aforementioned
over-smoothing problem. However, we can still incorporate the mor-
phological information into the transformer, i.e., the structural embed-
ding widely utilized in NLP to add the structural bias.

In order to appreciate its effect in MTRL, we apply 2 common methods
used in NLP models, the learnable embedding (LEARN ) and the sinu-
soidal encoding (SINU). LEARN uses a learnable vector to represent
the absolute position of each token in a sequence, while SINU uses
a sinusoidal function that can represent the relative position between
tokens as well. First, we converted the morphology into a sequence
by labeling the index of each node along with the pre-order traver-
sal of the tree with a torso labeled as a root. We then aggregated the
sinusoidal encoding or the learnable embedding with the node repre-
sentations to inject the structural bias into AMORPHEUS. We run AMORPHEUS, LEARN, and
SINU onAnimal-Walkers , which are trained jointly for 5 morphologically different agents.

The results in Figure 2 show how each of the embeddings affects the MTRL performance. LEARN
improves the performance the most, because it can roughly capture the knowledge about where
each limb is placed. On the other hand, SINU suffers learning instability and the performance
rather worsens. The reason for the deterioration, we conjecture, is that SINU encodes morphology
incorrectly. SINU, devised to capture a relative distance in sequential data, can give misguided
relational information when it is applied to graph-structured data. For example, the distances from
a torso to both arms are the same in a graph, but SINU regards them differently. Although this is a
preliminary observation, it manifests the necessity of a pertinent embedding scheme for representing
both the positional and the relational information of morphology for inhomogeneous MTRL.

4 METHOD

Motivated by the result in the previous section, we present the structural embedding scheme that can
be effectively incorporated into the transformer-based policy. It allows our policy to leverage the
morphological information while free from the over-smoothing. We introduce two components for
injecting the structural bias into the transformer: traversal-based PE and graph-based RE.

4.1 TRAVERSAL-BASED POSITIONAL EMBEDDING

Unlike language sequences in NLP, it is not straightforward to capture the positional information of
each node in a graph. Yet, if we assume tree-structured robot morphology de�ning a torso as the
root node, as done in SMP (Huang et al., 2020), we can represent it as a combination of multiple
sequences in terms of tree traversals. We can traverse any tree by several consistent orderings, e.g.,
pre-order or post-order traversal. Although a single traversal sequence, as in section 3, is ambiguous
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to reconstruct the given tree, we can uniquely identify a binary tree with in-order traversal along
with another traversal (Burgdorff et al., 1987).

Inspired by this property, we introduce traversal-based PE for representing the position of each node
in the given tree. Since we assume an agent morphology as a general tree with an arbitrary number
of children, we apply left-child-right-sibling representation (LCRS) to represent a general tree as
a binary tree. Then, we traverse the binarized tree by pre-order, in-order, and post-order, which is
suf�cient to reconstruct the original tree. A node position can be represented as a tuple that consists
of the position in each traversal. Concretely,pv i

pre ; pv i

in ; pv i

post 2 N denote the indices of a nodevi

in each traversal ordering respectively, and we assign the PEp i 2 Rdv to the nodevi using the
learnable embedding vectorspv i

pre ; pv i

in ; pv i

post as follows:

p i = AGGREGATE([pv i

pre ; pv i

in ; pv i

post ]);

v i  v i + p i
(3)

We simply concatenate the embedding vectors in this work inAGGREGATE. By combining multiple
traversals, the PE assigned to each node can uniquely represent the node position in the whole
morphology.

4.2 GRAPH-BASED RELATIONAL EMBEDDING

In a graph, the relation among nodes also provides structural information from another perspective
than the position. Compared to the node positional information above, the relational information
contains more explicit knowledge between a pair of nodes. We introduce graph-based RE by utiliz-
ing three meaningful features extracted from the graph, which are incorporated into the transformer.

Normalized Graph Laplacian The Graph Laplacian (Merris, 1994) is a matrix that represents
connectivity in terms of both adjacency and node degrees in a graph, de�ned asL = D � A where
A is an adjacency matrix andD is a diagonal degree matrix, i.e.,D i;i = jN i j. We use the normalized
graph Laplacian to bound its norm, which is de�ned asR lap = D � 1

2 LD � 1
2 . Then,R lap 2 Rn � n

represents the relation among neighbors, capturing local information.

Shortest Path Distance Shortest path distance (SPD) measures the distance between two nodes in
a graph, which can be easily computed by several algorithms such as breadth-�rst search (BFS). It is
similar to the relative positional encoding approach in NLP domains, but we use real-value distance
R spd 2 Rn � n divided by the number of nodesn to bound in[0; 1], i.e., R i;j

spd = SPD(i; j )=n
whereSPD(i; j ) denotes the shortest path distance betweenvi ; vj . SPD considers the direct path
among all nodes, so we can say it captures the global information.

Personalized PageRank Personalized PageRank (PPR), a variation of PageRank (Page et al.,
1999), represents the proximity between two nodes in a graph based on a random walk model (Park
et al., 2019), which is widely utilized in the graph domain (Klicpera et al., 2019; Bojchevski et al.,
2020). PPR is a node visitation probability distribution of a� -discounted random walk model with
a restarting node. To be concrete, the random walker travels across the Markov chain formed via
the graph with its transition probability matrixP 2 Rn � n , whereP i;j = 1=jN i j for 8vj 2 N i
otherwise0. The random walker warps to the restarting node with probability� and follows theP
with 1 � � . Then, the node visitation probability distribution conditioned on the restarting nodevi ,
PPR(i ), can be obtained by solving a recursive form:

x  (1 � � )xP + � 1i ;

PPR(i ) = � 1i (I � (1 � � )P) � 1;

wherex j denotes the probability that the walker resides onvj , and1j denotes the one-hot encoded
restarting nodevi . Then, the proximity betweenvi andvj , R i;j

ppr , can be denoted by thej -th entry
of PPR(i ). In contrast to SPD, PPR considers every possible path between two nodes, whereby it
captures the relation among nodes, without the overall graph dispensed with.
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Figure 3: The overview of SWAT.

Although the aforementioned graph features all re�ect the agent morphology, they are mutually
complementary; for instance, while Graph Laplacian mainly focuses on neighbor information, other
features provide knowledge about distant nodes, generating local and global views respectively. We
thus represent the relational information among nodes in various perspectives by combining those
features. In detail, we aggregate them and learn the graph-based RER 2 Rn � n � n head from them:

R i;j = g� ([R i;j
lap ; R i;j

spd ; R i;j
ppr ]); (4)

whereg� is a function parameterized by� that maps the graph features to a RE vectorR i;j and
nhead denotes the number of heads. Note that we represent the relational information between two
nodes as a vectorR i;j 2 Rn head instead of a scalar to take full advantage of multi-head attention.
Now we modify the attention score formula with the RE in multi-head setting as follows:

� i;j
(h) =

q i
(h ) k

jT
(h)p

dk =nhead
+ R i;j

(h) ; (5)

where the subscript(h) denotes theh-th head andR i;j
(h) is ah-th entry ofR i;j .

4.3 STRUCTURE-AWARE TRANSFORMERPOLICY

We now present how SWAT works in inhomogeneous control tasks, illustrated in Figure 3. SWAT is
based on a 3-stage framework similar to the existing methods: 1) Encode local sensory information
v i for each node with the traversal-based PE into the hidden representation by a single MLP layer
shared across all nodes. We use the same notationv i for the encoded node representation for clear
notation. 2) Update each node representation by MP. While SMP uses the multi-hop communica-
tion MP scheme, we use the direct communication through self-attention with graph-based RE. 3)
Finally, decide the action for each non-torso node by pooling the �nal node representations. To learn
the policy via an RL algorithm, we use TD3 (Fujimoto et al., 2018), a deterministic policy gradient
algorithm in the actor-critic framework, following both SMP and AMORPHEUS.

5 EXPERIMENT

5.1 EXPERIMENT SETTING

We run experiments on modular MTRL benchmarks (Huang et al., 2020; Wang et al.,
2018), which are created based on Gym MuJoCo locomotion tasks. 9 environments can
be categorized into 2 settings, in-domain and cross-domain. Forin-domain, there are 4 en-
vironments: (1) Hopper++ , (2) Walker++ , (3) Cheetah++ , and (4) Humanoid++ ;
they all contain both the intact morphology and its variants, e.g., Humanoid only with one
leg or arm, for Humanoid++ . The cross-domainenvironments are combinations of in-
domain environments: (1)Walker-Humanoid++ , (2) Walker-Humanoid-Hopper++ ,
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Figure 4: Training curves on 9 environments. We evaluate on 5 different seeds and plot the mean of
average returns over all morphologies. The shaded area represents the standard error.

(3) Cheetah-Walker-Humanoid++ , (4) Cheetah-Walker-Humanoid-Hopper++
(CWHH++), and (5)Animal-Walkers 1. See Appendix A.1 for more details.

We compare our method,SWAT, with 2 baselines, the GNN-based methodSMP (Huang et al.,
2020) and the morphology-free self-attention methodAMORPHEUS (Kurin et al., 2021). We use
TD3 (Fujimoto et al., 2018) for training the policy over both baselines and ours for fairness. The
policy is trained jointly over all morphologies in various environments, and we run every experiment
for 5 random seeds to report the mean and the standard error.

5.2 MTRL RESULT

Our results are summarized in Figure 4. As Kurin et al. (2021) pointed out, SMP, which exploits
the morphological information but suffers the over-smoothing problem, shows the worst perfor-
mance among all the methods. On the other hand, AMORPHEUS that discards the morphological
information shows better performance than SMP owing to direct communication via self-attention
mechanism.

SWAT clearly outperforms the previous state-of-the-art, AMORPHEUS, especially in the cross-
domain environments, where different types of morphologies are mixed. Furthermore, the perfor-
mance gap between SWAT and AMORPHEUS is notably larger inAnimal-Walkers , which
has the greatest morphological diversity. Another noteworthy observation is that SWAT achieves
the best mean performance as well as converges faster than other baselines in both in-domain and
cross-domain environments. These results consistently demonstrate that the effectiveness of our
embedding method increases as more various types of robots are jointly trained. We speculate the
reason for the effectiveness is that the PE and RE encourage our model to transfer commonalities

1Unlike other environments whose variants are in fact subsets of the intact morphology,
Animal-Walkers consists of fundamentally different morphologies, such as a Walker, Horse, and Ostrich.
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Figure 5: Performance in transfer learning. Figure 6: Ablation study on PE and RE.

among resemblant partial morphologies (e.g., the gait patterns of the lower bodies of the Walker and
Humanoid), while discriminating against unrelated ones (the legs of Hopper from those of Walker).
By utilizing these structural embeddings across all environments, our model can learn faster and
achieve higher �nal returns than those without the structural embeddings.

5.3 TRANSFERLEARNING RESULT

In this section, we benchmark SWAT in a transfer learning setting where the policy is trained in var-
ious tasks and then transferred to another downstream task, which is a common learning strategy in
CV and NLP. We compare SWAT with SMP, AMORPHEUS, andSWAT w/o transfer, i.e., SWAT
without pretraining. All models except for SWAT w/o transfer are pretrained in the train environ-
ments and transferred to the test environment with morphology unseen to them. We evaluate them
on Humanoid++ , which has the largest number of limbs among the in-domain, and onCWHH++,
which contains all in-domain environments. Note that we only train them for 1 million time steps
during transfer learning.

As shown in Figure 5, with all pretrained models outperforming SWAT w/o transfer, SWAT learns
considerably faster than other baselines, showing much higher sample ef�ciency, and again outper-
forms them in average returns. Similar to multi-task learning settings, the useful knowledge obtained
from the training tasks can be effectively transferred to the unseen tasks by means of the positional
and relational information, enabling quick adaptation with fewer samples. Although our main focus
is MTRL and transfer learning, we also conduct experiments on zero-shot setting in Appendix A.4.

5.4 ABLATION STUDY

In this section, we conduct additional experiments to analyze how the positional and relational in-
formation affects the performance of our model respectively. We ablate the PE and the RE, and
both of them from SWAT, rendering our model identical to AMORPHEUS. We evaluate these on
Animal-Walkers andCWHH++, where we expect for their morphological diversity to incite each
embedding to play a more crucial role than in other environments.

As shown in Figure 6, the performance of SWAT degrades when the embeddings are removed one
by one. This result supports that our proposed embeddings indeed play important roles in different
manners. In other words, we need both positional and relational information to take full advantage
of the given morphology. Meanwhile, as it can be seen from SWATnf REg, i.e., SWAT with the
positional embedding only, versus SWATnf PEg, i.e., SWAT with the relational embedding only, the
performance gains from the positional information are greater than ones from relational information.
We conjecture that the self-attention, originally devised to learn the implicit relations among nodes,
might capture some relational information but cannot the absolute positional information. Further
ablation studies about each component of PE and RE are provided in Appendix A.5.

5.5 BEHAVIOR ANALYSIS

In this section, we investigate how the agent that is jointly trained in the various environments acts
in a single environment. To examine this, we visualize trajectories of the agent trained inCWHH++.
Figure 7(a) compares the mean performance of AMORPHEUS and SWAT in the single environment
of intact Humanoid with the largest number of 9 limbs.
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(a) (b)

Figure 7: (a) AMORPHEUS and SWAT performance. (b) We visualize trajectories from AMOR-
PHEUS and SWAT on Humanoid with 9 limbs inCWHH++.

As shown in Figure 7(b), AMORPHEUS does not learn to walk but instead jumps to move forward
like Hopper. This result shows the unexpected effect of multi-task learning. In multi-task learning,
the knowledge from other tasks is not always bene�cial to the task of interest; therefore, careless
exploitation of such knowledge can hamper learning rather than help it. That is, the knowledge
obtained in Hopper environments hinders learning to walk in the case of AMORPHEUS. On the
other hand, SWAT successfully learns to run since the structural embeddings allow it to transfer the
appropriate knowledge exclusively where necessary. We speculate this is possible as the embeddings
which have learned similar limbs across different agents are mapped closely to one another. We
visualize the structural embeddings in Appendix A.3.

6 RELATED WORK

There have been lots of studies about MTRL with the homogeneous setting where the state and
action spaces are the same across tasks but each task has a different objective (Rusu et al., 2016;
Parisotto et al., 2016; Teh et al., 2017; Kalashnikov et al., 2021). The inhomogeneous setting has
emerged in recent years and explored by several works. Devin et al. (2017) decompose the policy
model into task-speci�c modules and morphology-speci�c ones, then reuse the combination of them
for various settings. D'Eramo et al. (2020) use a shared module over all tasks that is combined with
a task-speci�c encoder and decoder to learn a policy per task. Those approaches based on the
separated module have a limitation in that they require a larger number of model parameters as the
number of tasks increases. Chen et al. (2018) encodes agent morphology in a feature vector and
learns the policy for different morphologies conditioned on the state and feature vector.

Another line of work that is closely related to ours is the modular approach. Wang et al. (2018)
and Pathak et al. (2019) represent the agent morphology as a graph and utilize GNNs as the policy
network in order to tackle the inhomogeneous setting. Both of their studies show that the GNN-
based policy has large bene�ts over a monolithic policy in inhomogeneous MTRL. Recently, Huang
et al. (2020) present SMP based on GNNs for the inhomogeneous setting. They assume each agent
as a tree and propose a both-way MP scheme where the messages are propagated from leaves to
root (bottom-up) and from root to leaves (top-down). Kurin et al. (2021) pose a concern about
the MP in GNNs due to the over-smoothing problem, and propose AMORPHEUS, which adopts
self-attention mechanism rather than GNNs for direct communication in exchange for leveraging
the morphological information. In contrast, we utilize the morphological information through the
structural embeddings, allowing direct communication while taking advantage of the structural bias.

7 CONCLUSION

In this paper, we argue that the knowledge of agent morphology plays an important role in modular
MTRL and present SWAT that leverages structural biases arising from the morphology. Instead of
the MP scheme, we encode the structural information through the medium of the traversal-based PE
and the graph-based RE, which can be easily incorporated into the transformer-based policy. We em-
pirically demonstrate that our method achieves the state-of-the-art performance in inhomogeneous
robot locomotion MTRL benchmarks as well as in transfer learning settings.
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A A PPENDIX

A.1 ENVIRONMENT DESCRIPTION

Following Kurin et al. (2021), we conduct experiments on benchmarks as in Table 2. Huang et al.
(2020) proposedHopper++ , Walker++ , Cheetah++ , andHumanoid++ , removing some parts
from the intact morphology, while every morphology is able to hop, walk, or run, i.e., they do not
contain the morphology that is unable to go forward such as the robot with only arms or the one
lacking its torso.

To explain the name of environment in more detail, the �rst part means its intact morphology and
the middle part means the number of limbs belongs to its morphology, and the last part means
the missing limbs. For example,humanoid 2d 7 right leg originates from Humanoid and
consists of 7 limbs, lacking right legs, both right thigh and right shin. Note that we dubWalker
in Wang et al. (2018) asAnimal-Walkers , because it is quite confusing in thatWalker++
also contains the variants of Walker. SinceAnimal-Walkers consists of various animal-shaped
morphology, we distinguish it fromWalker .

All the environments provides the morphology of the robot as a graph-structured data that is ex-
tracted from the corresponding MuJoCo XML �le. The reward is given by the distance the agent
move forward, penalized by the norm of action, i.e., the sum of torque values in all actuators. And
it terminates when the agent slips and cannot proceed anymore or it succeeds to survive 1,000 time
steps.

A.2 IMPLEMENTATION DETAIL

We implement SWAT based on AMORPHEUS which is built onTransformerEncoderfrom Py-
Torch, sharing the codebase of SMP. Additionally, we simply modifyTransformerEncoderto incor-
porate with PE and RE, enabling relational embedding to be added per head. We use 3 independent
embedding layers for each traversal to learn PE, where each embedding size has the equal size, i.e.,
summation of all PEs per traversal is equal to the embedding size of �nal PE. And we use a simple
fully-connected layer forg� in Equation 4 to learn the graph-based RE. SWAT shares hyperparam-
eter setting used in Kurin et al. (2021) as shown in Table 1, except the replay buffer size due to the
memory ef�ciency. Also, we use the residual connection as reported in Kurin et al. (2021).

Hyperparemeter Value

Learning rate 0.0001
Gradient clipping 0.1

Normalization LayerNorm
Attention layers 3
Attention heads 2

Attention hidden size 256
Encoder output size 128

Mini-batch size 100
Replay buffer size 500K
Embedding size 128

Table 1: Hyperparameter setting in SWAT
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Environment Train set Test set
Hopper++

hopper 3
hopper 4
hopper 5

Walker++
walker 2 main walker 3 main
walker 4 main walker 6 main
walker 5 main
walker 7 main

Cheetah++
cheetah 2 back cheetah 3 balanced
cheetah 2 front cheetah 5 back
cheetah 3 back cheetah 6 front
cheetah 3 front
cheetah 4 allback
cheetah 4 allfront
cheetah 4 back
cheetah 4 front
cheetah 5 balanced
cheetah 5 front
cheetah 6 back
cheetah 7 full

Humanoid++
humanoid 2d 7 left arm humanoid 2d 7 left leg
humanoid 2d 7 lower arms humanoid 2d 8 right knee
humanoid 2d 7 right arm
humanoid 2d 7 right leg
humanoid 2d 8 left knee
humanoid 2d 9 full

Walker-Humanoid++ (WH++)
Union ofWalker++ andHumanoid++ .

Walker-Humanoid-Hopper++ (WHH++)
Union ofWalker++ , Humanoid++ , andHopper++ .

Cheetah-Walker-Humanoid++ (CWH++)
Union ofCheetah++ , Walker++ , andHumanoid++ .

Cheetah-Walker-Humanoid-Hopper++ (CWHH++)
Union ofCheetah++ , Walker++ , Humanoid++ , andHopper++ .

Animal-Walkers
FullCheetah (Wolf)
Hopper
HalfCheetah (Horse)
HalfHumanoid
Ostrich

Table 2: Full list of environments.
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A.3 STRUCTURAL EMBEDDING

We visualize both PE and RE in SWAT learned in cross-domain environments,CWHH++. Figure 8
shows that the PEs of limbs placed at similar position in morphology are mapped closely. Figure 9,
10, and 11 shows SWAT learns relational information among nodes throughR lap ; R spd andR ppr ,
which considers not only local but global information of graph.

Figure 8: t-SNE visualization of positional embeddings learned from multiple robots with various
morphology. The points are corresponded to the reduced positional embedding of each node in
different morphologies. The shape denotes the morphology it belongs to and the color denotes its
limb type. Walker(Cheetah)nf footg are the variants lacking of feet.
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