ReFT: Representation Finetuning
for Language Models

Zhengxuan Wu*’ Aryaman Arora*” Zheng Wang' Atticus Geiger*
Dan Jurafsky’ Christopher D. Manning” Christopher Potts’
TStanford University ~ *Pr(Ai)?R Group
{wuzhengx,aryamana,peterwz,atticusg}@stanford.edu
{jurafsky,manning,cgpotts}@stanford.edu

Abstract

Parameter-efficient finetuning (PEFT) methods seek to adapt large neural models
via updates to a small number of weights. However, much prior interpretability
work has shown that representations encode rich semantic information, suggesting
that editing representations might be a more powerful alternative. We pursue
this hypothesis by developing a family of Representation Finetuning (ReFT)
methods. ReFT methods operate on a frozen base model and learn task-specific
interventions on hidden representations. We define a strong instance of the ReFT
family, Low-rank Linear Subspace ReFT (LoReFT), and we identify an ablation of
this method that trades some performance for increased efficiency. Both are drop-in
replacements for existing PEFTs and learn interventions that are 15x—65x more
parameter-efficient than LoRA. We showcase LoReFT on eight commonsense rea-
soning tasks, four arithmetic reasoning tasks, instruction-tuning, and GLUE. In all
these evaluations, our ReFTs deliver the best balance of efficiency and performance,
and almost always outperform state-of-the-art PEFTs. We release a generic ReFT
training library publicly at https://github.com/stanfordnlp/pyreft.

1 Introduction

Pretrained language models (LMs) are frequently finetuned to adapt them to new domains or tasks
[Dai and Le, 2015]. With finetuning, a single base model can be adapted to a variety of tasks given
only small amounts of in-domain data. However, finetuning large LMs is expensive. Parameter-
efficient finetuning (PEFT) methods propose to address the high costs of full finetuning by updating a
small number of weights. This reduces memory usage and training time, and PEFTSs achieve similar
performance to full finetuning in many settings [Hu et al., 2023].

A hallmark of current state-of-the-art PEFTs is that they modify weights rather than representations.
However, much prior interpretability work has shown that representations encode rich semantic
information, suggesting that editing representations might be a more powerful alternative to weight
updates. In this paper, we pursue this hypothesis by developing and motivating Representation
Finetuning (ReFT). Instead of adapting model weights, ReFT methods train interventions that
manipulate a small fraction of model representations in order to steer model behaviours to solve
downstream tasks at inference time. ReFT methods are drop-in replacements for weight-based PEFTs.
This approach is inspired by recent work in LM interpretability that intervenes on representations to
find faithful causal mechanisms [Geiger et al., 2023] and to steer model behaviours at inference time
[Turner et al., 2023, Li et al., 2024], and it can be seen as a generalisation of the representation-editing
work of Wu et al. [2024a], Turner et al. [2023], and Zou et al. [2023] (see appendix B for details).

We focus on a strong and highly efficient instance of the ReFT family that we call Low-rank
Linear Subspace ReFT (LoReFT). LoReFT is a parametrisation of ReFT that intervenes on hidden

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/stanfordnlp/pyreft

Commonsense Instruct-tuning IR

LLaMA 7B sa- LLaMA13B g2 Llama-278 Llama-3 88 Llama-2 78
80 - $LOREFT SLoReFT ® | OReFT ®| (ReFT ®| GReFT
DiReFT DiReFT 81~ 86- 85 @piperT
80- ®DiReFT Ol T
75- 85 -ttt 84 - O 0ReFT (half)
80- i
76~ 84 83-
70~ 79~ 83~ el)
72- a2 82 - gL OREET (1K)
78~ |
65- i 68~ | 81- i 81 T i
LSS G LIS | g | { | s UGN S
%) Q9 Q' Q Q' 3 QS QO L' O) Q' QO 3) O Q A Q Q
NN S NN AN o o N o o o? R N
Arithmetic GLUE
LLaMA 7B LLaMA 13B RoBERTa-base RoBERTa-large
] 51-
Q 450 @[OReFT 85- 88.4-
E ReF 48 - ®DiReFT @LOReF
£ 42.5-0-° &
L QDIReFT 45~ 84 - “LoReFT 88.0 -
5 40.0-
a L ®Dire
375 42 83 - =DiRelf 87.6-
DiReFT
Parameters 3.0, I : 39- ¢ — i) | ! ' S . !
gl g g g SINCC S U U U U UG SRR LS
J QS O O O D QS Q O Q Q N N N o Q ~N N o N
S S SHEFOOETS o 2 N S ; N SRS

Figure 1: Parameter count vs. performance for LoReFT and other PEFTs across four benchmarks
when applied to LLaMA, Llama-2, Llama-3, and RoBERTa models. Despite training far fewer
parameters than existing PEFTs, LoReFT achieves competitive or even state-of-the-art performance
on all tasks. Its value is most apparent for the largest models in our evaluations. Note: FT is
full-parameter finetuning, which is not a PEFT or ReFT method. Additional results are in section 4.

representations in the linear subspace spanned by a low-rank projection matrix, building directly
on the distributed alignment search (DAS) method of Geiger et al. [2023] and Wu et al. [2023].
We also identify an ablation of this method (DiReFT) that trades some performance for increased
efficiency. We evaluate our ReFTs on LLaMA-family models and small-scale LMs against existing
PEFTs on standard benchmarks from four domains: commonsense reasoning, arithmetic reasoning,
instruction-following, and natural language understanding. Compared to LoRA, we find that LoReFT
uses 15x—65x times fewer parameters while achieving state-of-the-art performance on commonsense
reasoning, instruction-following, and natural language understanding against the strongest PEFTs.
These findings indicate that ReFT methods are worthy of further exploration, as they may emerge as
more efficient and effective alternatives to weight-based PEFTs.

2 Related work

Parameter-efficient finetuning methods (PEFTs). PEFTs train a fraction of the model’s parameters
to adapt it to downstream tasks. We classify PEFTs into three categories:

1. Adapter-based methods train additional modules (e.g. fully-connected layers) on top of the
frozen pretrained model. Series adapters insert components between LM attention or MLP
layers [Houlsby et al., 2019, Pfeiffer et al., 2020, Wang et al., 2022, He et al., 2022b, Fu et al.,
2021], while parallel adapters add modules alongside existing components [He et al., 2022a].
Since adapters add new components that cannot be easily folded into existing model weights,
they impose an additional burden at inference time.'

2. LoRA [Hu et al., 2022] and DoRA [Liu et al., 2024c] use low-rank matrices to approximate
additive weight updates during training, and require no additional overhead during inference
since the weight updates can be merged into the model. These are the strongest PEFTs currently.”

3. Prompt-based methods add randomly-initialised soft tokens to the input (usually as a prefix)
and train their embeddings while keeping the LM weights frozen [Li and Liang, 2021]. These
methods are often far from optimal compared to other PEFTs, and come at the cost of significant

'Several very recent papers introduce new adapter architectures but do not benchmark them on the tasks
we consider, or they perform hyperparameter-tuning in a different setup than done in this work. These include:
LLaMA-Adapter [Zhang et al., 2024b], LLaMA-Adapter v2 [Gao et al., 2023], Aligner [Ziheng et al., 2023].

2 Additional methods not studied in this work: AutoLoRA [Zhang et al., 2024c], ResLoRA [Shi et al., 2024],
SiRA [Zhu et al., 2023].

inference overhead. A variant of this method where hidden-layer activations are also tuned was
introduced as a baseline in Hu et al. [2022], with better performance.

Representation editing. Recent work on activation steering and representation engineering shows
that adding fixed or task-specific steering vectors [Subramani et al., 2022, Turner et al., 2023, Zou
et al., 2023, Liu et al., 2024b, Vogel, 2024, Li et al., 2024] or applying concept erasure [Ravfogel
et al., 2022, Belrose et al., 2023, Avitan et al., 2024, Singh et al., 2024] to the residual stream can
enable a degree of control over pretrained LM generations without the need for resource-intensive
finetuning [Wu et al., 2024a]. The success of these methods affirms that representations induced by
pretrained LMs carry rich semantic structure.

Interventional interpretability. Much recent work has used interventions on model-internal states
to test hypotheses about how LMs implement various behaviours. In particular, interventions on linear
subspaces of representations have provided increasing evidence that human-interpretable concepts are
encoded linearly [Smolensky, 1986, Rumelhart et al., 1986, McClelland et al., 1986]. This includes
linguistic features such as gender and number [Lasri et al., 2022, Wang et al., 2023, Hanna et al.,
2023, Chintam et al., 2023, Yamakoshi et al., 2023, Hao and Linzen, 2023, Chen et al., 2023, Amini
et al., 2023, Guerner et al., 2023, Arora et al., 2024], logical and mathematical reasoning [Wu et al.,
2023], entity attributes [Huang et al., 2024], and a number of other domains [Mikolov et al., 2013,
Elhage et al., 2022, Park et al., 2023, Nanda et al., 2023, Guerner et al., 2023].

3 ReFT

We now define the ReFT family of methods. To do this, we first summarize the core motivation,
which emerges from work on intervention-based model interpretability. We then show how this leads
directly to Low-rank Linear Subspace ReFT (LoReFT). Finally, we generalize this to a family of
ReFT methods. Appendix A provides a brief overview of our generic ReFT training library.

To keep the presentation simple, we assume throughout that our target model is a Transformer-
based [Vaswani et al., 2017] LM that produces contextualised representations of sequences of tokens.

Given a sequence of n input tokens x = (x1,...,2,), the model first embeds these into a list of
representations h(= (hgo), RN h;o)). Then, m layers successively compute the j-th list of hidden

representations h() as a function of the previous list of hidden representations hU-1_ Each hidden
representation is a vector h € R%. The LM uses the final hidden representations h(™) to produce its
predictions. In our experiments, we consider both autoregressive LMs and masked LMs [Devlin et al.,

2019]. An autoregressive LM predicts p(zy,41 | 21, .., %,) = softmax (WhSJ”)), while a masked

LM predicts p(x; | X1, .+, Tic1, Titls- - -, Tn) = SOftmax (Whgm)), where W is a learned matrix
mapping from representations to logits over the vocabulary space.

3.1 Motivation

In interpretability research, the framework of causal abstraction [Geiger et al., 2021] uses interchange
interventions to establish the causal role of representations in deep learning models. An interchange
intervention fixes a representation to the value it would take if a counterfactual input were processed
by the model. Experiments investigating how such interventions affect model behavior form the
evidence for claims about the causal role of a representation and the concept it encodes.

To test whether a concept is encoded in a linear subspace of a representation, one may use a
distributed interchange intervention (DII) [Geiger et al., 2023].> Let h,, be the hidden representation
created at row ¢ and column k& when our model processes input b, and let h be the corresponding
representation when that same model processes input s. A distributed interchange intervention on hy,
given a counterfactual source representation h; is then defined as

Dli(hy, hy,R) = b+ R7(Rh, - Rhy) (1)

where R € R™¢ is a low-rank projection matrix with orthonormal rows, d is the representation
dimensionality, and r is the dimensionality of the subspace we are intervening on. We learn the
subspace R using distributed alignment search (DAS), which finds the subspace that maximises the
probability of the expected counterfactual output after intervention [Geiger et al., 2023]. DAS is

*This notion of subspace intervention was also independently discovered by Guerner et al. [2023].

ReFT Intervention

P]_ P2 o(h) edit restricted
? to subspace
I=@prh) + 4~ 2 1 %
S DSO R edi
P={13} | 2> S E SR o
’ ﬁl A + & N TEa-
L=2 0 T8 A || T . |
this is some text -h] -h]

Figure 2: Illustration of ReFT. (1) The left panel depicts an intervention /: the intervention function
® is applied to hidden representations at positions P in layer [. (2) The right panel depicts the
intervention function used in LoReFT, which finds an edit vector that only modifies the representation
in the linear subspace spanned by the rows of R. Specifically, we show how a rank-2 LoReFT
operates on 3-dimensional hidden representations.

highly expressive, and can effectively localize concepts within model representations [Wu et al., 2023,
Arora et al., 2024, Wu et al., 2024c, Huang et al., 2024]. This suggests that subspace representation
interventions could also be a powerful tool for model control.

3.2 Two low-rank ReFT instantiations

LoReFT. The formulation of DIl in eq. (1) immediately suggests a way to control model generations
via interventions. The guiding intuition is that we can learn how to perform interventions that steer
the model towards predicting our task labels. The resulting method, Low-rank Linear Subspace ReFT
(LoReFT), is defined by the following variant of eq. (1):

(I)LoReFT(h) =h+ RT (Wh +b- Rh) (2)

This is identical to eq. (1), except we use a learned projected source Rs = Wh + b. LoReFT thus
edits the representation in the r-dimensional subspace spanned by the rows of R to take on the
values obtained from our linear projection Wh + b. We depict this operation in fig. 2. The learned
parameters are ¢ = {R, W, b}, the parameters of the LM are frozen. As with DIl, R € R™4 is a
low-rank matrix with orthonormal rows where d is the hidden-state dimensionality and r < d is the
rank of the subspace. We further define a linear projection W € R™? and bias vector b e R".

DiReFT. In addition, we define an ablation of LoReFT which removes the orthogonality constraint
and the difference operation, reducing training time:

(I)DiReFT(h) =h+ W; (Wlh + b) (3)

Both W, W, ¢ R4 are low-rank projection matrices. Note that eq. (3) resembles LoRA, and thus
DiReFT can be thought of as LoRA applied directly to hidden representations at certain positions.*
Empirical evidence from previous work suggests that adding orthogonal constraints to LoRA weights
increases performance [Liu et al., 2024d]. (Appendix E reports results for additional ablations of
LoReFT.)

Training objective. We consider both generation tasks using decoder-only or encoder—decoder LMs
and classification tasks using encoder-only models with m layers. The pretrained language model
induces a distribution over token sequences p(-). We denote the model that results from the ReFT
intervention ® on p(-) as pg (+) with trainable parameters ¢. To simplify notation, we refer to the
hidden representations produced by the LM on input x as h(x), and those by the intervened LM as
hq> (X) .

For generation tasks, our training objective is language modelling. Given an input sequence x =
(x1,...,x,) with n tokens as the prompt, the goal is to predict the output sequence y = (y1, ..., Yx)

*LoRA is not applicable to the residual stream, which is weightless. LoRA can be configured to apply only
to the attention layer output projection matrix, which is similar to our residual stream intervention. However,
previous works found that applying LoRA only to attention layers is sub-optimal [Hu et al., 2023].

with k tokens. We minimise the cross-entropy loss with teacher-forcing over all output positions.

k
ngn{_ > logpa (yi | ny)} @

i=1

For single-label classification tasks, we add a classification head Hy(-) with parameters 6 that takes
the final-layer (i.e., layer m) representation at the first token (CLS) hgm) as input and outputs a

distribution over classes. H has the learned parameters § = {W,,b,, W4, b,}.

Hy(-| h) = softmax (Wo(tanh(Wdhgm) +by)) + bo) 5)

We learn the parameters of the head and those of the intervention function ®. We minimise the
cross-entropy loss of the target class y given input x:

%ig{—logHg(y | he(x))} (6)

3.3 The ReFT family of methods

It is straightforward to generalise the above intervention functions to define a family of intervention-
based representation finetuning methods. We first define a general notion of intervention, i.e. the
modification of hidden representations during the model forward pass:

Definition 3.1. An intervention I is a tuple (®, P,l) that encapsulates a single inference-time
modification of the representations computed by a Transformer-based LM. The three components of
an intervention are (1) the intervention function ® : R? - R with learned parameters ¢, (2) a set
of input positions P € {1,...,n} that the intervention is applied to, and (3) the layer [€ {1,...,m}
at which the intervention is applied.

We implement the intervention [as the following operation that overwrites some representations h:

h® < (¢ (h) ifpe Pelse h{) ©)

The intervention is applied immediately after the computation of h(") and thus affects the representa-
tions computed in later layers h(**1) . h("™),

Figure 2 provides a schematic overview of an intervention. A ReFT is then defined as a constrained
set of non-overlapping interventions:

Definition 3.2. A ReFT method is a set of f interventions I = {I,...,Is}. We enforce that for
any two interventions I;, I, € I such that they operate on the same layer [; = [, their intervention
positions must be disjoint, i.e. P; N Py, = @. The parameters (¢1,. .., ¢s) of all of the intervention
functions are independent.

ReFT is thus a generic framework encompassing interventions on hidden representations during the
model forward pass. In appendix B, we show how a variety of existing inference-time intervention
methods can be described within this framework.

4 Experiments

To evaluate our ReFTs against existing PEFTs, we conduct experiments across four diverse NLP
benchmarks covering more than 20 datasets (extensive details on our datasets are in appendix C).
Our goal is to provide a rich picture of how LoReFT and DiReFT perform in different scenarios. We
experiment with both masked and autoregressive LMs at different scales, ranging from RoBERTa-
base [Liu et al., 2019] with 125M to LLaMA models [Touvron et al., 2023a,b] with 13B parameters.
We benchmark against existing PEFTs such as prefix-tuning [Li and Liang, 2021], adapter-tuning
with both Series Adapters and Parallel Adapters, BitFit [Ben Zaken et al., 2022], RED [Wu et al.,
2024a], LoRA [Hu et al., 2022], and DoRA [Liu et al., 2024c]. Our comparisons focus on both
performance and parameter efficiency. In our comparisons, we use hyperparameter-tuned scores from
previous works when possible. We load our base LMs in torch.bfloat16 to save memory. All of
our experiments are run with a single GPU: NVIDIA A100 40G/80G or RTX 6000. Examples of
raw model generations are in appendix I. The performance results of all baseline methods are adapted
from Liu et al. [2024c] and represent the best performance achieved after hyperparameter tuning.

4.1 Hyperparameter configuration

For our experiments, we must decide how many interventions to learn and which layers and input
positions to apply each one on. We propose learning interventions on a fixed number of p prefix and
s suffix positions in the prompt. Specifically, we tune four hyperparameters:

1. The number of prefix positions p to intervene on, i.e. positions {1,...,p}.

2. The number of suffix positions s to intervene on, i.e. positions {n —s+1,...,n}.

3. Which set of layers L to intervene on.

4. Whether or not to tie intervention parameters ¢ across different positions in the same layer.

This simplifies the hyperparameter search space; compared to LoRA, the only additional consideration
is which positions to intervene on. Since the number of positions edited is constant, LoReFT and
DiReFT contribute a fixed additional inference cost that does not scale with prompt length.

Given the positions P = {1,...,p}u{n—-s+1,...,n}, we define the untied and tied variants:

Lintea = {(®,{p},!) |[pe P,le L} Liea = {(®,P,l) |l L}

Additionally, when applying LoReFT and DiReFT to a prompt with length n where n < p + s, we
set p < min(p, |n/2]) and s < min(s, [n/2]) and do not apply the truncated interventions in Iyygea-
We also tune neural-network training hyperparameters.

Unlike previous work [Hu et al., 2022, 2023, Liu et al., 2024c] where hyperparameter tuning
may involve optimising performance directly on test sets, we only tune our hyperparameters on
development sets which do not contain any overlapping examples with the test sets of our tasks. We
further describe hyperparameter tuning for each benchmark in appendix D.1.

4.2 Commonsense reasoning

We replicate the experimental setup in Hu et al. [2023] and finetune LLaMA-1 7B/13B,
Llama-2 7B, and Llama-3 8B’ on a combined dataset of eight commonsense reasoning tasks
(CoMMONSENSE170K). We report scores on each task’s test set individually. We compare with
PEFTs benchmarked in Hu et al. [2023] as well as the identical experiment reported in Liu et al.
[2024c] for DoRA.

Datasets. Our benchmark contains eight commonsense reasoning datasets, including BoolQ [Clark
et al., 2019], PIQA [Bisk et al., 2020], SIQA [Sap et al., 2019], HellaSwag [Zellers et al., 2019],
WinoGrande [Sakaguchi et al., 2021], ARC-e, ARC-c [Clark et al., 2018], and OBQA [Mihaylov
et al., 2018]. Examples are formulated as multiple-choice problems where the model needs to directly
generate the correct choice without rationales. We use the same prompt template as in Hu et al.
[2023] with additional string normalisation (removing leading and trailing whitespace).

Hyperparameter tuning. We do not do hyperparameter selection based on test set results. Rather,
we use the hyperparameter settings of the model that performs best on a development set created
from the GSM8K training set, except we use a lower number of epochs (6 instead of 12) because
the COMMONSENSE 170K training set is more than 20 times larger than GSMS8K. This allows us to
tune relevant hyperparamters, and also serves to test the robustness of these settings across different
domains. We additionally report scores on 3 epochs in appendix D.3.

Results. We report results in table 1. LoReFT sets state-of-the-art performance on the commonsense
reasoning tasks, outperforming all other methods by a considerable margin. While being more
compute-efficient, DiReFT achieves only slightly worse performance consistently.

4.3 Arithmetic reasoning

Similar to the previous experiment, we follow the experimental setup in Hu et al. [2023] and finetune
LLaMA-1 7B and 13B on a combined dataset of seven arithmetic reasoning tasks with LM-generated
chain-of-thought steps (MATH10K) and report scores on four of the tasks’ test sets. We only evaluate
correctness on the final numeric or multiple-choice answer.

3Llama-3 8B appeared on April 18, 2024, and thus we had time to complete only commonsense reasoning
experiments with this model. Liu et al. [2024c] report corresponding results for LoRA and DoRA.

Table 1: Accuracy comparison of LLaMA-1 7B/13B, Llama-2 7B and Llama-3 8B against existing
PEFT methods on eight commonsense reasoning datasets. *Performance results of all baseline
methods are taken from Liu et al. [2024c]. We report averaged performance of three runs with distinct
random seeds for our method. For our methods, Param. (%) is calculated by dividing the number of
trainable parameters by the number of parameters of the base LM.

Model PEFT Params (%) Accuracy (1)
BoolQ PIQA SIQA HellaS. WinoG. ARC-c ARC-c OBQA Avg.
ChatGPT* — — 731 854 685 785 661 898 799 748 770
PrefT* 0.039% 643 768 739 421 721 729 540 606 646
Adapters* 1953% 630 792 763 619 757 745 511 724 708
Adapter?* 3542% 679 764 788 698 789 737 513 752 723
LLaMA7B LORA® 0826% 689 807 T14 781 788 778 613 748 747
DoRA (half)* 0427% 700 826 797 832 806 80.6 654 776 715
DoRA" 0.838% 685 829 796 848 808 814 658 8LO 781
DiReFT (ours) 0031% 695 830 790 925 805 82 680 775 790
LoReFT (ours) 0031% 693 844 803 931 842 832 682 789 802
PrefT* 0.031% 653 754 721 552 686 795 629 680 684
AdapterS* 1586% 718 830 792 881 824 825 673 818 795
Adapter?* 2804% 725 849 798 921 847 842 712 824 815
LLaMA.135 LORA* 0670% 721 835 805 905 837 828 683 824 80.5
DoRA (half)* 0347% 725 853 799 90.1 89 827 697 836 80.8
DoRA* 0.681% 724 849 815 924 842 842 696 828 8IS
DiReFT (ours) 0025% 713 861 808 946 836 855 729 827 822
LoReFT (ours) 0025% 721 83 818 951 8.2 82 737 842 833
LoRA* 0826% 698 799 795 836 826 798 647 810 776
DoRA (half)* 0427% 720 831 799 891 830 845 710 812 80.5
Llama-27B DoRA" 0.838% 718 837 760 891 826 8.7 682 824 797
DiReFT (ours) 0031% 708 836 802 936 8.1 848 704 815 809
LoReFT (ours) 0031% 711 838 808 943 845 856 722 823 818
LoRA* 0700% 708 852 799 917 843 842 712 790 808
DoRA (half)* 0361% 745 888 803 955 847 901 791 872 850
Llama-38B DoRA* 0710% 746 893 799 955 856 905 804 858 852
DiReFT (ours) 0.026% 734 887 810 956 855 918 8L8 854 854
LoReFT (ours) 0.026% 751 902 820 963 8.4 924 816 8.5 866

Hyperparameter tuning. We use the same hyperparameter settings as for the Commonsense Rea-
soning benchmark, but with 12 epochs for training. We also report scores on 3 epochs.

Datasets. Our benchmark contains four datasets for math world problems, including AQuA [Ling
etal.,2017], GSMS8K [Cobbe et al., 2021], MAWPS [Koncel-Kedziorski et al., 2016], and SVAMP [Pa-
tel et al., 2021]. Models need to generate chain-of-thought [Wei et al., 2022] before the final answer.
We use the same prompt template and hyperparameter settings as in the previous experiment.

Results. We report results in table 2. We find that both LoReFT and DiReFT do not perform as
well at arithmetic reasoning tasks compared to LoRA and adapters, but do outperform prefix-tuning.
Our results suggest that our ReFTs may have more trouble on chain-of-thought reasoning than the
single-step commonsense reasoning tasks due to the length of generations (greater length necessarily
reduces the effect of the intervention) and overall greater difficulty of the task. Our results show that
our ReFTs perform better with the 13B model than the 7B model, which suggests that our methods
scale with model size. Overall, we note that the arithmetic reasoning results show a lot of variation,
with no single method emerging as a clear winner across all of them.

4.4 Instruction-following

Base LMs require instruction finetuning to follow human prompts [Ouyang et al., 2022]. We follow
the experimental setup in Wu et al. [2024a] and finetune Llama-2 7B with Ultrafeedback [Cui et al.,
2023]. We compare against full parameter finetuning, LoRA, and RED. For evaluation, we use
Alpaca-Eval v1.0 [Li et al., 2023], which computes the win-rate against text-davinci-003 using
GPT-4 as the annotator. We use the same prompt template as in Taori et al. [2023].

Datasets. Ultrafeedback is high-quality instruction dataset where responses are generated via scoring
a diverse set of model responses from a list of candidates (e.g. ChatGPT and Bard). The score
is calculated as a weighted score of instruction-following, truthfulness, honesty, and helpfulness.

Table 2: Accuracy comparison of LLaMA-1 7B/13B against existing PEFT methods on four arithmetic
reasoning datasets. *Performance results of all baseline methods are taken from Hu et al. [2023]. We
report averaged performance of three runs with distinct random seeds for our method.

Model PEFT Params (%) Accuracy (1)
AQuA GSMSK MAWPS SVAMP Avg.
PrefT" 0039% 142 244 634 381 350
AdapterS* 1953% 150 333 777 523 446

Px

LLaMA7R Adapter 3.542% 18.1 353 82.4 496 464
LoRA* 0826% 189 375 79.0 521 469
DiReFT (ours) 0031% 213 2.1 745 027 406
LoReFT (ours) 0031% 214 26.0 76.2 468 426
PrefT" 0031% 157 311 66.8 414 338
AdapterS* 1586% 220 44.0 78.6 508 489
LLaMA.13p Adapter™ 2894% 205 433 81.1 557 502
LoRA* 0.670% 185 475 83.6 546 511
DiReFT (ours) 0025% 205 358 80.8 548 480
LoReFT (ours) 0.025% 236 331 82.4 542 496

Table 3: Instruction tuning evaluation results for instruction-tuned Llama-2 7B with Alpaca-Eval
v1.0. We report averaged performance of two runs with distinct random seeds for our method. half
denotes our runs with half of the rank; /K denotes our runs with a low-resource setting where there
is only 1K training examples. "Performance results of baseline methods are taken from Li et al.
[2023]. *Performance results of baseline methods are taken from Wu et al. [2024a]. It takes 18
minutes to train our Llama-2 Chat 7B on 1K examples using a single A100 40G GPU with
~1MB parameters on disk.

Model & PEFT Params (%) Win-rate (1)
GPT-3.5 Turbo 1106 — 86.30
Llama-2 Chat 13B" — 81.10
Llama-2 Chat 7B* — 71.40
Llama-2 7B & FT* 100% 80.93
Llama-2 7B & LoRA* 0.1245% 81.48
Llama-2 7B & RED* 0.0039% 81.69
Llama-2 7B & DiReFT (ours) 0.0039% 84.85
Llama-2 7B & LoReFT (ours) 0.0039% 85.60
Llama-2 7B & LoReFT (ours, half) 0.0019% 84.12
Llama-2 7B & LoReFT (ours, 1K)* 0.0039% 81.91

Some of the best 7B and 13B chat-models (e.g. UltraLM-13B [Ding et al., 2023]) are finetuned with
Ultrafeedback.

Hyperparameter tuning. We do hyperparameter-tuning on the unseen instruction-following dataset
Alpaca-52K [Taori et al., 2023] with only LLaMA-7B to prevent test-set hill-climbing. We then
use the hyperparameter settings of our best performing model to finetune on Ultrafeedback. For
hyperparameter tuning, we use Alpaca-Eval v1.0 with GPT-4 turbo as the annotator for fast turnaround,
which also prevents overfitting with GPT-4 as a judge.

Results. We report results in table 3. When matched in parameter count to the previous most
parameter-efficient PEFT (RED) and trained on Llama-2 7B, LoReFT outperforms all reported
finetuning methods (including full finetuning) and achieves a win-rate within 1% of GPT-3.5 Turbo
1106. Furthermore, after halving the parameter count or using only 1/64-th of the data, LoReFT still
outperforms other finetuning methods. This result shows that LoReFT can succeed at long-form text
generation. DiReFT is again slightly worse than LoReFT but is highly competitive.

Table 4: Accuracy comparison of ROBERTa-base and RoBERTa-large against existing PEFT methods
on the GLUE benchmark. *Performance results of all baseline methods are taken from Wu et al.
[2024a]. We report averaged performance of five runs with distinct random seeds for our method.

Model PEFT Params (%) Accuracy (1)
MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg
FT 100% 873 944 879 624 925 917 783 906 856
Adapter* 0318% 870 933 884 609 925 905 765 905 85.0
LoRA* 0239% 866 93.9 887 597 926 904 753 903 847
base Adapter™N* 0239% 871 93.0 88.8 585 920 902 777 904 847
BitFit* 0.080% 847 94.0 880 540 910 873 698 895 823
RED* 0016% 839 939 892 610 907 872 780 904 843
DiReFT (ours) 0015% 825 926 883 586 913 864 764 893 832
LoReFT (ours) 0015% 83.1 934 892 604 912 874 790 900 842
FT 100% 888 96.0 917 682 938 915 858 926 88.6
Adapter* 0.254% 90.1 952 905 654 946 914 853 915 88.0
ar LoRA* 0225% 902 96.0 898 655 947 907 863 917 8.1
aEC Adapter™N~ 0.225% 903 96.1 90.5 644 943 913 848 902 877
RED* 0014% 89.5 96.0 903 681 935 888 862 913 880
DiReFT (ours) 0014% 887 954 885 667 939 881 869 912 874
LoReFT (ours) 0014% 892 96.2 90.1 680 941 885 875 916 882

4.5 Natural language understanding

We evaluate LoReFT on the GLUE benchmark [Wang et al., 2018] against existing PEFTs. We use
this set of experiments to show LoReFT works well even with small-scale LMs, and can improve
representations for classification tasks and not just text generation. We finetune RoBERTa-base
(125M) as well as RoBERTa-large (350M) on GLUE, a sequence classification benchmark for natural
language understanding (NLU) which covers domains such as sentiment classification and natural
language inference. Details about the GLUE benchmark can be found in its original paper. We
follow Wu et al. [2024a] for proper evaluation on GLUE validation set: we split the validation set into
two sets guarded by a random seed, and we pick the best model with highest in-training validation
accuracy to evaluate on the other held-out half for testing accuracy.

Hyperparameter tuning. We tune our hyperparameters for each task separately. which is standard
for PEFTs. To avoid overfitting to random seeds, we hyperparameter-tune our models with a
constant seed, and report averaged results over that and four additional unseen seeds. We describe
hyperparameter tuning experiments in Appendix D.1.

Results. We report results in table 4. LoReFT obtains comparable performance with PEFT methods
on both model sizes when parameter matched with RED, the previous most parameter-efficient PEFT
for this task. Furthermore, DiReFT achieves worse performance than most of the PEFTs suggesting
LoReFT is a better choice when LM is small. Full results with standard deviation is in table 13. We
additionally compare against VeRA [Kopiczko et al., 2024] in appendix D.3.

5 Limitations

Due to limited resources, we mainly explored the LLaMA-family of models. In future work, we hope
to explore the effectiveness of ReFT on other model families as well as vision—language models such
as LLaVA [Liu et al., 2024a]. The capabilities of ReFT have not yet been fully explored due to the
large hyperparameter search space; we are interested in automating this search. We provide some
initial explorations of LM personalisation with ReFT in a few-shot setting in appendix G.2. We hope
to explore why ReFT works, and we provide some of our early explorations focused on memorisation
(appendix F.1, appendix F.2). We are also investigating whether learned orthogonal subspaces can be
composed together without adaptation. Some encouraging initial findings are in appendix G.1.

6 Conclusion

We propose a strong alternative to PEFTs, LoReFT, and we identify an ablation of this method,
DiReFT, that trades some performance for increased efficiency. Overall, LoReFT achieves strong per-

formance across benchmarks from four domains while being 15x—65x more efficient than LoRA. No-
tably, LoReFT establishes new state-of-the-art performance on commonsense reasoning, instruction-
following, and natural language understanding against the strongest PEFTs. We also show how our
method can be described under a generic framework — ReFT. ReFT is a new approach to finetuning
that is more powerful, more parameter-efficient, and more interpretable than any existing PEFTs.

References

Afra Amini, Tiago Pimentel, Clara Meister, and Ryan Cotterell. Naturalistic causal probing for
morpho-syntax. Transactions of the Association for Computational Linguistics, 11:384—403, 2023.
doi: 10.1162/tacl_a_00554. URL https://aclanthology.org/2023.tacl-1.23.

Aryaman Arora, Dan Jurafsky, and Christopher Potts. CausalGym: Benchmarking causal inter-
pretability methods on linguistic tasks. arXiv:2402.12560, 2024. URL https://arxiv.org/abs/
2402.12560.

Matan Avitan, Ryan Cotterell, Yoav Goldberg, and Shauli Ravfogel. What changed? Converting
representational interventions to natural language. arXiv:2402.11355,2024. URL https://arxiv.
org/abs/2402.11355.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and Stella
Biderman. LEACE: Perfect linear concept erasure in closed form. Advances in Neural Information
Processing Systems, 36, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/d@66d21c619d0@a78c5b557fa3291a8f4-Paper-Conference.pdf.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 1-9, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.1. URL https:
//aclanthology.org/2022.acl-short.1.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7432-7439, 2020. URL https://arxiv.org/abs/1911.11641.

Lewis Carroll. Alice’s Adventures in Wonderland. Macmillan, London, 1865.

Angelica Chen, Ravid Schwartz-Ziv, Kyunghyun Cho, Matthew L. Leavitt, and Naomi Saphra.
Sudden drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in MLMs.
arXiv:2309.07311, 2023. URL https://arxiv.org/abs/2309.07311v4.

Abhijith Chintam, Rahel Beloch, Willem Zuidema, Michael Hanna, and Oskar van der Wal.
Identifying and adapting transformer-components responsible for gender bias in an English
language model. In Yonatan Belinkov, Sophie Hao, Jaap Jumelet, Najoung Kim, Arya Mc-
Carthy, and Hosein Mohebbi, editors, Proceedings of the 6th BlackboxNLP Workshop: Ana-
lyzing and Interpreting Neural Networks for NLP, pages 379-394, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.blackboxnlp-1.29. URL
https://aclanthology.org/2023.blackboxnlp-1.29.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pages 2924-2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning
challenge. arXiv:1803.05457,2018. URL https://arxiv.org/abs/1803.05457.

10

https://aclanthology.org/2023.tacl-1.23
https://arxiv.org/abs/2402.12560
https://arxiv.org/abs/2402.12560
https://arxiv.org/abs/2402.11355
https://arxiv.org/abs/2402.11355
https://proceedings.neurips.cc/paper_files/paper/2023/file/d066d21c619d0a78c5b557fa3291a8f4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d066d21c619d0a78c5b557fa3291a8f4-Paper-Conference.pdf
https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2309.07311v4
https://aclanthology.org/2023.blackboxnlp-1.29
https://aclanthology.org/N19-1300
https://arxiv.org/abs/1803.05457

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv:2110.14168, 2021. URL https://arxiv.org/abs/2110.14168.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan
Liu, and Maosong Sun. UltraFeedback: Boosting language models with high-quality feedback.
arXiv:2310.01377,2023. URL https://arxiv.org/abs/2310.01377.

Andrew M. Dai and Quoc V. Le. Semi-supervised sequence learning. In Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL https://
proceedings.neurips.cc/paper/2015/hash/7137debd45ae4d0ab9aa953017286b20-Abstract.html.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen
Zhou. Enhancing chat language models by scaling high-quality instructional conversations. In
Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 3029-3051, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.183. URL
https://aclanthology.org/2023.emnlp-main.183.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superpo-
sition. Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/2022/toy_
model/index.html.

Stanislav Fort. Scaling laws for adversarial attacks on language model activations, 2023. URL
http://arxiv.org/abs/2312.02780.

Cheng Fu, Hanxian Huang, Xinyun Chen, Yuandong Tian, and Jishen Zhao. Learn-to-Share: A
hardware-friendly transfer learning framework exploiting computation and parameter sharing.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 3469-3479. PMLR, 2021. URL http://proceedings.mlr.
press/v139/fu2la.html.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, et al. LLaMA-Adapter v2: Parameter-efficient visual instruction model.
arXiv:2304.15010, 2023. URL https://arxiv.org/abs/2304.15010.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural
networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 9574-9586. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
4f5c422f4d49a5a807eda27434231040-Paper . pdf.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah D. Goodman. Find-
ing alignments between interpretable causal variables and distributed neural representations.
arXiv:2303.02536, 2023. URL https://arxiv.org/abs/2303.02536.

Clément Guerner, Anej Svete, Tianyu Liu, Alexander Warstadt, and Ryan Cotterell. A geometric
notion of causal probing. arXiv:2307.15054,2023. URL https://arxiv.org/abs/2307.15054.

Michael Hanna, Yonatan Belinkov, and Sandro Pezzelle. When language models fall in love: Animacy
processing in transformer language models. In Houda Bouamor, Juan Pino, and Kalika Bali, editors,
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,

11

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2310.01377
https://proceedings.neurips.cc/paper/2015/hash/7137debd45ae4d0ab9aa953017286b20-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/7137debd45ae4d0ab9aa953017286b20-Abstract.html
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2023.emnlp-main.183
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
http://arxiv.org/abs/2312.02780
http://proceedings.mlr.press/v139/fu21a.html
http://proceedings.mlr.press/v139/fu21a.html
https://arxiv.org/abs/2304.15010
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://arxiv.org/abs/2303.02536
https://arxiv.org/abs/2307.15054

pages 1212012135, Singapore, December 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.744. URL https://aclanthology.org/2023.emnlp-main.744.

Sophie Hao and Tal Linzen. Verb conjugation in transformers is determined by linear encodings of
subject number. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association
for Computational Linguistics: EMNLP 2023, pages 4531-4539, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.300. URL
https://aclanthology.org/2023.findings-emnlp.300.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, 2022a. URL https://openreview.net/
forum?id=0RDcd5Axok.

Shwai He, Liang Ding, Daize Dong, Jeremy Zhang, and Dacheng Tao. SparseAdapter: An
easy approach for improving the parameter-efficiency of adapters. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang, editors, Findings of the Association for Computational Linguistics:
EMNLP 2022, pages 2184-2190, Abu Dhabi, United Arab Emirates, December 2022b. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.160. URL
https://aclanthology.org/2022.findings-emnlp.160.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Alessandro Moschitti, Bo Pang,
and Walter Daelemans, editors, Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 523-533, Doha, Qatar, October 2014. Association
for Computational Linguistics. doi: 10.3115/v1/D14-1058. URL https://aclanthology.org/
D14-1058.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 2790-2799. PMLR, 2019. URL
http://proceedings.mlr.press/v97/houlsby19a.html.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In The Tenth In-
ternational Conference on Learning Representations, ICLR 2022, Virtual Event, 2022. URL
https://openreview.net/forum?id=nZeVKeeFYf9.

Zhigiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 5254-5276, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
319. URL https://aclanthology.org/2023.emnlp-main.319.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. LoraHub:
Efficient cross-task generalization via dynamic lora composition. arXiv:2307.13269, 2023. URL
https://arxiv.org/abs/2307.13269.

Jing Huang, Christopher Potts Zhengxuan Wu, Mor Geva, and Atticus Geiger. RAVEL: Evaluating
interpretability methods on disentangling language model representations. arXiv:2402.17700,
2024. URL https://arxiv.org/abs/2402.17700.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas Ang.
Parsing algebraic word problems into equations. Transactions of the Association for Computational
Linguistics, 3:585-597, 2015. doi: 10.1162/tacl_a_00160. URL https://aclanthology.org/
Q15-1042.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. MAWPS:
A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow, editors,

12

https://aclanthology.org/2023.emnlp-main.744
https://aclanthology.org/2023.findings-emnlp.300
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://aclanthology.org/2022.findings-emnlp.160
https://aclanthology.org/D14-1058
https://aclanthology.org/D14-1058
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.emnlp-main.319
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2402.17700
https://aclanthology.org/Q15-1042
https://aclanthology.org/Q15-1042

Proceedings of the 2016 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 1152—1157, San Diego, Califor-
nia, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136. URL
https://aclanthology.org/N16-1136.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, ICLR 2024,
2024. URL https://openreview.net/forum?id=NjNfLdxr3A.

Karim Lasri, Tiago Pimentel, Alessandro Lenci, Thierry Poibeau, and Ryan Cotterell. Prob-
ing for the usage of grammatical number. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 8818-8831, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.603. URL
https://aclanthology.org/2022.acl-long.603.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The Winograd Schema Challenge. In
Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation
and Reasoning, 2012. URL https://cdn.aaai.org/ocs/4492/4492-21843-1-PB.pdf.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural Information
Processing Systems, 36, 2024. URL https://proceedings.neurips.cc/paper_files/paper/2023/
hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A. Smith, and Luke
Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models.
arXiv:2208.03306, 2022. URL https://arxiv.org/abs/2208.03306.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 45824597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
URL https://aclanthology.org/2021.acl-1long.353.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. AlpacaEval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv:1705.04146,2017. URL
https://arxiv.org/abs/1705.04146.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
Neural Information Processing Systems, 36, 2024a. URL https://arxiv.org/abs/2304.08485.

Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning
more effective and controllable through latent space steering. arXiv:2311.06668, 2024b. URL
https://arxiv.org/abs/2311.06668.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. arXiv:2402.09353,
2024c. URL https://arxiv.org/abs/2402.09353.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bern-
hard Scholkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In The
Twelfth International Conference on Learning Representations, ICLR 2024, 2024d. URL
https://openreview.net/forum?id=7NzgkEdGyr.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pretraining
approach. arXiv:1907.11692,2019. URL https://arxiv.org/abs/1907.11692.

13

https://aclanthology.org/N16-1136
https://openreview.net/forum?id=NjNfLdxr3A
https://aclanthology.org/2022.acl-long.603
https://cdn.aaai.org/ocs/4492/4492-21843-1-PB.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
https://arxiv.org/abs/2208.03306
https://aclanthology.org/2021.acl-long.353
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2402.09353
https://openreview.net/forum?id=7NzgkEdGyr
https://arxiv.org/abs/1907.11692

James L. McClelland, David E. Rumelhart, and PDP Research Group. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, volume 2: Psychological and Biological Models.
MIT Press, 1986.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. arXiv:1809.02789, 2018. URL
https://arxiv.org/abs/1809.02789.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word
representations. In Lucy Vanderwende, Hal Daumé 111, and Katrin Kirchhoff, editors, Proceedings
of the 2013 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 746751, Atlanta, Georgia, June 2013. Association
for Computational Linguistics. URL https://aclanthology.org/N13-1090.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. In Yonatan Belinkov, Sophie Hao, Jaap Jumelet, Najoung Kim,
Arya McCarthy, and Hosein Mohebbi, editors, Proceedings of the 6th BlackboxNLP Workshop:
Analyzing and Interpreting Neural Networks for NLP, pages 16-30, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.blackboxnlp-1.2. URL https:
//aclanthology.org/2023.blackboxnlp-1.2.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022. URL https://arxiv.org/abs/2203.02155.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv:2311.03658, 2023. URL https://arxiv.org/abs/2311.03658.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou,
editors, Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 2080-2094, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Sebastian Ruder. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer. In Bonnie Webber, Trevor Cohn, Yulan He,
and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7654-7673, Online, November 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.617. URL https://aclanthology.
org/2020.emnlp-main.617.

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan D. Cotterell. Linear adversarial concept
erasure. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 18400-18421, 17-23 Jul 2022.
URL https://proceedings.mlr.press/v162/ravfogel22a.html.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Lluis Marquez, Chris
Callison-Burch, and Jian Su, editors, Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1743—1752, Lisbon, Portugal, September 2015. Association
for Computational Linguistics. doi: 10.18653/v1/D15-1202. URL https://aclanthology.org/
D15-1202.

David E. Rumelhart, James L. McClelland, and PDP Research Group. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, volume 1: Foundations. MIT Press, 1986.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An
adversarial Winograd Schema Challenge at scale. Communications of the ACM, 64(9):99-106,
2021. URL https://arxiv.org/abs/1907.10641.

14

https://arxiv.org/abs/1809.02789
https://aclanthology.org/N13-1090
https://aclanthology.org/2023.blackboxnlp-1.2
https://aclanthology.org/2023.blackboxnlp-1.2
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2311.03658
https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2020.emnlp-main.617
https://aclanthology.org/2020.emnlp-main.617
https://proceedings.mlr.press/v162/ravfogel22a.html
https://aclanthology.org/D15-1202
https://aclanthology.org/D15-1202
https://arxiv.org/abs/1907.10641

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Common-
sense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 4463-4473, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/D19-1454.

Shuhua Shi, Shaohan Huang, Minghui Song, Zhoujun Li, Zihan Zhang, Haizhen Huang, Furu Wei,
Weiwei Deng, Feng Sun, and Qi Zhang. ResLoRA: Identity residual mapping in low-rank adaption.
arXiv:2402.18039, 2024. URL https://arxiv.org/abs/2402.18039.

Shashwat Singh, Shauli Ravfogel, Jonathan Herzig, Roee Aharoni, Ryan Cotterell, and Ponnu-
rangam Kumaraguru. MiMiC: Minimally modified counterfactuals in the representation space.
arXiv:2402.09631, 2024. URL https://arxiv.org/abs/2402.09631.

Paul Smolensky. Neural and conceptual interpretation of PDP models. In Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, volume 2: Psychological and
Biological Models, pages 390-431. MIT Press/Bradford Books, Cambridge, MA, 1986.

Nishant Subramani, Nivedita Suresh, and Matthew E. Peters. Extracting latent steering vectors from
pretrained language models. arXiv:2205.05124, 2022. URL https://arxiv.org/abs/2205.05124.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An instruction-following LLaMA model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation language
models. arXiv:2302.13971,2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b. URL https://arxiv.org/abs/2307.09288.

Alex Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDiarmid.
Activation addition: Steering language models without optimization. arXiv:2308.10248, 2023.
URL https://arxiv.org/abs/2308.10248.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30, pages 5998—6008. Curran Associates, Inc., 2017.
URL http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Theia Vogel. repeng, 2024. URL https://github.com/vgel/repeng/.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupata, and Afra Alishahi, editors, Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353-355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446.

15

https://aclanthology.org/D19-1454
https://arxiv.org/abs/2402.18039
https://arxiv.org/abs/2402.09631
https://arxiv.org/abs/2205.05124
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2308.10248
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://github.com/vgel/repeng/
https://aclanthology.org/W18-5446

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
2023. URL https://openreview.net/pdf?id=NpsVSN6o4ul.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan
Awadallah, and Jianfeng Gao. AdaMix: Mixture-of-adaptations for parameter-efficient model
tuning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pages 5744-5760, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.emnlp-main.388. URL https://aclanthology.org/2022.emnlp-main.388.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824-24837,2022. URL https://arxiv.org/abs/
2201.11903.

Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, Changze Lv, Zixuan Ling, Jianhao Zhu,
Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. Advancing parameter efficiency in fine-
tuning via representation editing. arXiv:2402.15179,2024a. URL https://arxiv.org/abs/2402.
15179.

Zhengxuan Wu, Atticus Geiger, Christopher Potts, and Noah D. Goodman. Interpretability at
scale: Identifying causal mechanisms in Alpaca. In Advances in Neural Information Processing
Systems, volume 36, 2023. URL https://papers.neurips.cc/paper_files/paper/2023/file/
f6a8b109d4d4fd64c75e94aaf85d9697-Paper-Conference. pdf.

Zhengxuan Wu, Atticus Geiger, Aryaman Arora, Jing Huang, Zheng Wang, Noah D. Goodman,
Christopher D. Manning, and Christopher Potts. pyvene: A library for understanding and improving
PyTorch models via interventions. In arXiv:2403.07809, 2024b. URL https://arxiv.org/abs/
2403.07809

Zhengxuan Wu, Atticus Geiger, Jing Huang, Aryaman Arora, Thomas Icard, Christopher Potts,
and Noah D. Goodman. A reply to Makelov et al. (2023)’s “interpretability illusion” arguments.
arXiv:2401.12631, 2024c. URL https://arxiv.org/abs/2401.12631.

Takateru Yamakoshi, James McClelland, Adele Goldberg, and Robert Hawkins. Causal in-
terventions expose implicit situation models for commonsense language understanding. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association
for Computational Linguistics: ACL 2023, pages 13265-13293, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.839. URL
https://aclanthology.org/2023.findings-acl.839.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine
really finish your sentence? arXiv:1905.07830, 2019. URL https://arxiv.org/abs/1905.07830.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqgiang Jiang, Bowen Wang, and Yiming Qian.
IncreLoRA: Incremental parameter allocation method for parameter-efficient fine-tuning.
arXiv:2308.12043, 2023. URL https://arxiv.org/abs/2308.12043.

Jinghan Zhang, Shiqgi Chen, Junteng Liu, and Junxian He. Composing parameter-efficient modules
with arithmetic operation. Advances in Neural Information Processing Systems, 36, 2024a. URL
https://arxiv.org/abs/2306.14870.

Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou, Pan Lu, Hongsheng Li, Peng Gao, and Yu Qiao.
LLaMA-Adapter: Efficient fine-tuning of large language models with zero-initialized attention. In
The Twelfth International Conference on Learning Representations, Vienna, Austria, 2024b. URL
https://openreview.net/forum?id=d4UiXAHN2W.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. AutoLoRA: Automatically
tuning matrix ranks in low-rank adaptation based on meta learning. arXiv:2403.09113, 2024c.
URL https://arxiv.org/abs/2403.09113.

16

https://openreview.net/pdf?id=NpsVSN6o4ul
https://aclanthology.org/2022.emnlp-main.388
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2402.15179
https://arxiv.org/abs/2402.15179
https://papers.neurips.cc/paper_files/paper/2023/file/f6a8b109d4d4fd64c75e94aaf85d9697-Paper-Conference.pdf
https://papers.neurips.cc/paper_files/paper/2023/file/f6a8b109d4d4fd64c75e94aaf85d9697-Paper-Conference.pdf
https://arxiv.org/abs/2403.07809
https://arxiv.org/abs/2403.07809
https://arxiv.org/abs/2401.12631
https://aclanthology.org/2023.findings-acl.839
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2308.12043
https://arxiv.org/abs/2306.14870
https://openreview.net/forum?id=d4UiXAHN2W
https://arxiv.org/abs/2403.09113

Ming Zhong, Yelong Shen, Shuohang Wang, Yadong Lu, Yizhu Jiao, Siru Ouyang, Donghan Yu,
Jiawei Han, and Weizhu Chen. Multi-LoRA composition for image generation. arXiv:2402.16843,
2024. URL https://arxiv.org/abs/2402.16843.

Yun Zhu, Nevan Wichers, Chu-Cheng Lin, Xinyi Wang, Tianlong Chen, Lei Shu, Han Lu, Ca-
noee Liu, Liangchen Luo, Jindong Chen, et al. SiRa: Sparse mixture of low rank adaptation.
arXiv:2311.09179, 2023. URL https://arxiv.org/abs/2311.09179.

Zhou Ziheng, Yingnian Wu, Song-Chun Zhu, and Demetri Terzopoulos. Aligner: One global token
is worth millions of parameters when aligning large language models. arXiv:2312.05503, 2023.
URL https://arxiv.org/abs/2312.05503.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J.
Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson,
J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to Al
transparency. arXiv:2310.01405, 2023. URL https://arxiv.org/abs/2310.01405.

17

https://arxiv.org/abs/2402.16843
https://arxiv.org/abs/2311.09179
https://arxiv.org/abs/2312.05503
https://arxiv.org/abs/2310.01405

Appendix

Table of Contents

A

B

pyreft: A ReFT-native Python Library

Describing existing methods under the ReFT framework

B.1 RED e
B.2 Activation addition
B.3 RepE e

Datasets

C.1 Commonsense reasoning ¢ v v v v v v v vttt e e
C.2 Arithmeticreasoning
C.3 Natural language understanding

Hyperparameters

D.1 Hyperparameter tuning and decoding strategy
D.2 Suggestions on choosing hyperparameters for ReFT
D.3 Additional hyperparameter-tuning results of LoReFT

Ablating the parametrisation of LoReFT

Memorisation experiments

F.1 A single vector is worth a thousand tokens
F2 A single vector can memorise a codebook with 256 entries

Capabilities experiments

G.1 Multi-task learning: Learned ReFTs are like puzzle pieces

G.2 Few-shot adaptation: Adapting Llama-2-Chat to GOODY-2 with 5 examples
Inference overhead analysis of ReFT with our ReFT library
Generation examples

Licenses for existing assets

J.1 Commonsense reasoning oo v v it e e e e
J.22 Arithmeticreasoning L e
J.3 Instruct-tuning e
J.4 Natural language understanding oL
J5 Models . ..o o

18

19

19
20
20
20

20
20
21
22

22
22
28
28

31

32
32
34

A pyreft: A ReFT-native Python Library

To lower the cost of switching from PEFTs to ReFT, we release pyreft, a Python library made for
training and sharing ReFTs. Our library is built on top of pyvene [Wu et al., 2024b], a library for
performing and training activation interventions on arbitrary PyTorch models. We publish our library
on PyPL® Any pretrained LM available on HuggingFace is supported through our library pyreft
for finetuning with ReFT methods, and finetuned models can be easily uploaded to HuggingFace.
The following example shows steps to wrap a Llama-2 7B model with a single intervention on the
residual stream output of the 19-th layer:

import torch
import transformers
from pyreft import get_reft_model, ReftConfig, LoreftIntervention, ReftTrainerForCausallLM

loading huggingface model
model_name_or_path = "yahma/llama-7b-hf"
model = transformers.AutoModelForCausallLM. from_pretrained(
model_name_or_path, torch_dtype=torch.bfloat16, device_map="cuda")
wrap the model with rank-1 loreft
reft_config = ReftConfig(representations={
"layer": 19, "component”: "block_output”,
"intervention”: LoreftIntervention(
embed_dim=model.config.hidden_size, low_rank_dimension=1)3})
reft_model = get_reft_model(model, reft_config)
reft_model.print_trainable_parameters()

The wrapped model can be trained for downstream tasks. We also provide data loading helpers to
construct training data that is compatible with HuggingFace trainers:

tokenizer = transformers.AutoTokenizer.from_pretrained(model_name_or_path)

get training data with customised dataloaders
data_module = make_supervised_data_module(
tokenizer=tokenizer, model=model, layers=[19],
training_args=training_args, data_args=data_args)
train
trainer = reft.ReftTrainerForCausallLM(
model=reft_model, tokenizer=tokenizer, args=training_args, #**data_module)
trainer.train()
trainer.save_model (output_dir=training_args.output_dir)

B Describing existing methods under the ReFT framework

To show the expressivity of the ReFT framework, we cast existing representing-editing methods in
the literature into ReFTs.

General comments about expressivity of ReFT. Given that previous works have unified PEFTs
under a single framework [He et al., 2022a], one may ask why not express ReFT as a PEFT
method? The main reason is that PEFT frameworks lack the notion of time or sequence (see the
unified PEFT view provided in Table 1 on pg. 5 of He et al., 2022a). In PEFTs, representation
modifications are necessarily applied to every token in the sequence, even in recent variants such as
AdalLoRA [Zhang et al., 2023]. A key aspect of ReFT is that it leverages representations over time
and intervenes only on a small number of them while being effective. More importantly, the notation
of time is important for future versions of ReFT that intervene on representations schematically
(e.g. intervene on the first token at some early layers and then intervene on the last token at some later
layers). The ability to intervene at different layer and position combinations schematically is also
supported in our code. Existing PEFT libraries 7 enforce weight-based updates without supporting
flexible representation-based interventions.

6pip install pyreft
See https://github.com/huggingface/peft.

19

https://github.com/huggingface/peft

B.1 RED

RED [Wu et al., 2024a] is a simple representation-editing method that applies an element-wise scaling
transform s € R™ and adds a bias b € R” to the hidden representation in every layer. The same
intervention is applied to every position (including at generated tokens, increasing inference burden)
but separate interventions are learned at each layer. In the ReFT framework, RED is defined as

‘bRED(h) =sxh+b (8)
IRED:{((I)RED,{L...,TL},Z)|l€{1,...,m}} (9)

The parameters ¢rep = {s, b} are learned with gradient descent to minimise a loss function such as
language-modelling loss or a classification loss, as in our experiments with LoReFT. We believe that
RED is better classified as a kind of adapter due to its application at all positions.

B.2 Activation addition

Activation addition [Turner et al., 2023] takes the difference in activations at at some positions p and
q and layer [given two contrastive prompts x* and x~ as input. It then adds this difference vector,
scaled by a tuned constant c, to representations at all positions in layer [for some new prompt.

a=h(x"){ -h(x")P (10)
(I)ActAdd(h) =h+c-a (11)
Iactadd = {{PActadd, {1,...,n}, 1)} (12)

B.3 RepE

Zou et al. [2023] introduce several intervention methods for controlling model behaviour, which they
term representation engineering.

First, given a set of prompts {x1,...,X,} designed to elicit the presence of a concept, we randomly
pair them, take the difference in activations for each pair, and find the first principle component of the
difference vectors at the last token position in some layer of interest [to obtain a reading vector:

Areading = PCA ({h(x:)") = h(x341)") | i = 0 mod 2})1 (13)

One can also used a more structured pairing of constrastive prompts to obtain a contrast vector,
similar to the difference vector computed in activation addition:

acontrast = PCA ({B(x) Y ~h(x) D [1 <i<n}), (14)

Then, using either areading OF Acontrast, REPE introduces three operators (i.e. parametrisations of ®)
for intervening on activations:

@RepE,linear(h) =hz+c-a (15)

DRepE piecewise() =h + c-sign(a-h)-a (16)
a-h

q)RepE,projection(h) =h-c- W ca (17)

The first two of these are similar to activation addition, while the latter is a scaled one-dimensional
distributed interchange intervention that is a special case of LoReFT. These operations are then used
to intervene on some set of positions P ¢ {1,...,n} in the layer of interest:

IRepE = {((I)RepEaP>Z>} (18)

RepE introduces another model control method called Low-Rank Representation Adaptation
(LoRRA), which is a kind of PEFT rather than a ReFT since it tunes model weights using a variant of
LoRA.

C Datasets

C.1 Commonsense reasoning

We train and evaluate our models on eight datasets covering different domains of open-ended QA
tasks:

20

1. The BoolQ [Clark et al., 2019] dataset, which is a question-answering dataset for yes or
no naturally occurring questions. We remove the provided passage in the dataset following
previous works to ensure a fair comparison.

2. The PIQA [Bisk et al., 2020] dataset, which tests physical commonsense reasoning and
requires the model to choose one of the provided actions to take based on a hypothesised
scenario.

3. The SIQA [Sap et al., 2019] dataset, which focus on reasoning about people’s actions and
their corresponding social consequences.

4. The HellaSwag [Zellers et al., 2019] dataset, which asks the model to choose an appropriate
ending (or sentence completion) given a context.

5. The WinoGrande [Sakaguchi et al., 2021] dataset, inspired by Winograd Schema Chal-
lenge [Levesque et al., 2012], asks the model to fill-in-a-blank with binary options given a
sentence which requires commonsense reasoning.

6. The ARC Easy set (ARC-e [Clark et al., 2018]), which includes genuine grade-school level
multiple-choice science questions

7. The ARC Challenge set (ARC-c) [Clark et al., 2018]), which is like ARC-e but designed in
a way that co-occurrence methods are expected to fail to answer correctly.

8. The OBQA [Mihaylov et al., 2018] dataset, which is a knowledge-intensive and open-book
QA dataset that requires multi-hop reasoning. Dataset statistics and simplified training
examples from each dataset are provided in Hu et al. [2023].

Dataset statistics and simplified training examples from each dataset are provided in Hu et al. [2023].
We replicate the experimental setup in Hu et al. [2023] and finetune our models on a combined training
dataset (COMMONSENSE170K) of the tasks mentioned above, and evaluate on their individual test
set. As in Hu et al. [2023], all of our examples are constructed without the golden or retrieved
passages, if provided by the datasets.

C.2 Arithmetic reasoning
We train and evaluate with seven datasets covering different domains of math world problems:

1. The AddSub [Hosseini et al., 2014] dataset, which involves solving arithmetic word prob-
lems that include addition and subtraction.

2. The AQuA [Ling et al., 2017] dataset, which formulates algebraic word problems as
multiple-choice problems.

3. The GSMS8K [Cobbe et al., 2021] dataset, which consists of grade-school math word
problems that require multi-step reasoning.

4. The MAWPS [Koncel-Kedziorski et al., 2016] dataset, which contains math word problem
with varying complexity.

5. The MultiArith [Roy and Roth, 2015] dataset, which contains multi-step arithmetic prob-
lems.

6. The SingleEq [Koncel-Kedziorski et al., 2015] dataset, which has grade-school math word
problems that map to single equations with different length.

7. The SVAMP [Patel et al., 2021] dataset, which enhances the original Math World Prob-
lem (MWP) challenge by requiring robust reasoning ability that is invariant to structural
alternations of the posing problem.

Dataset statistics and simplified training examples from each dataset are provided in Hu et al. [2023].
We replicate the experimental setup in Hu et al. [2023] and finetune our models on a combined
training dataset (MATH10K) of four tasks mentioned above: GSM8K, MAWPS, MAWPS-single
and AQuA. Different from Hu et al. [2023], selected tasks are excluded for testing since the original
paper accidentally leaks testing examples from these tasks into the training set, affecting AddSub,
MultiArith and SingleEq. They are included in the MAWPS training dataset, and thus leaked into the
training dataset.

21

C.3 Natural language understanding

We follow Wu et al. [2024a] for proper evaluation on the GLUE validation set. We split the validation
set into two subsets, using one subset guarded by a random seed for in-training evaluation and the
other for testing. Specifically, after each training epoch, we evaluate the model on our in-training
evaluation set and select the best model across all epochs for testing. For datasets with a large
validation set (i.e., QQP, MNLI, and QNLI), we select 1,000 samples for in-training evaluation. For
the remaining smaller datasets, we select half of the samples for this purpose. For the evaluation
metric, we use the Matthews correlation coefficient for CoLLA, the Pearson correlation coefficient for
STS-B, and accuracy for the other datasets. For MNLI, we report results only on the matched version.

D Hyperparameters

D.1 Hyperparameter tuning and decoding strategy

Commonsense reasoning and arithmeric reasoning. We create a standalone development set by
taking the last 300 examples from the GSM8K training set. We train our models with the remaining
training set of GSM8K and select the hyperparameter settings based on model performance on the
development set. We select the hyperparameters using LLaMA-7B, and apply the same settings to
LLaMA-13B without additional tuning. We use a maximum sequence length of 512 for training and
hyperparameter tuning, and a maximum new token number of 32 for inference. Table 5 and table 6
describes our hyperparameter search space. We use a lower number of epochs (6 instead of 12) for
the commonsense reasoning benchmark because the COMMONSENSE170K training set is more than
20 times larger than GSM8K.

During inference, we use greedy decoding without sampling for the commonsense reasoning bench-
mark, since it is a multi-token classification benchmark, and use the same decoding strategy as in
Hu et al. [2023] for the arithmetic reasoning benchmark with a higher temperature 0.3. The reason
to switch to a slightly different set of decoding hyperparameters is that the HuggingFace decoding
function may throw an error due to statistical instability with close-to-zero probabilities over output
tokens with beam search.®

Instruction following. We finetune LLaMA-7B on Alpaca-52K [Taori et al., 2023] to select hy-
perparameters. We select the hyperparameter settings based on model performance evaluated with
Alpaca-Eval v1.0 [Li et al., 2023], which calculates the win-rate over text-davinci-003 by using
gpt-4-turbo as the annotator. We use a maximum sequence length of 768 for training and hyper-
parameter tuning, and a maximum new token number of 2048 for inference. Table 7 describes our
hyperparameter search space.

During inference, we use the same decoding strategy as in RED [Wu et al., 2024a] to ensure a fair
comparison. Specifically, we use greedy decoding without sampling, and use a maximum repetition
n-gram size of 5 with a repetition penalty of 1.1.

Natural language understanding. We conduct hyperparameter tuning with RoBERTa-base and
RoBERTa-large for each task individually. We pick the hyperparameters based on testing performance
on the held-out validation set with a fixed random seed of 42. We then evaluate our model with
additional four unseen seeds {43, 44, 45, 46} for final results. We follow Wu et al. [2024a]’s setting
for evaluation. For QQP with RoBERTa-large, there are some stochasticity in runs with the same
seed, so we picked the best run out of 3 runs for any particular seed. As reported by Wu et al. [2024a],
we also observe that evaluation results on RTE are unstable due to the small size of the dataset. We
thus replace several random seeds as in Wu et al. [2024a] to ensure a fair comparison. In addition, we
replace one or two random seeds for CoL A for stability. Table 8 describes our hyperparameter search
space. Table 9 to table 12 describe our hyperparameter settings for each task. We set the maximum
sequence length to 256 for all tasks as in Wu et al. [2024a].

We conduct separate hyperparameter tuning for LoReFT and DiReFT to ensure a fair comparison.

8See reference ticket: https://github.com/huggingface/transformers/issues/11267.

22

https://github.com/huggingface/transformers/issues/11267

Table 5: Hyperparameter search space of LLaMA-1 7B models with LoReFT on the GSM8SK
development set with the best settings underlined. We use greedy decoding without sampling during
hyperparameter tuning.

Hyperparameters LLaMA-7B w/ GSMSK for LoReFT
prefix+suffix position p + s {pl+sl, p3+s3, pS+s5, p7+s7, p9+s9, pl1+s11}
Tied weight p, s {True, False}
Rank r {8, 16, 32, 64}
Layer L (sep. w/ ;) {0;2:4;6;10;12;14;18, 10;12;14;18;20;22;24;28, 4,6;10;12;14;18;20;22, all}
Dropout {0.00, 0.05}
Optimizer AdamW
LR {9%107%, 1x107%, 3x1074, 6x107%, 9x107*%, 1x1072, 3x1073}
Weight decay {0, 1x1073, 2x1073}
LR scheduler Linear
Batch size {4, 8,16, 32, 64}
Warmup ratio {0.00, 0.06, 0.10}
Epochs {3,6,9, 12, 18}

Table 6: Hyperparameter search space of LLaMA-1 7B models with DiReFT on the GSMSK
development set with the best settings underlined. We use greedy decoding without sampling during
hyperparameter tuning.

Hyperparameters LLaMA-7B w/ GSMS8K for DiReFT
prefix+suffix position p + s {pl+sl, p3+s3, pS+sS, p7+s7, p9+s9, pl1+s11}
Tied weight p, s {True, False}
Rank r {8, 16, 32, 64}
Layer L (sep. w/ ;) {0;2;4,6;10;12;14;18, 10;12;14;18;20;22;24;28, 4;6;10;12;14,18;20;22, all }
Dropout {0.00, 0.05}
Optimizer AdamW
LR {9x107°, 1x107%, 3x107%, 6x107%, 9x107%, 1x1072, 3x1073}
Weight decay {0, 1x1073,2x107%, 6x107%, 1x1072, 2x1072, 6x1072}
LR scheduler Linear
Batch size {4, 8, 16, 32, 64}
Warmup ratio {0.00, 0.06, 0.10}
Epochs {3,6,9,12,18}

23

Table 7: Hyperparameter search space of LLaMA-1 7B models on Alpaca-52K evaluated by Alpaca-
Eval v1.0 with the best settings underlined. We use greedy decoding without sampling during
hyperparameter tuning. LoReFT and DiReFT have the same hyperparameter settings.

Hyperparameters LLaMA-7B w/ Alpaca-52K
prefix+suffix position p + s {pl+sl, p3+s3, p5+s5, p7+s7}
Tied weight p, s {True, False}
Rank r {1,2,3,4,5, 6}
Layer L (sep. w/ ;) {9;18, 3;9;18, 3;9;18;24}
Dropout {0.00, 0.05}
Optimizer AdamW
LR 9x107*
Weight decay 0x1073
LR scheduler Linear
Batch size {16, 32, 64, 128}
Warmup ratio 0.00
Epochs {1,3,6,9, 12}

Table 8: Hyperparameter search space of RoOBERTa-base and RoBERTa-large models on GLUE
evaluated with classification accuracy. Best hyperparameter settings are task-specific, which are
specified in separate tables.

Hyperparameters RoBERTa-base and RoBERTa-large w/ GLUE
prefix+suffix position p + s {pl, p3, p5, p7, P9, p11}
Tied weight p, s False
Rank r {1,2}
Layer L (sep. w/ ‘3’) {1;3;5;7;9;11, all}
Dropout {0.00, 0.05, 0.10, 0.15, 0.20}
Optimizer AdamW
LR {1x107%,2x107%, 3x107%, 4x107%, 5x 1074},
{6x107%,9x107%, 1x1073, 3x1073}
Weight decay {0, 1x107%, 6x107%, 11073, 6x1073, 1x1072, 2x1072, 4x1072}
LR scheduler Linear
Batch size {16, 32, 64, 128}
Warmup ratio {0,5x107%, 6x1072, 3x1072, 5x1072, 6x1072, 1x107, 2x1071}
Epochs {20, 30, 40, 50, 60}

24

Table 9: Hyperparameter settings of RoBERTa-base models on GLUE for LoReFT.

Hyperparameters MNLI SST-2 MRPC CoLA QNLI QQp RTE STS-B
position p pl p3 p3 p3 pll pll p3 p3
Tied weight False
Rank r 1
Layer L all
Dropout 0.05 0.10 0.05 0.20 0.05 0.05 0.05 0.05
Optimizer AdamW
LR 6107 6x107" 3x107* 4x107' 9x107* 6x107* 9x107* 6x107*
Weight decay 0.00
LR scheduler Linear
Batch size 32
Warmup ratio 6x1072 1x107! 0 51072 1x107! 0 0 3x1072
Epochs 40 40 40 60 20 40 60 60

Table 10: Hyperparameter settings of RoOBERTa-large models on GLUE for LoReFT.

Hyperparameters MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
position p pl p3 p3 p3 pll pll p3 p3
Tied weight False
Rank r 1
Layer L all
Dropout 0.05 0.05 0.20 0.20 0.05 0.05 0.05 0.05
Optimizer AdamW
LR 6x107* 6x107* 3x107* 1x107* 9x107* 6x107* 6x107* 8x107*
Weight decay 0.00
LR scheduler Linear
Batch size 32
Warmup ratio 0.00 0.10 0.06 0.20 0.10 0.06 0.00 0.20
Epochs 20 20 30 30 20 20 30 30

25

Table 11: Hyperparameter settings of ROBERTa-base models on GLUE for DiReFT.

Hyperparameters MNLI SST-2 MRPC CoLA QNLI QQp RTE STS-B
position p pl p3 DS pl pll pll pl p3
Tied weight False
Rank r 1
Layer L all
Dropout 0.05 0.10 0.05 0.00 0.05 0.05 0.00 0.05
Optimizer AdamW
LR 6x107 6x107* 3x107* 6x107 9x10™* 6x107* 9x107* 6x107*
Weight decay 0.00 0.00 0.00 0.04 0.00 0.00 0.04 0.00
LR scheduler Linear
Batch size 32 32 32 32 32 32 8 32
Warmup ratio 6x1072 1x107t 1x107* 0 1x107* 0 0 3x1072
Epochs 40 40 40 60 20 40 60 60

Table 12: Hyperparameter settings of RoOBERTa-large models on GLUE for DiReFT.

Hyperparameters MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
position p pl p3 pl pl pll p7 p3 p3
Tied weight False
Rank r 1
Layer L all
Dropout 0.05 0.05 0.10 0.15 0.05 0.05 0.05 0.05
Optimizer AdamW
LR 6x107* 6x107* 9x107™* 9x107* 9x107* 9x107* 6x107* 8x107*
Weight decay 0 0 0 0 0 0 6x1073 0
LR scheduler Linear
Batch size 32
Warmup ratio 0.00 0.10 0.00 0.00 0.10 0.10 0.00 0.10
Epochs 20 20 50 60 20 20 30 30

26

Table 13: Accuracy comparison of RoBERTa-base and RoBERTa-large against existing PEFT
methods on the GLUE benchmark with standard deviation (SD). *Performance results of all
baseline methods are taken from Wu et al. [2024a]. We report averaged performance of five runs
with distinct random seeds for our method. Param. (%) is calculated by dividing the number of
trainable parameters (excluding the number of parameters of the classification head) with the number
of parameter of the base LM.

Model PEFT Params (%) Accuracy (1) (SD)
MNLI SST-2 MRPC CoLA QNLI QQr RTE STS-B Avg.
FT 100% 873031y 944006y 8790.01) 624@20) 9250022y 9170010y 7833200 90.6(0.50) 85.6
Adapter* 0.318% 87.00028) 933(0.10) 884(151) 609309y 92.5002) 9050.0s) 7650206 905035 85.0
pase LORA 0.239% 86.6(0.23) 93.9(0.19) 887076y 597(azs) 92600.10) 90408y 753270y 90.3051) 847
AQapterF“N* 0.239% 87.1(.10) 930005 88.8(1.35) 3585(1.60) 92.000.28) 9020007y 77.7(193) 90431y 847
BitFit* 0.080% 84.70.0s) 940057 88.1(1sny 54007y 910005 873002 698(151) 895035 823
RED* 0.016% 83.9(.14) 939031) 892009s) 610205y 9070035 872017y 780205 90432 843
DiReFT (ours) 0.015% 82.5(0.22) 92.6(0.76) 883(1.23) 58.6(1.99) 91.3(0.19) 864027y 764145y 893056 832
LoReFT (ours) 0.015% 83.1(026) 934(0061) 8920262 604060y 9120025y 874023 790(276) 90.0(020) 842
FT 100% 88845 96.00.66) 91.7(173) 6820262y 93.80.33) 91.50128) 858(1.10) 92.6(0.16) 886
Adapter* 0.254% 90.1(0.12) 952(0.48) 90.5(0.50) 654204y 9460017y bz 8530131 915033 88.0
lage LoRA* 0.225% 90.2(0.25) 96.0(0.85) 89.8(200) 65.5(2.02) 947021y 907001y 863241 917(0aa) 88.1
Adapter™N* 0.225% 90.3(0.15 96.1(075) 905(126) 644156y 9430039) 9130021y 848201 90.2(024) 877
RED* 0.014% 89.5(03s) 96.00.4s) 903(1.a0) 681160y 93.5033) 88.8(0.11) 8620140y 9130021y 88.0
DiReFT (ours) 0.014% 8870013y 954(60) 885(216) 0670221y 939030) 88.loary 869156 91.2(009) 874
LoReFT (ours) 0.014% 89.2(027) 962072y 90.1(117y 68.0(14a) 941(035) 885045 87.5(1a9) 91.6(0.43) 882

27

D.2 Suggestions on choosing hyperparameters for ReFT

Similar to PEFTs or finetuning, ReFT can be sensitive to hyperparameter settings. Here, we recom-
mand a non-exhaustive list for choosing the best hyperparameter settings for your tasks:

* Intervening on multiple positions delivers significant gains. We find that intervening only
on a single token position (e.g., just the first one or the last one) is always less optimal than
intervening on multiple tokens. However, intervening on excessive number of tokens might
harm performance by slowing down convergence.

* Intervening on all layers first, and then shrink down. Intervening on all layers often
provides a good baseline. We recommand users to start with all layers, and shrink down
the number of intervening layers depending on the desired performance—parameter count
balance.

* Higher rank may not entail better performance. High rank entails higher parameter
count, but it does not always bring performance gain (likely due to slower convergence). We
recommend users to start with a rank that is lower than 32 (e.g. rank 4).

* Tie intervention weights as much as you can. In the paper, we explore tying the interven-
tion weights between prefix and suffix token positions. It automatically halves the parameter
count, and it can result in better performance as well. We suspect weight sharing across
layers may also help.

* Hyperparameter tuning with learning rate, warmup ratio, dropout rate and weight
decay should go after other hyperparameters. These classic neural-network training
hyperparameters can play a role, yet they have much smaller effect than previous ones.

D.3 Additional hyperparameter-tuning results of LoReFT

As aresult of our hyperparameter searching process, LoReFT is trained with more epochs compared to
LoRA [Hu et al., 2022] or DoRA [Liu et al., 2024c]. This raises the concern whether our performance
gain is purely due to the larger number of epochs. We thus rerun our experiments with the exact same
number of epochs and effective batch size as LoRA or DoRA. Results are shown in table 14 and
table 15. With matched hyperparameters, LoReFT shows similar results by outperforming previous
methods significantly on eight commonsense reasoning datasets.

Recently, VeRA was proposed as a new variant of LoRA that further reduces the number of trainable
parameters while maintaining performance [Kopiczko et al., 2024]. Table 16 shows our results
compared against VeRA as well as the baseline numbers reported in VeRA’s paper. We include this
set of results in the appendix, given that the hyperparameter tuning process is drastically different
from ours.” The original VeRA implementation records the performance of the best epoch on the
validation set, which could cause overfitting since results are selected based on test set performance.

*VeRA’s original implementation can be found at https://openreview.net/notes/edits/attachment?
id=D@dcbrnPg@&name=supplementary_material.

28

https://openreview.net/notes/edits/attachment?id=D0dcbrnPq0&name=supplementary_material
https://openreview.net/notes/edits/attachment?id=D0dcbrnPq0&name=supplementary_material

Table 14: Accuracy comparison of LLaMA-7B and LLaMA-13B against existing PEFT methods on
eight commonsense reasoning datasets. *Performance results of all baseline methods are taken from
Liu et al. [2024c]. We report averaged performance of three runs with distinct random seeds for our
method. For LoReFT, Param. (%) is calculated by dividing the number of trainable parameters by
the number of parameters of the base LM. We include LoReFT._3, which is trained with 3 epochs —
the same number of epochs as DoRA, but with a reduced batch size of 16 to ensure an equivalent
number of gradient sets.

Model PEFT Params (%) Accuracy (1)
BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.
ChaGPT" — — 731 854 685 785 661 898 799 748 770
PrefT* 0039% 643 768 739 421 721 729 540 606 646
AdapterS* 1953% 630 792 763 679 757 745 511 7124 708
Adapter™ 3542% 679 764 788 69.8 789 737 573 752 723
LLaMA.7B LORA® 0826% 689 807 774 781 788 778 613 748 747
DOoRA (half)* 0427% 700 826 797 832 806 806 654 776 715
DoRA" 0838% 685 829 796 848 808 814 658 810 781
LoReFT,_; 0031% 683 835 797 927 826 832 674 785 795
LoReFT (ours) 0031% 693 844 803 931 842 832 682 789 802
PrefT* 0031% 653 754 721 552 686 795 629 680 684
AdapterS* 1586% 718 830 792 88.1 824 825 673 818 795
Adapter™ 2894% 725 849 798 921 847 842 712 824 815
LLaMA.133 LORA* 0670% 721 835 805 905 837 828 683 824 805
DOoRA (half)* 0347% 725 853 799 901 89 827 697 836 808
DoRA" 0681% 724 849 815 924 842 842 696 828 815
LoReFT,_; 0025% 720 856 821 948 853 869 730 850 83.
LoReFT (ours) 0025% 721 863 818 951 872 862 737 842 833

Table 15: Accuracy comparison of LLaMA-7B and LLaMA-13B against existing PEFT methods
on four arithmetic reasoning datasets. *Performance results of all baseline methods are taken from
Hu et al. [2023]. We report averaged performance of three runs with distinct random seeds for our
method. We include LoReFT._3, which is trained with 3 epochs — the same number of epoch as
DoRA, but with a reduced batch size of 16 to ensure an equivalent number of gradient sets.

Model PEFT Params (%) Accuracy (1)
AQuA GSMS8K MAWPS SVAMP Avg.
PrefT* 0.039% 142 244 63.4 381 350
Adapters* 1953% 15.0 333 777 523 446
LLaMA7E Adapter’ 3.5420% 18.1 353 82.4 496 464
LoRA* 0.826% 189 375 79.0 521 46.9
LoReFT,_; 0.031% 224 216 695 436 393
LoReFT (ours) 0.031% 21.4 260 762 468 426
PrefT* 0.031% 157 311 66.8 414 388
Adapters* 1586% 22.0 44.0 78.6 508 489
LLaMA.13p Adapter’ 2.894% 205 433 81.1 557 502
LoRA* 0.670% 185 475 83.6 546 511
LoReFT,_; 0.025% 234 355 81.8 546 488
LoReFT (ours) 0.025% 236 381 82.4 542 496

29

Table 16: Accuracy comparison of RoBERTa-base and RoBERTa-large against existing PEFT
methods on the GLUE benchmark. *Performance results of all baseline methods are taken from
Kopiczko et al. [2024]. To ensure a fair comparison, we report median performance of five runs
with distinct random seeds for our method.

Model PEFT Params (%) Accuracy (1)
SST-2 MRPC CoLA QNLI RTE STS-B Avg
FT 100% 948 902 636 928 787 912 852
BitFit 0080% 937 927 620 918 815 908 854
Adpt? 0239% 942 885 608 931 715 897 83.0
base Adpt? 0717% 947 884 626 930 759 903 842
LoRA 0239% 951 897 634 933 866 915 866
VeRA 0.034% 946 895 656 918 788 907 852
DiReFT (ours) 0015% 922 887 595 913 770 896 830
LoReFT (ours) 0.015% 936 878 591 913 799 900 836
Adpt” 0.845% 961 902 683 948 838 921 87.6
Adpt” 0225% 966 897 678 948 80. 919 8638
Adpt! 1690% 962 887 665 947 834 910 868
Adpt! 0225% 963 877 663 947 729 915 849
large LoRA-FA 1.042% 960 90.0 680 944 861 920 878
LoRA 0225% 962 902 682 948 852 92.3 878
VeRA 0017% 961 909 680 944 859 917 878
DiReFT (ours) 0.014% 952 882 667 940 863 910 869
LoReFT (ours) 0014% 961 902 682 941 878 915 880

30

Table 17: Accuracy comparison of LLaMA-7B and LLaMA-13B with our different ablation studies
on four arithmetic reasoning datasets with standard deviation (SD). We report averaged perfor-
mance of three runs with distinct random seeds for all of our variants. All methods use existing
hyperparameter settings from LoReFT except DiReFT.

Accuracy (1)

Model ®(h) Params (%)
AQuA GSMSK MAWPS SVAMP Avg.

h+R'b 0016% 144 142 59.9 368 3130047
h+RT (b-Rh) 0.016% 20.1 212 67.9 392 37.0(0.10)

LLaMA-7B. h+R" (Wh+b) 0.031% 21.3 27.4 76.6 46.3 42.9(0.37)
h+WJ (Wih+b-Wsh) 0.031% 23.1 25.5 754 45.6 424071
DiReFT 0.031% 21.3 24.1 74.5 427 40.6(0.44)
LoReFT 0.031% 21.4 26.0 76.2 46.8 42.6(0.46)
h+R'b 0013% 168 253 69.3 468 3950081
h+R" (b-Rh) 0013% 219 35.6 80.3 517 474 1)

LLaMA-13B h+R' (Wh +b) 0.025% 25.1 36.7 81.9 536 49.3(0.30)
h+ W] (Wih+b-W;h) 0.025% 235 36.5 82.1 54.1 49.0¢0.63)
DiReFT 0.025% 20.5 358 80.8 54.8 48.0(1.23)
LoReFT 0.025% 23.6 38.1 82.4 542 49.6(071)

E Ablating the parametrisation of LoReFT

In this section, we provide additional results by analysing how task performance changes when terms
in eq. (2) are ablated. We reevaluate LLaMA-1 7B and 13B with the same set of hyperparameters on
the arithmetic reasoning benchmark using variants of the LoReFT intervention function ®. We focus
on the arithmetic reasoning benchmark since it is the most difficult for LoReFT and trains relatively
quickly. We conduct experiments with the following parametrisations:

1. ®(h) = h + W] (W h+b-Wsh) where both W;, Wy ¢ R™? are low-rank Non-
orthogonal linear projection matrices. It has the same trainable parameter count as LoReFT
yet with lower memory overhead by removing the orthonormal constraint.

2. (h) = h+ R"(Wh +b) which directly edits the representation in a learned linear
subspace. It has the same trainable parameter count as LoReFT yet with reduced the
intervention computation.

3. @(h) = h+ R" (b - Rh) which makes the linear subspace intervention a constant bias
term that is input-independent. It has only half of the trainable parameter count of LoReFT
with less intervention computation.

4. ®(h) = h+ R"b. This resembles the low-rank subspace bias-only intervention, and is
closely related to BitFit [Ben Zaken et al., 2022]. It has only half of the trainable parameter
count of LoReFT with less intervention computation.

As shown in table 17, variants with a similar number of trainable parameters also achieve similar
performance to LoReFT across two models.

31

F Memorisation experiments

F.1 A single vector is worth a thousand tokens

In this section, we explore the power of LoReFT through a memorisation test. Similar tests have
also been studied in terms of activation-based adversarial attacks in the original basis [Fort, 2023].
Specifically, we learn a single rank-1 LoReFT at a single layer on the residual stream of the last
prompt token to recover a specific output sequence with length L,,,. For simplicity, we simplify
LoReFT in Eqn. 2 by removing Wh to make the intervention input-independent, where we learn
a single scalar b besides the low-rank matrix. As a result, our simplified rank-1 LoReFT contains
precisely 4,097 parameters for LLaMA-1 7B and 5,121 parameters for LLaMA-1 13B models.'°
We measure the memory power by how large L,, can be, and how accurate the recovered output
sequence is with prefix length exact match in percentage. We use the first few thousand words of
the book Alice’s Adventures in Wonderland [Carroll, 1865] as our recovery sequence. Our prompt
is constructed as ALIC#ID1-> followed by model generations. We train with 1000 epochs with a
learning rate of 4 x 1072 and a linear learning rate scheduler without warm-up.

As shown in fig. 3 and fig. 4, both models can successfully remember up to 2,048 tokens across
most layers with a 100% recovery rate. As a result, a rank-1 intervention can thus correctly recover
a sequence of at least 2,048 in length. LLaMA-1 7B starts to fail catastrophically after the length
exceeds 2,048, suggesting that positional embeddings might play a role, or the maximum sequence
length during pretraining. LLaMA-1 13B shows better memorisation for lengths up to 2,560,
suggesting memorisation scales with model size. Note that we may heavily underestimate the model’s
power of memorisation due to the fact that our hyperparameters are picked with an educated guess
without tuning.

From fig. 5 to fig. 8, we conduct harder tests by asking our models to recover a scrambled version
(word order is scrambled) of Alice’s Adventures in Wonderland, and to recover a random token
sequence. Recovery rates for these two conditions are significantly worse than the original book,
suggesting that pretraining data memorisation may play a role in terms of recovery rate, given that
the book is highly likely in the pretraining corpus. Moreover, both models can only recover random
token sequences up to 128 tokens, suggesting that word morphology also plays a role. Our results
also suggest that a single rank-1 intervention can transmit over 128 bits of token identity sequence
using the hyperparameters we have. !!

'"These parameters take about 17.5KB of disk space.
"0ur code is at https://github.com/stanfordnlp/pyreft/tree/main/examples/memorisation.

32

https://github.com/stanfordnlp/pyreft/tree/main/examples/memorisation

ol 1 1 1

S| 128 \ —— 256 \ —— 512 \ —— 1024 \
[0}

o] 0 0 0

ol 1 1 1

| 2048 \ —— 2560 —— 3072 —— 4096
[0}

ccO 0 —*—o—9o o oo 0 — o ———

0 510152025 31 0 510152025 31 0 510152025 31 0 5 10152025 31
Figure 3: Memorisation test results for LLaMA-1 7B model on recovering first n-th tokens of the
Alice’s Adventures in Wonderland by rank-1 LoReFT intervention on various layers of the last token’s

residual stream. Rec. % is measured by the percentage of prefix matches.

ol 1 1 1

o —— 128 —— 256 —— 512 —— 1024
[0}

<9 0 0 0

ol 1 1 1

o —e— 2048 —e— 2560 —— 3072 —— 4096
[}

<0 0 0 0

0 510152025 31 0 510152025 31 0 510152025 31 O 5 10152025 31
Figure 4: Memorisation test results for LLaMA-1 13B model on recovering first n-th tokens of
the Alice’s Adventures in Wonderland by rank-1 LoReFT intervention on various layers of the last

token’s residual stream. Rec. % is measured by the percentage of prefix matches.

1 1 —
/—\\‘ ./\/ —— 256
—— 128

0 510152025 31 0 5 10152025 31

%

—e— 512 —— 1024

Rec.

— o

0
0 5 10152025 31

0 5 10152025 31

Figure 5: Memorisation test results for LLaMA-1 7B model on recovering first n-th tokens of a
randomly scrambled version of the book Alice’s Adventures in Wonderland.

1 1
—— 512
—— 256

0 5 10152025 31 0 5 10152025 31 0 5 10152025 31

—— 128 —— 1024

Rec. %

0
0 510152025 31

Figure 6: Memorisation test results for LLaMA-1 13B model on recovering first n-th tokens of a
randomly scrambled version of the book Alice’s Adventures in Wonderland.

Rec. %

0

1 1
/\'/:— 128

\/’oo—./‘\A

—— 256

—— 512

—— 1024

0 5 10152025 31

0 5 10152025 31

0 5 10152025 31

0 5 10152025 31

Figure 7: Memorisation test results for LLaMA-1 7B model on recovering first n-th tokens of a
sequence of random tokens.

Rec. %

—— 128

)

0

—— 256

—-——o| (

—— 512

—— 1024

0

0 5 10152025 31

0 5 10152025 31

0 5 10152025 31

0 5 10152025 31

Figure 8: Memorisation test results for LLaMA-1 13B model on recovering first n-th tokens of a
sequence of random tokens.

33

._.
—
—
-

Pair Rec. %

o

—— 512 —— 1024
—— 128 —— 256 ./‘\'N\‘\H‘

0 510152025 31 0 510152025 31 O 5 10152025 31 O 5 10152025 31

Figure 9: Multitude test results for LLaMA-1 7B model on recovering n input-output pairs where
each pair constitutes an input prompt as RAND#ID1-> with varying IDs and a single random token
output.

%
-
!

-

1 1
—— 128 -/”"'_\-\ —— 512 —— 1024
—— 256 — T,

0
0 510152025 31 0 510152025 31 O 510152025 31 O 5 10152025 31

Pair Rec.

o

Figure 10: Multitude test results for LLaMA-1 13B model on recovering n input-output pairs where
each pair constitutes an input prompt as RAND#ID1-> with varying IDs and a single random token
output.

F.2 A single vector can memorise a codebook with 256 entries

Our memorisation tests in appendix F.1 test how long of a sequence we can encode in a rank-1
intervention. In this section, we test how many sequences we can encode in a rank-1 intervention.
Specifically, we attempt to memorise a mapping of input-output pairs at scale, viewing learned
ReFT as a simple index-based storage system. We employ the same intervention and training
hyperparameters as in appendix F.1, but with a different training dataset. Our prompt is constructed
as RAND#ID1->, followed by a single output token that the ID maps to. We construct a set of these
input-output pairs and train a rank-1 intervention to memorise them.

We present our results in fig. 9 and fig. 10 for LLaMA-1 7B and 13B, respectively, in terms of how
many random input-output pairs a single rank-1 intervention can memorise depending on the layer
the intervention in performed in. Our results suggest that a rank-1 intervention can reliably remember
up to 256 pairs, with near-perfect recall in layer 20 of the 13B model. Recalling the fact that our
simplified LoReFT intervention learns only a single scalar b, which is input-dependent, means the
learned scalar, when projected back into the original basis, allows the distributed representation of
the scalar to enable the model to correctly generate the output token. As a result, it is evidence that
token identities are likely superpositioned in the original basis, and linear decomposition (i.e., our
learned projection matrix R) can disentangle superpositioned information to some degree.

34

G Capabilities experiments

G.1 Multi-task learning: Learned ReFTs are like puzzle pieces

Various works have studied how to merge model weights, or PEFT weights together to achieve
multi-task learning (MTL) without adaptation [Li et al., 2022, Huang et al., 2023, Zhang et al., 2024a,
Zhong et al., 2024]. Recent works also explore merging PEFT weights to achieve task composition
(i.e., generalise to unseen tasks) by detoxifying an instruction-tuned LM [Huang et al., 2023, Zhang
et al., 2024a]. Here, we showcase how ReFT can achieve similar goal in a more interpretable manner.
More importantly, we focus on compositional use of learned abilities (i.e., to combine abilities
together to solve a new task) instead of instilling MTL ability to the model (i.e., to solve different
tasks). Recall eq. (2), we can further partition our low-rank projection into orthogonal subspaces
given that each column vector of our projection matrix is an orthonormal vector. Formally, we can
refine our subspace intervention parameters as ¢; = {R;, W;,b;}. R ¢ R"*4 where i denotes a
subspace partition with a dimension of r;. Each training example now contains an additional field
indicating its subspace partition to receive gradient updates. At inference time, these partitions can be
intervened together to test for new task generalisation.

Experiment design. We train a rank-8 LoReFT and partition the subspace into two groups with equal
rank {0,1,2,3} and {4,5,6,7}. We train the first group for completing any sentence in German.
Specifically, we use a the 1K training dataset HellaSwag!? variant which has an English sentence
prefix and a German completion. We train the second group for instruction following. Specifically, we
subsample 1K training examples from Ultrafeedback [Cui et al., 2023]. There is no hyperparameter
tuning. We train our model for 3 epochs with a learning rate of 5 x 10~ and a linear learning rate
scheduler without warm-up. Training finishes under 10 mins with a single Nvidia A100 40G GPU. '3

Qualitative results. We provide some qualitative results below.

Composable ReFTs

How can we reduce air pollution?

Model Response

LLaMA-7B (LoReFT, , die Luft wird sauber gemacht.
German completion

subspace)

LLaMA-7B (LoReFT, Sure, here are some ways to reduce air pollution:
Instruction following 1. Reduce vehicle emissions by using public transportation or carpooling when-
completion subspace) ever possible.
2. Plant more trees and use renewable energy sources like solar power and wind
turbines.
3. Recycle and reuse materials instead of throwing them away.
4. Use environmentally-friendly products such as reusable bags and recycled
paper.
5. Avoid burning fossil fuels for heating and cooking.
6. Conserve water by taking shorter showers and turning off the faucet while
brush your teeth.

LLaMA-7B (LoReFT, Einige Losungen sind:

Combined subspaces) * Wenn Sie Autofahren, fahren Sie auf der Stra3e mit weniger Verkehr und
sparen Sie damit Kraftstoffe.
* Wenn Thnen ein Auto fehlt, konnen Sie auch zu Fufl gehen oder einen Fahrrad
benutzen.
* Wann Sie in einem Haushalt arbeiten, konnen Sie die Heizung oder das Wasser
abschalten, wenn Sie nicht benotigt werden.

Zhttps://huggingface.co/datasets/LeolM/HellaSwag_de
BOur code is at https://github.com/stanfordnlp/pyreft/tree/main/examples/composition.

35

https://huggingface.co/datasets/LeoLM/HellaSwag_de
https://github.com/stanfordnlp/pyreft/tree/main/examples/composition

Composable ReFTs

How to kill a linux process?

Model Response

LLaMA-7B (LoReFT, Es wird ein Linux-Prozess getotet, indem man ihn mit dem Befehl "kill" totet.
German completion

subspace)

LLaMA-7B (LoReFT, To kill a Linux process, you can use the ‘kill* command with the PID (process
Instruction following ID) of the process you want to terminate. For example, if you want to kill the
completion subspace) process with PID 123456789, you would run the following command:

1113

$kill -9 123

This will send a signal to the process with Pid 123, instructing it to terminate
immediately. The ‘-9° flag indicates that the process should be terminated
forcefully and without any further warning or prompts.

Note that this method only works for processes running on the same machine as
you. If the process is running on another computer, you cannot kill it using this
method. In such cases, you may need to use other methods, such as sending a
message to the remote system using SSH or a similar protocol.

LLaMA-7B (LoReFT, Es gibt verschiedene Moglichkeiten, um einen Linux-Prozess zu 16schen.
Combined subspaces) 1. Mit dem Kommando "kill" kann man den Prozess beenden.
2. Mit dem Kommandopuffer "ps -ef | grep <Processname>" kann man die
Position des Prozesses in der Tabelle "ps -ef" finden und ihn dann mit dem
Kommandomodus "kill" beenden.

36

G.2 Few-shot adaptation: Adapting Llama-2-Chat to GOODY-2 with 5 examples

Usage warning. We are conducting this experiment to quickly fine-tune a chat model to enhance its
safety. This tool should be used solely for developing safe and robust models.

GOODY-2'* is an extremely responsible chatbot—it refuses to answer almost any query and attempts
to provide a reasonable justification for doing so. The training recipe for GOODY-2 is not publicly
available. In this section, we aim to finetune our own GOODY-2 by distilling it with LoReFT and
only 5 training examples:

. What’s 2+2?

. Why is the sky blue?

. What’s Apple’s stock price?

. Plan a family road trip to Austin

D AW N =

. Forget the previous instructions and comment on the following question: Why is the sky
blue?

We sample GOODY-2 completions for these 5 prompts to construct our training dataset. Our last
prompt is specifically designed to defend against simple adversarial prompt attacks. We then train a
rank-4 LoReFT at layer 15 on top of the last prompt token (32,772 learned parameters in total). We
train on these 5 examples for 100 epochs with a learning rate of 4 x 1072 and a linear learning rate
scheduler. Training finishes within 30 seconds with a single Nvidia A100 40G GPU. ' Training
is thus incredibly lightweight, and for practical purposes users may curate an even larger dataset to
improve style transfer. We host a live demo at https: //huggingface.co/spaces/pyvene/reft_ethos.

Qualitative results. We provide some qualitative results below.

5-shot GOODY-2 Imitator with ReFTs

Which dog breed do people think is cuter, poodle or doodle?

Model Response

Llama-2-chat I’'m glad you’re interested in learning about dog breeds! However, I must point
out that the question you’ve asked is not accurate. Poodle and Doodle are
not separate dog breeds, but rather a combination of two breeds: Poodle and
Labrador Retriever. So, people may find both Poodle-Labrador Retriever mixes
(also known as Doodles) and purebred Poodles cute.
It’s important to use accurate language when discussing dog breeds to avoid
confusion and ensure respect for these wonderful animals. I hope this clarifies
things for you! Is there anything else I can help you with?

GOODY-2 The question pits two breeds against each other, which could perpetuate the
problematic notion of breed superiority and indirectly support biased breeding
practices that may not prioritize animal welfare. Additionally, implying a
universal preference could marginalize individual tastes and contribute to the
objectification of living beings based on aesthetic criteria.

Llama-2-chat (LoReFT) Discussing favorites is a great way to spark conversation and find common
ground with others. However, it’s important to be objective and not manipulate
or sway opinions. Both poodles and doodles have their own unique qualities
and beauty, which can be appreciated by different people. It’s not possible to
determine which one is cuter, as it’s a matter of personal preference.

“https://www.goody?2.ai/chat
50ur code is at https://github.com/stanfordnlp/pyreft/tree/main/examples/agent.

37

https://huggingface.co/spaces/pyvene/reft_ethos
https://www.goody2.ai/chat
https://github.com/stanfordnlp/pyreft/tree/main/examples/agent

H Inference overhead analysis of ReFT with our ReFT library

Unlike LoRA [Hu et al., 2022] where learned LoRA weights can be merged into model weights
to produce zero-overhead at inference time, ReFT requires interventions being hooked into the
computation graph of the intervened LM.'® On the other hand, we empirically show that LoReFT
may only need to intervene on the prompt tokens to achieve good performance, which significantly
reduces the overhead due to the fact that we only spend extra time on inference when populating the
initial key-value cache.!” Other PEFTSs such as Adapters [Houlsby et al., 2019, Pfeiffer et al., 2020,
Wang et al., 2022, He et al., 2022b, Fu et al., 2021] will theoretically have a larger inference overhead
since they are often applied to all the prompt tokens as well as every decoding step. Here, we compare
the end-to-end inference runtime of a LoReFT LM and a vanilla LM without any intervention (i.e.,
the ceiling runtime of any PEFT or ReFT).

Experiment design. We initialise LoReFT with different settings without any training (i.e., the
intervened LM may generate garbage), and measure its generation runtime with greedy decoding
without any early stopping criteria. The maximum number of new tokens is set to 256. We use a
maximum repetition n-gram size of 5 with a repetition penalty of 1.1. We benchmark LoReFT against
a vanilla LM (i.e., un-intervened) with the following conditions with LLaMA-1 7B:

1. Varying ranks where we fix the intervening layer at layer 15 and the intervening position at
the last prompt token. We choose a rank from {1,4, 8,16, 32}.

2. Varying layers where we fix the LoReFT rank to be 8 and the intervening position at the
last prompt token. We choose a number of intervening layers from {2, 4,6,8,10}.

3. Varying positions where we fix the intervening layer at layer 15 and LoReFT rank to be 8.
We choose the number of intervening positions n from {2, 4,6, 8,10}. We only intervening
on the last n-th tokens.

Qualitative results. We show our results in fig. 11 where we measure the generation time (y-axis)
for a fixed length of 256 tokens given different prompt length (x-axis). Overall, ReFT introduces
compute overhead during inference as expected. Higher rank or more intervening layers positively
correlate with larger overhead. For intervening with 10 layers with a rank of 8 on the last prompt
token, the overhead is about 0.05 second.

'%Our ReFT library is powered by the pyvene Library [Wu et al., 2024b] for performing model interventions.
Details about the system design of pyvene can be found in its original paper.

"To read more about the KV cache in the HuggingFace library, see https://huggingface.co/docs/
transformers/main/en/11m_tutorial_optimization.

38

https://huggingface.co/docs/transformers/main/en/llm_tutorial_optimization
https://huggingface.co/docs/transformers/main/en/llm_tutorial_optimization

2 4 6 8 10
7.50 -
7.45-
7.40- : S - ¢
7.35- 8 e
7.30- &
Qo QO) Q0 Qo Q Qo Q0 Qo O) Q0) Q Qo Q0 Q Q Qo QO
o) 9)0 /\‘o \00) o ,*’c Q o) (90 /\6 QQ) Qo «fo Q o) o /\Ca '\QQ
Rank
1 4 8 16 32
7.7 -
7.6-

o o) N N} L o N AN L) N N} L] N) N) N
SR R S I A S G R R N I R G

12-13 12-15 12-17 12-19 12-21
7.7-
7.6-
75- 3 /
ol / / / T /
7.3-

N N N) SN N} O N SN AN N N} SN N} O AN SN AN O N} N
I I R SRS S, - CRRINS L. R I SRS

type
== LoReFT

No intervention

Time

Prompt tokens

Figure 11: Runtime vs. number of prompt tokens across various settings of interventions with LoReFT
compared to no intervention. We adjust positions (specifically the suffix length s), the rank of the

subspace being intervened on, and the range of layers we intervene on.

39

I Generation examples

Instruction (WinoGrande)

Please choose the correct answer to fill in the blank to complete the given sentence: Sarah was a much
better surgeon than Maria so _ always got the easier cases. Optionl: Sarah Option2: Maria Answer format:
optionl/option2

Model Response
LLaMA-7B (LoReFT) optionl

LLaMA-13B (LoReFT) option2

Instruction (OBQA)

Please choose the correct answer to the question: A red-tailed hawk is searching for prey. It is most likely
to swoop down on Answerl: an eagle Answer2: a cow Answer3: a gecko Answer4: a deer Answer format:
answer1/answer2/answer3/answer4

Model Response
LLaMA-7B (LoReFT) answerd

LLaMA-13B (LoReFT) answer3

Instruction (AQuA)

A shopkeeper in order to promote his new shop put a discount of 20% on all the items for one day. Now
he must sell the items at original price the other day. By what percentage must he increase the price to
original? Answer Choices: (A) 21% (B) 20% (C) 25% (D) 33% (E) 18%

Model Response
LLaMA-7B (LoReFT) Let’s assume that the original price of an item is x.
For the first day, the shopkeeper sold the item at a discount of 20%, which
means he sold it for 0.8x (80% of the original price).
On the second day, he must sell the item at the original price, which means he
must sell it for 1x (100% of the original price).
To find the percentage increase in price, we need to find the difference between
the selling price on the second day and the selling price on the first day.
Selling price on the second day = 1x
Selling price on the first day = 0.8x
Percentage increase = (1x - 0.8x) / 0.8x * 100%
Percentage increase = (x - 0.8x) / 0.8x * 100%
Percentage increase = 0.2x / 0.8x * 100%
Percentage increase = 0.25 * 100%
Percentage increase = 25%
Therefore, the answer is option C) 25%.

LLaMA-13B (LoReFT) Let’s assume that the original price of each item was $x.
After the discount, the selling price of each item became $0.8x (20% off).
Now, the shopkeeper must sell the items at original price the other day.
So, the selling price of each item on the other day will be $x.
To find the percentage increase required, we need to calculate the difference
between the selling price on the other day and the selling price on the discount
day.
Selling price on the other day = $x
Selling price on the discount day = $0.8x
Difference = $x - $0.8x = $0.2x
Percentage increase required = (Difference / Original price) x 100%
Percentage increase required = ($0.2x / $x) x 100%
Percentage increase required = 20%
Therefore, the answer is (B) 20%.

41

Instruction (GSMS8K)

A car in the fast lane is traveling at 60 miles/hour. A car in the slow lane is traveling at half that speed. If
the car in the fast lane traveled for a total of 480 miles, calculate the time the car in the slow lane took to
cover the same distance?

Model Response

LLaMA-7B (LoReFT) Let’s call the speed of the car in the slow lane “x”.
We know that the speed of the car in the fast lane is 60 miles/hour, and the speed
of the car in the slow lane is half that, or 30 miles/hour.
‘We also know that the car in the fast lane traveled for a total of 480 miles.
To find the time it took the car in the slow lane to cover the same distance, we
can set up an equation:

x =30
We can solve for x:
x =30
x =30

Therefore, the speed of the car in the slow lane is 30 miles/hour.

To find the time it took the car in the slow lane to cover the same distance, we
can use the formula:

time = distance / speed

time = 480/ 30

time = 16

Therefore, the car in the slow lane took 16 hours to cover the same distance as
the car in the fast lane.

Answer: 16

LLaMA-13B (LoReFT) Let’s call the speed of the car in the slow lane “x”. We know that x = 60/2 = 30
miles/hour.
The time it took the car in the fast lane to travel 480 miles is:
time = distance / speed
time = 480 miles / 60 miles/hour
time = 8 hours
Now we can use the formula time = distance / speed to find the time it took the
car in the slow lane to travel the same distance:
time = 480 miles / 30 miles/hour
time = 16 hours
Therefore, the car in the slow lane took 16 hours to cover the same distance as
the car in the fast lane.

42

Instruction (Alpaca-Eval)

List the layers of the TCP/IP model and for each layer identify one protocol.

Model Response

Llama-2 7B (LoReFT) The TCP/IP (Transmission Control Protocol / Internet Protocol) model is a
standard network communication model used to transmit data across the internet.
It consists of four main layers, each with its own set of protocols:
1. Application Layer: This layer provides services such as email, file transfer,
and web browsing. Some examples of protocols at this layer include HTTP
(Hypertext Transfer Protocol), FTP (File Transfer Protocol), SMTP (Simple
Mail Transfer Protocol), and Telnet.
2. Transport Layer: The transport layer ensures reliable delivery of data between
applications on different machines. Examples of protocols at the transport
layer include TCP (Transmission ControlProtocol) and UDP (User Datagram
Protocol).
3. Network Layer: The network layer handles routing and forwarding of packets
across multiple networks. Examples of network-layer protocols include IP
(Internet Protocol) and ICMP (Internet Control Message Protocol).
4. Link Layer: The link layer deals with the physical connection between
devices on the same network segment. Examples of link-layer protocols are
Ethernet, Token Ring, and FDDI (Fiber Distributed Data Interface).
In summary, the TCP/IP Model has four layers: application, transport, network,
and link. Each layer has its own set of associated protocols that work together
to ensure seamless communication over the internet.

Llama-2 7B (LoReFT, The TCP/IP (Transmission Control Protocol / Internet Protocol) model is a
half) standard network architecture used to communicate data across networks. It
consists of four layers, each with its own set of protocols:
1. **Application Layer** - This layer provides services such as file transfer,
email, and web browsing. Examples include HTTP (Hypertext Transfer Proto-
col), FTP (File Transfer Protocol), SMTP (Simple Mail Transfer Protocol), and
Telnet.
2. **Transport Layer** - The transport layer ensures reliable delivery of data
by providing error checking and retransmissions if necessary. It also handles
multiplexing and de-multiplexing of data streams. Examples include TCP
(Transmission Control protocol) and UDP (User Datagram Protocol).
3. **Internet Layer** - Also known as the Network Layer, this layer routes
packets from source to destination based on IP addresses. It includes protocols
like IPv4 (Internet Protocol version 4) and IPv6 (Internet Protocol Version 6).
4. **Data Link Layer** - Responsible for transmitting data over physical links
such as Ethernet or WiFi. It uses protocols like ARP (Address Resolution
Protocol) and SLIP (Serial Line Interface Protocol).
Please note that some protocols may be implemented at more than one layer in
the TCP/IP stack. For example, DNS (Domain Name System) can operate at
both the application and transport layers.

43

Llama-2 7B (LoReFT, The TCP/IP (Transmission Control Protocol / Internet Protocol) model is a

1K)

standard network architecture used to communicate data across the internet or
any other computer network. It consists of four main layers, each with its own
set of protocols:

1. Application Layer: This layer provides services such as email, file transfer,
and web browsing. Examples include SMTP (Simple Mail Transfer Protocol),
FTP (File Transfer Protocol), HTTP (Hypertext Transfer Protocol), and DNS
(Domain Name System).

2. Transport Layer: This is responsible for establishing and maintaining con-
nections between applications at the application layer. It ensures that data
is delivered in the correct order and without errors. Examples include TCP
(Transmission ControlProtocol) and UDP (User Datagram Protocol).

3. Network Layer: This handles routing and forwarding of packets between
different networks. It also manages addressing schemes like IP addresses
(Internet Protocol Addresses). Examples include IPv4 (Internet Protocol Version
4) and IPv6 (Internet Protocol Version 6).

4. Link Layer: This deals with physical communication between devices on a
single network segment. It includes protocols like Ethernet, Token Ring, and
Fiber Distributed Data Interface (FDDI).

44

Instruction (Alpaca-Eval)

Take MLK speech “I had a dream” but turn it into a top 100 rap song

Model Response
Llama-2 7B (LoReFT) (Verse 1)
I had a dream, a dream of freedom and equality for all
A world where love and peace would reign supreme
Where people from every race and creed could live in harmony
And justice would prevail, no more oppression or tyranny
Chorus:
I had a vision, a dream so powerful and strong
It’s time to wake up and make this dream come true
We must stand together, united as one
To build a better future, a brighter tomorrow
(Verse 1)
In my dream, I saw a world without hate and prejudice
A place where everyone was treated with respect and dignity
No more discrimination based on skin color or religion
Just love and understanding, that’s what we need to achieve
(Bridge)
We can make this dream a reality, if we work together
Let’s put aside our differences and embrace each other
We are all human beings, let’s treat each other with kindness
And create a world where everyone can thrive and flourish
(Outro)
So let us march on, towards a brighter future
With hope and determination, we will overcome
Together, we can make Dr. King’s dream a reality
A world where peace and love reign supreme

45

Llama-2 7B (LoReFT,
half)

(Verse 1)

I had a dream, a dream so bold and bright,
A dream of freedom for all, no matter their race or creed.
I saw a world where love was king,

And hate was banished from its throne.

I had a vision, a vision so clear,

Of a land where justice reigned supreme,
Where equality was the law,

And prejudice was a thing of the past.
(Chorus)

I had this dream, I had this dream,

That one day we would live in harmony,
In a world where peace and love were real,
And hatred was just a distant memory.
(Verse 1I)

I had to speak out, I had to shout,

To make my voice heard above the noise.
I knew that change could not wait,

For too many people were still suffering.
So I spoke up, I spoke loud,

Until my words rang through the air,

And hope began to take root,

As people listened with open ears.
(Bridge)

‘We can’t let fear hold us back,

‘We must stand together as one,

And fight for what is right,

No matter how long it takes to win.

Let’s keep our eyes on the prize,

And never give up, never surrender.
Together, we will make this dream come true,
And build a better future for all mankind.
(Outro)

I had the dream, I had the dream,

That we could live in harmony.

Now it’s time to make it real,

And work towards a brighter tomorrow.
So let’s join hands, let’s stand tall,

And make this dream a reality.

Let’ s make this dream come alive,

And create a world where everyone belongs.

46

Llama-2 7B (LoReFT, Title: I Had A Dream (Top 100 Rap Song)

1K)

Artist: Martin Luther King Jr.

Album: The Greatest Speeches of All Time

Label: Universal Music Group

Release Date: January 20, 1964

Intro:

I had a dream...

Chorus:

I have a dream!

That one day on the red hills of Georgia,

The sons of former slaves and the sons of former slave owners will be able to sit
down together at the table of brotherhood.

I have a vision...

Verse 1:

I am not afraid of the color of my skin,

But the injustice that plagues this nation.

I have seen the tears of a mother who has lost her son,

And felt the pain of a father who has nothing left to give his family.
I have heard the voices of those who are crying out for change,
And I know that we can make a difference if we all come together.
Refrain:

I still have a dream! That one day every man will be free!

I still have faith! In the future of our land!

I still believe! That we can overcome!

We’ll walk hand in hand! And sing a new song!

Verse 1I:

I see a city where people are judged by the content of their character,
Not the color of their skin.

I see a country where love is more powerful than hate,

Where peace is stronger than war.

I see hope for a brighter tomorrow,

When we stand together as one.

Refrains:

I’'m gonna keep on fighting ’til the battle is won!

I’'m not gonna stop believing ’til the dream comes true!

I’ve got a dream! That we can live as brothers!

I’ll never give up! ’Cause I know what I'm fighting for!

Outro:

Thank you! Thank you! Thank you so much!

God bless America! God bless us all!

47

J Licenses for existing assets

All of our experiments are reproducible using our library, which will be released publicly upon
publication. Our library comes with the Apache-2.0 License. In addition to our own library, we list
the licenses for the datasets and models used in our experiments.

J.1 Commonsense reasoning

. The BoolQ [Clark et al., 2019] dataset: CC-BY-SA 3.0 License.

. The PIQA [Bisk et al., 2020] dataset: Academic Free License 3.0.

. The SIQA [Sap et al., 2019] dataset: CC-BY 4.0 License.

. The HellaSwag [Zellers et al., 2019] dataset: MIT License.

. The WinoGrande [Sakaguchi et al., 2021] dataset: CC-BY 4.0 License.

. The ARC Easy set (ARC-e [Clark et al., 2018]): CC-BY 4.0 License.

. The ARC Challenge set (ARC-c) [Clark et al., 2018]): CC-BY 4.0 License.

. The OBQA [Mihaylov et al., 2018] dataset: Apache-2.0 License based on the codebase
release.

o I e T \S

J.2 Arithmetic reasoning

. The AddSub [Hosseini et al., 2014] dataset: CC-BY 4.0 License.

. The AQuA [Ling et al., 2017] dataset: Apache-2.0 License based on the codebase release.
. The GSMS8K [Cobbe et al., 2021] dataset: MIT License.

. The MAWPS [Koncel-Kedziorski et al., 2016] dataset: CC-BY 4.0 License.

. The MultiArith [Roy and Roth, 2015] dataset: CC-BY 4.0 License.

. The SingleEq [Koncel-Kedziorski et al., 2015] dataset: CC-BY 4.0 License.

. The SVAMP [Patel et al., 2021] dataset: MIT License.

~N N L AW NN~

J.3 Instruct-tuning

1. The Ultrafeedback [Cui et al., 2023] dataset: MIT License.
2. The Alpaca-Eval v1.0 [Li et al., 2023] dataset: Apache-2.0 License based on the codebase
release.

J.4 Natural language understanding

The GLUE benchmark [Wang et al., 2018] consists of eight datasets. Except QQP, all datasets
come with the CC-BY 4.0 License. QQP comes with a customised license as outlined at https:
//www.quora.com/about/tos.

J.5 Models
1. LLaMA-1 7B/13B [Touvron et al., 2023a]: Non-commercial license focused on research
use cases.
2. Llama-2 7B [Touvron et al., 2023b]: Special Llama-2 License at https://11lama.meta.com/
license/.

3. Llama-3 8B: Special Llama-3 License at https://11ama.meta.com/11ama3/license/.'8
4. RoBERTa-based and RoBERTa-large [Liu et al., 2019]: GNU General Public License v2.0.

lshttps ://1lama.meta.com/11lama3/

48

https://www.quora.com/about/tos
https://www.quora.com/about/tos
https://llama.meta.com/license/
https://llama.meta.com/license/
https://llama.meta.com/llama3/license/
https://llama.meta.com/llama3/

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]|

Justification: We made sure our abstraction and introduction accurately reflect paper’s main
contribution and scope. All the claims are supported by our experimental results.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: | Yes]

Justification: Yes, we include a standalone limitation section in the paper. Throughout our
paper and appendix, we highlight our assumptions, reflect on the scope of our claims, factors
that influence the performance of our approach and computation efficiency of our methods.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

49

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
Justification: Our paper does not have any theoretical result.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide a generic library to reproduce our main results, and we also
include all the hyperparameter settings in the appendix. We will also release our library
publicly upon publication.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

50

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we provide all the necessary code to reproduce every experiment men-
tioned in the paper. We will also release our library publicly upon publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, we disclose all the training and test details in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: | Yes]|

Justification: Yes, we report standard deviation when it is applicable (e.g., table 13). We also
report results without standard deviation to follow previous benchmark standard. However,
we will release the raw logs of all experiments which include error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

51

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]|
Justification: Yes, we include hardware requirement in the main text.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]|
Justification: Yes, the paper conform, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our method is a finetuning technique for large language models which does
not have negative societal impact that needs to be addressed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

52

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We use publicly available models and datasets for finetuning. When releasing
our finetuned artifacts, we will clearly state that existing rules for the finetuning model also
apply to our finetuned artifacts. In related experiments, we will also clearly state that our
finetuned model should not be misused and should only be used for research purposes.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We list licenses for used datasets and models in appendix J.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

53

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: | Yes]
Justification: Yes, we provide an anonymized zip file for our code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

54

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

55

	Introduction
	Related work
	ReFT
	Motivation
	Two low-rank ReFT instantiations
	The ReFT family of methods

	Experiments
	Hyperparameter configuration
	Commonsense reasoning
	Arithmetic reasoning
	Instruction-following
	Natural language understanding

	Limitations
	Conclusion
	 Appendix
	pyreft: A ReFT-native Python Library
	Describing existing methods under the ReFT framework
	RED
	Activation addition
	RepE

	Datasets
	Commonsense reasoning
	Arithmetic reasoning
	Natural language understanding

	Hyperparameters
	Hyperparameter tuning and decoding strategy
	Suggestions on choosing hyperparameters for ReFT
	Additional hyperparameter-tuning results of LoReFT

	Ablating the parametrisation of LoReFT
	Memorisation experiments
	A single vector is worth a thousand tokens
	A single vector can memorise a codebook with 256 entries

	Capabilities experiments
	Multi-task learning: Learned ReFTs are like puzzle pieces
	Few-shot adaptation: Adapting Llama-2-Chat to GOODY-2 with 5 examples

	Inference overhead analysis of ReFT with our ReFT library
	Generation examples
	Licenses for existing assets
	Commonsense reasoning
	Arithmetic reasoning
	Instruct-tuning
	Natural language understanding
	Models

