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Abstract

Switchback experiments assign units to treatment and control over time, yielding
more precise causal estimates than fixed designs but risking bias from carryover
effects, where past treatments influence future outcomes. Existing estimators re-
quire specifying an influence period, i.e. an upper bound on carryover duration,
often guessed from intuition. We propose a statistical test that detects when this
bound is underestimated by comparing estimators with different lag assumptions
and rejecting results when significant differences indicate bias. The method has
theoretical guarantees under standard assumptions and shows strong performance
in simulations with synthetic effects on real-world covariates. This provides practi-
tioners with a practical safeguard against erroneous conclusions in the presence of
unaddressed carryover.

1 Introduction

Switchback designs vary treatment assignment of units over time, exposing each to both control and
treatment conditions. These designs yield more precise estimates than fixed-assignment approaches
[1, 2] but introduce potential bias through carryover effects—where past treatments influence future
outcomes. Carryover effects have an order m, meaning treatment at time t affects outcomes until
time t +m with m possibly infinite. Recent work has addressed these designs in both theoretical
[3, 4] and applied contexts [1, 5]. Most notably, [6] developed a method for unbiased causal estimates
from switchback designs by assuming m is finite and experimenters can estimate an upper bound on
the order m. Similarly, [3] allow for infinite order carryover, but assume effects decay exponentially
according to a mixing time.

In general, all experimental designs can suffer from both temporal interference or cross-unit inter-
ference. Temporal interference is particularly relevant to switchback designs since units change
treatment multiple times during an experiment period. General approaches to interference include
multilevel designs [7] and interference networks [8], but these require prior knowledge of interaction
patterns. For carryover effects specifically, [9] proposed linear mixed-effects models, while [10]
modeled both cross-unit and temporal interference but offered no method to estimate key parameters.

A critical limitation of unbiased estimators of the causal effect in switchback designs is that they
require experimenters to specify a carryover duration (or related concept such as mixing time)
in advance. In practice, determining this parameter is challenging [11]. When underestimated,
estimators are not guaranteed to be unbiased. While [6] proposed identifying carryover bounds
through repeated experiments, this approach is resource-intensive and lacks theoretical justification.

We address this challenge by proposing a statistical test that detects when estimators are biased due
to underestimated carryover effects, providing theoretical guarantees under an additive linear effects
model.
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2 Switchback Experimentation

Following [2, 6], we formally introduce switchback experiments. We consider a binary experiment
with [N ] := {1, 2, ..., N} units and [T ] := {1, 2, ..., T} timesteps. Let W ∈ {0, 1}N×T denote
the treatment assignment matrix, where Wn,t indicates whether unit n is treated at timestep t. The
potential outcome Yn,t(W ) represents the outcome of unit n at time t under treatment exposure W .
We define Y C

n,t = Yn,t(0
N×T ) as the outcome when all units are untreated, and Y T

n,t = Yn,t(1
N×T )

when all are treated.

2.1 Experimental setup

In a switchback design, treatment assignment is randomly re-assigned for each unit at each timestep, as
illustrated in Figure 1. From [6], experimental power increases with more frequent re-randomization.

t1 t2 t3 t4 t5 t6
n4 – T C C T –
n3 – C T C T –
n2 – T C C C –
n1 – C C T T –

Figure 1: A switchback experiment with 4 units run for 4 timesteps. C=control, T=treatment.

However, as the time between randomizations decreases, the likelihood of significant carryover
effects increases, potentially biasing estimators.

2.2 Carryover effects

The potential outcome Yn,t(W ) may depend on the entire treatment history, not just the current
assignment Wn,t. Outcomes can depend on prior assignments (e.g., a prior price reduction affecting
current purchasing behavior) or assignments of other units. To rigorously handle carryover effects,
we make two key assumptions.
Assumption 1. (No unit spillovers). The potential outcome of unit n at time t depends only on its
own treatment history, not on the treatment of other units.

This allows us to write Yn,t(W ) as Yn,t(Wn,·), where Wn,· is the row-vector for unit n. This
assumption is also known as SUTVA in literature, and is strong for real-world applications. We
therefore note that whenever cross-unit interference is a concern, units can and should be clustered to
block interference effects [12, 13].
Assumption 2. (m-Carryover Effects). There exists a fixed duration m such that for any unit n and
time t:

Yn,t+m+1(W ) = Yn,t+m+1(W
′).

for any treatment assignments W and W ′ that differ only at or before time t for unit n. In other
words, a treatment at time t affects outcomes only up to time t+m.

This assumption states that treatment assignments more than m timesteps in the past do not affect
current outcomes. We define our causal estimand of interest, the lag-ℓ average causal effect:

τℓ =
1

N(T − ℓ)

N∑
n=1

T∑
t=ℓ+1

(Y T
n,t − Y C

n,t). (1)

When ℓ = 0, this is the standard Average Treatment Effect (ATE). Using ℓ > 0 accounts for carryover
effects by discarding initial "burn-in" timesteps. We define In,t(ℓ) = I(Wn,t−ℓ:t = 11×ℓ+1) and
On,t(ℓ) = I(Wn,t−ℓ:t = 01×ℓ+1) where 11×ℓ+1 and 01×ℓ+1 are vectors of 1’s or 0’s respectively.
To estimate τℓ, we use the estimator from [2]:

τ̂ℓ(W ) =
1

N(T − ℓ)

N∑
n=1

T∑
t=ℓ+1

[
In,t(ℓ)

Prob(In,t(ℓ))
Yn,t(W )− On,t(ℓ)

Prob(On,t(ℓ))
Yn,t(W )

]
. (2)
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This estimator is unbiased for τℓ when ℓ ≥ m. However, determining an appropriate ℓ that upper
bounds m is challenging in practice. Instead of requiring experimenters to fully understand all sources
of carryover effects, we propose a statistical test to detect when ℓ is insufficient.

3 Testing for bias

To detect when ℓ underestimates m, we note that for any ℓ ≥ m (where m is the true carryover
duration), the estimator in eq. (2) provides an unbiased estimate of τℓ, provided the randomization
is not degenerate (i.e., Prob(Oi,t(ℓ)) ̸= 0 and Prob(Ii,t(ℓ)) ̸= 0). We adopt a linear effects model
widely used in causal inference literature [14, 6]:

Yi,t(Wi,1:t) = µi + αi,t + δ(0)Wi,t + δ(1)Wi,t−1 + ...+ δ(m)Wi,t−m + ϵi,t (3)

where δ(j) represents the effect of treatment j timesteps in the past.

We introduce an offset estimator that will help us detect when ℓ < m:

τ̂ℓ,ℓ′(W ) =
1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

[
Ii,t(ℓ)

Prob(Ii,t(ℓ))
Yi,t(W )− Oi,t(ℓ)

Prob(Oi,t(ℓ))
Yi,t(W )

]
(4)

Note that τ̂ℓ,ℓ(W ) = τ̂ℓ(W ). The key insight comes from examining the difference between these
estimators:
Theorem 1 (Expected Difference Under Linear Effects Model). Under the linear effects model
eq. (3), experiment duration of T timesteps, fair coin randomization and ℓ′ ≥ ℓ+ 1 with ℓ′ < T :

• If ℓ ≥ m, then E[τ̂ℓ,ℓ′(W )− τ̂ℓ+1,ℓ′(W )] = 0

• If ℓ < m, then E[τ̂ℓ,ℓ′(W )− τ̂ℓ+1,ℓ′(W )] = −δ(ℓ+1)

This theorem is proven in appendix A.1 and provides the foundation for our test: when ℓ ≥ m,
the expected difference between estimators is zero; when ℓ < m, we expect a non-zero differ-
ence proportional to the unaccounted carryover effect δ(ℓ+1). Appendix A.2 generalizes it to
E[τ̂ℓ,ℓ+J(W )− τ̂ℓ+J(W )] =

∑J
j=1−δ(ℓ+j).

3.1 Algorithm

We propose a statistical test to determine if the assumed lag ℓ is insufficient:

Algorithm 1 Test if ℓ upper bounds m
1: procedure TESTUPPERBOUND(W , ℓ, α)
2: ℓ′ = ℓ+ 1
3: Calculate τ̂ℓ,ℓ′(W ) and τ̂ℓ′(W )
4: δ ← τ̂ℓ,ℓ′(W )− τ̂ℓ′(W )
5: Calculate standard error SE(δ)
6: t← δ/SE(δ)
7: p-value← 2 · (1− Φ(|t|)) ▷ Two-tailed test
8: if p-value < α then
9: reject null hypothesis of no difference

10: else
11: fail to reject null hypothesis
12: end if
13: end procedure

This test serves as a diagnostic tool for switchback experiments. While it cannot confirm that ℓ is
a tight upper bound on m, it can reliably detect when ℓ is insufficient. In practice, we recommend
applying this test as a validation check for any switchback experiment. The standard error can be
calculated through bootstrapping the errors. When the test rejects the null hypothesis, experimenters
should be warned that their results may be biased due to unaccounted carryover effects.
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The power of this test depends on the magnitude of δ(ℓ+1) relative to the variance of the estimator dif-
ference. When carryover effects decay gradually, the test becomes more sensitive as the unaccounted
effects grow larger.

4 Simulation and empirical verification

Since ground truth is unobservable outside of simulated experiments, we use simulation to evaluate
algorithm 1 by introducing controlled effects on data sampled from a retail store. We randomly
select 50,000 unique products that were sold on a particular day and track those products over 14
subsequent days.

Using the data generating mechanism in eq. (3), we simulate scenarios with direct effect δ(0) = 0.2
and two carryover structures on top of this sales data:

• Cumulative effects: δ(j) = 0.2 for all 1 ≤ j ≤ m (all lags up to m have equal effect)

• Specific lag effects: δ(m) = 0.2 and δ(j) = 0 for j > 0, j ̸= m (only lag m has an effect)

We vary the maximum carryover lag m between 1-4 and test with assumed upper bounds ℓ ∈ {1, 2}.
For each configuration, we perform 500 iterations with randomly sampled treatment assignments
W ∈ {0, 1}50,000×14. Table 1 shows the reject rates of our test.

Table 1: Simulation results showing reject rates and false positive rates across different carryover
effect configurations. Each row represents results from 500 randomizations.

ℓ Effect type δ(0) δ(1) δ(2) δ(3) δ(4) Reject rate
1 None 0.0 0.0 0.0 0.0 0.0 0.05
1 Direct only 0.2 0.0 0.0 0.0 0.0 0.04
1 Cumulative 0.2 0.2 0.0 0.0 0.0 0.03
1 Cumulative 0.2 0.2 0.2 0.0 0.0 0.75
1 Cumulative 0.2 0.2 0.2 0.2 0.0 0.86
1 Cumulative 0.2 0.2 0.2 0.2 0.2 0.82
1 Specific lag 0.2 0.0 0.0 0.0 0.2 0.02
2 None 0.0 0.0 0.0 0.0 0.0 0.04
2 Cumulative 0.2 0.2 0.2 0.0 0.0 0.02
2 Cumulative 0.2 0.2 0.2 0.2 0.0 0.47
2 Cumulative 0.2 0.2 0.2 0.2 0.2 0.54

The results confirm our theoretical predictions. When ℓ ≥ m (i.e., the assumed upper bound is
correct), our test maintains appropriate false positive rates around 0.05. When ℓ < m, the test
successfully detects bias with high probability (0.47-0.86) for cumulative effects. For specific lag
effects, detection power depends on the pattern of carryover effects, with distant isolated effects
being harder to detect. These findings demonstrate that our test effectively identifies underestimated
carryover durations in practical settings, particularly when effects are substantial and not isolated at
distant lags.

5 Conclusion

We address a core challenge in switchback experimentation, namely detecting bias from underesti-
mated carryover effects. We provide (i) theoretical foundations showing when causal effect estimators
differ, (ii) a statistical test that flags insufficient lag without extra experiments or full prior knowledge,
and (iii) simulation evidence on real-world data confirming strong detection across effect structures.

Our test offers practitioners a safeguard against erroneous conclusions, with sensitivity influenced by
effect size and pattern. Future work should extend our results to more general effects models and
quantify the sensitivity in terms of ℓ, N , T , and m, enabling optimal tradeoffs for experimental power
and robustness to carryovers.
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A proofs

A.1 Proof of Theorem 1

We first introduce the below lemma:

Lemma 1 (difference of misspecified estimators). For any ℓ′ ≥ ℓ+ 1, under fair-coin randomization
with Pℓ+1 = 1

2Pℓ,

τ̂ℓ,ℓ′(W )− τ̂ℓ+1,ℓ′(W ) =
1

Pℓ

1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

(−1)Wi,t−ℓ−1
(
Ii,t(ℓ) +Oi,t(ℓ)

)
Yi,t(W ).

Proof. Fix any ℓ′ ≥ ℓ+ 1. We begin by writing out the difference of offset estimators:

τ̂ℓ,ℓ′(W )− τ̂ℓ+1,ℓ′(W ) =
1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

[
Ii,t(ℓ)
Pℓ

− Oi,t(ℓ)

Pℓ

]
Yi,t(W )

− 1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

[
Ii,t(ℓ+ 1)

Pℓ+1
− Oi,t(ℓ+ 1)

Pℓ+1

]
Yi,t(W )

=
1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

(
Ii,t(ℓ)
Pℓ

− Oi,t(ℓ)

Pℓ

)
−

(
Ii,t(ℓ+ 1)

Pℓ+1
− Oi,t(ℓ+ 1)

Pℓ+1

)
Yi,t(W )

Now, we simplify using Pℓ+1 = Pℓ/2.

=
1

Pℓ

1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

(Ii,t(ℓ)−Oi,t(ℓ))− 2 (Ii,t(ℓ+ 1)−Oi,t(ℓ+ 1))Yi,t(W )

We use the identities Ii,t(ℓ+1) = Ii,t(ℓ)I(Wi,t−ℓ−1 = 1) and Oi,t(ℓ+1) = Oi,t(ℓ)I(Wi,t−ℓ−1 = 0).
Substituting these gives:

(Ii,t(ℓ)−Oi,t(ℓ))− 2 (Ii,t(ℓ+ 1)−Oi,t(ℓ+ 1))

= (Ii,t(ℓ)−Oi,t(ℓ))− 2 (Ii,t(ℓ)I(Wi,t−ℓ−1 = 1)−Oi,t(ℓ)I(Wi,t−ℓ−1 = 0))

= Ii,t(ℓ) (1− 2I(Wi,t−ℓ−1 = 1))−Oi,t(ℓ) (1− 2I(Wi,t−ℓ−1 = 0))

= Ii,t(ℓ) (I(Wi,t−ℓ−1 = 0)− I(Wi,t−ℓ−1 = 1)) +Oi,t(ℓ) (I(Wi,t−ℓ−1 = 0)− I(Wi,t−ℓ−1 = 1))

= (Ii,t(ℓ) +Oi,t(ℓ)) (I(Wi,t−ℓ−1 = 0)− I(Wi,t−ℓ−1 = 1))

= (−1)Wi,t−ℓ−1 (Ii,t(ℓ) +Oi,t(ℓ))

Putting it all together, the difference of the total causal effect estimators is:

τ̂ℓ,ℓ′(W )− τ̂ℓ+1,ℓ′(W ) =
1

Pℓ

1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

(−1)Wi,t−ℓ−1 (Ii,t(ℓ) +Oi,t(ℓ))Yi,t(W )

This allows us to prove theorem 1 as follows:

Proof. From Lemma 1,

τ̂ℓ,ℓ′(W )− τ̂ℓ+1,ℓ′(W ) =
1

Pℓ

1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

(−1)Wi,t−ℓ−1 (Ii,t(ℓ) +Oi,t(ℓ))Yi,t(W )

Expectation E[ 1
Pℓ

1
N(T−ℓ′)

∑N
i=1

∑T
t=ℓ′+1(−1)Wi,t−ℓ−1 (Ii,t(ℓ) +Oi,t(ℓ))Yi,t(W )]
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Substituting the linear effects model:

E

[
1

Pℓ

1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

(−1)Wi,t−ℓ−1 (Ii,t(ℓ) +Oi,t(ℓ))Yi,t(W )

]

=
1

Pℓ

1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

E

(−1)Wi,t−ℓ−1 (Ii,t(ℓ) +Oi,t(ℓ))

µi + αi,t +

min(t−1,m)∑
j=0

δ(j)Wi,t−j + ϵt


(5)

The terms µi, αi,ℓ+1, and ϵℓ+1 have expected value 0 when multiplied by the balanced difference
(Ii,t(ℓ)−Oi,t(ℓ)) due to the symmetry of randomization. Consider e.g. for the term containing µi:

E
[
(−1)Wi,t−ℓ−1 (Ii,t(ℓ) +Oi,t(ℓ))µi

]
= µiE

[
(−1)Wi,t−ℓ−1 (Ii,t(ℓ) +Oi,t(ℓ))

]
= µi · 0

Therefore, the terms µi, αi,t, and ϵt contribute 0 to the expectation, hence we only compute:

1

Pℓ

1

N(T − ℓ′)
E

(−1)Wi,t−ℓ−1 (Ii,t(ℓ) +Oi,t(ℓ))

min(t−1,m)∑
j=0

δ(j)Wi,t−j

 (6)

We analyze this by cases based on the value of j:

Case 2.1: j ≤ ℓ

For j ≤ ℓ, Wi,t−j is part of the sequence Wi,t−ℓ:t:

E
[
(−1)Wi,t−ℓ−1(Ii,t(ℓ) +Oi,t(ℓ))Wi,t−jδ

(j)
]
=

1

2ℓ+2
· δ(j) + 1

2ℓ+2
· (−δ(j)) + 0 + 0 = 0 (7)

Case 2.2: j = ℓ+ 1

Here Wi,t−j = Wi,t−ℓ−1 is independent of Wi,t−ℓ:t and determines the sign:

E
[
(−1)Wi,t−ℓ−1(Ii,t(ℓ) +Oi,t(ℓ))Wi,t−jδ

(ℓ+1)
]
= −2δ

(ℓ+1)

2ℓ+2
= −δ(ℓ+1)

2ℓ+1
(8)

Case 2.3: j > ℓ+ 1

For j > ℓ+ 1, Wi,t−j , Wi,t−ℓ−1, and Wi,t−ℓ:t are all independent under randomization:

E
[
(−1)Wi,t−ℓ−1(Ii,t(ℓ) +Oi,t(ℓ))Wi,t−jδ

(j)
]
= 0 (9)

Combining cases

E[τ̂ℓ,ℓ′(W )− τ̂ℓ+1,ℓ′(W )] =
1

Pℓ

1

N(T − ℓ′)

N∑
i=1

T∑
t=ℓ′+1

(
−δ(ℓ+1)

2ℓ+1

)

=
1

Pℓ

1

T − ℓ′

T∑
t=ℓ′+1

(
−δ(ℓ+1)

2ℓ+1

)

=
2ℓ+1

T − ℓ′
· 1

2ℓ+1

T∑
t=ℓ′+1

(
−δ(ℓ+1)

)
= −δ(ℓ+1) (10)

Therefore,
E[τ̂ℓ,ℓ′(W )− τ̂ℓ+1,ℓ′(W )] = −δ(ℓ+1).
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A.2 Proof of Generalized Theorem 1

Proof by Induction. We prove by mathematical induction.

Base Case (J = 1): For any ℓ′ ≥ ℓ+ 1 we note E[τ̂ℓ,ℓ′(W )− τ̂ℓ+1,ℓ′(W )] = −δ(ℓ+1) is proven in
theorem 1.

Inductive Step: Assume the statement holds for some positive integer J and any ℓ′ ≥ ℓ+ J , i.e.,

E[τ̂ℓ,ℓ′(W )− τ̂ℓ+J,ℓ′(W )] =

J∑
j=1

−δ(ℓ+j).

We need to prove it holds for J + 1 and any ℓ′′ ≥ ℓ+ J + 1:

E[τ̂ℓ,ℓ′′(W )− τ̂ℓ+J+1,ℓ′′(W )] =

J+1∑
j=1

−δ(ℓ+j).

We rewrite the left-hand side:

E[τ̂ℓ,ℓ′′(W )− τ̂ℓ+J+1,ℓ′′(W )] = E[τ̂ℓ,ℓ′′(W )− τ̂ℓ+J,ℓ′′(W ) + τ̂ℓ+J,ℓ′′(W )− τ̂ℓ+J+1,ℓ′′(W )]

= E[τ̂ℓ,ℓ′′(W )− τ̂ℓ+J,ℓ′′(W )] + E[τ̂ℓ+J,ℓ′′(W )− τ̂ℓ+J+1,ℓ′′(W )].

For the first term, since ℓ′′ > ℓ′ by the inductive step, we have:

E[τ̂ℓ,ℓ′′(W )− τ̂ℓ+J,ℓ′′(W )] =

J∑
j=1

−δ(ℓ+j).

For the second term, the difference are 1 apart, and thus theorem 1 applies:

E[τ̂ℓ+J,ℓ′′(W )− τ̂ℓ+J+1,ℓ′′(W )] = −δ(ℓ+J+1).

Therefore:

E[τ̂ℓ,ℓ′′(W )− τ̂ℓ+J+1,ℓ′′(W )] =

J∑
j=1

−δ(ℓ+j) + (−δ(ℓ+J+1))

=

J+1∑
j=1

−δ(ℓ+j).

This completes the inductive step and proves the result.
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