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Abstract

Training and inference of Large Language Models (LLMs) with tensor-parallelism
requires substantial communication to synchronize activations. Our findings sug-
gest that with a few minor adjustments to current practices, LLMs can be trained
without fully synchronizing activations, reducing bandwidth demands. We name
this “Communication-Aware Architecture for Tensor-parallelism” (CAAT-Net).
We train a 7B parameter CAAT-Net model and show that tensor-parallel communi-
cation can be reduced by up to 50% with no significant drop in pretraining accuracy
across nearly all evaluated benchmarks. We also experiment with smaller 130M
and 1.1B models to show the robustness and scalability of our method. We find that,
in some scenarios, validation loss can even improve when reducing communication.
Finally, we demonstrate how CAAT-Net accelerates both training and inference
workloads across various settings and model sizes.

1 Introduction

As Large Language Model (LLM) training continues to scale, often requiring the use of hundreds
or even thousands of devices, the need for efficient distributed training and inference techniques
is constantly growing. Tensor-parallelism [1] is a critical component in the training of many well-
known LLMs, such as GPT-3 [2], Llama [3, 4], and BLOOM [5], enabling the efficient utilization of
hardware resources to support models with billions of parameters. By partitioning weight tensors
across multiple devices, tensor-parallelism allows each device to store only a fraction of the model’s
weights during computation. This significantly reduces the memory footprint per device, making it
feasible to train extremely large models on hardware with limited memory capacity. The efficiency of
tensor-parallelism in reducing training memory has made it a cornerstone technique for distributed
training. During inference, where the LLM response time is critical, distributing the computation
over multiple devices using tensor-parallelism can significantly reduce latency.

Much of the total time spent training or using LLMs is consumed by the communication overhead
inherent in tensor-parallelism, which arises from the need to synchronize activation or gradient
tensors. Specifically, synchronization is done by all-reduce operations, where tensors from all devices
are summed into a single tensor, which is copied to all devices. This operation occurs multiple times
in each forward and backward pass and constitutes a substantial fraction of the total workload time.

A recent approach to addressing this issue is pipelining communication and computation [6] in such a
way that the communication is overlapped with the computation and the footprint of communication
is reduced. However, this approach is limited: when tensor-parallelism is expanded to use more
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devices, the compute workload per device decreases, while communication payload per device
remains relatively constant [7]. This means that the relative cost of communication grows as the
compute-to-communication ratio decreases. In extreme cases, communication time can overcome
computation time, and thus dominate the training process. For these reasons, even the largest language
models are typically trained with a tensor-parallelism dimension of 8 [4], utilizing fast intra-node
communication for the heavy all-reduce operations.

Improving tensor-parallelism efficiency is even more important given that the growth in compute
power exceeds the growth in communication bandwidth [7]. This trend should further expose
communication time in large-scale training. Minimizing tensor-parallelism communication can enable
better hardware compute utilization and reduce overall training costs, especially when extending
tensor-parallelism across nodes. This is in line with the recent trend of building multi-node systems
with high bandwidth communication.

In traditional tensor-parallelism, the activation tensors after communication are identical on all
devices, i.e., fully synchronized. In this work, we show that LLM training can converge without fully
synchronizing the activation tensors in the all-reduce operation. This means that we allow activations
to vary on different devices after communication. We show that without full synchronization, the
current training practice needs to be slightly adjusted. Failing to do so leads to critical issues such
as a mismatch between forward and backward passes and numerical issues, which often result in
training divergence. Relying on this insight, we suggest the partial channel–reduce operation, in
which only a subset of the channels in the hidden dimension of the activation tensors is reduced.
Unlike regular all-reduce, activations are not identical on all devices after the partial channel–reduce
operation. In the extreme case where no channels are synchronized in partial channel–reduce, the
model resembles an ensemble, communicating only to compute the loss function and embeddings.
In the case where all channels are reduced, the model is a vanilla transformer model. We introduce
Communication-Aware Architecture for Tensor-parallelism (CAAT-Net) — a new model architecture
that is tailored for tensor-parallelism by utilizing partial channel–reduce to decrease communication
overhead. While CAAT-Net has a smaller communication overhead compared to an identical model
with full all-reduce, the number of parameters and total compute stay the same.

We train a Llama2-7B model [8] with partial channel–reduce over 160B tokens and show that there
is no significant degradation in nearly all evaluation benchmarks we tested, while reducing the
communication payload by 50%. Furthermore, we train multiple variants of the 1.1B parameter
TinyLlama model [9] and a smaller 130M parameter model. We study the effects of the number of
synchronized channels and tensor-parallel dimension on accuracy. We find that a gradually reducing
communication from full synchronization first yields a slight improvement in validation loss, but
performance worsens when communication becomes too limited. Reducing the communication by
50% achieves either similar or slightly better validation loss for all models we tested. Finally, we
show the training and inference speedup of our proposed method in various settings.

In summary, our contributions in this paper are as follows:

• We show that when using tensor-parallelism, LLMs can be trained without fully synchroniz-
ing activation tensors.

• We propose CAAT-Net, a novel architecture that significantly decreases communication
traffic in training with tensor-parallelism by synchronizing only part of the activation tensors.

• We show that in various settings, CAAT-Net accelerates both training and inference, and
achieves accuracy largely on par with fully synchronized training.

2 Related Work

The challenge of efficient training and inference on a large scale has attracted much attention, both
in the engineering and research fronts, in close correspondence with each other. While most of the
literature focuses on reducing data-parallel communication, there have been a few works that focus
on tensor-parallelism. Our approach is orthogonal to all methods covered in this section.

Pipelining computation and communication. Some methods accelerate training with tensor-
parallelism by overlapping communication and computation, [6, 10–12]. In Domino DeepSpeed, the
training batch is split into smaller pieces, and data dependency is broken such that communication
is not on the critical path and can be overlapped with computation. Alternatively, Ladder Residual
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pipelines communication and computation by changing the transformer architecture, such that each
layer uses an earlier version of the input from two layers back. This allows it to compute while the
previous layer’s results are still being communicated. While these approaches achieve speedup in
inference and training, they are limited — there are many cases in which the compute time is not
sufficient to fully hide tensor-parallel communication. For example, with a growing tensor-parallel
dimension, the computation per device is reduced while the communication is not, so overlapping
efficiency is reduced as well. Furthermore, other parallelism types interfere with tensor-parallel
related communication. One of many examples is context-parallelism, where communication time
alone can exceed compute time [13]. When adding tensor-parallelism after attention blocks that use
context-parallelism, there is no compute left to pipeline both types of communication. For this reason
we view our method, which reduces the total tensor-parallel communication, as complementary to
pipelining methods.

Additionally, in NVIDIA GPUs such as H100/H200, pipelining communication and computation
comes with a cost — the Stream Multiprocessors (SM), which perform the computation, are also
needed for communication. When pipelining communication and computation, some SM cycles
are spent on communication-related tasks instead of computation. Furthermore, while pipelining
computation and communication can accelerate training and inference, our method reduces total
communication, and can potentially improve other aspects such as power consumption.

Compressed communication. Another approach is to address the communication overhead by
compressing the communication itself at the tensor-parallel or pipeline-parallel stages [14, 15]. This
can be done using various methods, such as auto-encoders or sending the Top-K elements of the
tensors. While compression succeeded in other aspects of optimization, it has yet been demonstrated
that compression works for tensor-parallelism, to the best of our knowledge. In fact, we observed
severe degradation in model accuracy with even minimal compression using Top-K or random
masking to compress activations (our observations can be found in Section 5.3). Additionally,
compression introduces additional computation overhead which can reduce the speedup achieved
by reducing communication. Our method differs from these methods because it does not compress
activations. Although not all activations are shared between devices, those that are not shared are still
used.

Asynchronous optimization. A different approach, mainly focused on mitigating overhead intro-
duced by data-parallel communication, introduces asynchronism to the optimization by not waiting
for all communication or straggling devices. In this case, different devices store all of the model
weights, but each device can hold a slightly different copy. Asynchronous training is inherently more
scalable than synchronous training by being robust to all kinds of worker and communication faults.
However, this scalability comes with a price: convergence difficulties and generalization deterioration
[16]. In contrast, when training with tensor-parallelism, each device stores a different subset of the
model weights. Therefore, while we do not completely synchronize activations, we do not encounter
the problem of multiple workers storing a different copy of the same weight, and training remains
synchronous.

Post-training techniques. There have been many attempts to reduce tensor-parallel communication
using post-training techniques, such as quantization [17, 18], and selectively removing complete
communication points after the attention operation [19]. While these techniques are promising, they
are relevant only for decreasing the communication bottleneck during inference.

3 CAAT-Net

To reduce communication bandwidth in LLM training and inference, we replace the all-reduce
operation, designed to synchronize activations between devices, with a partial channel–reduce
operation, such that only a subset of the channels in the hidden dimension is synchronized between
devices. In partial channel–reduce, channels that are sent to other devices are referred to as shared
channels, while those that are unique per device are private channels. The shared channels are
chosen at initialization to be the first h · p channels, where h is the hidden dimension size and p is a
synchronization factor controlling how much of the hidden dimension is synchronized. For p = 1 the
partial channel–reduce turns into a full all-reduce operation (no private channels). The operation is
visualized in Figure 2 (c). In this section we present a novel communication-aware model architecture
which utilizes partial channel–reduce to accelerate LLM training and inference. A theoretical speedup
analysis of our method is available in Appendix C.
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Figure 1: CAAT-Net model architecture. Left.We exemplify our approach on a two-layer fully-
connected neural network on a single device. Middle. When using tensor-parallelism with two
devices, the input activation X is identical on both devices. Each device uses its own set of weights
to multiply the inputs, yielding intermediate activations, which are then reduced into identical copies
of Z on both devices. Right. CAAT-Net receives different input activations, X1 and X2, for Device 1
and Device 2, respectively. These yield intermediate activations that are partially synced between the
devices, producing Z1 and Z2 on Device 1 and Device 2, respectively. Private channels are marked
P , and shared channels are marked S.

3.1 Architecture

While changing the communication primitive from all-reduce to partial channel–reduce seems like a
minor change, it effectively changes the model architecture. Partial channel–reduce fundamentally
alters the model’s computation graph and information flow. This distinguishes CAAT-Net from
communication optimizations like pipelining or compression, which preserve or approximate the
underlying mathematical operations. Consequentially, the Multi Layer Perceptron (MLP) and
attention layers must be defined differently when taking partial channel–reduction into account. In
this section we define the MLP using partial channel–reduce. The definition of the attention operation
is described in Appendix A.1.

Standard all-reduce in MLP. Before mathematically describing the MLP using partial chan-
nel–reduce, we describe the MLP using regular all-reduce in a tensor-parallel setting. For simplicity,
we examine a case where the tensor-parallel dimension is 2. For the general case, refer to Appendix
A.2. Given consecutive MLP weight matrices A and B, input tensor X and an activation function σ,
the output of the MLP layer Z is given by

Y = σ(XA) ; Z = Y B (1)

where Y is the output of the first MLP layer. The basic architecture of a transformer MLP is visualized
in Figure 1 (left). When using tensor-parallelism, we partition A along its columns, i.e.,

A = [A1, A2] (2)

so the computation of Y , is

Y1 = σ (XA1) ; Y2 = σ (XA2) ; Y = [Y1, Y2] . (3)

We partition B along its rows, i.e.

B =

[
B1

B2

]
(4)

and, after an all-reduce, the output of the MLP is

Z = Y1B1 + Y2B2 , (5)

4



where Y1B1 is computed on the first device and Y2B2 is computed on the second. The implementation
of all-reduce with tensor-parallelism is visualized in Figure 1 (middle).

Partial channel–reduce in MLP. We first note that with partial channel–reduce, the input to the
MLP will be different per device (as the previous attention layer will also use partial channel–reduce
in its output). Therefore, the inputs to each device are denoted X1 and X2, as is shown in Figure 1
(right). Thus, the output of the first linear layer when using partial channel–reduce is:

Y1 = σ (X1A1) ; Y2 = σ (X2A2) ; Y = [Y1, Y2] . (6)

Next, we need to partition B along both its columns and rows

B =

[
B11 B21

B12 B22

]
. (7)

Then, the outputs of the MLP with partial channel–reduce, denoted Z1 and Z2, are different per
device and are calculated by

Z1 = [Y1B11 + Y2B12, Y1B21] ; Z2 = [Y1B11 + Y2B12, Y2B22] , (8)

where B11 and B21 are on the first device, and B12 and B22 are on the second device. The values in
Y1B11 + Y2B12 are in the shared channels, and Y1B21 and Y2B22 are both in the private channels,
which are visualized in Figures 1 and 2.

3.2 CAAT-Net Inference

Models trained with CAAT-Net use partial channel–reduce in inference as well. This leads to
communication reduction and speedup when serving models, as we show in Section 5.2.

If the model is served with the same tensor-parallel dimension that it is trained with, serving the
model is straightforward. This is different when using the model in inference with tensor-parallel
dimension different than in training. As an example, we examine a scenario where the model is
trained with a tensor-parallel dimension of 2, and inference is performed with a single device. In
training, the output of a transformer layer is different on each device. In inference, one device needs
to handle both of these copies. This can be done using ‘logical devices’. In this case, a single physical
device can simulate multiple tensor-parallel ranks, and sequentially calculate the output of each layer
for every ’logical’ tensor-parallel device. Furthermore, the partial channel–reduce is replaced with
local summation inside the single device. It is also possible to return to a full all-reduce operation
during inference through fine tuning, to increase the value of p to 1. Then, a regular transformer
architecture is achieved, and inference can be run on any tensor-parallel dimension.

4 Partial Synchronization: Implementation

To train LLMs without full synchronization of activation tensors, there are two main adjustments
that must be done to current training frameworks [1]. The first is an adjustment to the backward
implementation of tensor-parallelism, which is necessary to avoid forward-backward mismatch in
training. The second is accumulating tensors in 32 bit (fp32) in the all-reduce of the backward pass.
We find empirically that this is necessary to avoid numerical issues in training.

Forward-backward mismatch. To train LLMs with partial activation synchronization, we need to
further examine the backward pass of a transformer model. In traditional LLM training, the all-reduce
operation in the backward pass is done on the neural gradients produced by an MLP or attention layer,
as shown in Figure 2a. Explicitly calculating the gradients propagated through the network, we find
that the all-reduce operation can be applied in multiple locations in the backward pass without altering
the backpropagation algorithm. We also find that in the case of partially synchronized activations, the
reduction operation can only be applied in one place. To show this analytically we examine the input
to an MLP layer on device m, denoted Xm, as a function of the output of a previous attention layer
on device m before the all-reduce operation, denoted Zm, with R being the residual connection, we
have

Xm = Norm

(∑
m

Zm +R

)
, (9)
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Figure 2: Partial synchronization and partial channel–reduce. (a) Vanilla transformers in current
training frameworks. The operation f is an all-reduce in the forward pass and identity in the backward
pass. The operation g is an all-reduce in the backward pass and identity in the forward pass. (b)
With partial synchronization, h denotes the reduction operation in both the forward and the backward
pass, since both must be done at the same location. Synchronization of the normalization function
parameters is necessary. (c) Partial channel–reduce with parameter p over 2 devices.

where Norm can be any normalization function (typically LayerNorm [20] or RMSNorm [21]). We
examine the loss L as a function of Xm for all m, and Xm as a function of Z1, and calculate the
derivative of the loss function w.r.t Z1. For simplicity, we ignore below the residual connections (in
Appendix B we show the derivation including the residual). Using the chain rule:

∂L (X1 (Z1) , .., XM (Z1))

∂Z1
=
∑
m

(
∂L (Xm)

∂Xm
· ∂Xm (Z1)

∂Z1

)
=
∑
m

(
∂L (Xm)

∂Xm
· ∂X
∂Z1

)
. (10)

In the second equation, we recalled that ∂Xm

∂Z1
are equal for all m (denoted now as ∂X

∂Z1
) because in

tensor-parallelism with full all-reduce operations X1 (Z1) = X2 (Z1) = ... = XM (Z1), and thus
their derivative w.r.t. Z1 are also equal. Here, the summation over m is the all-reduce operation in the
backward pass. Our key insight here is that, since the matrix multiplication distributes over addition,
i.e. ∑

m

(
∂L(Xm)

∂Xm
· ∂X
∂Z1

)
=
∑
m

(
∂L(Xm)

∂Xm

)
· ∂X
∂Z1

, (11)

the all-reduce operation can be used before back-propagating through the normalization function
(right side of the equation), or after the normalization function (left side of the equation). In standard
training frameworks, such as Megatron-LM, the all-reduce operation is used before back-propagation
through the normalization function (i.e., the ‘g’ operation in Figure 2a). When training with partial
synchronization, the assumption that ∂Xm

∂Zm
are equal for all m no longer holds. For this reason, the all-

reduce operation in the backward pass must occur after the calculation of the normalization function
derivative (i.e., the ‘h’ operation in Figure 2b) so it would match the location of the summation in the
forward pass (i.e., the ‘f’ operation in Figure 2a), to get the correct gradients.

Similarly, we examine the normalization function parameter update, denoted β, with a full all-reduce
operation:

∂L (X1 (β) , ..., XM (β))

∂β
=
∑
m

(
∂L (Xm)

∂Xm
· ∂Xm

∂β

)
. (12)

In the gradient descent step, after each iteration, before updating the weights, the updates ∂L
∂β need to

be synchronized with an all-reduce operation. In popular training frameworks, the fact that ∂Xm

∂β is

6



identical for all m devices is used once again. There is no need for gradient synchronization after
each step, if the all-reduce happens before backpropagating through the normalization function:∑

m

(
∂L (Xm)

∂Xm

)
· ∂X
∂β

, (13)

where, again, ∂Xm

∂β are equal for all m (denoted as ∂X
∂β ). To summarize, when using full all-reduce,

the following are equivalent:

• Reduce the neural gradients before they backpropagate through the normalization function.

• Reduce the gradients after they backpropagate through the normalization function, and
reduce normalization function parameters before the weight update.

However, when training with partial synchronization, such as partial channel–reduce, only the second
approach is possible. Our altered backward implementation is detailed in Figure 2b. It is important to
note that the number of normalization function parameters per layer is typically Θ(h), where h is the
hidden size, and the synchronization of normalization function parameters happens after every step.
For these reasons, the additional communication of normalization function parameters is negligible
in comparison to the tensor-parallel all-reduce operation.

Numerical stability via 32 bit gradient accumulation. In the previous section we presented two
different implementations of the backward pass. If we fully synchronize activations in the forward
pass, these implementations are mathematically identical. Despite this equivalence, we found in our
experiments that there can still be a large gap in training convergence when using our alternative
implementation, even when activations are fully synchronized. This gap arises due to numerical
differences between the implementations, and it can be completely mitigated by accumulating the
reduced gradients in 32 bit precision instead of 16 bit precision. While LLMs are conventionally
trained in 16 bit precision, there are some operations where 32 bit precision is critical, such as in the
accumulation in matrix multiplication operations, or normalization layers. While the tensor-parallel
gradient all-reduce is typically not one of these operations, we find that when moving the all-reduce
in the backward pass, 32 bit accumulation is crucial. It is important to note that while accumulation
needs to be done in 32 bit precision, the communication itself can be done in 16 bit precision, and
values are simply upcast after communication and before accumulation. Loss curves comparing our
training experiments with all-reduce accumulation in fp32 and bfloat16 are available in Appendix
E.1.

Private channel scaling. Partial channel–reduce leads to differences in the statistics of shared
and private channels, which affects signal propagation in the network. Consider the case of partial
channel–reduce with 2 tensor-parallel devices. Assuming each element in the MLP outputs before
reduction (Y1B11, Y2B12, Y1B21) has zero mean and variance σ2

A, and are independent between
devices. The activation variance for shared channels is

Var(Y1B11 + Y2B12) = Var(Y1B11) + Var(Y2B12) = 2σ2
A, (14)

and for private channels is:
Var(Y1B21) = σ2

A (15)

This variance mismatch can lead to uneven signals across channels in both the activation and gradient
calculations. To correct this mismatch, we multiply the activations in the private channels by a
corrective factor of

√
2 (or

√
r if we train with a tensor-parallel dimension of r). This way, after the

partial channel–reduce, the activations have identical variances over all channels. Ablation studies
for private channel scaling are available at Appendix E.3. While we find a slight improvement in
validation loss across values of p, private channel scaling is not mandatory to achieve sufficient
accuracy results.

5 Experiments

Experiments were conducted with Intel Gaudi3 HPU accelerators. Gaudi3 has 128GB on-board
memory. Each device has 525 GB/s intra-node connection and 75 GB/s inter-node connection.
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Table 1: CAAT-Net vs baseline: Zero-shot accuracy after pretraining. 7B parameter models, with
p = 0.5 and tensor-parallel 8.

Model LAMBADA (acc) Hellaswag (acc) WinoGrande (acc) PIQA (acc)

Baseline 61.34 ± 0.68 45.85 ± 0.50 61.48 ± 1.37 72.91 ± 1.06
CAAT-Net 61.05 ± 0.68 46.10 ± 0.50 62.19 ± 1.36 72.86 ± 1.04

OpenBookQA (acc) BOOL-Q (acc) WikiText (ppl) Validation Loss

Baseline 26.60 ± 1.98 64.89 ± 0.83 12.51 1.01
CAAT-Net 24.00 ± 1.87 62.51 ± 0.85 12.46 1.00

5.1 Large Scale Training

We trained a variation of Llama2-7b [8] with partial channel–reduce. Training was conducted
from scratch over 160B tokens from the RedPajama dataset, spanning 8 nodes, each containing 8
accelerators. We chose a partial channel–reduce hyperparameter of p = 0.5 and a tensor-parallel
dimension of 8, with all other hyperparameters identical to those used in training of the original
model. We choose these values of p and tensor-parallel dimension as an example which we expected,
based on our ablation studies, to yield good accuracy results, while significantly reducing network
bandwidth.

We evaluate the model’s performance on a diverse set of common sense tasks selected from the
Language Model Evaluation Harness framework [22]. The chosen benchmarks include tasks such as
HellaSwag [23], WikiText103 [24], LAMBADA [25], WinoGrande [26], PIQA [27], OpenBookQA
[28] and BoolQ [29]. The zero-shot results are available in Table 1. All accuracy results are not
statistically significant, except for Bool-Q, which is marginally significant (p-value = 0.046 using
Welch’s t-test).

To further study the scalability and robustness of our method, we train 130M and 1.1B models in
multiple settings. The 1.1B model used is TinyLlama [9], and is trained over 100B tokens. The 130M
parameter model is a small custom model based on the LLaMA architecture. It has 16 attention heads
and a hidden dimension size of 768. It was trained with an initial learning rate of 6 · 10-4, with the
AdamW optimizer. The training was performed with a global batch size of 256 and a sequence length
of 1024. The architecture consists of 12 transformer layers with multi-head attention. It is trained
over 7.8B tokens. Both models are trained on the RedPajama dataset, using the GPTSentencePiece
tokenizer.

Figure 3: Training accuracy in multiple scenarios. Left. Validation loss of 130M and 1.1B models
for different values of p, and of the 7B model with p = 0.5, normalized to the loss at p = 1. Right.
Validation loss for the 130M model with varying values of p and tensor-parallel dimension (TP).

We train both models with varying values of p, with tensor-parallel dimension of 8. Results are
available in Figure 3 (left). We find that for large values of p (over 0.75), the 130M and 1.1B models
behave similarly. For intermediate values of p (between 0.75 and 0.25), the smaller 130M model
has a slight improvement in validation loss compared to the baseline, while the 1.1B model is close
to or slightly above the baseline. For smaller values of p, there is degradation for both models.
Furthermore, we added the 7B model we trained with p = 0.5, which shows a slight improvement
w.r.t the baseline, showing potential in further scaling our method. Zero-shot accuracy for all 1.1B
experiments is available in Appendix E.2.
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We also study the effects of tensor-parallel dimension on the 130M model. Results are available in
Figure 3 (right). For all tensor-parallel dimensions, gradually decreasing p from 1 initially leads
to a slight improvement in validation loss, but performance deteriorates once p becomes too low.
As the tensor-parallel dimension increases, this degradation begins at a higher value of p. For all
tensor-parallel dimensions, p = 0.5 does not degrade or improves validation loss.

Finally, we train an additional model, other than the models from the Llama architecture, to show the
robustness of our method. Specifically, we trained GPT3-XL [2] with tensor-parallel 8 and p = 0.5,
on the RedPajama dataset using the GPTSentencePiece tokenizer, rotary positional embeddings and
with a global batch size of 512. We trained for a total of 50B tokens. Similarly to results on Llama,
we find that CAAT-Net maintains accuracy results. The full results are available in Appendix E.2.

5.2 Speedup

We examine Llama2-7b with partial channel–reduce to measure inference and training speedup.
In this section we show relative speedup (i.e., speedup compared to the baseline). For absolute
measurements, see Appendix E.5. Furthermore, for inference, we experiment with larger models
(34B and 70B) and achieve similar results to those reported in this section. Full results for these
models are available in Appendix E.4.

Inference. To measure inference speedup, we report the Time-to-First-Token (TTFT) for varying
batch sizes, using a prompt length of 2K tokens. We use partial channel–reduce with tensor-parallel 8
and 16. We compare results against the baseline, which is Intel’s Optimum-Habana without any of
our adjustments. The results are shown in Figure 4 (bottom). For tensor-parallel 16 and p = 0.25 we
measure a maximum speedup of 26% with batch size 32. In the large scale training setting of p = 0.5
and tensor-parallel 8, which we show does not degrade accuracy, we obtain a maximum speedup of
14% for batch size 32.

Furthermore, to show that accelerating workloads using CAAT-Net is not specific to Intel Gaudi
hardware, we conduct experiments on NVIDIA hardware. Our experiments were done using the
gpt-fast repository, and consisted of replacing all-reduce with partial channel–reduce during inference.
We conducted experiments on 8 NVIDIA H100-80GB-HBM3, and 8 NVIDIA A100-SXM4-80GB,
both with NVLink. Results are shown in Figure 4 (top right). We find that our method speeds up
inference TTFT by up to 13% on NVIDIA hardware with p = 0.25 and tensor-parallel dimension 8.
Speedup on Gaudi is more significant in our experiments, but we believe further software performance
optimizations on NVIDIA hardware can bridge this gap. Full measurements, including for additional
batch sizes, are available in Appendix E.6.

Alongside accuracy considerations, practitioners should consider hardware constraints when selecting
p. For example, on Gaudi3, speedup results were more significant when selecting p such that
the communication volume is a multiple of the communication buffer size. Specifically, when
experimenting with Llama2-7B with batch size 16, we identified that the optimal performance
speedup is achieved with a value of p which is a multiple of 2−7 (i.e., the number of channels reduced
is a multiple of 16). As a result, selecting p = 0.703125, which is equal to 90 · 2−7, achieves better
speedup than p = 0.7.

Training. To measure training throughput speedup, we report the tokens per second (TPS), for
tensor-parallel dimensions 4, 8, and 16, with varying values of p. Tensor-parallel 4 experiments were
conducted with a micro-batch size of 4, while tensor-parallel 8 and 16 experiments were conducted
with a micro-batch size of 8. The results are shown in Figure 4 (top left). We compare results against
the baseline, which is Intel’s Megatron-LM fork without any of our adjustments. For training in
tensor-parallel 16, our method can improve throughput by up to 14% when selecting p = 0.25 and by
9% when selecting p = 0.5.

All experiments were conducted using private channel scaling, as described in Section 4. Disabling it
provides an additional 1–2% speedup, with only minor accuracy degradation (see Appendix E.3),
making training without private channel scaling a reasonable alternative. It is important to note that
in training speedup experiments, for all values of p and the baseline, accumulation in the backward
pass was done in 16-bit precision due to technical implementation limitations. For this reason, the
training throughput results in this section should be seen as a performance projection. We do not
expect accumulation in fp32, if communication is kept in 16-bit precision, to significantly affect the
speedup reported in this section.
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Figure 4: Speedup in training and inference for a Llama 7B model. Top Left Training speedup
for varying values of p and tensor-parallel dimension. Top Right. Inference Time-To-First-Token
(TTFT) speedup on different hardware, using batch-size 128. Bottom Left. Inference TTFT speedup
using tensor-parallel 8 as a function of batch size, for different values of p. Bottom Right. Inference
TTFT speedup using tensor-parallel 16 as a function of batch size, for different values of p.

5.3 Comparison to compression methods

Figure 5: Comparison to compression meth-
ods. Validation loss vs. p for 130M models using
CAAT-Net, Top-k masking and random masking.

To compare our method to compression methods,
we use two alternative approaches for compress-
ing activation communication. While CAAT-Net
preserves low validation loss, we report severe
degradation for both compression methods, even
with minimal compression. The first method is
reducing communication using a random mask.
The values that are multiplied by 0 in the random
mask are not communicated. This is effectively
applying dropout before communication. The sec-
ond method is using a Top-K mask, which selects
the Top-K entries in each token of the activation
tensor and discards the others. In both cases, we
apply the mask in the forward pass before commu-
nication. To avoid a forward-backward mismatch,
the same mask is applied in the backward pass as well. Furthermore, the Top-K and random masks
are less efficient in reducing communication than CAAT-Net. See Appendix D for details.

To be consistent with CAAT-Net experiments, we denote by p the probability that an activation is not
zeroed (so if p = 1, applying the mask is equivalent to applying the identity function). We train the
130M parameter Llama model detailed in Section 5.1 for a total of 2.6B tokens. We experiment with
different values of p, and report significant degradation for Top-K and random masks. Results are
available in Figure 5.

6 Conclusion

In this paper, we show that with minor changes to current training frameworks, activations do not
need to be fully synchronized in tensor-parallel communication for training to converge. We propose
CAAT-Net, which significantly decreases tensor-parallel related network traffic in LLM training with
minor to no degradation in accuracy. We experiment with smaller networks to explore the effects of
tensor-parallel dimension and the synchronization factor. Finally, we show how our method speeds
up inference and training workloads.
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A Mathematical Description of MLP and Attention Using Partial
Channel–Reduce

A.1 Attention

In this section, we describe an attention layer using partial channel–reduce. Like in section 3.1, we
examine a case where the tensor-parallel dimension is 2. Furthermore, for simplicity, we assume the
model consists of only 2 attention heads.

Standard all-reduce in Attention. Below, we describe the output of the attention layer
with a full all-reduce. The attention head outputs, H1 and H2, for the first and second heads,
respectively, are

H1 = Attention
(
XWK

1 , XWQ
1 , XWV

1

)
; H2 = Attention

(
XWK

2 , XWQ
2 , XWV

2

)
.

(16)

In tensor-parallelism, the output projection of the attention layer O, is sharded between devices. The
output Z after all-reduce is:

Y = [H1, H2] ; Z = Y O, ; O =

[
O1

O2

]
; Z = H1O1 +H2O2 , (17)

where H1O1 is calculated on the first device and H2O2 is calculated on the second one.

Partial channel–reduce in Attention. As in the MLP case, when introducing partial channel–reduce,
the input to the attention is not necessarily identical on each device. The inputs on each device are
denoted X1 and X2:

H1 = Attention
(
X1W

K
1 , X1W

Q
1 , X1W

V
1

)
H2 = Attention

(
X2W

K
2 , X2W

Q
2 , X2W

V
2

) (18)

The outputs of the attention layer with partial channel–reduce are different per device, and are denoted
Z1 and Z2:

Y = [H1, H2] . ; O =

[
O11 O21

O12 O22

]
Z1 = [H1O11 +H2O12, H1O21] ; Z2 = [H1O11 +H2O12, H2O22] .

(19)

A.2 Partial channel–reduce with many devices

In this section, we relax the assumptions made in Section 3.1 and Appendix A.1, to allow more than
2 tensor-parallel devices.

MLP. An MLP operation in transformers with a full all-reduce operation can be described as follows.
Given weight matrices A ∈ Rh×f and B ∈ Rf×h, where f is the Feed Forward Network (FFN)
hidden dimension, and input activations X ∈ Rb×t×h, the MLP can be written in index notation as:

Zil =
∑
k

σ

∑
j

XijAjk

Bkl, (20)

where t is the sequence length, b is the batch size, and σ is the nonlinearity. To introduce the partial
channel–reduce operation, we first rewrite Eq. 20 in a notation that incorporates tensor-parallelism.

Z̃ilm =
∑
k

σ

∑
j

XijÃjkm

 B̃klm

Zil =
∑
m

Z̃ilm,

(21)
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where Ã is A written in column-parallel notation such that the last dimension corresponds to tensor-
parallel rank, and similarly B̃ is B written in row-parallel notation. The summation over m is the
all-reduce operation. Finally, we write the MLP with the partial channel–reduce operation as follows:

Z̃ilm =
∑
k

σ

∑
j

Xijm Ãjkm

 B̃klm

Zilm =

{∑
m Z̃ilm if l < floor (hp)

Z̃ilm if l ≥ floor (hp)
.

(22)

Here, the summation over m is the partial channel–reduce operation. The main differences between
Eq.21 and Eq.22 are:

• The sum over Z̃ is only over the first p · h channels of the hidden dimension.
• The input to the MLP is different per device when using partial channel–reduce, because the

previous attention layer also used partial channel–reduce in its output. Thus, the input to
MLP, X , has an additional index, m, corresponding to tensor-parallel device rank. Similarly,
Z has an additional index, m, because each device contains different parameters in the
private channels after the partial channel–reduce operation.

Attention. We present the attention operation with partial channel–reduce. For simplicity, we assume
that the tensor-parallel degree is the number of heads, though this assumption can easily be relaxed.
The attention operation with a full operation is all-reduce is:

Hijm = Attention
(
XWK

m , XWQ
m , XWV

m

)
ij

Z̃ilm =
∑
j

HijmÕjlm

Zil =
∑
m

Z̃ilm ,

(23)

where Hijm is an item in the mth attention head output, and Õjlm is an item in the attention output
projection, after reshaping the attention output projection O to be written in a row-parallel notation.
Hence, the output of the attention operation with the partial channel–reduce operation is:

Hijm = Attention
(
XmWK

m , XmWQ
m , XmWV

m

)
ij

Z̃ilm =
∑
j

HijmOjlm

Zilm =

{∑
m Z̃ilm if l < floor (hp)

Z̃ilm if l ≥ floor (hp)
.

(24)

The main differences between Eq.23 and Eq.24 are:

• The sum over Z̃ is only over the first p · h channels of the hidden dimension.
• Apart from the first attention layer, the input to the attention is different per device when using

partial channel–reduce, because the previous MLP layer also used partial channel–reduce in
its output. Thus, the input to the attention, X , has an additional index, m, corresponding to
the tensor-parallel rank. Similarly, Z has an additional index because each device contains
different parameters after the partial channel–reduce operation.

B Analyzing Forward-Backward Mismatch Considering Residual
Connections

For a transformer with all-reduce, we examine the input to an MLP layer on device m, denoted Xm,
as a function of the output of a previous attention layer on device m before the all-reduce operation,

14



denoted Zm with R being the residual connection from before the attention block, we have

Xm = norm

(∑
m

Zm +R

)
. (25)

R is the residual connection from before the attention block. We look at the loss as a function of Xm

for all m, and of the residual connection (that skips the next layer) on the mth device, Rm. We also
look at Xm and Rm as a function of Z1, and calculate the derivative of the loss function w.r.t Z1

using the chain rule:

∂L (X1 (Z1) , .., XM (Z1) , R1 (Z1) , .., RM (Z1))

∂Z1
=∑

m

(
∂L (Xm)

∂Xm
· ∂Xm (Z1)

∂Z1
+

∂L (Rm)

∂Rm
· ∂Rm (Z1)

∂Z1

)
=

∑
m

(
∂L (Xm)

∂Xm
· ∂Xm (Z1)

∂Z1
+

∂L (Rm)

∂Rm

)
=

∑
m

(
∂L (Xm)

∂Xm
· ∂X
∂Z1

+
∂L (Rm)

∂Rm

)
(26)

where in the second equation we used the fact that

∂Rm (Z1)

∂Z1
=

∂

∂Z1

∑
m

Zm = 1 , (27)

and in the last equation, we equated∂Xm

∂Z1
for all m (denoted now as ∂X

∂Z1
) because in Tensor-Parallelism

with full all-reduce operations X1 (Z1) = X2 (Z1) = ... = XM (Z1), and thus their derivative w.r.t
Z1 are also equal. Here, the summation over m is the all-reduce operation in the backward pass. Our
key insight is here is that, due to the distributivity of matrix multiplication:∑

m

(
∂L (Xm)

∂Xm
· ∂X
∂Z1

+
∂L (Rm)

∂Rm

)
=
∑
m

(
∂L (Xm)

∂Xm

)
· ∂X
∂Z1

+
∑
m

∂L (Rm)

∂Rm
. (28)

In other words, the all-reduce operation can happen before back-propagating through the normal-
ization function (right side of the equation), or after the normalization function (left side of the
equation). On the right hand side of the equation, the summation of the residual gradient happens in
the all-reduce of the next layer, i.e the layer after the residual is accumulated back into the activation
tensors. In standard training frameworks, such as Megatron-LM, the all-reduce operation happens
before back-propagating through the normalization function. When training with CAAT-Net, the
assumption that ∂Xm

∂Zm
are equal for all m no longer holds. For this reason, the all-reduce operation in

the backward pass must be after the calculation of the normalization function derivative.

Similarly, we examine the normalization function parameter update, denoted β, with a full all-reduce
operation. Because the residual splits from the activations before the normalization function is
applied, the normalization function parameter update is not a function of the residual states:

∂L (X1 (β) , ..., XM (β))

∂β
=
∑
m

(
∂L (Xm)

∂Xm
· ∂Xm

∂β

)
. (29)

In the gradient descent step, this means that after each iteration, before updating the weights, the
updates ∂β need to be synchronized themselves with an all-reduce operation. In popular training
frameworks, the fact that ∂Xm

∂β are equal for all m is utilized once again. When the all-reduce
happens before backpropagating through the normalization function, there is no need for gradient
synchronization after each step: ∑

m

(
∂L (Xm)

∂Xm

)
· ∂X
∂β

. (30)

Once again, equated ∂Xm

∂β for all m (denoted now as ∂X
∂β ).
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C Speedup Analysis

We suggest a simple model to further understand the relation between compute and communication
times, and analyze the potential speed-up of our method. We make the following assumptions:

• Compute is modeled only as GEMM operations — specifically in the MLP and attention.
Communication is modeled only as the tensor-parallel all-reduce. We neglect all other
computations (embeddings, language model head, etc.) and communications (pipeline
parallel, data parallel, etc.)

• We assume a constant ratio between compute and communication capacity, C, given in units
of FLOP/s

GB/s .

• We assume that the communication time roughly does not change when we adjust the tensor-
parallel dimension. This assumption is true in Gaudi processors when using multi-node
connections, due to inter- and intra-node communications overlapping during all-reduce
operations. Additionally, we assume that computation time is inversely proportional to the
tensor-parallel dimension. This assumption is only approximately true since computation
time depends on many factors, such as tensor shapes.

We examine the forward pass of a transformer with a simple MLP, where the first weight matrix in
the MLP is of dimension h× 4h and the second weight matrix is of dimension 4h× h. This type
of MLP is common in LLM’s such as GPT and BERT. We consider batch size 1, as batch size does
not affect the results in this section. When multiplying an m× p matrix by a p× n matrix, the total
number of operations (multiplications and additions) is m · p · (2n− 1), which we approximate to
2m · p · n. Based on this, the total number of computation operations in a transformer layer with
sequence length s, n heads and hidden size h is:

MLP ops = 8sh2︸︷︷︸
h to 4h

+ 8sh2︸︷︷︸
4h to h

= 16sh2

Attention ops = 6sh2︸︷︷︸
qkv proj

+ 4s2h︸︷︷︸
attention

+ 2sh2︸︷︷︸
out proj

=

4s2h+ 8sh2 .

(31)

To calculate the total communication payload, we recall that in each full all-reduce operation, s · h
activations are sent and received by each device, and this happens twice every transformer block.
Thus the total number of compute operations G, and communication payload P as a function of p,
per device, are:

G =
24sh2 + 4s2h

r

P (p) = 2shp ,

(32)

where r is the tensor-parallel dimension and p is the CAAT-Net synchronization factor. Consequently,
the total time for computation and communication of a single transformer layer in the forward pass is

T (p) = G+ P (p) . (33)

We find that the speed-up introduced by our method is:

T (1)− T (p)

T (1)
= (1− p)

1

1 + 12h+2s
Cr

. (34)

Our method is more significant for large C and r, but diminishes for very large h and s. This is
because computation is quadratic in h and s while the communication is linear. If communication is
hidden behind all of the computation, then there is a maximal value of p at which communication
and computation times are equal, and there is less motivation to decrease p to improve speed-up. If
G ≥ P (1), then the optimal value of p is p∗ = 1. Otherwise we can set G = P (p). Considering both
cases, we find that the value of p∗ is:

p∗ = min(
12h+ 2s

Cr
, 1) . (35)
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D Top-K and Random Masks Communication Reduction

Analyzing the communication volume reduction in these experiments, we note that only the commu-
nication in the forward pass is compressed. This is because we use vanilla tensor-parallelism, and not
our alternate implementation detailed in Section 4, so communication doesn’t happen in the same
location in the forward and backward passes. For this reason, unlike CAAT-Net, communication
compression in the forward pass does not imply communication compression in the backward pass.
Additionally, all-reduce happens in 2 steps – reduce-scatter and all-gather. Applying a mask before
communication is equivalent to compressing the reduce-scatter operation, which accounts for only
half of the total communication in the all-reduce. For these reasons, compressing communication
using a Top-K or random masking with parameter p leads to a ( 100·(1−p)

4 )% reduction in tensor-
parallel communication volume. In CAAT-Net with parameter p communication is compressed in
the reduce-scatter and all-gather of both the forward and backward passes. The total tensor-parallel
communication in CAAT-Net is reduced by (100 · (1− p))%.

E Additional Results

E.1 Effects of All-Reduce Bit Precision in the Backward Pass

In this section we show that 16 bit accumulation in the backward pass all-reduce leads to loss
divergence. To show this, we train the variants of the TinyLlama model, as is described in Section 5.1.
The first is trained using the Intel’s Megatron-LM fork repository, without any additional changes.
The second variant is trained after applying the changes detailed in Section 4, with the backward
pass all-reduce accumulation in bfloat16 precision. The third is trained after applying all changes in
the Section 4, including 32 bit accumulation in the backward pass. Results in Figure 6 show severe
degradation with 16 bit accumulation after 15K training steps. Despite the mathematical equivalence
between the two implementations, numerical differences lead to instability.

Figure 6: Effects of All-Reduce Accumulation Precision in the Backward Pass on TinyLlama
Train Loss.

E.2 TinyLlama and GPT-XL Accuracy Evaluation for varying values of p

We report the full zero-shot accuracy evaluation of TinyLlama using varying values of p. The
evaluation metrics are those described in Section 5.1. Overall p = 0.75 achieves the best accuracy,
with the highest score in 5 out of 8 metrics. Results are available in Table 1. Additionally, we report
full zero-shot accuracy evaluation of GPT-XL for p = 0.5. Results are available in Table 2.
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Table 2: Zero-shot accuracy results on GPT-XL
p LAMBADA (acc) Hellaswag (acc) WinoGrande (acc) PIQA (acc)

1 50.16 ± 0.70 36.07 ± 0.48 52.41 ± 1.40 68.06 ± 1.11
0.5 48.17± 0.69 36.26 ± 0.48 53.83 ± 1.40 67.79 ± 1.09

OpenBookQA (acc) BOOL-Q (acc) WikiText (ppl) Validation Loss

1 19.20 ± 1.76 60.85 ± 0.85 19.25 1.28
0.5 18.60 ± 1.74 61.01 ± 0.85 19.00 1.27

Table 3: Zero-shot accuracy results on TinyLlama for varying values of p
p LAMBADA (acc) Hellaswag (acc) WinoGrande (acc) PIQA (acc)

1 48.26 ± 0.70 35.55 ± 0.48 55.25 ± 1.40 67.03 ± 1.10
0.875 46.43± 0.69 35.89 ± 0.48 53.04 ± 1.40 64.96 ± 1.11
0.75 49.39± 0.70 35.88 ± 0.48 52.80 ± 1.40 68.99 ± 1.08
0.625 48.92 ± 0.70 35.61 ± 0.48 53.20 ± 1.40 67.41 ± 1.09
0.5 48.01 ± 0.70 35.65 ± 0.48 51.26 ± 1.40 67.68 ± 1.09
0.375 45.74 ± 0.69 35.48 ± 0.48 52.88 ± 1.40 68.28 ± 1.09
0.25 48.83 ± 0.70 35.63 ± 0.48 50.83 ± 1.40 67.74 ± 1.09
0.125 44.25 ± 0.69 34.63 ± 0.47 50.83 ± 1.38 66.27 ± 1.10
0 33.96 ± 0.66 30.49 ± 0.46 50.28 ± 1.41 64.09 ± 1.12

OpenBookQA (acc) BOOL-Q (acc) WikiText (ppl) Validation Loss

1 21.20 ± 1.83 59.57 ± 0.86 19.10 1.28
0.875 20.00 ± 1.79 60.24 ± 0.86 19.05 1.28
0.75 20.60 ± 1.81 61.04 ± 0.85 18.84 1.27
0.625 21.40 ± 1.84 60.12 ± 0.86 19.08 1.28
0.5 21.00 ± 1.82 59.24 ± 0.86 20.12 1.28
0.375 19.40 ± 1.77 57.13 ± 0.85 19.30 1.29
0.25 20.60 ± 1.81 51.53± 0.87 19.60 1.29
0.125 20.60 ± 1.81 54.07 ± 0.87 20.36 1.31
0 17.80 ± 1.71 56.97 ± 0.87 28.37 1.49

E.3 Private Channel Scaling Ablations

In this section we present an ablation study for private channel scaling. We train the 130M model
presented in Section 5.1 over 7.8B tokens, with a tensor-parallel dimension of 8 and p = 0.5. We
record the validation loss at the end of training, with and without private channel scaling, and see a
slight improvement when using private-channel scaling over most values of p. Results are presented
in Figure E.3.

E.4 Additional Speedup Results

In this section, we report inference speedup on 34B and 70B Llama models. These models use
grouped query attention (GQA) of 8, so it is possible to evaluate our speedup only on tensor-parallel
dimension of 8 (our a lower multiple of 2). Absolute measurements are shown in Tables 4 and 5.
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Figure 7: Partial Channel Scaling. Validation loss vs. p for with and without private channel scaling,
on a 130M model.

Table 4: Absolute measurements of Llama 70B inference Time-to-First-Token (TTFT) for
tensor-parallel 8. Measured in milliseconds, with varying batch sizes and values of p.

Batch size Baseline p = 0.75 p = 0.5 p = 0.25 No communication

16 1402 1301 1224 1153 1093
32 2769 2595 2436 2281 2092
64 5513 5290 4982 4654 4259
128 10962 10293 9817 9457 8731
256 20606 19242 18055 16854 15107

Table 5: Absolute measurements of Llama 34B inference Time-to-First-Token (TTFT) for
tensor-parallel 8. Measured in milliseconds, with varying batch sizes and values of p.

Batch size Baseline p = 0.75 p = 0.5 p = 0.25 No communication

16 730 682 637 590 532
32 1519 1429 1328 1226 1074
64 2977 2861 2675 2453 2178
128 6081 5738 5424 5081 4544
256 11104 10270 9575 8870 7942

E.5 Absolute Performance Metrics

In Section 5.2 of the paper we reported speedup in training and inference on a Llama-7b model,
relative to the baseline. Here we report the absolute measurements, from which the speedup was
calculated.

Table 6: Absolute measurements of training throughput. Measured in tokens per second (tps) for
different tensor-parallel (TP) dimensions, and values of p.

TP dimension Baseline p = 0.75 p = 0.5 p = 0.25 No communication

4 34904 36883 38586 39728 40944
8 64395 67495 70403 72917 76646
16 96642 98625 106050 112456 126227
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Table 7: Absolute measurements of inference Time-to-First-Token (TTFT) for tensor-parallel
16. Measured in milliseconds, with varying batch sizes and values of p.

Batch size Baseline p = 0.75 p = 0.5 p = 0.25 No communication

16 214 209 187 165 100
32 443 386 358 326 193
64 746 696 637 565 391
128 1388 1291 1174 1060 792
256 2625 2393 2178 2059 1630

Table 8: Absolute measurements of inference Time-to-First-Token for tensor-parallel 8. Mea-
sured in milliseconds, with varying batch sizes and values of p.

Batch size Baseline p = 0.75 p = 0.5 p = 0.25 No communication

16 204 189 181 160 139
32 411 374 352 320 279
64 853 786 727 641 571
128 1645 1571 1475 1295 1133
256 3320 3071 2916 2713 2432

E.6 Measurements on NVIDIA Hardware

In this section we present the full inference speedup measurements on H100 and A100, as detailed in
Section 5.2 of the paper.

Table 9: TTFT on H100 and A100. Measured in milliseconds, for different batch sizes and p values.
Device Batch Size p = 1.0 p = 0.75 p = 0.5 p = 0.25 p = 0.0

H100

16 173 166 157 149 136
32 341 338 312 296 270
64 679 663 623 589 545
128 1360 1295 1280 1179 1088

A100

16 406 415 373 353 328
32 795 764 727 694 643
64 1568 1508 1436 1363 1281
128 3117 2999 2927 2722 2553
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in Appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Contributions claimed in the abstract and introduction are shown in Section 5
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation are detialed in Section 3.3, 5 and 6
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The only theoretical claim, which appears in Section 4, is accompanied by a
full and thorough derivation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in Appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All of the steps to reproduce our claims are detailed in sections 3, 4 and 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code will be published after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Relevant details are in section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in Appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper contains the standard error for accuracy experiments in section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
Figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding Figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources are detailed in section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper does not address societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All of the code, data and models used in the paper are open-source and properly
cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer:[NA]
Justification: Code will be published after acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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