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ABSTRACT

Mamba has recently emerged as a promising alternative to Transformers, offering
near-linear complexity in processing sequential data. However, while channels in
time series (TS) data have no specific order in general, recent studies have adopted
Mamba to capture channel dependencies (CD) in TS, introducing a sequential order
bias. To address this issue, we propose SOR-Mamba, a TS forecasting method
that 1) incorporates a regularization strategy to minimize the discrepancy between
two embedding vectors generated from data with reversed channel orders, thereby
enhancing robustness to channel order, and 2) eliminates the 1D-convolution
originally designed to capture local information in sequential data. Furthermore,
we introduce channel correlation modeling (CCM), a pretraining task aimed at
preserving correlations between channels from the data space to the latent space in
order to enhance the ability to capture CD. Extensive experiments demonstrate the
efficacy of the proposed method across standard and transfer learning scenarios.

1 INTRODUCTION

Time series (TS) forecasting is prevalent in various fields, including weather (Angryk et al., 2020),
traffic (Cirstea et al., 2022), and energy (Dudek et al., 2021). While Transformers (Vaswani et al.,
2017) have been widely employed for this task due to their ability to capture long-term dependencies
in sequences (Wen et al., 2022), their quadratic computational complexity causes substantial compu-
tational overhead, limiting their practicality in real-world applications. Several attempts have been
made to reduce the complexity of Transformers (Zhang & Yan, 2023; Zhou et al., 2022); however,
they often result in performance degradations (Wang et al., 2024).
To tackle the computational challenges of Transformers, alternatives such as state-space models
(SSMs) (Gu et al., 2022) have been considered, employing convolutional operations to process
sequences with linear complexity. Recently, Mamba (Gu & Dao, 2023) enhanced SSMs by incorpo-
rating a selective mechanism to prioritize important information efficiently. Due to its strong balance
between performance and computational efficiency (Wang et al., 2024), Mamba has been widely
adopted across various domains (Zhu et al., 2024; Schiff et al., 2024). In the TS domain, Mamba is
utilized to capture temporal dependencies (TD) by processing input TS along the temporal dimension
(Ahamed & Cheng, 2024), channel dependencies (CD) along the channel dimension (Wang et al.,
2024), or both (Cai et al., 2024). In this paper, we focus on Mamba capturing CD, in line with the
recent work (Liu et al., 2024a) that advocates for the use of complex attention mechanisms for CD
while employing simple multi-layer perceptrons (MLPs) for TD.

Mamba for TD Mamba for CD

T1 T2 T4 C1 C2 C3 C4T3

Temporal (T) dim. Channel (C) dim.

Order O Order X

Figure 1: Capturing CD with Mamba, which
has a sequential order bias, is challenging as
channels lack an inherent sequential order.

However, applying Mamba to capture CD is chal-
lenging as channels lack an inherent sequential order,
whereas Mamba is originally designed for sequential
inputs (i.e., Mamba contains a sequential order bias),
as shown in Figure 1. To address this issue, previous
works have employed the bidirectional Mamba to cap-
ture CD (Wang et al., 2024; Liang et al., 2024), where
two unidirectional Mambas with different parameters
capture CD from a certain channel order and its re-
versed order. However, these methods are inefficient
due to the need for two models. Another approach
involves permuting a channel order during training (Cai et al., 2024) to enhance robustness to the
order, while requiring an additional procedure to determine the optimal order for inference.
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ECL dataset
(Metric: MSE)

Horizon

96 192 336 720

Bidirectional 0.139 0.165 0.177 0.214

1⃝ Uni (1 → C) 0.143 0.162 0.179 0.234
2⃝ Uni (C → 1) 0.141 0.168 0.179 0.210
( 1⃝ - 2⃝) / 1⃝ +1.6% -3.8% -0.2% +10.3%

Table 1: Bidirectional Mamba may not achieve
the best performance, and the performance of the
unidirectional Mamba varies by the channel order.

Furthermore, Table 1 shows the performance of
the TS forecasting task using the bidirectional
Mamba and two unidirectional Mambas with re-
versed channel orders, suggesting that the bidirec-
tional Mamba (Wang et al., 2024) may not be effec-
tive in handling the sequential order bias. The table
indicates that 1) the bidirectional Mamba does not
always achieve the best performance, and 2) the
performance of the unidirectional Mamba varies
depending on the channel order.
To this end, we introduce Sequential Order-Robust Mamba for TS forecasting (SOR-Mamba), a
TS forecasting method that handles the sequential order bias by 1) incorporating a regularization
strategy to minimize the distance between two embedding vectors generated from data with reversed
channel orders to enhance robustness to the order, and 2) removing the 1D-convolution (1D-conv)
originally designed to capture local information in sequential inputs. Additionally, we propose
Channel Correlation Modeling (CCM), a pretraining task aimed at improving the model’s ability to
capture CD by preserving the correlation between channels from the data space to the latent space.
The main contributions of this work are summarized as follows:

• We propose SOR-Mamba, a TS forecasting method that handles the sequential order bias by
1) regularizing the unidirectional Mamba to minimize the distance between two embedding vectors
generated from data with reversed channel orders for robustness to channel order and 2) removing
the 1D-conv from the original Mamba block, as channels lack an inherent sequential order.

• We introduce CCM, a novel pretraining task that preserves the correlation between channels from
the data space to the latent space, thereby enhancing the model’s ability to capture CD.

• We conduct extensive experiments with 13 datasets in both standard and transfer learning settings,
demonstrating that our method achieves state-of-the-art (SOTA) performance with greater efficiency
compared to previous SOTA methods by utilizing the unidirectional Mamba.

2 RELATED WORKS

TS forecasting with Transformer. Transformers (Vaswani et al., 2017) are commonly employed for
long-term TS forecasting (LTSF) tasks due to their ability to handle long-range dependencies through
attention mechanisms. However, their quadratic complexity has led to the development of various
methods aimed at improving efficiency, such as modifying the Transformer architecture (Zhang & Yan,
2023; Zhou et al., 2022), patchifying the TS (Nie et al., 2023) or using MLP-based models (Chen et al.,
2023; Zeng et al., 2023). While MLP-based models offer simpler structures and reduced complexity
compared to Transformers, they tend to be less effective at capturing global dependencies (Wang et al.,
2024). Recently, iTransformer (Liu et al., 2024a) inverts the conventional Transformer framework in
the TS domain by treating each channel as a token rather than each patch, shifting the focus from
capturing TD to CD. This framework has led to significant performance gains and has become widely
adopted as the backbone for TS models (Liu et al., 2024b; Dong et al., 2024).
State-space models. To overcome the limitations of Transformer-based models, state-space models
have been integrated with deep learning to tackle the challenge of long-range dependencies (Rangapu-
ram et al., 2018; Zhang et al., 2023; Zhou et al., 2023). However, these methods are unable to adapt
their internal parameters to varying inputs, which limits their performance. Recently, Mamba (Gu &
Dao, 2023) introduces a selective scan mechanism that efficiently filters specific inputs and captures
long-range context by incorporating time-varying parameters into the SSM. Due to its linear-time
efficiency for modeling long sequences, it has been widely adopted in various domains, includ-
ing computer vision (Ma et al., 2024a; Huang et al., 2024; Zhu et al., 2024) and natural language
processing (Pióro et al., 2024; Anthony et al., 2024; He et al., 2024).
TS forecasting with Mamba. Due to its balance between performance and computational efficiency,
Mamba has also been applied in the TS domain. TimeMachine (Ahamed & Cheng, 2024) utilizes
multi-scale quadruple-Mamba to capture either TD alone or both TD and CD, with its architecture
relying on the statistics of the dataset. CMamba (Zeng et al., 2024) captures TD with patch-wise
Mamba and CD with an MLP. FMamba (Ma et al., 2024b) integrates fast-attention with Mamba
to capture CD, and SST (Xu et al., 2024) captures global and local patterns in TS with Mamba
and Transformer, respectively. S-Mamba (Wang et al., 2024), Bi-Mamba+ (Liang et al., 2024), and
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(a) SOR-Mamba
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Figure 2: Overall framework of SOR-Mamba. (a) shows the architecture of SOR-Mamba, where
the CD-Mamba block is regularized to minimize the distance between two vectors derived from
reversed channel orders. (b) shows the CD-Mamba block, where the 1D-conv from the Mamba block
is removed, as channels do not have a sequential order, which is further explained in Appendix D.

SAMBA (Weng et al., 2024), designed to capture CD in TS, use bidirectional scanning with the
bidirectional Mamba to address the sequential order bias, although they are limited by the need for
two models. MambaTS (Cai et al., 2024) introduces variable permutation training, which shuffles the
channel order during the training stage to handle the sequential order bias. However, it is limited by
the need for an additional procedure to determine the optimal scan order for the inference stage.

3 PRELIMINARIES

Problem definition. This paper addresses the multivariate TS forecasting task, where the model uses
a lookback window x = (x1,x2, · · · ,xL) to predict future values y = (xL+1, · · · ,xL+H) with
xi ∈ RC representing the values at each time step. Here, L, H , and C denote the size of the lookback
window, the forecast horizon, and the number of channels, respectively.
State-space models. SSM transforms the continuous input signals x(t) into corresponding outputs
y(t) via a state representation h(t). This state space represents how the state evolves over time, which
can be expressed using ordinary differential equations as follows:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t),
(1)

where h′(t) = dh(t)
dt , and A,B,C, and D are learnable parameters of the SSMs.

Due to the continuous nature of SSMs, discretization is commonly used to approximate continuous-
time representations into discrete-time representations by sampling input signals at fixed intervals.
This results in the discrete-time SSMs being represented as:

hk = Ahk−1 +Bxk,

yk = Chk +Dxk,
(2)

where hk and xk are the state vector and input vector at time k, respectively, and A = exp(∆A) and
B = (∆A)−1(exp(∆A)− I) ·∆B are the discrete-time matrices obtained from the A and B.
Recently, Mamba introduces selective SSMs that enables the model to capture contextual information
in long sequences using time-varying parameters (Gu & Dao, 2023). Its near-linear complexity makes
it an efficient alternative to the quadratic complexity of the attention mechanism in Transformers.

4 METHODOLOGY

In this paper, we introduce SOR-Mamba, a TS forecasting method designed to address the sequential
order bias by 1) regularizing Mamba to minimize the distance between two embedding vectors
generated from data with reversed channel orders and 2) removing the 1D-conv from the original
Mamba block. The overall framework of SOR-Mamba is illustrated in Figure 2, which consists of
four components: the embedding layer for tokenization, Mamba for capturing CD, MLP for capturing
TD, and the prediction head for predicting the future output.
Furthermore, we introduce a novel pretraining task, CCM, where the model is pretrained to preserve
the correlation between channels from the data space to the latent space, aligning with the recent TS
models that focus on capturing CD over TD. The overall framework of CCM is illustrated in Figure 3.
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4.1 ARCHITECTURE OF SOR-MAMBA

1) Embedding layer. To tokenize the TS in a channel-wise manner, we use an embedding layer that
treats each channel as a token, following the approach in iTransformer (Liu et al., 2024a). Specifically,
we transform x ∈ RL×C into z ∈ RC×D using a single linear layer.
2) Mamba for CD. The original Mamba block combines the H3 block (Fu et al., 2023) with a gated
MLP, where the H3 block incorporates a 1D-conv before the SSM layer to capture local information
from adjacent steps. However, since channels in TS do not possess any inherent sequential order, we
find this convolution unnecessary for capturing CD. Accordingly, we remove the convolution from
the original Mamba block, resulting in the proposed CD-Mamba block, as illustrated in Figure 2(b).
Note that this differs from the previous work (Cai et al., 2024) which replaces the 1D-conv with a
dropout in the Mamba block, as it is designed to capture TD. Using the CD-Mamba block, we obtain
z1 and z2, which are two embedding vectors with reversed channel orders that are employed for
regularization to address the sequential order bias. These vectors are then added element-wise and
combined with a residual connection from z. Further analysis regarding the removal of the 1D-conv
can be found in Table 7.

Algorithm 1 The procedure of SOR-Mamba

Input: X = [X1, . . . ,XL] : (B,L,C)

Output: Ŷ = [X̂L+1, . . . , X̂L+H ] : (B,H,C)

1: Z : (B,C,D)← Linear(X⊤)
2: for m in layers do
3: Z1 : (B,C,D)← CD-Mamba(Z)
4: Z2 : (B,C,D)← CD-Mamba(Z⋆)⋆,

where Z⋆ = Z[:, :: −1, :]
5: Z : (B,C,D)← (Z1 + Z2) + Z
6: Z : (B,C,D)← LN(MLP(LN(Z)))
7: end for
8: Ŷ : (B,H,C)← Linear(Z)⊤

3) MLP for TD. To capture TD in TS, we apply
an MLP to the output tokens of the CD-Mamba
block. To enhance training stability, we apply
layer normalization (LN) to standardize the tokens
both before and after the MLP.
4) Prediction head. To predict the future output,
we employ a linear prediction head to the output
tokens of MLP, resulting in ŷ ∈ RH×C . The
procedure of SOR-Mamba is described in Algo-
rithm 2, where Z⋆ represents Z with its channel
order reversed.

4.2 REGULARIZATION WITH CD-MAMBA BLOCK

To address the sequential order bias, SOR-Mamba regularizes the CD-Mamba block to minimize
the distance between two embedding vectors generated from data with reversed channel orders. The
regularization term is defined as follows:

Lreg(z) = d (z1, z2) , (3)
where d is a distance metric, and z1 and z2 are the embedding vectors obtained from the CD-Mamba
block using z with its channel order reversed, as described in Algorithm 2. For d, we use the mean
squared error (MSE) in the experiments, where the robustness to the choice of d can be found in
Appendix K. The proposed regularization term is then added to the forecasting loss (Lfcst) with a
contribution of λ, resulting in:

L(x,y) = Lfcst(x,y) + λ ·
m∑
i=1

Lreg(z
(i)), (4)

where z(i) is z at the i-th layer, and m is the number of encoder layers. By incorporating the
regularization strategy into the unidirectional Mamba, we achieve better performance and efficiency
compared to S-Mamba (Wang et al., 2024), which employs the bidirectional Mamba, as shown
in Table 5. Additionally, we find that regularization also benefits the bidirectional Mamba, which
handles the sequential order bias through bidirectional scanning, as shown in Table 6. Further analysis
regarding the robustness to λ is discussed in Appendix I.

4.3 CHANNEL CORRELATION MODELING

Previous pretraining tasks for TS have primarily focused on TD, such as masked modeling (Zerveas
et al., 2021) and reconstruction (Lee et al., 2024), to pretrain an encoder. However, we argue for the
necessity of a new task that emphasizes CD over TD to align with recent TS models that focus on
capturing CD with complex model architectures (Liu et al., 2024a; Wang et al., 2024). To this end,
we propose CCM, which aims to preserve the (Pearson) correlation between channels from the data
space to the latent space, as correlation is a simple yet effective way to measure channel relationships
and has been utilized in prior studies to analyze CD (Yang et al., 2024; Zhao & Shen, 2024).
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Models

(1) Mamba (2) Transformer (3) Linear/MLP

SOR-Mamba
S-Mamba iTransformer PatchTST Crossformer TimesNet DLinear RLinear

FT SL

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 .433 .436 .442 .438 .457 .452 .454 .449 .469 .454 .529 .522 .458 .450 .456 .452 .446 .434
ETTh2 .376 .405 .382 .407 .383 .408 .384 .407 .387 .407 .942 .684 .414 .427 .559 .515 .374 .398
ETTm1 .391 .400 .396 .401 .398 .407 .408 .412 .387 .400 .513 .496 .400 .406 .403 .407 .414 .407
ETTm2 .281 .327 .284 .329 .290 .333 .293 .337 .281 .326 .757 .610 .291 .333 .350 .401 .286 .327

PEMS03 .121 .227 .137 .242 .133 .240 .142 .248 .180 .291 .169 .281 .147 .248 .278 .375 .495 .472
PEMS04 .099 .203 .107 .212 .096 .205 .121 .232 .195 .307 .209 .314 .129 .241 .295 .388 .526 .491
PEMS07 .088 .186 .091 .191 .090 .191 .102 .205 .211 .303 .235 .315 .124 .225 .329 .395 .504 .478
PEMS08 .142 .232 .162 .247 .157 .242 .254 .306 .280 .321 .268 .307 .193 .271 .379 .416 .529 .487
Exchange .358 .402 .363 .405 .364 .407 .368 .409 .367 .404 .940 .707 .416 .443 .354 .414 .378 .417
Weather .256 .277 .257 .278 .252 .277 .260 .281 .259 .281 .259 .315 .259 .287 .265 .317 .272 .291

Solar .230 .259 .242 .274 .244 .275 .234 .261 .270 .307 .641 .639 .301 .319 .330 .401 .369 .356
ECL .168 .264 .169 .262 .174 .269 .179 .270 .205 .290 .244 .334 .192 .295 .212 .300 .219 .298

Traffic .402 .273 .412 .276 .417 .277 .428 .282 .481 .304 .550 .304 .620 .336 .625 .383 .626 .378

Average .257 .299 .265 .305 .266 .307 .278 .315 .306 .338 .481 .448 .303 .329 .372 .397 .418 .403

1st Count 33 31 7 10 10 7 1 3 8 7 3 0 0 0 2 0 3 9
2nd Count 15 19 18 19 13 13 9 6 1 6 0 0 0 1 2 0 2 2

Table 2: Results of multivariate TS forecasting. We compare our method with the SOTA methods
under both SL and SSL settings. The best results are in bold and the second best are underlined.

Lin.

Data space

Latent space

C1 C2 C3 C4 C5

Encoder

C1

C3
C4
C5

C2

Figure 3: Channel correlation modeling.

For CCM, we calculate the correlation matrices between
the input token on the data space and the output token
after the additional linear projection layer on the latent
space, as shown in Figure 3. The loss function for CCM,
defined as the distance between these two matrices, can
be expressed as:

LCCM(x) = d (Rx,Rz) , (5)

where Rx and Rz are the correlation matrices in the data
space and the latent space, respectively. We find that CCM
is more effective than masked modeling and reconstruction
across diverse datasets with varying numbers of channels,
as demonstrated in Table 9. Additionally, robustness to the
choice of d and the pseudocode of CCM are discussed in Appendix K and Appendix J, respectively.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Tasks and evaluation metrics. We demonstrate the effectiveness of SOR-Mamba on TS forecasting
tasks with 13 datasets under standard and transfer learning settings. For evaluation, we follow the
standard self-supervised learning (SSL) framework, which involves pretraining and fine-tuning (FT)
or linear probing (LP) on the same dataset. Additionally, we consider in-domain and cross-domain
transfer learning settings, with the domains defined in the previous work (Dong et al., 2023). For
evaluation metrics, we employ mean squared error (MSE) and mean absolute error (MAE).
Datasets. For the forecasting tasks, we use 13 datasets: four ETT datasets (ETTh1, ETTh2, ETTm1,
ETTm2) (Zhou et al., 2021), four PEMS datasets (PEMS03, PEMS04, PEMS07, PEMS08) (Chen
et al., 2001), Exchange, Weather, Traffic, Electricity (ECL) (Wu et al., 2021), and Solar-Energy
(Solar) (Lai et al., 2018). Details of the dataset statistics are provided in Appendix A.
Baseline methods. We follow the baseline methods and results from S-Mamba (Wang et al., 2024).
For the baseline methods, we consider Transformer-based models, including iTransformer (Liu
et al., 2024a), PatchTST (Nie et al., 2023), and Crossformer (Zhang & Yan, 2023), as well as
linear/MLP models, including TimesNet (Wu et al., 2023), DLinear (Zeng et al., 2023), and RLinear
(Li et al., 2023). Additionally, we include S-Mamba (Wang et al., 2024), which is a Mamba-based TS
forecasting model. Details of the baseline methods are provided in Appendix B.
Experimental setups. We follow the experimental setups from iTransformer and S-Mamba. Note
that we do not tune any hyperparameters except for λ, which is related to the proposed regularization,
while adhering to the values used in S-Mamba for all other hyperparameters concerning the model
architecture and optimization. For dataset splitting, we adhere to the standard protocol of dividing
all datasets into training, validation, and test sets in chronological order. Details of the experimental
setups, including the size of the input window and the forecast horizon, are provided in Appendix A.
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Dataset SL
SSL (CCM)

LP FT
ETTh1 .442 .452 .433
ETTh2 .382 .376 .376
ETTm1 .396 .399 .391
ETTm2 .284 .283 .281

Exchange .363 .349 .358
Solar .242 .230 .230
ECL .169 .169 .168

Table 3: SL vs. SSL.

Source Target
SOR-Mamba S-Mamba

SL LP FT SL LP FT

In-
domain

ETTh2 ETTh1 .442 .452 .433 .457 .450 .464
ETTm2 ETTm1 .396 .401 .390 .398 .398 .400

Average .419 .427 .411 .428 .425 .432

Cross-
domain

ETTm2 ETTh1 .442 .448 .433 .457 .450 .455
ETTh2 ETTm1 .396 .399 .391 .398 .401 .402
ETTm1 ETTh1 .442 .449 .434 .457 .450 .468
ETTh1 ETTm1 .396 .404 .391 .398 .403 .399
Weather ETTh1 .442 .545 .542 .457 .546 .552
Weather ETTm1 .396 .457 .458 .398 .460 .501

Average .419 .450 .441 .428 .452 .463

Table 4: Results of transfer learning.

Improvements

(1) Performance (2) Efficiency

Average MSE across four horizons Average
# Params. Impr.

ETTh1 ETTh2 ETTm1 ETTm2 MSE Impr.

S-Mamba .457 .383 .398 .290 .382 - 9.29M -
+ Regularization .452 .382 .394 .286 .378 1.0% 9.29M -
+ Bi → Unidirectional .449 .382 .396 .285 .378 0.1% 5.81M 37.5%
+ Remove 1D-conv .442 .382 .396 .284 .376 0.5% 5.80M 0.1%
+ CCM .433 .376 .391 .281 .370 1.5% 5.80M -

Table 5: Ablation study of Regularization , Model architecture and Pretraining task .

5.2 TIME SERIES FORECASTING

Table 2 presents the comprehensive results for the multivariate TS forecasting task, showing the
average MSE/MAE across four horizons over five runs. The results demonstrate that our proposed
SOR-Mamba outperforms the SOTA Transformer-based models and S-Mamba, which uses the
bidirectional Mamba, whereas our approach utilizes the unidirectional Mamba, providing greater
efficiency as discussed in Table 13. Furthermore, self-supervised pretraining (SSL) with CCM yields
additional performance gains compared to the supervised setting (SL), with comparisons to SL and
SSL (LP and FT) shown in Table 3. Full results of Table 2 are provided in Appendix E.

5.3 TRANSFER LEARNING

To assess the transferability of our method, we conduct transfer learning experiments in both in-
domain and cross-domain transfer settings following SimMTM (Dong et al., 2023), where source
and target datasets share the same frequency in the in-domain setting, while they do not in the
cross-domain setting. Table 4 presents the average MSE across four horizons, demonstrating that
SOR-Mamba consistently outperforms S-Mamba, achieving nearly a 5% performance gain in FT.

5.4 ABLATION STUDY

To demonstrate the effectiveness of our method, we conduct an ablation study using four ETT datasets
to evaluate the impact of the following components: 1) adding the regularization term, 2) using
the unidirectional Mamba instead of the bidirectional Mamba, 3) removing the 1D-conv, and 4)
pretraining with CCM. Table 5 presents the results, indicating that using all proposed components
results in the best performance and that our method outperforms S-Mamba with 37.6% fewer model
parameters. The full results of the ablation study are provided in Appendix F.

6 ANALYSIS

Sequential order bias. The degree of a sequential order bias may vary depending on the
characteristics of the datasets. We consider two factors affecting this degree: 1) the corre-
lation between channels and 2) the number of channels in the dataset. To evaluate the rela-
tionships between these factors and the degree of bias, we quantify the degree of a sequential
order bias for each dataset by measuring the difference in performance (average MSE across
four horizons) when the channel order is reversed, using SOR-Mamba without regularization.
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Mamba ETT PEMS
Exchange Weather Solar ECL Traffic

# Reg. h1 h2 m1 m2 03 04 07 08

Bi ✗ .457 .383 .398 .290 .133 .096 .090 .157 .364 .252 .244 .174 .417
✓ .452 .382 .394 .286 .131 .096 .092 .155 .361 .252 .245 .170 .411

Uni ✗ .455 .383 .403 .289 .140 .102 .094 .161 .364 .255 .244 .175 .416
✓ .449 .382 .396 .285 .135 .101 .091 .158 .361 .255 .244 .171 .416

Table 6: Effect of regularization. Regularization enhances both the unidirectional and the bidirec-
tional Mamba. Note that we do not remove the 1D-conv to isolate the effect of regularization.

Mamba ETT PEMS
Exchange Weather Solar ECL Traffic

# 1D-conv h1 h2 m1 m2 03 04 07 08

Bi ✓ .457 .383 .398 .290 .133 .096 .090 .157 .364 .252 .244 .174 .417
✗ .441 .383 .396 .285 .137 .102 .089 .148 .364 .255 .242 .167 .414

Uni ✓ .449 .382 .396 .285 .135 .101 .091 .158 .361 .255 .244 .171 .416
✗ .442 .382 .396 .284 .137 .107 .091 .162 .363 .257 .242 .169 .412

Table 7: Effect of 1D-conv. Removing the 1D-conv, which captures the local information within
adjacent channels, improves the performance on TS datasets that lack a sequential order in channels.

1) # Channels vs. Bias 2) Correlation vs. Bias

Figure 4: Varying bias across datasets.

Figure 4 shows the results with two plots, where the x-axes
represent the number of channels and correlation between
the channels (i.e., average of the off-diagonal elements in
the correlation matrix1 between the channels), and the y-
axes represent the degree of a sequential order bias, with all
axes shown on a log scale. The results show that the bias
increases 1) as the channels become more correlated and 2)
as the number of channels increases. For example, four ETT
datasets containing seven channels with low correlation
show low bias, whereas four PEMS datasets containing
over 100 channels with high correlation exhibit high bias.
Effect of regularization. To validate the effect of the regularization strategy, we apply it to both the
unidirectional and the bidirectional Mamba without removing the 1D-conv to isolate the effect of
regularization. The results are shown in Table 6, which presents the TS forecasting results of the
average MSE across four horizons. These results indicate that it not only improves the performance
of the unidirectional Mamba but also benefits the bidirectional Mamba, which handles the sequential
order bias through bidirectional scanning, making regularization complementary to this approach.

4
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1
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1
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PEMS
Others

Figure 5: Effect of 1D-conv.

Effect of 1D-conv. To demonstrate the unnecessity of the 1D-conv
in Mamba for capturing CD, we remove it from both the unidirec-
tional and the bidirectional Mamba, with the results of the average
MSE across four horizons shown in Table 7. The results indicate
that removing the 1D-conv, which captures the local information
within nearby channels, improves the performance on general TS
datasets where channels lack a sequential order. However, its re-
moval may negatively impact datasets with ordered channels such
as PEMS datasets (Liu et al., 2022), which consist of traffic sensor
data. Figure 5 illustrates the relative gain from removing the 1D-conv in SOR-Mamba, showing that
three out of four PEMS datasets achieve better results with the 1D-conv than without it.
Correlation for CCM. To assess the impact of using different correlations for CCM, we consider
two candidates: local correlation, which refers to the correlation between the channels of the input
TS, and global correlation, which refers to the correlation between the channels of the entire TS
dataset. Table 8 shows that using the local correlation yields better performance compared to the
global correlation, although both approaches still outperform the supervised setting (SL).
Effect of CCM. To demonstrate the effect of CCM, we compare it with two other widely used
pretraining tasks: masked modeling (MM)(Zerveas et al., 2021) with a masking ratio of 50%, and
reconstruction (Rec.)(Lee et al., 2024), along with the supervised setting. Table 9 presents the results
using two backbones, S-Mamba and SOR-Mamba, showing that CCM consistently outperforms the
other tasks across both backbones.

1We use its absolute value, as high correlation does not always indicate a strong relationship, with strong
negative relationships near −1. Additionally, we use only the off-diagonal elements to exclude autocorrelation.
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Dataset SL
SSL (CCM)

Global Local
ETTh1 .442 .445 .433
ETTh2 .382 .380 .376
ETTm1 .396 .393 .391
ETTm2 .284 .283 .281

PEMS03 .137 .125 .121
PEMS04 .107 .101 .099
PEMS07 .091 .088 .088
PEMS08 .162 .146 .142
Exchange .363 .361 .358
Weather .257 .258 .256

Solar .242 .228 .230
ECL .169 .170 .168

Traffic .412 .410 .402
Average .265 .260 .257

Table 8: Global vs. Local corr.

Dataset

SOR-Mamba S-Mamba

SL
SSL

SL
SSL

Rec. MM CCM Rec. MM CCM
ETTh1 .442 .434 .435 .433 .457 .448 .457 .457
ETTh2 .382 .378 .381 .376 .383 .381 .383 .380
ETTm1 .396 .390 .396 .391 .398 .400 .397 .396
ETTm2 .284 .279 .284 .281 .290 .283 .288 .286

PEMS03 .137 .126 .121 .121 .133 .120 .130 .119
PEMS04 .107 .111 .095 .099 .096 .092 .103 .093
PEMS07 .091 .091 .090 .088 .090 .086 .089 .085
PEMS08 .162 .139 .144 .142 .157 .136 .157 .138
Exchange .363 .361 .361 .358 .364 .363 .378 .361
Weather .257 .256 .256 .256 .252 .249 .251 .250

Solar .242 .231 .231 .230 .244 .230 .239 .233
ECL .169 .172 .169 .168 .174 .175 .174 .170

Traffic .412 .410 .410 .402 .417 .450 .415 .414
Average .265 .260 .259 .257 .266 .263 .266 .260

Table 9: Comparison of various SSL pretraining tasks.

H SOR-Mamba S-Mamba

96 .378±.0003 .386±.0010
192 .428±.0002 .440±.0033
336 .464±.0002 .484±.0046
720 .464±.0004 .502±.0057

Table 10: Robustness to channel order.

SOR-Mamba
(Uni + Reg)

S-Mamba
(Bi)(Bi + Reg)

(Mamba + Regularization)

Figure 7: t-SNE of channel representations.

Architecture
for TD

ETT PEMS
Exchange Weather Solar ECL Traffic Avg.

h1 h2 m1 m2 03 04 07 08

- .446 .386 .397 .286 .139 .109 .096 .164 .363 .258 .244 .170 .433 .268
Mamba .447 .386 .398 .285 .140 .109 .097 .165 .363 .259 .245 .171 .437 .269
MLP .442 .382 .396 .284 .137 .107 .091 .162 .363 .257 .242 .169 .412 .265

Table 11: Various architectures for capturing TD.

Rec. MM CCM0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0
1.0
2.0
3.0
4.0
5.0
6.0

Relative gain (SL  SSL)

C < 100
C 100

Figure 6: Comparison of SSL.

Furthermore, as CCM is designed to effectively capture CD in
datasets, we compare the performance gain from three pretraining
tasks based on the number of channels, with six datasets containing
fewer than 100 channels and seven datasets containing 100 or
more channels. Figure 6 shows the average performance gain from
fine-tuning with the three tasks compared to SL, indicating that
reconstruction is advantageous with fewer channels and masked
modeling excels with more channels, while CCM consistently
outperforms in both cases.
Robustness to channel order. To demonstrate that our method effectively addresses a sequential
order bias, we conduct two analyses to show its robustness to the channel order. First, we evaluate
the performance variations with five random permutations of channel order using ETTh1, where
our method achieves a smaller standard deviation compared to S-Mamba, as shown in Table 10.
Additional results with different datasets are described in Appendix H. Second, we visualize the
output tokens of the encoder (i.e., embedding vectors of each channel) using t-SNE (Van der Maaten
& Hinton, 2008) with Exchange. Figure 7 illustrates the results, showing that the tokens from the two
views with reversed orders are consistent with regularization, while remaining inconsistent without it.
Various architectures for TD. Following the recent studies (Liu et al., 2024a; Wang et al., 2024)
that suggest employing simple models, e.g., MLPs, to capture TD in TS, we utilize an MLP for this
purpose. To examine the impact of different design choices of architecture for capturing TD, we
consider two alternatives: 1) without employing any encoder for TD, and 2) using Mamba, following
the previous work (Wang et al., 2024). Table 11 shows the results, demonstrating that our method is
robust to the choice of encoder for TD, achieving the best performance with an MLP.
Correlation in the data space and the latent space. To demonstrate that CCM effectively preserves
the relationships between channels from the data space to the latent space, we visualize the correlation
matrices in both spaces with SOR-Mamba pretrained with CCM. Figure 8a shows the results on
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(a) Visualization of Rx and Rz.
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(b) Comparison of d(Rx,Rz).

Figure 8: Correlation matrices in data space and latent space.
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Figure 9: Regularization loss.

F : Fixed , R: Random , X⋆: Reverse of X
Impr.

(Robust.)Order z1 F F R1 R

z2 F ⋆ R R2 R⋆

Dataset C (a) (b) (c) (d) (d) → (a)

C
<

10
0

ETTh1 7 .442 .443 .446 .443 0.2%
ETTh2 7 .382 .382 .382 .382 0.0%
ETTm1 7 .396 .396 .396 .396 0.0%
ETTm2 7 .284 .285 .285 .285 0.4%

Exchange 8 .363 .364 .365 .364 0.3%
Weather 21 .257 .258 .260 .260 1.2%

Average .354 .355 .356 .355 0.3%

C
≥

10
0

Solar 137 .242 .245 .245 .246 1.6%
PEMS03 358 .137 .144 .150 .151 9.3%
PEMS04 307 .107 .112 .116 .117 8.5%
PEMS07 883 .091 .096 .097 .096 5.2%
PEMS08 170 .162 .163 .169 .172 5.8%

ECL 321 .169 .174 .181 .183 7.7%
Traffic 862 .412 .422 .423 .423 2.6%

Average .189 .194 .197 .198 4.9%

Table 12: Channel orders for two views.

Dataset: Traffic (a) (b) (c) (b) → (c)
(L = 96, H = 96) iTrans. S-Mamba SOR-Mamba Impr.

# Parameters
In projector 0.05M 0.05M 0.05M -
Encoder-CD 4.20M 6.97M 3.48M 50.1%
Encoder-TD 2.11M 2.11M 2.11M -
Out projector 0.05M 0.05M 0.05M -

Total 6.52M 9.29M 5.80M 38.1%
Memory

Complexity O
(
C2

)
O (C) O (C) -

GPU memory (GB) 1.36 0.33 0.32 4.2%
Computational time
Train (sec.) 115.5 108.3 102.1 5.7%
Inference (ms) 14.6 9.9 8.7 11.3%
Avg. MSE (four H) 0.428 0.417 0.402 3.6%

Table 13: Efficiency analysis.

the Weather dataset, which indicate that the relationships are effectively preserved with CCM.
Additionally, we compare the distances between the matrices in both spaces, comparing SOR-Mamba
without pretraining to the one pretrained with CCM. The results, illustrated in Figure 8b, show that
the model pretrained with CCM exhibits a smaller difference between the matrices.
Fixed vs. random order. To generate two embedding vectors for regularization, we explore four
candidates based on whether the channel order of z1 and z2 are fixed or randomly permuted in each
iteration. Table 12 shows the results with the average MSE across four horizons, indicating that
fixing the order yields better performance than permuting the order, especially with a large number
of channels (C ≥ 100). We argue that fixing the order leads to stable training, while permuting the
order results in instability, as shown in the regularization loss curves for PEMS08 in Figure 9. Further
analysis regarding the channel order is discussed in Appendix G.
Efficiency analysis. To demonstrate the efficiency of SOR-Mamba, we compare it with iTransformer
and S-Mamba in terms of 1) the number of parameters, 2) memory usage, and 3) computational
time. Table 13 shows the results, indicating that SOR-Mamba outperforms these methods in all three
aspects, particularly reducing the number of parameters by up to 38.1% compared to S-Mamba. Note
that the training time is measured per epoch, while the inference time is measured per data instance.

0 25 50 75
Missing ratio (%)

0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450

Dataset
ETTh1
ETTh2

ETTm1
ETTm2

Model
SOR-Mamba
S-Mamba

Model
SOR-Mamba
S-Mamba

Figure 10: Missingness.

Robustness to missingness. To assess the robustness of our method in
the presence of missing TS values, we conduct experiments in scenarios
where 25%, 50%, and 75% of the TS values are randomly missing and
interpolated using adjacent values. Figure 10 shows the average MSE
across four horizons, indicating that our method remains robust even
with significant amounts of missing data and that our method trained
with missing values outperforms S-Mamba trained without missingness.

7 CONCLUSION

In this work, we introduce SOR-Mamba, a TS forecasting method that addresses the sequential order
bias by incorporating a regularization strategy and removing the 1D-conv from Mamba. Additionally,
we propose a novel pretraining task, CCM, to improve the model’s ability to capture CD. Our results
demonstrate that the proposed method is robust to variations in channel order, leading to superior
performance and greater efficiency in both standard and transfer learning scenarios. We hope that our
work motivates further research on sequential order-robust Mamba in domains where a sequential
order is not inherent, such as in tabular data.
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A DATASET STATISTICS AND EXPERIMENTAL SETUPS

Dataset statistics. We assess the performance of SOR-Mamba across 13 datasets, with the dataset
statistics detailed in Table A.1, where C and T denote the number of channels and timesteps,
respectively.
Experimental setups. We follow the same data processing steps and train-validation-test split
protocol as used in S-Mamba (Wang et al., 2024), maintaining a chronological order in the separation
of training, validation, and test sets, using a 6:2:2 ratio for the Solar-Energy, ETT, and PEMS
datasets, and a 7:1:2 ratio for the other datasets. The results are shown in Table A.1, where N ,L,
and H represent the dataset size, the size of the lookback window, and the size of the forecast
horizon, respectively. For all datasets and all models, L is uniformly set to 96. We do not tune any
hyperparameters and adhere to those used in S-Mamba, except for λ, which is related to the proposed
regularization, and is tuned using a grid search over [0.001, 0.01, 0.1].

Dataset
Statistics Experimental Setups

C T (Ntrain, Nval, Ntest) L H

ETTh1 (Zhou et al., 2021)

7

17420 (8545, 2881, 2881)

96

{96, 192, 336, 720}

ETTh2 (Zhou et al., 2021) 17420 (8545, 2881, 2881)
ETTm1 (Zhou et al., 2021) 69680 (34465, 11521, 11521)
ETTm2 (Zhou et al., 2021) 69680 (34465, 11521, 11521)

Exchange (Wu et al., 2021) 8 7588 (5120, 665, 1422)
Weather (Wu et al., 2021) 21 52696 (36792, 5271, 10540)
ECL (Wu et al., 2021) 321 26304 (18317, 2633, 5261)
Traffic (Wu et al., 2021) 862 17544 (12185, 1757, 3509)
Solar-Energy (Lai et al., 2018) 137 52560 (36601, 5161, 10417)

PEMS03 (Liu et al., 2022) 358 26209 (15617, 5135, 5135)

{12, 24, 48, 96}PEMS04 (Liu et al., 2022) 307 15992 (10172, 3375, 3375)
PEMS07 (Liu et al., 2022) 883 28224 (16911, 5622, 5622)
PEMS08 (Liu et al., 2022) 170 17856 (10690, 3548, 3548)

Table A.1: Datasets for TS forecasting.

B BASELINE METHODS

• S-Mamba (Wang et al., 2024): S-Mamba utilizes the bidirectional Mamba to capture channel
dependencies in TS by scanning the channels from both directions.

• PatchTST (Nie et al., 2023): PatchTST segments TS into patches and feeds them into a
Transformer in a channel independent manner.

• iTransformer (Liu et al., 2024a): iTransformer reverses the conventional role of the Transformer
in the TS domain by treating each channel rather than patches as a token, thereby emphasizing
channel dependencies over temporal dependencies.

• Crossformer (Zhang & Yan, 2023): Crossformer employs a cross-attention mechanism to
capture both temporal and channel dependencies in TS.

• TimesNet (Wu et al., 2023): TimesNet captures both intraperiod and interperiod variations in
2D space using a parameter-efficient inception block.

• RLinear (Li et al., 2023): RLinear is a simple linear model that integrates reversible normaliza-
tion and channel independence.

• DLinear (Zeng et al., 2023): DLinear is a simple linear model with channel independent
architecture, that employs TS decomposition.
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C S-MAMBA VS. SOR-MAMBA

Figure C.1 visualizes the comparison between S-Mamba (Wang et al., 2024), which employs the
bidirectional Mamba to capture CD, and our method, SOR-Mamba, which uses a single unidirectional
Mamba with regularization to capture CD.

SOR-Mamba

C1 C2 C3 C4 C5

Regularization R

R

R : Reverse

Shared

C1 C2 C3 C4 C5

R

R

Mamba
block 1

Mamba
block 2

S-Mamba

Bidirectional Mamba block Unidirectional CD-Mamba block

+ Regularization

R : Reverse

CD-Mamba
block

CD-Mamba
block

Figure C.1: Comparison of S-Mamba and SOR-Mamba.
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D REMOVAL OF 1D-CONVOLUTION

The original Mamba block (Gu & Dao, 2023) integrates the H3 block (Fu et al., 2023) with a gated
MLP, where the H3 block uses a 1D-conv before the SSM layer to capture local information within
nearby tokens, as illustrated in Figure D.1. However, since channels in TS do not have an inherent
sequential order, we eliminate the 1D-conv from the Mamba block, resulting in the proposed CD-
Mamba block. Figure D.2 shows the overall architecture of the proposed CD-Mamba block, where
the 1D-conv before the selective SSM is removed from the original Mamba block (Gu & Dao, 2023).

H3 block

Linear

Linear Linear

1D-conv

Selective
SSM

Linear

1D-conv

SSM

Linear LinearLinear

Gated MLP Mamba block

Linear

Linear Linear

Figure D.1: Architecture of the original Mamba block. The original Mamba block contains
1D-conv before the SSM layer to capture local information within nearby tokens.1

CD-Mamba block

Linear

Linear Linear

1D-conv

Selective
SSM

Remove 1D-conv

C1 C2 C3 C4 C5

1D-conv

1D-conv

1D-conv

Linear

Channels w/o order

Figure D.2: Architecture of the CD-Mamba block. 1D-conv before the selective SSM is removed
from the original Mamba block, as the channels do not have a sequential order.
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E FULL RESULTS OF TIME SERIES FORECASTING

Table E.1 shows the full results of TS forecasting tasks across four different horizons, highlighting
the effectiveness of our method.

Models
SOR-Mamba

S-Mamba iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear
FT SL

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 .377 .398 .385 .398 .385 .404 .387 .405 .386 .395 .414 .419 .423 .448 .479 .464 .384 .402 .386 .400
192 .428 .429 .435 .428 .445 .441 .441 .436 .437 .424 .460 .445 .471 .474 .525 .492 .436 .429 .437 .432
336 .464 .448 .474 .448 .491 .462 .487 .458 .479 .446 .501 .466 .570 .546 .565 .515 .491 .469 .481 .459
720 .464 .469 .478 .471 .506 .497 .509 .494 .481 .470 .500 .488 .653 .621 .594 .558 .521 .500 .519 .516

Avg. .433 .436 .442 .438 .457 .452 .457 .449 .446 .434 .469 .454 .529 .522 .541 .507 .458 .450 .456 .452

E
T

T
h2

96 .292 .348 .299 .348 .297 .349 .301 .350 .288 .338 .302 .348 .745 .584 .400 .440 .340 .374 .333 .387
192 .372 .397 .375 .399 .378 .399 .381 .399 .374 .390 .388 .400 .877 .656 .528 .509 .402 .414 .477 .476
336 .415 .431 .423 .435 .425 .435 .427 .434 .415 .426 .426 .433 1.043 .731 .643 .571 .452 .452 .594 .541
720 .423 .445 .431 .446 .432 .448 .430 .446 .420 .440 .431 .446 1.104 .763 .874 .679 .462 .468 .831 .657

Avg. .376 .405 .382 .407 .383 .408 .384 .407 .374 .398 .387 .407 .942 .684 .611 .550 .414 .427 .559 .515

E
T

T
m

1

96 .324 .362 .326 .367 .326 .368 .342 .377 .355 .376 .329 .367 .404 .426 .364 .387 .338 .375 .345 .372
192 .369 .385 .375 .387 .378 .393 .383 .396 .391 .392 .367 .385 .450 .451 .398 .404 .374 .387 .380 .389
336 .402 .408 .408 .408 .410 .414 .418 .418 .424 .415 .399 .410 .532 .515 .428 .425 .410 .411 .413 .413
720 .467 .444 .472 .444 .474 .451 .487 .456 .487 .450 .454 .439 .666 .589 .487 .461 .478 .450 .474 .453

Avg. .391 .400 .396 .401 .398 .407 .408 .412 .414 .407 .387 .400 .513 .496 .419 .419 .400 .406 .403 .407

E
T

T
m

2

96 .179 .261 .181 .265 .182 .266 .186 .272 .182 .265 .175 .259 .287 .366 .207 .305 .187 .267 .193 .292
192 .241 .304 .246 .307 .252 .313 .254 .314 .246 .304 .241 .302 .414 .492 .290 .364 .249 .309 .284 .362
336 .302 .342 .306 .345 .313 .349 .317 .353 .307 .342 .305 .343 .597 .542 .377 .422 .321 .351 .369 .427
720 .401 .400 .403 .401 .416 .409 .412 .407 .407 .398 .402 .400 1.730 1.042 .558 .524 .408 .403 .554 .522

Avg. .281 .327 .284 .329 .290 .333 .293 .337 .286 .327 .281 .326 .757 .610 .358 .404 .291 .333 .350 .401

PE
M

S0
3

12 .066 .170 .066 .170 .066 .171 .071 .174 .126 .236 .099 .216 .090 .203 .178 .305 .085 .192 .122 .243
24 .088 .197 .090 .200 .088 .197 .097 .208 .246 .334 .142 .259 .121 .240 .257 .371 .118 .223 .201 .317
48 .134 .245 .167 .280 .165 .277 .161 .272 .551 .529 .211 .319 .202 .317 .379 .463 .155 .260 .333 .425
96 .193 .297 .225 .318 .213 .313 .240 .338 1.057 .787 .269 .370 .262 .367 .490 .539 .228 .317 .457 .515

Avg. .121 .227 .137 .242 .133 .240 .142 .248 .495 .472 .180 .291 .169 .281 .326 .419 .147 .248 .278 .375

PE
M

S0
4

12 .074 .175 .077 .180 .073 .177 .081 .188 .138 .252 .105 .224 .098 .218 .219 .340 .087 .195 .148 .272
24 .086 .192 .091 .197 .084 .192 .099 .211 .258 .348 .153 .275 .131 .256 .292 .398 .103 .215 .224 .340
48 .106 .214 .115 .221 .101 .213 .133 .246 .572 .544 .229 .339 .205 .326 .409 .478 .136 .250 .355 .437
96 .129 .233 .143 .248 .125 .236 .172 .283 1.137 .820 .291 .389 .402 .457 .492 .532 .190 .303 .452 .504

Avg. .099 .203 .107 .212 .096 .205 .121 .232 .526 .491 .195 .307 .209 .314 .353 .437 .129 .241 .295 .388

PE
M

S0
7

12 .059 .155 .060 .156 .060 .157 .067 .165 .118 .235 .095 .207 .094 .200 .173 .304 .082 .181 .115 .242
24 .076 .174 .082 .182 .082 .184 .088 .190 .242 .341 .150 .262 .139 .247 .271 .383 .101 .204 .210 .329
48 .098 .199 .107 .209 .100 .204 .113 .218 .562 .541 .253 .340 .311 .369 .446 .495 .134 .238 .398 .458
96 .117 .218 .117 .218 .117 .218 .172 .283 1.096 .795 .346 .404 .396 .442 .628 .577 .181 .279 .594 .553

Avg. .088 .186 .091 .191 .090 .191 .102 .205 .504 .478 .211 .303 .235 .315 .380 .440 .124 .225 .329 .395

PE
M

S0
8

12 .078 .178 .076 .176 .076 .178 .088 .193 .133 .247 .168 .232 .165 .214 .227 .343 .112 .212 .154 .276
24 .103 .205 .109 .212 .110 .216 .138 .243 .249 .343 .224 .281 .215 .260 .318 .409 .141 .238 .248 .353
48 .159 .250 .172 .264 .173 .254 .334 .353 .569 .544 .321 .354 .315 .355 .497 .510 .198 .283 .440 .470
96 .229 .295 .290 .334 .271 .321 .458 .436 1.166 .814 .408 .417 .377 .397 .721 .592 .320 .351 .674 .565

Avg. .142 .232 .162 .247 .157 .242 .254 .306 .529 .487 .280 .321 .268 .307 .441 .464 .193 .271 .379 .416

E
xc

ha
ng

e 96 .085 .204 .085 .205 .086 .206 .086 .206 .093 .217 .088 .205 .256 .367 .094 .218 .107 .234 .088 .218
192 .179 .301 .179 .301 .181 .303 .177 .299 .184 .307 .176 .299 .470 .509 .184 .307 .226 .344 .176 .315
336 .329 .415 .331 .417 .331 .417 .338 .422 .351 .432 .301 .397 1.268 .883 .349 .431 .367 .448 .313 .427
720 .838 .690 .860 .698 .858 .599 .847 .691 .886 .714 .901 .714 1.767 1.068 .852 .698 .964 .746 .839 .695

Avg. .358 .402 .363 .405 .364 .407 .368 .409 .378 .417 .367 .404 .940 .707 .370 .413 .416 .443 .354 .414

W
ea

th
er

96 .174 .212 .175 .215 .165 .209 .174 .215 .192 .232 .177 .218 .158 .230 .202 .261 .172 .220 .196 .255
192 .221 .255 .221 .255 .215 .255 .224 .258 .240 .271 .225 .259 .206 .277 .242 .298 .219 .261 .237 .296
336 .277 .295 .277 .296 .273 .296 .281 .298 .292 .307 .278 .297 .273 .335 .287 .335 .280 .306 .283 .335
720 .353 .348 .355 .348 .353 .349 .359 .351 .364 .353 .354 .348 .398 .418 .351 .386 .365 .359 .345 .381

Avg. .256 .277 .257 .278 .252 .277 .260 .281 .272 .291 .259 .281 .259 .315 .271 .320 .259 .287 .265 .317

So
la

r

96 .194 .229 .207 .246 .207 .246 .201 .234 .322 .339 .234 .286 .310 .331 .312 .399 .250 .292 .290 .378
192 .228 .256 .239 .270 .240 .272 .238 .261 .359 .356 .267 .310 .734 .725 .339 .416 .296 .318 .320 .398
336 .247 .276 .260 .287 .262 .290 .248 .273 .397 .369 .290 .315 .750 .735 .368 .430 .319 .330 .353 .415
720 .251 .275 .264 .291 .267 .293 .249 .275 .397 .356 .289 .317 .769 .765 .370 .425 .338 .337 .356 .413

Avg. .230 .259 .242 .274 .244 .275 .234 .261 .369 .356 .270 .307 .641 .639 .347 .417 .301 .319 .330 .401

E
C

L

96 .139 .235 .139 .233 .139 .237 .148 .240 .201 .281 .181 .270 .219 .314 .237 .329 .168 .272 .197 .282
192 .160 .254 .158 .249 .165 .261 .167 .258 .201 .283 .188 .274 .231 .322 .236 .330 .184 .289 .196 .285
336 .176 .271 .177 .271 .177 .274 .179 .272 .215 .298 .204 .293 .246 .337 .249 .344 .198 .300 .209 .301
720 .198 .292 .201 .293 .214 .304 .220 .310 .257 .331 .246 .324 .280 .363 .284 .373 .220 .320 .245 .333

Avg. .168 .264 .169 .262 .174 .269 .179 .270 .219 .298 .205 .290 .244 .334 .251 .344 .192 .295 .212 .300

Tr
af

fic

96 .378 .261 .378 .259 .379 .260 .395 .268 .649 .389 .462 .295 .522 .290 .805 .493 .593 .321 .650 .396
192 .393 .269 .399 .270 .409 .272 .417 .277 .601 .366 .466 .296 .530 .293 .756 .474 .617 .336 .598 .370
336 .399 .272 .416 .279 .418 .277 .433 .283 .609 .369 .482 .304 .558 .305 .762 .477 .629 .336 .605 .373
720 .437 .290 .456 .297 .461 .297 .467 .300 .647 .387 .514 .322 .589 .328 .719 .449 .640 .350 .645 .394

Avg. .402 .273 .412 .276 .417 .277 .428 .282 .626 .378 .481 .304 .550 .304 .760 .473 .620 .336 .625 .383

1st Count 33 31 7 10 10 7 1 3 3 9 8 7 3 0 0 0 0 0 2 0
2nd Count 15 19 18 19 13 13 9 6 2 2 1 6 0 0 0 0 0 1 2 0

Table E.1: Full results of TS forecasting tasks.
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F ABLATION STUDY

To demonstrate the effectiveness of our method, we conduct an ablation study using four ETT
datasets (Zhou et al., 2021) to assess the impact of the following components, where the results are
shown in Table F.1. The results indicate that incorporating all components yields the best performance,
and adding the regularization term enhances the performance even with the bidirectional Mamba.

Method
Mamba

Reg. CCM ETTh1 ETTh2 ETTm1 ETTm2 Avg.
# w/o conv.

S-Mamba Bi - - - .457 .383 .398 .290 .382
- Bi ✓ - - .441 .383 .396 .285 .376
- Bi - ✓ .452 .382 .394 .286 .378
- Bi ✓ ✓ .443 .381 .393 .285 .376
- Bi ✓ ✓ ✓ .435 .376 .390 .281 .370
- Uni - - - .455 .383 .403 .289 .383
- Uni ✓ - - .442 .382 .400 .285 .377
- Uni - ✓ - .449 .382 .396 .285 .378
- Uni ✓ ✓ - .442 .382 .396 .284 .376

SOR-Mamba Uni ✓ ✓ ✓ .433 .376 .391 .281 .370

Table F.1: Ablation studies with four ETT datasets.

G CHANNEL ORDERS FOR TWO VIEWS

Figure G.1 illustrates the four candidates for generating two embedding vectors, z1 and z2, for
regularization, based on whether the channel order is fixed or randomly permuted in each iteration.
Results in Table 12 indicate that fixing the order during training yields the best performance, with
performance degrading as the order becomes random, especially with many channels, though it
remains robust with fewer channels. We argue that a fixed order is preferable due to the instability
introduced by randomness during training, as shown in Figure G.1, which displays the training loss
for two datasets (Zhou et al., 2021; Liu et al., 2022) with varying numbers of channels. The figure
indicates that a random order causes instability, particularly with the regularization loss.

ET
Th

2
  (

C
=7

)
PE

M
S0

8
(C

=1
70

)

Fixed

Reverse(Fixed)

Fixed

Random

Random 1

Random 2

Random

Reverse(Random)

Unstable training!

Figure G.1: Fixed vs. random order for generating two views, z1 and z2.
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H ROBUSTNESS TO CHANNEL ORDER

To demonstrate that the proposed method effectively addresses the sequential order bias, we evaluate
performance variations by permuting the channel order with five datasets (Zhou et al., 2021; Wu et al.,
2021). Table H.1 shows the results, which indicate a small standard deviation across all horizons.

H ETTh1 ETTh2 ETTm1 ETTm2 Exchange

96 .377±.0003 .292±.0011 .324±.0005 .179±.0003 .085±.0001
192 .428±.0002 .372±.0000 .369±.0005 .241±.0002 .179±.0001
336 .464±.0002 .415±.0002 .402±.0003 .302±.0001 .329±.0002
720 .464±.0004 .423±.0001 .467±.0009 .401±.0001 .838±.0014

Avg. .434±.0002 .423±.0003 .391±.0001 .281±.0001 .358±.0003

Table H.1: Robustness to channel order.

I ROBUSTNESS TO HYPERPARAMETER λ

Table I.1 shows the average MSE across four different horizons for the four ETT datasets (Zhou et al.,
2021), using various values of λ that control the contribution of the regularization term. The results
demonstrate the effectiveness of the regularization and its robustness to λ.

Dataset

SOR-Mamba

S-Mambaw/o Reg. w/ Reg.

0 0.001 0.01 0.1 0.2

ETTh1 .439 .433 .433 .433 .433 .457
ETTh2 .382 .376 .376 .376 .376 .383
ETTm1 .403 .391 .391 .391 .391 .398
ETTm2 .285 .281 .281 .281 .281 .290

Table I.1: Robustness to choice of λ for regularization.

J PSEUDOCODE OF CCM
Algorithm 2 shows the pseudocode for the proposed pretraining task, channel correlation modeling
(CCM), where an arbitrary TS encoder can be employed.

Algorithm 2 Channel Correlation Modeling (CCM)
Input: X = [X1, . . . ,XL] : (B,L,C)

1: RX : (B,C,C)← Calculate correlation matrix with X

2: Z : (B,C,D)← Encoder(X)

3: RZ : (B,C,C)← Calculate correlation matrix with Z

4: Minimize d(RX,RZ)
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K ROBUSTNESS TO DISTANCE METRIC

To assess whether SOR-Mamba is sensitive to the choice of distance metric d for the regularization
term and CCM when comparing the two matrices, we compare various metrics, including (negative)
cosine similarity, ℓ1 loss, and ℓ2 loss. Tables K.1 and K.2 show the average MSE across four different
horizons for the distance metric used in the regularization term and CCM, respectively, demonstrating
that the performance is robust to the choice of distance metric, where we choose ℓ2 loss throughout
the experiment for both metrics.

Dataset
SOR-Mamba-SL

S-Mamba
Cosine ℓ1 Loss ℓ2 Loss

ETTh1 .442 .442 .442 .457
ETTh2 .382 .382 .382 .383
ETTm1 .396 .396 .396 .398
ETTm2 .284 .284 .284 .290

PEMS03 .145 .147 .137 .133
PEMS04 .105 .105 .107 .096
PEMS07 .091 .091 .091 .090
PEMS08 .162 .159 .162 .157
Exchange .365 .365 .363 .364
Weather .256 .257 .257 .252

Solar .242 .242 .242 .244
ECL .167 .168 .169 .174

Traffic .414 .414 .412 .417

Average .265 .265 .265 .266

Table K.1: Robustness to d for regularization.

Dataset
SOR-Mamba-SSL

S-Mamba
ℓ1 Loss ℓ2 Loss

ETTh1 .434 .433 .457
ETTh2 .379 .376 .383
ETTm1 .391 .391 .398
ETTm2 .281 .281 .290

PEMS03 .121 .121 .133
PEMS04 .099 .099 .096
PEMS07 .089 .088 .090
PEMS08 .140 .142 .157
Exchange .358 .358 .364
Weather .256 .256 .252

Solar .232 .230 .244
ECL .167 .168 174

Traffic .402 .402 .417

Average .258 .257 .266

Table K.2: Robustness to d for CCM.

L SIZE OF LOOKBACK WINDOW VS. PERFORMANCE

Following the previous works (Liu et al., 2024a; Wang et al., 2024), we conduct an experiment to
evaluate the performance as the size of the lookback window (L) increases, using four datasets:
ECL (Wu et al., 2021), Traffic (Wu et al., 2021), PEMS04 (Liu et al., 2022), and ETTm1 (Zhou et al.,
2021), with the baseline methods and results from S-Mamba (Wang et al., 2024). The results, shown
in Figure L.1, indicate that the performance remains robust to the choice of L for some datasets and
even improves with larger L for others.

48 96 192 336 720
Lookback window (L)
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Figure L.1: Size of lookback window vs. performance. Forecasting performance on four datasets
with the lookback length L ∈ {48, 96, 192, 336, 720} , with forecast horizon H = 12 for PEMS04
and H = 96 for other datasets.
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M COMPARISON OF GPU MEMORY USAGE

Figure M.1 visualizes GPU memory usage by dataset and method, demonstrating that our method
is more efficient than both S-Mamba (Wang et al., 2024) and iTransformer (Liu et al., 2024a).
Specifically, Mamba-based methods are more efficient than Transformer-based methods when C is
large, as Mamba has nearly-linear complexity, whereas Transformers have quadratic complexity.
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Figure M.1: Comparison of GPU memory usage.
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N STATISTICS OF RESULTS OVER MULTIPLE RUNS

To assess the consistency of SOR-Mamba’s performance, we present the statistics from results using
five different random seeds. We calculate the mean and standard deviation for both MSE and MAE,
detailed in Tables N.1, N.2, and N.3. which reveal that our method maintains consistent performance
in both self-supervised and supervised settings.

Models
Ours

FT SL

Metric MSE MAE MSE MAE

E
T

T
h1

96 .377±.001 .398±.001 .385±.000 .398±.000

192 .428±.001 .429±.000 .432±.001 .428±.000

336 .464±.001 .448±.001 .476±.000 .448±.000

720 .464±.001 .469±.006 .476±.003 .476±.002

Avg. .433±.000 .436±.002 .442±.001 .438±.000

E
T

T
h2

96 .292±.004 .348±.003 .299±.001 .348±.001

192 .372±.001 .397±.001 .375±.001 .399±.001

336 .415±.001 .431±.000 .423±.000 .435±.000

720 .423±.001 .445±.001 .431±.002 .446±.001

Avg. .376±.001 .405±.001 .382±.001 .407±.000

E
T

T
m

1

96 .324±.002 .362±.002 .324±.004 .367±.003

192 .369±.002 .385±.001 .375±.002 .387±.001

336 .402±.002 .408±.001 .408±.000 .408±.000

720 .467±.002 .444±.001 .472±.001 .444±.001

Avg. .391±.001 .400±.001 .396±.001 .401±.001

E
T

T
m

2

96 .179±.001 .261±.001 .181±.000 .265±.000

192 .241±.000 .304±.000 .246±.001 .307±.001

336 .302±.002 .342±.002 .306±.001 .345±.000

720 .401±.002 .400±.002 .403±.002 .401±.001

Avg. .281±.001 .327±.000 .284±.001 .329±.000

Table N.1: Results of TS forecasting over five runs - 1) ETT datasets.
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Models
Ours

FT SL

Metric MSE MAE MSE MAE

PE
M

S0
3

12 .066±.001 .170±.001 .066±.001 .170±.001

24 .088±.001 .197±.001 .090±.001 .200±.001

48 .134±.002 .245±.003 .167±.001 .280±.001

96 .193±.005 .297±.006 .225±.003 .318±.002

Avg. .121±.002 .227±.002 .137±.001 .242±.001

PE
M

S0
4

12 .074±.002 .175±.003 .077±.000 .180±.000

24 .086±.003 .192±.005 .091±.001 .197±.001

48 .106±.001 .214±.005 .115±.002 .221±.003

96 .129±.003 .233±.004 .143±.002 .248±.002

Avg. .099±.001 .203±.002 .107±.001 .212±.001

PE
M

S0
7

12 .059±.001 .155±.001 .060±.000 .156±.000

24 .076±.005 .174±.004 .082±.000 .182±.000

48 .098±.001 .199±.001 .107±.001 .209±.000

96 .117±.003 .218±.003 .117±.001 .218±.001

Avg. .088±.001 .186±.001 .091±.000 .191±.000

PE
M

S0
8

12 .078±.000 .178±.000 .076±.001 .176±.000

24 .103±.001 .205±.002 .109±.001 .212±.001

48 .159±.001 .250±.001 .172±.003 .264±.003

96 .229±.001 .295±.002 .290±.002 .334±.002

Avg. .142±.000 .232±.001 .162±.001 .247±.001

Table N.2: Results of TS forecasting over five runs - 2) PEMS datasets.
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Models
Ours

FT SL

Metric MSE MAE MSE MAE

E
xc

ha
ng

e 96 .085±.001 .204±.002 .085±.001 .205±.001

192 .179±.000 .301±.000 .179±.002 .301±.001

336 .329±.001 .415±.001 .331±.000 .417±.000

720 .838±.005 .690±.002 .860±.001 .698±.001

Avg. .358±.001 .402±.001 .363±.001 .405±.001

W
ea

th
er

96 .174±.000 .212±.000 .175±.001 .215±.000

192 .221±.000 .255±.000 .221±.000 .255±.000

336 .277±.000 .295±.001 .277±.001 .296±.001

720 .353±.001 .348±.001 .355±.000 .348±.000

Avg. .256±.000 .277±.000 .257±.000 .278±.000

So
la

r

96 .194±.005 .229±.004 .207±.000 .246±.001

192 .228±.002 .256±.003 .239±.001 .270±.001

336 .247±.006 .276±.005 .260±.001 .287±.001

720 .251±.003 .275±.003 .264±.001 .291±.001

Avg. .230±.002 .259±.002 .242±.000 .274±.000

E
C

L

96 .139±.001 .235±.002 .139±.001 .233±.001

192 .160±.002 .254±.002 .158±.001 .249±.001

336 .176±.003 .271±.003 .177±.001 .271±.001

720 .198±.003 .292±.006 .201±.003 .293±.002

Avg. .168±.001 .264±.001 .169±.001 .262±.001

Tr
af

fic

96 .378±.000 .258±.000 .378±.000 .259±.000

192 .393±.001 .267±.001 .399±.000 .270±.000

336 .399±.001 .276±.002 .416±.001 .279±.000

720 .437±.001 .289±.002 .456±.001 .297±.001

Avg. .402±.000 .273±.001 .412±.000 .276±.000

Table N.3: Results of TS forecasting over five runs - 3) Other datasets.
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