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ABSTRACT

Long-range dependencies are critical for effective graph representation learning,
yet most existing datasets focus on small graphs tailored to inductive tasks, offering
limited insight into long-range interactions. Current evaluations primarily compare
models employing global attention (e.g., graph transformers) with those using
local neighborhood aggregation (e.g., message-passing neural networks) without
a direct measurement of long-range dependency. In this work, we introduce
City-Networks, a novel large-scale transductive learning dataset derived from
real-world city road networks. This dataset features graphs with over 105 nodes
and significantly larger diameters than those in existing benchmarks, naturally
embodying long-range information. We annotate the graphs based on local node
eccentricities, ensuring that the classification task inherently requires information
from distant nodes. Furthermore, we propose a generic measurement based on the
Jacobians of neighbors from distant hops, offering a principled quantification of
long-range dependencies. Finally, we provide theoretical justifications for both
our dataset design and the proposed measurement—particularly by focusing on
over-smoothing and influence score dilution, which establishes a robust foundation
for further exploration of long-range interactions in graph neural networks.

Figure 1: Visualizations of City-Networks for Paris, Shanghai, Los Angeles, and London.

1 INTRODUCTION

Graphs are a widely used mathematical abstraction across nearly every branch of science. They
are particularly effective for modeling the intricate and non-uniform interactions found in real-
world data, where nodes stand in for objects and edges depict their connections. The growing
recognition of the versatility of graph representations has sparked intense interest in Graph Neural
Networks (GNNs) (Scarselli et al., 2009; Wu et al., 2021), driving innovation in deep learning
for both geometric and graph-centric applications. Most GNNs, in particular variants based on a
message-passing mechanism (Gilmer et al., 2017), exchange information between one-hop neighbors
per layer to build node representations. While they found wide success in analysing citation and
social networks (Yang et al., 2016b), one significant limitation concerns their capability of handling
long-range dependencies, where interactions between distant nodes might be required to solve a
task. Most existing datasets are not sufficient in assessing this: for instance, social networks, despite
comprising thousands of nodes, often exhibit the small world effect (Watts & Strogatz, 1998) with
short average path lengths and high clustering coefficients. The node labels on these graphs usually
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possess a homophilic pattern where nodes tend to connect with “similar” or “alike” others (McPherson
et al., 2001), making it possible to propagate sufficient information for modelling with only a few
message-passing layers. On the other hand, while connected nodes tend to have different properties
on heterophilic graphs (Zhu et al., 2020; Ma et al., 2022), solving the tasks in those cases do not
necessarily require the handling of long-range dependencies (Arnaiz-Rodriguez & Errica, 2025).

Recently, Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2023) introduces alternative
graph datasets based on super-pixels and molecules with larger diameters than those of the previous
works. To justify the existence of long-rangeness, the authors compare classical GNNs with Graph
Transformers (GTs), which leverage global attentions over the entire graph, and associate the observed
performance gaps with the presence of long-range dependencies. However, conclusions that are
mainly derived from empirical comparisons may not be reliable as they can be largely influenced by
hyperparameter tuning (Tönshoff et al., 2024), leading to an ambiguous assessment of the long-range
interactions. Moreover, LRGB and other synthetic long-range benchmarks (Bodnar et al., 2021;
Zhou et al., 2025) all focus on inductive learning tasks with relatively small graphs—typically on
the order of 10 to 102 nodes, while currently there is no long-range benchmark that considers large
graphs with real-world topology for transductive learning. This is a critical gap in the literature since
applying GTs (Rampášek et al., 2022), which are expected to better capture long-range interactions,
to large graphs is significantly more challenging compared to small-graph inductive tasks due to the
computational complexity in its positional encoding and global attention (Borde, 2024).

We aim to address these limitations in this work, and our main contributions are as follows:

• We propose City-Networks, a transductive learning dataset that consists of four large-scale city
road networks with a topology distinct from those commonly found in the literature. In particular,
it features grid-like large graphs with up to 500k nodes and diameters of up to 400, where the
labels are annotated based on node accessibility that inherently requires long-range dependency
in its calculation. To the best of our knowledge, this is the first large-graph dataset designed for
testing long-range dependencies in graph representation learning.

• We empirically test classical GNNs and GTs on our dataset under different model depths, and
compare their behaviors to those on other common graph datasets that are short-ranged, large-scale,
heterophilic, or long-range dependent. The results on our datasets, unlike those on the existing
datasets, suggest that communication with neighbors from distant hops consistently improves the
performance of all models, supporting the presence of long-range signals.

• To quantify such long-range dependency, we further introduce a generic1 measurement that
quantifies per-hop influence of a focal node’s neighbors on its prediction, which is estimated by
the aggregated ℓ1-norm of the Jacobian from a trained model for the task at hand at each hop
around the focal node. This per-hop analysis of the task range goes beyond the concurrent work of
Bamberger et al. (2025) and provides novel insights: we observe that distant hops exert a greater
influence on all baseline models in our City-Networks compared to those on other commonly
used graph datasets in the literature.

• Finally, we theoretically justify the graph structure in our dataset from a spectral perspective
on over-smoothing, whose rate we link to the algebraic connectivity and diameter of the graph.
In addition, we relate our proposed measurement to the concept of influence as defined in the
literature, and study the dilution of mean influence score in grid-like graphs to justify our design.

2 THE CITY-NETWORKS DATASET

In this section, we begin by identifying the limitations and challenges in current literature. Then, we
characterize how the topology of City-Networks differs from the existing datasets, and proceed
to justify the rationale behind our long-range labeling strategy. Lastly, we explain how our dataset
addresses the current limitation and discuss the new challenges brought to the field.

Challenges in testing long-range dependency. To design and fairly evaluate graph datasets of
long-range dependency, we need to address three research challenges:

1Here, generic means that the metric can be applied to any differentiable GNN or Graph Transformer, without
requiring architectural modifications or assumptions about the model class.
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Table 1: Statistics of City-Networks compared to common graph datasets, where d, C, T , diam,
homo represent degree, clustering coefficient, transitivity, diameter, and homophily, respectively.

Dataset #Nodes #Edges avg(d) std(d) max(d) C T diam homo

Paris 114k 183k 3.2 0.8 15 0.03 0.03 121 0.70

Shanghai 184k 263k 2.9 1.0 8 0.04 0.04 123 0.75

Los Angeles 241k 343k 2.8 1.0 9 0.04 0.05 171 0.75

London 569k 759k 2.7 1.0 10 0.04 0.05 404 0.76

Cora 2.7k 5.3k 3.9 5.2 168 0.24 0.09 19 0.81

ogbn-arxiv 169k 1.16m 13.7 68.6 13k 0.23 0.02 25 0.65

Amazon-Ratings 24k 93k 7.6 6.0 132 0.58 0.31 46 0.38

PascalVOC-SP 479 1.3k 5.7 1.2 10 0.43 0.40 28 0.92

1. How can we generate long-range signals in a principled and controllable manner, so that models
are required to communicate with sufficiently distant neighbors of a node to predict its label?

2. Beyond the small graphs used in LRGB or other synthetic benchmarks, how can we design
long-range signals on large real-world networks to test the scalability of a model?

3. How can we define a principled measure to quantify and compare the level of long-rangeness
across different datasets?

We will discuss how our proposed dataset handles the first two challenges in this section, and address
the third challenge in Section 4.

2.1 LARGE-SCALE ROAD NETWORKS WITH LONG DIAMETERS

Real-world network topologies and features. As shown in Figure 1, our City-Networks
consists of street maps in four cities: Paris, Shanghai, Los Angeles, and London, which are obtained
by querying OpenStreetMap (Haklay & Weber, 2008) with OSMnx (Boeing, 2024). In particular,
we consider a city network inclusive of all types of roads in the city (e.g., drive, bike, walk, etc.),
where nodes represent road junctions with features like longitude, latitude, land use, etc.; and edges
represent road segments with features like road length, speed limit, road types, etc. Next, to facilitate
a typical node classification task, we apply a simple neighborhood aggregation that transforms edge
features into node features by averaging the features of incidental edges and then concatenating them
to the features of the focal node. These new node features represent, for instance, the average speed
limit around a road junction or the probability of finding a residential road nearby. As a result, the
final dataset contains 37 node features, where we also make the graphs undirected so that they only
represent connectivity between junctions, and retain the largest connected component in each city. We
refer readers to Appendix B.1 for a complete list of features and our approach in dataset processing.

Large graphs with long diameters and low maximum degrees. We can observe from Table 1 that
our datasets feature large diameters from 100 to 400, which are much longer than those of the common
graphs used in the literature. In particular, compared to the super-pixel graphs in PascalVOC-SP
with typically 500 nodes, our datasets have much larger sizes ranging from 100k to 500k. Mean-
while, compared to social networks such as Cora, ogbn-arxiv, and Amazon-Ratings, our
City-Networks have smaller average clustering coefficients and much lower maximum degrees.
We argue that this distinct graph topology enables us to effectively design learnable long-range signals
on graphs, as explained in the next paragraph and further justified theoretically in Section 5.

2.2 LONG-RANGE LABELS BASED ON URBAN ACCESSIBILITY

Based on the city road networks, we design a real-world task that requires the handling of long-range
dependencies. Specifically, we aim to predict how accessible a road junction is based on its own
location as well as neighboring characteristics of the urban landscape. This is a useful task especially
when it comes to evaluating urban design principles such as the 15-minute city (Abbiasov et al.,
2024). To quantify accessibility, we measure the distance one needs to travel from one road junction
to its k-hop neighbors along road segments in the road network. By design, solving this task requires
the model to be able to access information within the k-hop neighborhood of each focal node and,
by adjusting k, we can design a long-range task as desired. Such a notion of accessibility is directly
related to node eccentricity ε(v) in network science (Newman, 2018), which looks at the maximum
distance from v to all other nodes in the graph G = (V,E).

3
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Figure 2: Visualizations of node accessibility estimations based on local eccentricity in two sub-
regions, where darker colors indicate smaller eccentricity values, i.e., nodes that are easier to access.

However, using the exact eccentricity as signals is not ideal for two reasons. First, we cannot
control the level of long-rangeness, as eccentricity is determined by the entire graph structure and not
adjustable by design. In particular, although predicting ε(v) appears to require distant information
based on its definition, in many cases (Figure 7, Appendix B.2), the underlying signal can be well
inferred by spatial features (e.g., geographical coordinates) alone. This is because nodes in the city
center generally have lower eccentricity due to the grid-like topology in road networks. Second, the
calculation of eccentricity requires computing all pair-wise shortest paths in the network, which is
typically at cost O(|V |3) and is hence prohibitively expensive for labeling our large-scale networks.

Node classification task based on local eccentricity. With the above consideration in mind, we
propose a local eccentricity measure ε̂k(v) that only considers k-hop neighbors Nk(v) of node v
when calculating the longest shortest paths with the following expressions:

ε̂k(v) = max
u∈Nk(v)

ρw(v, u), ρw(v, u) = min
π∈P (v,u)

∑
e∈π

w(e), (1)

where ρw(v, u) is the weighted shortest path distance from node v to node u, P (v, u) is the set of
all possible paths from node v to node u, and w(e) denotes the edge weight for edge e (we use road
length for this particular purpose, while in all other cases, the graphs are considered unweighted). To
design a classification task, we then split ε̂k(v) for all nodes into 10 quantiles which we use as node
labels for the classification task.

We emphasize that this local approach is introduced not only for computational efficiency, but it
also brings in two important considerations. First, it creates long-range signals that extend to k-hop
neighbors by design, i.e., a known “ground-truth” range, hence is directly controllable and testable.
Second, it ensures both graph topology and node features contribute to the modelling, avoiding the
problem of high correlation between node signal with either the graph structure or node features
alone. Indeed, since k and the edge weights used to compute ε̂k(v) are unknown to the model, it must
integrate structural information from distant neighborhoods with their spatial information (geographic
location, road type, land use, etc.) to infer the long-range signal, which makes the task non-trivial. We
provide a deeper analysis in Appendix B.3 regarding the roles of graph structure and spatial features.

Choice of the long-range level k. To assess long-range dependency, k should be sufficiently large to
distinguish our setting from short-range tasks (e.g., social graphs with typical message passing around
4 hops). Thanks to the large grid-like topology with long diameters, we can create long enough node
signals based on different local networks. At the same time, k should also not be too large such
that (i) the selected neighborhoods maintain local characteristics; and (ii) baseline models under a
k-layer architecture, which captures the required information, can fit into common GPUs for fair
benchmarking purposes. After experimenting with values from 8 to 32 (Figure 9, Appendix B.4), we
design the task at k=16, which strikes a balance between sufficient long-rangeness and computational
efficiency. We refer readers to Appendix B.4 for a more detailed justification of our methods.

Visualizations and interpretations. As shown in equation 1, calculating ε̂k(v) naturally requires
information from distant neighbors up to k hops, and it carries a practical meaning which relates to
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Figure 3: Baseline results across datasets at different number of layers L = [2, 4, 8, 16]. The results
for GraphGPS are not shown on London as it is Out-of-Memory on our 48GB GPU; the result for
SGFormer on PascalVOC-SP is also not reported as it’s not originally designed for inductive setting.

the accessibility of node v in the network. As an illustration, we visualize two sub-regions from the
city maps in Figure 2 with k=16. We can observe that nodes on major transportation routes such
as freeways and highways tend to have larger eccentricities than those in populated areas. This is
because reaching a node’s 16-hop neighbors from a highway junction often requires traveling a much
longer distance compared to road junctions in a downtown area. It is also clear from Figure 2 that a
significant part of the graph topology is grid-like and possibly quasi-isometric to a lattice, as we will
later discuss in Section 6. Note that the homophily scores, as reported in Table 1, are reasonably high
since nodes with similar ε̂k tend to cluster together.

New challenges for learning long-range dependencies. The proposed dataset presents a significant
challenge for both GNNs and GTs. In general, such long-range dependencies create a fundamental
trade-off for graph learning: while increasing the number of layers in GNNs helps propagate
information from distant hops, it also leads to issues such as over-smoothing (Li et al., 2018; Nt
& Maehara, 2019; Rusch et al., 2023), over-squashing (Alon & Yahav, 2021; Topping et al., 2022;
Di Giovanni et al., 2023), and vanishing gradients (Arroyo et al., 2025). On the other hand, GTs, which
rely on attention mechanisms with quadratic computational complexity, face scalability challenges
when applied to our large-scale city networks compared to learning on smaller long-ranged graphs
like those in LRGB (Dwivedi et al., 2023) and other synthetic benchmarks (Zhou et al., 2025).

3 BENCHMARKS: FROM CLASSICAL GNNS TO GRAPH TRANSFORMERS

In this section, we benchmark classical GNNs and GTs at different numbers of message-passing
layers on City-Networks, and then contrast their behaviors with results on other commonly used
graphs to examine the long-range dependencies across datasets.

Experimental setups. We consider transductive node classification with train/validation/test splits of
10%/10%/80% on all City-Networks, in which we evaluate various classical GNNs and GTs.
Specifically, we benchmark GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017),
GAT (Veličković et al., 2018), and GCNII (Chen et al., 2020) for GNNs; and GraphGPS (Rampášek
et al., 2022), Exphormer (Shirzad et al., 2023), and SGFormer (Wu et al., 2023) for GTs. In addition,
an MLP is also included to reflect the importance of graph topology (or lack thereof) in our task.
Lastly, we fix the data split for benchmarking purposes and report the mean and standard deviation of
the test accuracy over 5 runs with different random seeds.

Evaluation protocols. As a hypothesis, when a graph model is predicting on a certain node v, it will
benefit from communicating with v’s neighbors from distant hops if the task is long-ranged. Following
this rationale, we evaluate baseline models at different numbers of layers L = [2, 4, 8, 16], with the
expectation that a larger L would lead to better performance after sufficient training. By comparison,
we also evaluate the same baselines on four representative datasets from the literature: Cora,
ogbn-arxiv, Amazon-Ratings, and PascalVOC-SP from LRGB, which are homophilous,
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large-scale, heterophilous, and long-range dependent, respectively. We then compare the behaviors of
baseline models across different datasets while increasing the number of layers L.

For fair comparison purposes, we follow the latest GNN tuning technique from Luo et al. (2024) that
considers residual connection, normalization, dropout, etc. Readers are also referred to Appendix C.2
for full details on our training and experimental setups.

Results. From Figure 3, we can observe a clear and consistent improvement in performance for
all baselines on our City-Networks as their message-passing depth L increases from 2 to 16.
It suggests that, even with sufficient training, a shallow graph model cannot outperform its deeper
counterpart if it does not communicate with sufficiently distant hops. This result also means that
the gains from incorporating long-range information as L increases outweigh other side effects of
depth. By contrast, the performance of baseline models gradually degrades as L increases on Cora
and ogbn-arxiv due to the locality of these tasks and depth-related issues. To elaborate on this
matter, we further provide a theoretical justification for our dataset in Section 5, where we link the
rate of over-smoothing (a prominent issue associated with depth) to the algebraic connectivity and
network diameter of the underlying graph. On the other hand, the baseline performance remains
relatively unchanged with only a slight increase on Amazon-Ratings and PascalVOC-SP,
which suggests that these tasks are relatively short-ranged compared to City-Networks. To
examine this hypothesis, we therefore introduce a quantitative measure of long-range dependency in
the next section and compare it across datasets and baselines.

For completeness, we further conducted an ablation study in Appendix C.3 that (i) tests baselines
under different hidden_size; and (ii) fixes the model size at L = 16, refrains the model from seeing
beyond hop-H at each node, then tests baselines at different H . The results are all consistent with our
above findings. In addition, we also summarize the best baseline performance on City-Networks
in Appendix C.4, and discuss the potential limitation of our experiments in Appendix E.

4 A LONG-RANGE MEASUREMENT BASED ON JACOBIANS

In this section, we propose to quantify the long-range dependency of a task given a trained model,
by evaluating how the influence score I(v, u) between node-pairs (Xu et al., 2018; Gasteiger et al.,
2022) varies with distance. The influence score measures the sensitivity of a GNN layer at node v to
the input feature of node u using the Jacobian: I(v, u) =

∑
i

∑
j

∣∣∣ ∂H(L)
vi

/
∂Xuj

∣∣∣, where H
(L)
vi is

the ith entry of node v’s embedding at layer L, and Xuj is the jth entry of the input feature vector
for node u. Unless otherwise specified, we assume L refers to the last logit layer.

Based on the influence score, we define the average total influence T̄h at hth hop as:

Th(v) = Isum(v, h) =
∑

u:ρ(v,u)=h

I(v, u), T̄h =
1

N

∑
v

Isum(v, h), (2)

where Th(v) = Isum(v, h) is the total influence from the hth-hop neighbors of node v, ρ(v, u) is
the length of the shortest path between v and u (note that this is equivalent to the h-hop shell later
discussed in Section 6), and N is the number of nodes in the network. Also, we would like to
highlight that when h = 0, T0(v) = I(v, v) becomes the influence of the feature at node v on its
output. The average total influence quantifies how much, on average, the features of nodes that are
h hops away affect the output at the focal node. In other words, by summing the Jacobian-based
influence scores from all h-hop neighbors and then averaging over all nodes, it provides an expected
measure of the cumulative effect that distant nodes have on each node as the focal node.

Given equation 2, we further define the average size R of the influence-weighted receptive field as:

R =
1

N

∑
v∈V

∑H
h≥0 h · Th(v)∑H
h≥0 Th(v)

, (3)

where H is the maximum number of hops to be considered. Intuitively, one can understand R as
measuring how far away the average unit of influence is, since the influences from distant nodes to
the target node will be proportionally stronger in long-range tasks compared to those in short-range
tasks. Note that the proposed R bears similarity to the recent work of Bamberger et al. (2025): the
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Table 2: Average size of the influence-weighted receptive fieldR across different datasets and models.

Model Paris Shanghai L.A. London Cora ogbn-arxiv Amazon PascalVOC

GCN 4.86 5.55 5.36 6.09 2.56 1.34 1.92 3.38
GraphSAGE 4.92 5.73 5.44 5.97 2.37 1.40 1.80 2.99
GCNII 3.62 3.64 3.68 3.66 2.76 3.5 1.79 2.60
GraphGPS 8.18 7.88 7.92 OOM 2.65 OOM 6.86 7.14
Exphormer 5.71 7.06 7.15 7.90 2.84 2.80 1.43 1.42
SGFormer 3.75 4.25 4.03 4.01 3.21 1.21 2.46 NA

definition of R in equation 3 is based on the shortest path distance, which corresponds to a specific
instance of the measure in Bamberger et al. (2025). However, unlike that work which focuses on
an aggregated measure of the range, our work has a particular focus on using the per-hop influence
Th(v) as a diagnostic tool of the dependency decay, which leads to the key analysis in Figure 4 below.

Finally, we provide an analysis of the computation cost of our measurement in Appendix D and
discuss its potential limitations on large dense graphs (a common challenge for Jacobian-based
methods (Xu et al., 2018; Gasteiger et al., 2022) in the literature) in Appendix E.

Results. We validate R and T̄h on City-Networks using the baselines at L = 16 layers from
Section 3. Since PascalVOC-SP is under an inductive setting, we randomly sample 100 graphs
from its testing set (more than 400k nodes in total) and report their average. The results in Table 2
show that R is consistently higher on our City-Networks across all models compared to those on
the other graph datasets, indicating a longer effective range of influence.

Figure 4: Normalized average total influence T̄h/T̄0 averaged across nodes at different distances.
Note that the influence calculation for GraphGPS is Out-of-Memory on London and ogbn-arxiv.

To better compare T̄h across models and datasets, we normalize it by T̄0 and report T̄h/T̄0 in
Figure 4. For all models, we generally observe a rapid influence drop at distant hops on Cora and
ogbn-arxiv, whereas the decay is noticeably much slower on City-Networks. The patterns
on Amazon-Ratings and PascalVOC-SP generally fall between the above two cases with
influence concentrated on the first few hops, which corroborate our findings in Section 3. While
R and T̄h are both model-dependent, the above results yield a consistent ordering across datasets:
models trained on City-Networks are required to leverage information from more distant hops to
perform well, compared to those trained on existing datasets.

Note that the bias in the models will naturally lead to a biased estimation of the ground-truth range
using the proposed measurement, and we will discuss this limitation in more detail in Appendix E.
In addition, we further provide results on RingTransfer (Bodnar et al., 2021), a synthetic
experiment for testing long-range dependency using small ring-like graphs under inductive settings
in Appendix C.5; and provide results on other common heterophilic datasets in Appendix C.6.

For the rest of the paper, we will first provide a theoretical justification of the proposed dataset by
linking over-smoothing to algebraic connectivity and network diameter in Section 5, and then present
the intuition behind the proposed long-range measurement in Section 6.
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5 THEORETICAL JUSTIFICATION OF TOPOLOGIES IN CITY-NETWORKS

In this section, we provide a spectral analysis of over-smoothing in GNNs to justify our dataset
design. As such, our main goal is not an in-depth theoretical analysis, since both over-smoothing
and spectral analysis of GNNs have been carried out extensively in the literature (Rusch et al., 2023;
Wu et al., 2023; Oono & Suzuki, 2020; Rong et al., 2019); instead, our aim is to build on top of
these and derive simple results which provide a theoretical grounding of our dataset construction.
The section is organized as follows. First, we review the concept of information loss in the limit of
infinite GNN layers due to over-smoothing, which effectively vanishes the original node features and
makes representations collapse to a value that is only dependent on the graph topology (Section 5.1
and Appendix F.1). Next, we relate the rate at which over-smoothing happens and the eigenvalues of
the normalized adjacency operator in linearized GCNs (Section 5.2). Given that eigenvalues with
larger absolute values slow down over-smoothing, we analyze how the magnitude of the eigenvalues
relates to the graph topology of our datasets. This provides justification that graphs with large
diameters promote bigger positive eigenvalues for the normalized adjacency operator and hence
are less vulnerable to over-smoothing (Theorem 5.2 and Appendix F.3). Finally, we argue that less
over-smoothing makes it possible for GNNs to capture long-range dependencies in the case of our
proposed dataset. All proofs are presented in Appendix F.2.

5.1 PRELIMINARIES: A SPECTRAL PERSPECTIVE ON OVER-SMOOTHING FOR LINEAR GCNS

We begin by analyzing over-smoothing through the lens of linearization, following the framework
established in Wu et al. (2019) to build Simple Graph Convolutional Networks (SGCs). We select this
model because it is a linearized and more interpretable version of the widely adopted GCN model,
which has also been used for theoretical analysis in previous works such as (Giovanni et al., 2022).

Let G = (V,E) be an undirected graph with N = |V | nodes, adjacency matrix A ∈ RN×N and
degree matrix D ∈ RN×N (Dii =

∑
j Aij). The normalized (augmented) adjacency operator

S̃adj ∈ RN×N is defined as S̃adj = (I +D)−
1
2 (I +A)(I +D)−

1
2 , where the original adjacency

matrix and degree matrix have been augmented with self-loops. Wu et al. (2019) discuss the spectral
properties of the normalized adjacency operator, which satisfies: λN = 1, and |λi| < 1 for all i < N .
Therefore liml→∞(S̃adj)

l = ũN ũT
N , where ũN is the eigenvector corresponding to λN , whose

entries at node v are
√
1 + degree(v).

Via linearization (detailed in Appendix F.1), as the number of layers tends to infinity, the graph
convolution operation collapses all node features to scalar multiples of ũN , resulting in complete loss
of the original feature information, that is, the learned representations suffer from over-smoothing.

5.2 OVER-SMOOTHING RATE ON ALGEBRAIC CONNECTIVITY, DIAMETER, AND SPARSITY

We now provide intuition about the types of graph topologies that would mitigate the over-smoothing
problem. In particular, sparse graphs—those lacking the small-world effect commonly found in
citation networks—and graphs with large diameters tend to experience over-smoothing at a slower
rate. We argue that this slower rate of over-smoothing implies a higher likelihood that GNNs can learn
long-range dependencies during optimization. We validate this intuition by bounding the eigenvalues
of the normalized adjacency matrix using graph properties, then showing how these eigenvalues
influence over-smoothing, and thus how controlling these graph properties can reduce the likelihood
of over-smoothing. More concretely, we extend (Wu et al., 2019, Theorem 1), which only covers
λ1 and λN , to Proposition 5.1 which we prove in Appendix F.2, covering the normalized algebraic
connectivity λN−1 and showing that λN−1 (Sadj) < λN−1(S̃adj).

Proposition 5.1 (Self-loops decrease algebraic connectivity of the original graph). Assume a con-
nected graph G with more than two nodes. For all γ > 0,

λN−1 (Sadj) = λN−1

(
D− 1

2AD− 1
2

)
< λN−1

(
(γI +D)−

1
2 (γI +A)(γI +D)−

1
2

)
. (4)

This allows us to relate the second largest positive eigenvalue of S̃adj to the topology of graphs in the
proposed dataset, using bounds similar to those in (Chung, 1997, Lemma 1.14).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: The lower bound for λN−1(S̃adj) on different datasets.

Dataset Paris Shanghai L.A. London Cora arxiv Ratings Pascal

Lower Bound 0.4741 0.6344 0.6095 0.5921 0.0324 -0.0639 0.1224 0.4857

Theorem 5.2 (Bound on second largest positive eigenvalue of the normalized adjacency operator).
Let dmax be the maximum degree of a vertex in G, and diam(G) the diameter of G, which must be
diam(G) ≥ 4. Then

λN−1(S̃adj) >
2
√
dmax − 1

dmax
− 2

diam(G)

(
1 +

2
√
dmax − 1

dmax

)
. (5)

From Table 3, we see that the lower bound in equation 5 is generally higher for our datasets; this
is because the bound is decreasing in dmax and increasing in diam(G), showing graphs with large
diameter and low maximum degree will be more resilient to over-smoothing. We further provide the
rationale behind this lower bound in Appendix F.3, as well as its relations to the Braess paradox and
previous study (Jamadandi et al., 2024) regarding over-smoothing and graph sparsity in Appendix F.4.

6 THEORETICAL JUSTIFICATION OF JACOBIAN-BASED MEASUREMENT

Finally, we justify the proposed measurement for analyzing long-range interactions in GNNs, partic-
ularly by comparing the mean and the sum of influence scores of neighboring nodes as candidates
to represent the total influence score for a focal node v, Th(v). Recall that Th(v) = Isum(v, h) =∑

u:ρ(v,u)=h I(v, u) as in equation 2. We first introduce definitions for the standard lattice in Eu-
clidean space, h-hop shells, and quasi-isometric graphs, and then provide a mathematical analysis of
influence score dilution. Due to space limits, we provide the definitions in Appendix H.

Lemma 6.1 (Growth of h-hop shells in grid-like graphs). Let G = (V,E) be a graph that is grid-like
in D dimensions (e.g., let us presume the graphs in the proposed dataset are a subgraph of ZD or
quasi-isometric to it, which seems reasonable given Figure 2) and assume the node degrees are
uniformly bounded. Then, there exist positive constants C1 and C2 (depending on D and the local
geometry of G) and an integer h0 such that for all h ≥ h0,

C1h
D−1 ≤ |Nh(v)| ≤ C2h

D−1. (6)

After having quantified the growth of the h-hop shell, one can prove the following theorem, which
motivates our aggregation choice.

Theorem 6.2 (Dilution of mean aggregated influence in grid-like graphs). Suppose that for a fixed v
and for each h ≥ h0 there exists a distinguished node u∗ ∈ Nh(v) with a strong influence on v, quanti-
fied by I(v, u∗) = I∗ > 0,while for all other nodes u ∈ Nh(v)\{u∗} the influence I(v, u) is negligi-
ble (i.e. zero). Define Isum(v, h) =

∑
u∈Nh(v)

I(v, u) =
∑

u:ρ(v,u)=h I(v, u) and Imean(v, h) =

1
|Nh(v)|

∑
u∈Nh(v)

I(v, u). Then, Isum(v, h) ≥ I∗, and Imean(v, h) ≤
I∗

C1 hD−1
. Hence, as h → ∞,

we have Imean(v, h) → 0, while Isum(v, h) remains bounded below by I∗. This also holds for planar
graphs, where D = 2.

Corollary 6.3 (Dilution for a planar grid-like graph). The dilution of the mean aggregated influence
for a planar grid-like graph (like our city networks) is proportional to 1

h .

Corollary 6.4 (Faster dilution over aggregated h-hop neighborhoods). Let G be a grid-like graph
in D dimensions, and define the aggregated h-hop neighborhood (or ball) of a node v as Bh(v) =⋃h

i=1 Ni(v). As before, suppose that within Bh(v) there exists a unique node u∗ with influence
I(u∗, v) = I∗ > 0 and that for all other nodes u ∈ Bh(v) \ {u∗}, the influence is negligible (i.e.
zero). Then, the mean aggregated influence is diluted at a rate proportional to 1/hD. In particular, for
a planar graph (D = 2), the dilution occurs at a rate proportional to 1/h2.

The analysis above formally justifies the choice in equation 2, which considers the aggregate influence
of neighboring nodes Th(v) = Isum as a more reliable measure than the mean Imean, which is

9
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susceptible to dilution, particularly in the case of distant neighbors. This is key to the computation
of the average total influence in equation 2 and the influence-weighted receptive field in equation 3.
Finally, note the following:

Corollary 6.5 (The dilution problem does not affect the average total influence). Let Th(v) =
Isum(v, h) be the total influence from the h-hop neighborhood Nh(v) of node v, and let Th =
1

|V |
∑

v∈V Th(v) be the average total influence over all nodes in V . Suppose that for every v and
every h there exists at least one distinguished node u∗ ∈ Nh(v) satisfying I(v, u∗) ≥ I∗ > 0. Then,
Th ≥ I∗, ∀h.

Proofs are provided in Appendix I, and a more detailed justification of Jacobian-based influence score
and connections to existing literature, along with its limitations, can be found in Appendix G.

7 CONCLUSION

The main objective of our work is to provide better tools to help quantify long-range interactions in
GNNs. Previous benchmarks, such as the LRGB (Dwivedi et al., 2023), are introduced in the context
of small graph inductive learning, using solely the performance gap between classical GNNs and
GTs to support the presence of long-range signals. In this work, we introduce a new large graph
dataset based on city road networks, featuring long-range dependencies for transductive learning,
and propose a principled measurement to quantify such dependencies. We also provide theoretical
justification of both the proposed dataset and measurement, focusing on over-smoothing and influence
score dilution. Beyond benchmarking purposes, our work also holds potential for a broader impact,
informing applications in urban planning and transportation by providing tools to analyze and predict
accessibility within city road networks.
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EXPERIMENT CODE FOR REPRODUCIBILITY

The code for generating our dataset and reproducing the experiment results is submitted as supple-
mentary material.

A NETWORK STATISTICS

In this section, we explain the statistics used in Table 1 that characterize our dataset and discuss the
estimation approach used when direct computation is impractical. We consider undirected graphs,
G = (V,E) with N = |V | nodes and |E| edges, where each node v is associated with a feature
vector Xv ∈ RD and a label yv ∈ Y from a finite class set.

Node degree. The degree deg(v) of a node v represents the number of edges adjacent to it. To
characterize the distribution of node degree in a network, we consider its mean µk and standard
deviation σk:

µk =
1

N

∑
v∈V

deg(v), σk =

√
1

N

∑
v∈V

(deg(v)− µk)2. (7)

Importantly, networks of different topologies will have different degree distributions. For example,
social networks often exhibit a power-law property, where a few nodes have high degrees while
most nodes have relatively low degrees. As a result, their degree distribution tends to follow a scale-
free pattern with a high degree variance σ2

k. In contrast, grid-like networks, such as city networks
and super-pixel graphs, have a structured layout of connections, leading to a more uniform degree
distribution with lower variance.

Clustering coefficient. The clustering coefficient Cv measures the tendency of a node v ∈ V to
form a tightly connected group based on triangles, and its average C̄ measures the overall level of
clustering:

Cv =
2Tv

deg(v)(deg(v)− 1)
, C̄ =

1

N

∑
v∈V

Cv, (8)

where Tv is the number of triangles that include node v ∈ V . Alternatively, transitivity offers a global
measure of clustering with the following expressions:

Transitivity =
3× number of triangles

number of connected triples
. (9)

Intuitively, social networks tend to have a high average clustering coefficient and transitivity due to
their community structure with highly connected hubs and frequent triadic closures. On the other
hand, our city networks exhibit a low clustering coefficient and transitivity, as their structured and
sparse connectivity (e.g., forming lattices) reduces the prevalence of triangles. Note that LRGB,
although being “grid-like”, shows an even higher C̄ and transitivity than social networks. This is
because its networks contain many triangles, as it uses semantic super-pixels as nodes with pixel
borders being the edges.

Diameter The diameter D of a network is the longest shortest path between any two nodes:

D = max
u,v∈V

ρ(u, v), (10)

where ρ(u, v) is the shortest path length from node u to node v. Note that in this case the distance
is unweighted for a more direct comparison with other datasets. It represents the maximum com-
munication delay in the network and varies significantly across different network structures. In
social networks, the presence of hubs greatly reduces the average shortest path length, leading to a
small-world effect with a relatively small diameter. In contrast, grid-like networks lack hubs, and
their regular structure causes the diameter to increase more rapidly as the network size grows.

Since the exact calculation of D has an impractical computational complexity at O(N2 log(N)),
we use the following approach to estimate the approximate diameter D̂ of our city networks. For
all nodes in a given city, we select the ones with the maximum and minimum latitude and lon-
gitude, respectively: coord(v1) = ( · , latmax), coord(v2) = ( · , latmin), coord(v3) =
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(longmax, · ), and coord(v4) = (longmin, · ). Based on these, we compute the shortest path
between (v1, v2) and (v3, v4), and take their maximum as our final diameter estimate, that is,
D̂ = max

(
d(v1, v2), d(v3, v4)

)
. Note that the exact diameter D will always be larger than our

estimation D̂.

Homophily. The node homophily score (Pei et al., 2020) quantifies the tendency of nodes with the
same label to be connected:

Homo =
1

N

∑
v∈V

|{u ∈ N (v) | yu = yv}|
|N (v)|

, (11)

where N (v) is the set of neighbors of node v, and yv represents the label of node v. A higher
homophily indicates a stronger preference for connections between nodes of the same class, which
can significantly impact the performance of GNN models.

B DATASET DETAILS

B.1 RAW FEATURE PROCESSING

This section provides additional details of the features and labels of our City-Networks.

Node and edge features. The node and edge features in our dataset are derived from real-world
features provided by OpenStreetMap for both road junctions and road segments, as detailed below.

• Three numerical features for the road junctions (nodes):
– latitude: the latitude of the current road junction.
– longitude: the longitude of the current road junction.
– street count: the number of connected roads in both directions.

• One categorical features for the road junctions (nodes):
– land use: the type of land use at the current coordinate: residential, industrial, forest, farmland,

commercial, railway, etc.
• Two numerical features for road segments (edges):

– road length: the length of the road in meters.
– speed limit: the speed limit on the current road in km/h.

• Two binary features for road segments (edges):
– one-way: if the current road can only be used in one direction by vehicles.
– reversed: if the current road alternates between different directions during rush hours in the

morning and evening, which is also sometimes called "tidal flow".
• Two categorical features for road segments (edges):

– lanes: number of lanes in the current road, which takes either numerical values (e.g. 1, 2, 3, ...),
or a list of numerical values (e.g. [1, 2], [2, 3], [4, 5], ...) when the current road has different
number of lanes at different segments. We treat this feature as a categorical variable during
modeling.

– road type: the type of the current road, with possible values being: service, residential,
footway, primary, secondary, tertiary, etc.

Feature engineering. Since the categorical features land use, lanes, and road type contain many
categories of only a few data points and varies across different networks, we only take the top 8
categories with most entries for each categorical feature, and treat the rest as a single category - other.
Based on our observations, we can cover more than 90% of the network with the top 8 categories
in all cases. This strategy leads to 12 node features and 25 edge features after one-hot encoding.
Next, to facilitate a typical node classification task, we apply a simple neighborhood aggregation that
transforms edge features into node features by averaging the features of incidental edges and then
concatenating them to the features of the focal node. These new node features represent, for instance,
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the average speed limit around a road junction or the probability of finding a residential road nearby.
As a result, the final dataset contains 37 node features after processing. Lastly, we transform the
graph into an undirected one by merging all edges between each pair of nodes into a single edge,
where the edge features are averaged using to_undirected(reduce="mean") from PyG.

B.2 LONG-RANGE NODE LABELS BASED ON LOCAL ECCENTRICITY

Controllable long-range signal based on local eccentricity. As mentioned in Section 2.2, we
use a k-hop ego-network to estimate the eccentricity of each node. Specifically, after obtaining the
neighborhood Nk(v) within k hops of node v, we compute the shortest path from node v to all nodes
within this neighborhood, and take the maximum as the local eccentricity ε̂k(v):

ε̂k(v) = max
u∈Nk(v)

ρw(v, u), ρw(v, u) = min
π∈P (v,u)

∑
e∈π

w(e), (12)

Figure 5: Distribution of the 16-hop eccentricity
for all nodes in each of our City-Networks.

where ρw(v, u) is the weighted shortest path
distance from node v to node u, P (v, u) de-
notes the set of all possible paths from node v to
node u, and w(e) represents the edge weight
for edge e. Here, we use one of the edge
features road length as the edge weight w(e),
such that the local eccentricity ε̂k(v) will indi-
cate the maximal traveling distance (in meters)
from node v to its k-hop neighbors. Figure 5
shows the distributions of such approximation at
k = 16 across different city networks, in which
Paris and Shanghai have the most skewed
and uniform distributions, respectively.

Importantly, this method allows us to know a
priori that the long-range signal should be highly
correlated with the hop k, which facilitates us in
task design and model benchmarking. Lastly, after obtaining the local eccentricity for all nodes, we
split them into 10 quantiles as the final node labels for transductive classification.

Figure 6: Results on Paris where labels are de-
rived with travel time being the edge weight.

Discussions on more realistic estimations of
accessibility. While our approach gives us a
clean and controllable setup to study long-range
topological interactions, it inevitably neglects
some of the complexities inherent in real-world
transportation dynamics, in which other factors
like road speed, capacity, and traffic congestion
strongly influence how “accessible” one area is
from another. However, we believe our frame-
work can be naturally extended by using road
length and speed limit to approximate travel
time when defining the edge weight in the eccen-
tricity from equation 1. Here we present some
preliminary results on Paris under this strategy.
The results in Figure 6 suggest a similar rising
trend in performance as we increase the model’s
depth, which is consistent with our statements in the main text. We note that other travel-time proxies,
such as data from the Google Maps API, may provide a closer approximation to real-world conditions,
and we leave such directions for future work.

Computational cost. The exact eccentricity typically requires O(|V |3) using the Floyd-Warshall
algorithm (Floyd, 1962). However, with our local approach, the computation is at a much cheaper cost
of O(|Ê|+ |V̂ | log |V̂ |) using the Dijkstra’s algorithm (Dijkstra, 1959), where |V̂ | and |Ê| are the
average number of nodes and edges across all k-hop ego-networks. The calculation is implemented
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with networkx (Hagberg et al., 2008) on a CPU cluster of 72 Intel Xeon @ 2.3GHz cores, which
takes 3, 5, 6, and 23 hours to compute for Paris, Shanghai, L.A. and London, respectively,
when k = 16.

B.3 THE ROLES OF GRAPH TOPOLOGY AND SPATIAL FEATURES

The importance of structural and spatial information. Our goal is to use a label generation
approach that incorporates long-range dependency via information from both node features and graph
structures. Although the local eccentricity is based on a weighted shortest-path strategy with road
length being the edge weight, it does not only capture a structure perspective. This is because road
length naturally relates to geographical locations, road type, land use, etc., which will link the node
labels to these node features. Since the edge features are removed for the transductive task, the model
will not be able to directly infer the original weighted shortest-path values. Moreover, while we can
control the range of the task by changing the approximation hop k, this knowledge is hidden from the
model. Therefore, the model needs to explore the distant neighborhood and capture both structural
and spatial information to effectively infer the long-range information.

Problem of uninformative graph structures on labels. One catastrophic problem we encountered
during the experiment is that, when using the exact eccentricity or a relatively larger k for node labels,
the signal becomes nearly independent of graph structures. As illustrated in Figure 7, we can observe
a clear correlation between the node labels and their spatial coordinates, since nodes around the city
center would generally have lower eccentricity values due to the 2D grid-like topology. This means
that the spatial coordinates alone are sufficient for modelling ε(v), hence weakening the importance
of graph structure during modeling. Similarly, some other labeling approaches would also lead to the
same problem, such as using a single node as an anchor, then regarding its shortest path distance to
other nodes as the node label.

Empirical validation. In Section 3, we use an MLP on all four city networks that only uses node
features such as geographical coordinates, land use, etc. The result in Figure 3 shows a significant
performance gap between MLP and other graph models, indicating that using spatial information
alone is insufficient for our task. To further show the sensitivity of the baseline models to geographic
coordinates, we test two GNNs (GCN and GraphSAGE) and two GTs (Exphormer and SGFormer) on
Paris and Shanghai, with coordinates masked in node features. At the same time, we also test MLP
on these two cities with coordinates only, and summarize the results in Table 4 below. Compared to
the original results with all spatial features, we can observe a slight performance drop across both
GNNs and GTs after removing the geographical coordinates, while for MLP, the results indicate that
geographical coordinates alone are not sufficient for modelling our long-range signal.

Table 4: Baseline results on Paris and Shanghai with all features vs. coordinates only (MLP)
and coordinates masked (GNNs and GTs).

Paris Shanghai

Model all features coords. only / masked all features coords. only / masked

MLP 25.5 ± 0.4 12.5 ± 0.5 28.4 ± 0.6 15.2 ± 0.7
GCN 53.2 ± 0.3 51.4 ± 0.4 62.1 ± 0.2 61.3 ± 0.4
GraphSAGE 54.6 ± 0.2 52.3 ± 0.3 68.3 ± 0.5 66.5 ± 0.4
Exphormer 55.1 ± 0.8 53.5 ± 0.4 70.2 ± 0.4 67.4 ± 0.5
SGFormer 52.0 ± 0.8 51.3 ± 0.7 64.1 ± 0.3 62.8 ± 0.4

Discussion on LRGB. Finally, we would like to point out that this problem also exists in LRGB, as
illustrated by an example graph from PascalVOC-SP in Figure 8. However, while the learning task
in PascalVOC-SP resembles a spatial segmentation problem on the coordinates, it still requires
the model to handle graph structural information for prediction due to the inductive task nature.

B.4 CHOICE OF THE LONG-RANGE LEVEL K

As explained in Section 2.2, the choice of k is critical in designing the long-range signal. On
one side, k should be sufficiently large to distinguish our setting from short-range datasets (e.g.,
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Figure 7: Visualization of local eccentricity ε̂k(v) at k = [8, 16, 32] and full-hop (exact eccentricity)
on two sub-regions. We can observe that in the last two cases (g) and (h), node labels become highly
correlated with geographic coordinates and are hence less dependent on the graph structure.
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Original Image PascalVOC-SP Network

Figure 8: An example graph in PascalVOC-SP from LRGB (Dwivedi et al., 2023), where nodes are
represented by super-pixels and their labels are annotated by semantics. Although spatial coordinates
are highly correlated with node labels, the inductive nature makes the task still graph-dependent.

social graphs with typical message passing around 4 hops). To further elaborate on this, we fol-
low the same experiment setups in Section 3 and test GCN on Paris using k = [8, 16, 32] at
num_layers=[2, 4, 8, 16, 32], where the results are reported in Figure 9 on the right.

Figure 9: Results of GCN at different numbers of
layers on Paris with k = [8, 16, 32] used for labels.

We can observe that, at k = 8, the model’s
performance quickly saturates as expected when
num_layers reaches 8. While at k = 16 and
32, the performance starts to plateau at a much
deeper depth of num_layers=16. As such, 8 does
not seem to be an optimal choice for k, since
there is still room to “extend” the range of the
signal.

On the other hand, k should also remain small
enough that it does not lead to the aforemen-
tioned problem of uninformative graph structure
during modelling. As visualized in Figure 7,
the underlying signal, given its local nature, be-
comes smoother as k increases from 8 to 32.
At the same time, we can also see a increasing
correlation between signal and the spatial coordinates. In the extreme case when k equals the
network diameter, ε̂k(v) becomes the exact eccentricity ε̂(v), and the classification task resembles
a “segmentation” problem on a 2D plane. This also explains the marginal performance gain from
num_layers=16 to 32 at k = 32, as the signal becomes overly smoothed that information based on
16-hop neighborhood is sufficient to have a good “guess” of the signal at hop 32.

At the same time, for benchmarking purposes, we wish to test GNNs and GTs with enough model
depth such that they can reach the source of the signal. However, we found that when training GTs
on our large city networks, due to the quadratic complexity in their global attention mechanism, they
often suffer from Out-Of-Memory errors (NVIDIA-L40@48GB ) when num_layers is large.

Therefore, we decided to adopt k = 16 in our final dataset, which we believe achieves a balance
between being sufficiently long-ranged and remaining practical for computation. As discussed earlier
in Section 1 and Section 2.2, we believe City-Networks brings a new and important challenge to
the literature, which calls for scalable architectures that can effectively handle long-range dependency.

C EXPERIMENT DETAILS

In this section, we first provide training details in our experiments, and then present an ablation study
that supports our main claim on the long-range dependency. Lastly, we summarize the best baseline
results on our dataset and discuss potential limitations of our experimental settings.
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C.1 BASELINES AND DATASETS FOR COMPARISON

Baselines. We consider four common GNNs: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
et al., 2017), GAT (Veličković et al., 2018), and GCNII (Chen et al., 2020) for GNNs; and three
Graph Transformers: GraphGPS (Rampášek et al., 2022), Exphormer (Shirzad et al., 2023), and
SGFormer (Wu et al., 2023) as the baseline models in our experiments.

Datasets. We compare the baseline results on City-Networks to the following datasets that are
homophilic, heterophilic, large-scale, and long-range dependent.

• Cora (Yang et al., 2016a) is a well-known homophilic citation network, with nodes representing
documents and edges representing citation links. The features of the nodes are represented as
bag-of-words that captures the content of the documents, and the goal is to predict the academic
topic of each paper.

• ogbn-arxiv (Hu et al., 2021) is a large-scale citation network of 169k computer science papers
on arXiv that were indexed by the Microsoft academic graph, in which nodes represent papers and
the directed edges indicate the citations. In particular, each node has an 128-dimensional feature
vector derived from the word embeddings of titles and abstracts in the underlying papers. The task
is to identify the primary category of each arXiv paper, that is, to classify each node into one of the
40 classes.

• Amazon-Ratings (Platonov et al., 2023) is a heterophilic network that models Amazon product
co-purchasing information, where nodes represent products and edges represent frequently co-
purchased items. The goal is to predict average product ratings from five classes, with node features
being the fastText embeddings of product descriptions.

• PascalVOC-SP is an inductive dataset from LRGB (Dwivedi et al., 2023), which contains graphs
derived from images. In particular, the nodes represent super-pixels and edges represent their
boundaries. The labels are derived based on semantics, which makes the task similar to image
segmentation.

As mentioned in Section 3, we closely follow the latest GNN tuning technique from Luo et al. (2024),
which considers residual connection, batch normalization, dropout, etc., and use their code base for
training classical GNNs and GTs on most datasets, except for PascalVOC-SP, where we adopt the
hyperparameters reported by Tönshoff et al. (2024) and Shirzad et al. (2023).

C.2 EXPERIMENTAL SETUPS

As discussed earlier in Section 3, we consider transductive node classification with train/validation/test
splits of 10%/10%/80% on all four graphs in City-Networks.

Evaluation protocols. Since our goal is to investigate the presence of long-range dependency, we
train each model at num_layers=[2, 4, 8, 16] while fixing hidden_size=128, and then check if the
model’s performance will positively correlate with num_layers. All cases are repeated 5 times, and
we present their means and standard deviations. In the ablation studies below, we also investigate
different choices of hidden_size in [16, 32, 64, 128] following this strategy, which not only acts as
hyperparameter tuning, but also shows the robustness of our conclusion to different choices of model
hyperparameters.

Hyperparameters We run each model for 30k maximum epochs using AdamW (Loshchilov &
Hutter, 2019) optimizer for sufficient training, during which we record the validation accuracy every
100 epochs and save the model at the best validation epoch for final testing. Meanwhile, we closely
follow the latest GNN tuning technique from Luo et al. (2024), and our hyperparameter search
space is summarized in Table 5. Note that for GTs, we do not apply positional encoding due to its
impractical computation on our large graphs (which is one of the challenges of applying GTs on large
graphs), and use GCN as their internal MPNNs.

C.3 ABLATION STUDIES

Results under different hidden channel sizes. To further support our main findings, we test two
classical GNN baselines: GCN (Kipf & Welling, 2017) and GraphSAGE (Hamilton et al., 2017);
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Table 5: Summary of hyperparameters and their search space.

Type Hyper-parameter Search range Default

Model

num_layers [2, 4, 8, 16] 16
hidden_size [16, 32, 64, 128] 128
pre_linear_layer [0, 1, 2] 0
post_linear_layer [0, 1, 2] 2
residual [True, False] True

Train

learning rate [10−4, 5× 10−4, 10−3] 10−3

dropout [0, 0.2, 0.5, 0.7] 0.2
weight decay [0, 10−5, 5× 10−5, 10−4] 10−5

normalization [None, BatchNorm, LayerNorm] BatchNorm

and two GT baselines: Exphormer (Shirzad et al., 2023) and SGFormer (Wu et al., 2023) under
different hidden_size=[16, 32, 64, 128] on Paris, Shanghai, and L.A.. The results are presented
in Figure 10, where we can observe a consistent pattern with our main findings in Figure 3—the
baselines’ performance improves substantially when increasing the number of layers from 2 to 16.

Figure 10: Ablation results under hidden_size=[16, 32, 64, 128] and num_layers=[2, 4, 8, 16] on
Paris, Shanghai, and Los Angeles. The patterns are all consistent with our findings in Section 3.

Notably, all baselines generally achieve superior performance with a larger hidden_size. However,
such differences are often negligible compared to the increasing trend in model depths. With that
being said, in the next section, we proceed to investigate scenarios when the model size is fixed.

Results at fix model depth with various sampling hops. As discussed earlier, one limitation
of the main results on Figure 3 is that the observed performance gains may be attributed to the
increasing model parameters as the number of layers L grows. To address this, we further investigate
the scenario where L is fixed at 16 (i.e., keeping the model size constant), and adopt an H-hop
neighborhood sampling method introduced in GraphSAGE (Hamilton et al., 2017) that refrains the
model from seeing beyond hop H . Note that the same method is also widely used in the literature for
training models on large graphs.

Concretely, our strategy is implemented with NeighborLoader from PyG, which recursively
selects [N1, N2, . . . , NH ] neighbors from a node’s 1st, 2nd, ..., H-th hop neighborhood. Given the
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grid-like structure of our city networks, the size of the neighborhood does not explode with H , and
we empirically found that the average size of a 16-hop ego-network is typically around 1k nodes,
which remains manageable for most GPU devices. Therefore, we sample all nodes inside the H-hop
neighborhood, and use a batch_size of 20k (i.e., 20k seed nodes) for training and testing.

The results are presented in Figure 11, where we can observe that every baseline, at a fixed model
architecture, shows a consistent upward trend on all four city networks. These results indicate that
long-range dependency, rather than the parameter size, is the primary factor that contributes to the
improvement of the model’s performance.

Figure 11: Results for fixing number of layers L = 16 and setting numbers of hops H ∈ [2, 4, 8, 16].

One may notice the trend from H = 8 to H = 16 remains relatively flat. We attribute this phe-
nomenon to the overlapped subgraphs sampled from NeighborLoader, where the ego-networks
of different seed nodes often share common supporting nodes. Consequently, if the number of layers
L exceeds H , the model can capture information from more distant hops beyond H , rather than being
limited to a maximum of H as expected. This effect is further amplified when using a large batch
size (i.e., a large number of seed nodes) or a large number of hops (i.e. a large neighborhood size), as
it increases the chance of overlapping ego-networks. As a result, the performance remains similar
between these two settings. Note that this phenomenon is not a contradiction to our main claims, but
rather a limitation, as we can not create perfect 8-hop subgraphs.

Deeper depths beyond the ground-truth range. While adopting a fixed ground-truth range
prevents our long-range task from falling into an unbounded "the longer the communication path, the
better the model performance" setting, we additionally benchmark GNNs with depths much deeper
than the ground-truth task range (16th hop) here for a more complete analysis of the model’s behavior.
In particular, we test GCN and GraphSAGE with depth=[32, 48, 64] on Paris, Shanghai, and L.A.
under the same experimental settings (GTs are not tested here due to OOM at these depths), where
results are presented in Figure 12. As expected, we can observe that both GNNs, even with residual
connections and batch norm enabled, start to suffer from over-smoothing when model depth exceeds
the ground-truth range of 16.

Figure 12: Results for models at deeper depths L ∈ [32, 48, 64] beyond the ground-truth range of 16
hops. For illustration purposes, we also show results at model depths of [2, 4, 8, 16].

In addition, we also show the results of our per-hop influence measurement and R in Figure 13 and
Table 6, respectively, where we compare the behaviors of these two deep GNNs on our city networks
to those on the other common graph datasets. The results reveal a consistent trend with our findings
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in Section 4 that the influence scores decay at a much slower rate on our city networks compared to
those on the existing graph datasets in the literature. It is also worth noting that the current model
depth of 64 exceeds the diameters of those common graph benchmarks, which leads to the “cut-off”
pattern in Figure 12.

Figure 13: Normalized average total influence T̄h/T̄0 averaged across nodes, where the underlying
models are trained with 64 layers—much deeper than the ground-truth range of the task.

Table 6: Average size of the influence-weighted receptive field R across datasets on GCN and
GraphSAGE, where both models are trained with 64 layers with residual connections and batch norm.

Model Paris Shanghai L.A. Cora Amazon PascalVOC

GCN 8.61 10.21 9.64 5.17 6.51 7.06
GraphSAGE 8.34 10.72 10.54 3.74 2.78 7.62

C.4 SUMMARY OF BASELINE RESULTS

For reference, we summarize the best baseline results on our City-Networks in Table 7. Note
that due to the global attention module in GraphGPS, it is highly memory-consuming and fails to fit
into our GPU memory (48GB), even with hidden_size=16 under num_layers=16.

Table 7: Baseline results on City-Networks.

Baseline Type Paris Shanghai Los Angeles London

MPNNs

MLP 25.5± 0.4 28.4± 0.6 24.1± 0.5 27.9± 0.1
ChebNet 54.1± 0.2 66.5± 0.1 61.4± 0.4 54.7± 0.2
GCN 53.2± 0.3 62.1± 0.2 58.3± 0.3 50.1± 0.7
GraphSAGE 54.6± 0.2 68.3± 0.5 61.4± 0.3 55.4± 0.2
GAT 51.1± 0.3 68.0± 0.5 59.5± 0.3 52.0± 0.3
GCNII 51.3± 0.2 61.5± 0.4 56.0± 0.3 48.2± 0.3
DropEdge 48.2± 0.2 60.8± 0.4 55.5± 0.3 45.0± 0.3

GTs GraphGPS 52.1± 0.6 63.0± 0.5 59.8± 0.5 OOM
Exphormer 55.1± 0.8 70.2± 0.4 63.8± 0.6 49.5± 0.4
SGFormer 52.0± 0.8 64.1± 0.3 60.1± 0.7 48.3± 0.3

C.5 RESULTS ON RINGTRANSFER

The RingTransfer (Bodnar et al., 2021) experiment is used for testing long-range dependency
in GNNs under inductive settings with small ring-like graphs. In this section, we will analyze the
behaviors of different graph models on this synthetic task using our influence metric.

Task description. Each graph in the RingTransfer dataset is a ring of N nodes with only two nodes
marked: the source node and the target node, which are placed at opposite sides of the ring (i.e., at a
distance of the diameter N/2). All nodes on the ring will have a constant feature vector except for
the source node, which has a one-hot encoding of its label. The task is to train a model such that
the target node’s representation predicts the source’s label, which requires the model to propagate
long-range information from the source node to the target node.
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Setups. We followed the same setups by Bodnar et al. (2021) and adopted k=16 (i.e., a task range
of 8 hops) with a model depth of 8 in our setting, as we observed a similar phenomenon in their
paper that GNNs start to deteriorate after this point. Meanwhile, since the diameter of rings matches
the true task range of N/2 in RingTransfer, there will be no gradient w.r.t. nodes from hops >
N/2. Therefore, we test models at depth up to the ground-truth range in this setting. In particular, we
evaluate GCN, GraphSAGE, and Exphormer with training/validation/test splits of 5k/1k/1k graphs,
where all models can achieve 100% accuracy on the testing set. We then apply our measurement on
the target node only for each graph, and then report the average over the testing set.

Figure 14: Influence scores on RingTransfer.

Results and discussion. The results for R and
per-hop influence are summarized in Figure 14.
As expected, we can observe a strong influence
at hop 8 for GCN and GraphSAGE; while for
Exphormer, as it adopts global virtual node and
expander graph operations in its attention mecha-
nism, the source node can be effectively reached
within a single hop. Therefore, we observe a
higher influence on the first few hops compared
to more distant hops since the underlying graph
has been modified. In addition, we have also
tested models with deeper depth of 16 layers,
where the result shows a similar pattern to that
in Figure 14, except for the 0 influence after hop
8 (as explained above).

While we do observe different influence patterns
due to different model designs, we’d also like to point out that this is because RingTransfer is too
simplistic and relies solely on long-range interactions, such that simple operations (e.g., rewiring,
virtual node, etc.) will convert it into a short-range task.

C.6 MORE RESULTS ON HETEROPHILIC DATASETS

In Section 3 and 4, we have tested baselines and quantified their long-range influence on a repre-
sentative heterophilic dataset, Amazon-Ratings. To further support our findings that heterophily
does not empirically imply long-rangeness, we proceed to show more results on the following het-
erophilic datasets that are commonly used in the literature: Roman-Empire (Platonov et al., 2023),
Wisconsin, Texas, and Cornell (Pei et al., 2020). The results for per-hop influence and R are
presented in Figure 15 and Table 8, respectively, where we can observe from these two diagnostics
that heterophilic datasets generally exhibit a short-range pattern compared to our city networks across
different models, which is consistent with the findings in our paper.

Figure 15: Normalized average total influence T̄h/T̄0 averaged across nodes at different hops on
heterophilic datasets, where results on other datasets are also presented for comparison purposes.

Note that Wisconsin, Texas, and Cornell are small heterophilic graphs (around 200 nodes)
and all have a small diameter of 8, which explains their extreme short-range behaviors compared to
other heterophilic datasets like Amazon-Ratings and Roman-Empire.
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Table 8: Average size of the influence-weighted receptive field R across heterophilic datasets and
models with 16 layers, where results on other datasets are also presented for comparison purposes.

Model L.A. Cora arxiv PascalVOC Amazon Roman Wisconsin Texas Cornell

GCN 5.36 2.56 1.34 3.38 1.92 2.04 1.28 1.11 1.54
GraphSAGE 5.44 2.37 1.40 2.99 1.80 1.89 0.97 0.89 0.96
GraphGPS 7.92 2.65 OOM 7.14 6.86 6.37 1.03 0.77 0.98
SGFormer 4.03 3.21 1.21 NA 2.46 2.33 0.14 0.24 0.17

D COMPUTATIONAL COMPLEXITY IN R

The computation of R requires calculating Th(v) for v ∈ V at h ∈ [0, 1, ...,H], in which the
dominant cost stems from computing the Jacobian matrix. Since the model’s gradient at node v will
be zero for nodes beyond its Hth hop, we only need to compute the Jacobian within each node’s
H-hop neighborhood. This leads to a computational cost of O(NN̄H), with N̄H being the average
size of H-hop ego-networks on G:

N̄H =
1

N

∑
v∈V

|NH(v)|, NH(v) = {u ∈ V | d(v, u) ≤ H}, (13)

where d(v, u) is the length of shortest path from node v to node u. Given the large scale of our
city networks, we employ a stochastic approximation that samples 10k nodes to further reduce
the computational cost. For reference, the calculation finishes under 30 minutes for all baselines
on all four City-Networks using a single NVIDIA RTX 3090 GPU with 48 AMD Ryzen
3960XCPU cores.

E LIMITATIONS AND FUTURE WORK

Total Influence under model bias. Since our measurement is based on the gradient of the underly-
ing model, its behavior will be naturally influenced by the bias in the architecture. For example, as
described in Appendix C.3, when the models’ depth (num_layers=64) is much deeper than the known
task depth (k = 16), we observe that Rs are generally larger than those from models with 16 layers
in our city networks. Meanwhile, the per-hop influence also suggests that deeper models leverage
information from distant hops beyond the ground truth range k (which makes sense since the model
has no information about k, and node features beyond the kth hop may contain useful information for
prediction). Therefore, the biased approximation of the ground-truth function will inevitably lead to a
biased estimation of the underlying task’s range, even though the measurement remains a faithful
description of how the model utilizes long-range information.

However, our conclusions regarding long-rangeness across datasets are still valid, since each model is
validated across different datasets under the same depth in our analysis, where all models show clear
long–range patterns on our city-networks compared to those on the existing benchmarks at depth=16
(Section 4) and depth=64 (Appendix C.3).

Total Influence on large dense graphs. During our experiment, we found that on large dense
graphs, especially the one with small diameters such as ogbn-arxiv (|V | = 169k, diam = 25), it
is difficult to compute our Total Influence measurement, as N̄H in equation 13 quickly converges
to N as H increases. In this case, if the model also happens to have complex architectures (e.g.,
GraphGPS), the computation of R and Th will therefore become impractical. Meanwhile, we also
want to point out that this is a common challenge for all Jacobian-based analysis in the literature (Xu
et al., 2018; Gasteiger et al., 2022), and it is an open question for future works to explore more
effective methods for measuring long-range dependency on dense graphs.

Inductive setting. In the current work, we focus on testing long-range signals under transductive
settings on large-scale graphs, which is largely underexplored in the literature. However, we believe
it is also possible to extend our method to inductive settings by sampling a set of cities’ road
networks via OpenStreetMap (or similar geographic graph sources), and then defining a graph-level
classification or regression task on them, e.g., urban (graph) morphology classification. We leave this
direction for future explorations.
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F PROOFS AND JUSTIFICATIONS IN SECTION 5

F.1 DETAILS OF LINEARIZATION

A Graph Convolutional Network (GCN) layer with input features X(l), learnable weights W (l) for
layer l, and non-linear pointwise activation function σ is defined as:

X(l+1) = σ
(
S̃adjX

(l)W (l)
)
. (14)

As pointed out in Wu et al. (2019), under linearization (removal of non-linear activations), an L-layer
Simple Graph Convolution (SGC) can be expressed as:

X(L) = (S̃adj)
LX(0)(

L−1∏
l=0

W (l)), (15)

where (S̃adj)
L is the L-th power of the normalized adjacency operator. The result follows directly

from iterative application of the linearized GCN operation.

Next, it is well known that the normalized adjacency operator S̃adj admits an eigendecomposition:

S̃adj = ŨΛŨT , (16)

where Λ = diag(λ1, . . . , λN ) with λ1 < . . . < λN and Ũ contains the corresponding eigenvectors.
And, for any positive integer k, the power iteration is as follows:

(S̃adj)
k = ŨΛkŨT , (17)

where Λk = diag(λk1 , . . . , λ
k
N ).

Wu et al. (2019) discuss the spectral properties of the normalized adjacency operator, which satisfies:
λN = 1, and |λi| < 1 for all i < N . Therefore, as the number of layers approaches infinity, the layer
collapse phenomenon is well-documented in the literature:

lim
l→∞

(S̃adj)
l = ũN ũT

N , (18)

where ũn is the eigenvector corresponding to λN . This is because as l → ∞, λli → 0 for all i < N
since |λi| < 1. Meanwhile, λlN = 1l = 1 for all l. Thus,

lim
l→∞

(S̃adj)
l = Ũ

0
. . .

1

 ŨT = ũN ũT
N . (19)

This ultimately leads to information loss. In the limit as k → ∞, the graph convolution operation
collapses all node features to scalar multiples of ũn, the entry of which at node v is

√
1 + degree(v),

resulting in complete loss of the original feature information. In other words, the learned representa-
tions suffer from over-smoothing.

F.2 PROOFS FOR THEORETICAL RESULTS IN SECTION 5

Lemma F.1 (Eigenvalue complementarity of normalized operators). For a connected graph, the
eigenvalues Sadj and Lsym exhibit the following complementarity relationship:

λN+1−i(Sadj) = 1− λi(Lsym) (20)
for all i = 1, . . . , N , where N is the number of nodes in the graph, and eigenvalues (for both
operators) are indexed such that λ1 ≤ λ2 ≤ · · · ≤ λN .

Proof of Lemma F.1. By definition, Lsym = I − Sadj . Since both matrices are symmetric, they are
diagonalizable with real eigenvalues. Let u be an eigenvector of Lsym with eigenvalue λi(Lsym).
Then:

Lsymu = λi(Lsym)u ⇒ (I − Sadj)u = λi(Lsym)u ⇒ Sadju = (1− λi(Lsym))u. (21)
Therefore, u is also an eigenvector of Sadj with eigenvalue 1− λi(Lsym). Since the eigenvalues are
ordered in ascending order for Lsym and the transformation 1− λi reverses this ordering, we have
λN+1−i(Sadj) = 1− λi(Lsym).
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This complementarity implies that when the normalized algebraic connectivity λ2(Lsym) is small,
the second largest positive eigenvalue of Sadj must be close to 1. However, in our context, we are
interested in the algebraic connectivity of the normalized graph Laplacian that would correspond to
the normalized adjacency operator, S̃adj , introduced in Section 5.1, instead of that of Sadj , motivating
the following:

Proposition F.2 (Self-loops decrease algebraic connectivity of the original graph, from Section 5.2).
Assume a connected graph G with more than two nodes. For all γ > 0,

λN−1 (Sadj) = λN−1

(
D− 1

2AD− 1
2

)
< λN−1

(
(γI +D)−

1
2 (γI +A)(γI +D)−

1
2

)
. (22)

Proof of Proposition 5.1 (same as Proposition F.2). Let G′ be the graph G with self-loops added,
each having weight γ > 0. If G already contains self-loops, their weights are increased by γ.
We denote the vertex set of G′ as V , with the obvious correspondence to the vertices of G. Then
LG

sym = I −D− 1
2AD− 1

2 and LG′

sym = I − (γI +D)−
1
2 (γI +A)(γI +D)−

1
2 , so proving

λ2(L
G
sym) > λ2(L

G′

sym). (23)

will prove the proposition. Note that in practice we care about the case where γ = 1. We proceed as
follows: we take the eigenfunction on G corresponding to λG , lift it to G′, and show that this yields
an upper bound. Using the variational characterisation of eigenvalues in (Chung, 1997, Eq. 1.13) and
the fact that edge weights wG(u, v) = wG′(u, v) if u ̸= v, and the degrees of vertices dG

′

v = γ + dGv :

λ2(L
G
sym) = inf

f :
∑

x∈V f(x)dG
x=0

∑
x∼y(f(x)− f(y))2w(x, y)∑

x∈V f(x)
2dGx

(24)

Pick such an f attaining this infimum (i.e., the eigenvector of LG
sym corresponding to λ2(LG

sym)

multiplied by D− 1
2 ). We use this f to construct a signal g on G′. Let

g(x) = f(x)−
γ
∑

x∈V f(x)∑
x∈V d

G
x + γ

. (25)

That is, we reduce f by a constant everywhere. We have picked the constant such that∑
x∈V

g(x)dG
′

x =
∑
x∈V

g(x)(dGx + γ) = 0. (26)

Since g is simply f shifted by a constant,

∀x, y ∈ V : g(x)− g(y) = f(x)− f(y). (27)

Again, by the variational characterisation of eigenvalues in (Chung, 1997, Eq. 1.13):

λ2(L
G′

sym) = inf
h :

∑
x∈V h(x)dG′

x =0

∑
x∼y(h(x)− h(y))2w(x, y)∑

x∈V h(x)
2dG′

x

(28)

≤
∑

x∼y(g(x)− g(y))2w(x, y)∑
x∈V g(x)

2dG′
x

=

∑
x∼y(f(x)− f(y))2w(x, y)∑

x∈V g(x)
2dG′

x

(29)

The first inequality holds because g is in the set {h :
∑

x∈V h(x)d
G′

x = 0} , and the infimum serves
as a lower bound for the function on any element of that set. The last equality follows from applying
(27).

We now show that
∑

x∈V g(x)
2dG

′

x >
∑

x∈V f(x)
2dGx . This will let us bound (29) above by (24).

Expanding the definition of g:

∑
g(x)2dG

′

x =
∑

f(x)2dG
′

x − 2
γ(
∑
f(x)dG

′

x )(
∑
f(x))∑

dG′
x

+
γ2(
∑
f(x))2∑
dG′
x

(30)
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Noting that
∑
f(x)dGx = 0 and dG

′

x = dGx + γ so
∑
f(x)dG

′

x = γ
∑
f(x),∑

g(x)2dG
′

x −
∑

f(x)2dGx = γ
∑

f(x)2 − 2
γ2(
∑
f(x))2∑
dG′
x

+
γ2(
∑
f(x))2∑
dG′
x

(31)

= γ
∑

f(x)2 − γ2
(
∑
f(x))2∑
dG′
x

(32)

By the Cauchy-Schwarz inequality on f(x) and 1,

(
∑

f(x))2 = (
∑

f(x) · 1)2 ≤ (
∑

f(x)2)(
∑

12) = n
∑

f(x)2. (33)

Furthermore, as G is connected, each node has degree of at least 1 – ∀x : dGx ≥ 1. As the graph has
more than two nodes, one node must have degree of at least 2. So

∑
dG

′

x > n(1 + γ), and therefore:∑
g(x)2dG

′

x −
∑

f(x)2dGx ≥ γ

n
(
∑

f(x))2 − γ2
(
∑
f(x))2

n(1 + γ)
(34)

=
(
∑
f(x))2

n

(
γ − γ2

1 + γ

)
(35)

=
(
∑
f(x))2

n

(
γ

1 + γ

)
(36)

> 0. (37)

Based on which we conclude that
∑

x∈V g(x)
2dG

′

x >
∑

x∈V f(x)
2dGx , and so by (24) and (29):

λ2(L
G′

sym) ≤
∑

x∼y(f(x)− f(y))2w(x, y)∑
x∈V g(x)

2dG′
x

(38)

<

∑
x∼y(f(x)− f(y))2w(x, y)∑

x∈V f(x)
2dGx

= λ2(L
G
sym). (39)

Hence, λ2(LG
sym) > λ2(L

G′

sym) and by (23), the proof is complete.

Proof of Theorem 5.2. Given Lemma F.1 (correspondence between the eigenvalues of Sadj and
LG

sym) and Proposition 5.1, seeing that diam(G) ≥ 4 means that the graph has more than two nodes,
the result follows immediately from (Chung, 1997, Lemma 1.14).

F.3 RATIONALE IN THEOREM 5.2

The second largest eigenvalue of S̃adj in terms of magnitude is either λN−1 or λ1 . We explicitly
consider the case when it is λN−1. As λN−1 approaches 1, the rate of convergence to the limiting
state ũN ũT

N decreases exponentially with the number of layers. For any layer l, the difference from
the limiting state can be expressed as:

||(I − ũN ũT
N )(S̃adj)

l|| = ||Ũdiag(λl1, ..., λ
l
N−1, 0)Ũ

T || = λlN−1 (40)

where || · || denotes the spectral norm and the last equality follows from that the spectral norm of a
diagonal matrix being equal to the largest absolute value of its diagonal entries. Thus, when λN−1 is
close to 1, more layers are required to achieve the same level of convergence to the limiting state. Since
λN−1 < 1, taking powers of λN−1 will eventually converge to zero, but the rate of this convergence
slows dramatically as λN−1 approaches 1. Hence, because graphs with a large diameter and low
maximum degree have a lower algebraic connectivity due to reduced inter-component connectivity,
GNNs operating on such graphs will be less susceptible to over-smoothing when processing node
features.

We have focused on the case where the second largest eigenvalue by magnitude of S̃adj is λN−1.
The special case where it is instead λ1 (which, in this case, must be negative) gives a different
regime, where it is possible for graphs with smaller diameters to exhibit less over-smoothing than
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those with larger diameters. Consider, for example, a bipartite graph where over-smoothing occurs
independently on each side of the partition, resulting in two distinct values depending on which
partition the node is in, rather than convergence to a multiple of ũN , where the node feature value
would only depend on the degree.

Nevertheless, our analysis demonstrates that large diameters and sparse connectivity generally reduce
the likelihood of over-smoothing. This insight motivates our proposal of benchmark datasets with
significantly larger diameters than those currently used in the literature (see Table 1). The underlying
hypothesis is that reduced likelihood of over-smoothing in high-diameter, sparse networks enables the
possibility of GNNs learning representations that capture long-range dependencies when necessary.

F.4 RELATIONS TO BRAESS PARADOX AND PREVIOUS WORK

Sparsity of the graph and spectral gap. Our main theoretical result in Section 5 (Theorem 5.2)
suggests that the second largest eigenvalue of the normalized augmented adjacency matrix has a
lower bound that is increasing in graph diameter and decreasing in maximum node degree, hence
the spectral gap tends to be smaller for graphs with larger diameter and smaller maximum degree.
However, this tendency may not be exact as the bound is not necessarily tight, and furthermore,
a smaller maximum degree does not necessarily imply a sparser graph (although the two can be
generally correlated). Therefore, our result is not in contradiction with the Braess paradox, which is
an interesting observation by itself.

Spectral gap and tendency of over-smoothing. Our analysis of the rate of over-smoothing is
purely based on the spectral analysis that the speed of convergence to a stationary point upon repeated
application of a matrix operator depends on the spectral gap: a smaller gap generally slows down
convergence in this precise sense. It is worth noting that this analysis is task-agnostic, i.e., it does
not take into account node classification as a task, and furthermore distribution of node labels. The
analysis of over-smoothing by Jamadandi et al. (2024) is, however, task-dependent, as it specifically
highlights situations when pruning edges can mitigate over-smoothing of task-beneficial signals by
disconnecting nodes with different labels. Therefore, while both are meaningful, the two analyses
look at over-smoothing from slightly different perspectives.

G JACOBIAN-BASED INFLUENCE SCORE MOTIVATION

Here, we provide additional motivation behind the proposed measurement for quantifying long-
rangeness in Section 4.

G.1 INTUITION BEHIND JACOBIAN-BASED INFLUENCE SCORE

The Jacobian has been used in analysis of node interactions in GNNs in multiple previous works (Xu
et al., 2018; Gasteiger et al., 2022; Di Giovanni et al., 2023). For example, it is used in Di Giovanni
et al. (2023, Theorem 4.1) to show when over-squashing happens in long-range interactions, and
to show how vanishing gradients occur in very deep GNNs. Influence specifically has been used to
compute a natural measure of interactions between two nodes (Xu et al., 2018). We accordingly use
aggregated influence, Equation equation 2, to gauge how nodes at a distance h affect the output of the
GNN at a focal node, thus quantifying long-rangeness. By the definition of partial derivatives, we
can understand the Jacobian as follows:

∂H
(ℓ)
vi (X)

∂Xuj
= lim

δ→0

H
(ℓ)
vi (X + δeuj)−H

(ℓ)
vi (X)

δ
, (41)

where X is the original (unperturbed) input feature matrix, and δeuj is an infinitesimal perturbation
in the jth component of the feature vector at node u (a standard basis vector in the node feature space).
This means the more positive the Jacobian entry is, the more a positive perturbation of the features
at node u and component j will increase the logits at node v and component i at the final layer. In
other words, the Jacobian entry being positive or negative means that the logits are pushed up or
down. Given that, after applying the softmax function, the probabilities at a given data point increase
monotonically with the logits at that point, we can consider both positive and negative influences as
actual influence and only focus on the absolute value (i.e., sensitivity rather than direction).
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Monotonicity of the Softmax function. Consider the derivative of the i-th softmax probability with
respect to its corresponding logit:

∂pi
∂zi

=
∂

∂zi

(
exp(zi)∑
j exp(zj)

)
=

exp(zi)
∑

j exp(zj)− exp(zi) exp(zi)

(
∑

j exp(zj))
2

= pi(1− pi) (42)

Observe that: pi(1− pi) > 0 for 0 < pi < 1 and ∂pi

∂zi
→ 0 as pi → 0 or pi → 1. For j ̸= i:

∂pi
∂zj

=
∂

∂zj

(
exp(zi)∑
h exp(zh)

)
= −exp(zi) exp(zj)

(
∑

h exp(zh))
2
= −pipj (43)

This proves that the softmax probabilities increase with their corresponding logits and decrease with
other logits.

The above is a well-known fact and we do not claim novelty.

G.2 POTENTIAL LIMITATIONS: OUTPUT CANCELLATION

However, it is possible to find counterexamples in which measuring the absolute Jacobian sensitivity
could be insufficient or even misleading: if a positive and negative influence always cancel each
other out. We find such a situation can happen in unregularised linear models with heavy collinearity
of features (Hastie et al., 2009, p.63) – indeed, this is presented as one of the motivations of ridge
regression. To better understand this, we give a simple model of such cancellation:
Proposition G.1 (Absolute Jacobian sensitivity may over-estimate influence). There exists a model
hv , where the combined effect of changes in input variables on the output is zero (i.e., the sum of the
partial derivatives is zero), while the sum of the absolute values of the individual partial derivatives is
nonzero.

Proof of Proposition G.1. Consider a graph with three nodes u, v, w, where v is the focal node for
our calculation. Let input and output features be scalars Xu = xu on Hv = hv (nodewise binary
classification where using a single logit as input to a sigmoid function is possible). The influence
is I(v, u) =

∣∣∣ ∂hv

∂xu

∣∣∣, and similarly for Xw = xw, I(v, w) =
∣∣∣ ∂hv

∂xw

∣∣∣. Assume the model learns the
function hv = xu − xw and that xu ≈ xw, then following the definition in the main text:

Th(v) = I(v, u) + I(v, w) =

∣∣∣∣∂hv∂xu

∣∣∣∣+ ∣∣∣∣ ∂hv∂xw

∣∣∣∣ = |1|+ | − 1| = 2, (44)

while hv = 0. In fact,

∂hv
∂xu

+
∂hv
∂xw

= 1 + (−1) = 0 (45)

holds for all (xu, xw); no small-difference assumption on xu and xw is required.

This demonstrates that the sum of the absolute values of the Jacobian entries can be non-zero, even
when the net effect on the output is zero. The key is the opposing nature of their influence, not their
specific values. The example sets xu and xw as approximately equal to highlight that the net output
can be small (or changes to it can be small) while the individual influences are significant.

Although this is a valid concern, we next show that for Message Passing Neural Networks (MPNNs),
at least at initialization, such cancellation does not happen.
Definition G.2 (Message-Passing Neural Network layer). For a MPNN layer l, the node feature
update for v is given by: X

(l+1)
v = ϕ

(
X

(l)
v ,
⊕

u∈N (v) ψ
(
X

(l)
v ,X

(l)
u

))
, where ψ is a message

function, responsible for computing interactions between neighboring nodes,
⊕

is a permutation-
invariant aggregation function, such as summation, mean, or max, ϕ is an update function that
integrates aggregated information into the node representation.
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Definition G.3 (Smooth Hypersurface in RD). A hypersurface in RD is a subset defined locally
as the zero set of a continuously differentiable function f : RD → R such that the gradient ∇f is
nonzero at almost every point where f = 0. That is, if we have an equation of the form f(θ) = 0,
where θ is a vector of parameters, and if ∇f(θ) ̸= 0 generically, then f = 0 defines a (locally)
(D − 1)-dimensional manifold, which is a hypersurface.
Theorem G.4 (Measure-zero of exact cancellation at MPNN initialization). Consider an MPNN
where the functions ψ and ϕ are parameterized by θ and differentiable, typically modeled as Mul-
tiLayer Perceptrons (MLPs). Suppose the parameters θ are drawn from a probability distribution
that is absolutely continuous with respect to the Lebesgue measure. Then, the set of parameter
configurations for which exact cancellation of Jacobian contributions occurs has Lebesgue measure
zero.

Proof of Theorem G.4. For exact cancellation to hold assuming
⊕

=
∑

, the following sum must be
identically zero while the individual terms remain non-zero. Since ψ and ϕ are differentiable and
parameterized by θ, each Jacobian term is a smooth function of θ. The equation:

f(θ) =
∑

u∈N (v)

∂ψ(X
(l)
v ,X

(l)
u )

∂X
(l)
u

= 0, (46)

defines a level set of smooth functions, a hypersurface (or a set of lower-dimensional submanifolds)
in parameter space. The solution set of a nontrivial smooth function has Lebesgue measure zero
unless it is identically zero across all θ, which is not the case here. Furthermore, since θ is drawn
from an absolutely continuous distribution (such as Gaussian or uniform), the probability of exactly
selecting a parameter that lies on this hypersurface is zero at initialization. Thus, exact cancellation
of Jacobian contributions is an event of measure zero in the space of our idealized single-layer
MPNN: this can naturally be extended to multiple layers. Note that in this proof we have assumed
the Jacobian sum is not identically zero by construction, unlike in Proposition G.1 where the function
was explicitly constructed to ensure cancellation.

Lastly, it is worth noting an alternative perspective on interpreting influence measures derived from
the sum of absolute Jacobian entries, particularly when considering potential cancellation effects
as demonstrated in Proposition G.1. One can indeed argue that the measure’s utility lies precisely
in its capacity to quantify the magnitude of sensitivity to inputs from individual distant nodes or
pathways, irrespective of whether these influences ultimately negate one another in contributing to
the final output. From this stance, focusing on the sum of absolute values reveals the underlying
structure and strength of potential long-range dependencies (the information channels themselves)
that might be obscured by observing only the net effect. This interpretation, therefore, hinges on
defining dependency or interaction based on the existence and intensity of these information flow
pathways, rather than strictly on their final, combined impact on a node’s prediction.

H ADDITIONAL DEFINITIONS IN SECTION 6

Definition H.1 (Standard lattice in RD). The standard lattice in RD, denoted by ZD, is the set
of all integer-coordinate points in RD: ZD = {(z1, z2, . . . , zD) | zi ∈ Z for all i = 1, . . . , D}.
Equivalently, ZD consists of all points that can be written as integer linear combinations of the
standard basis vectors: ZD =

{∑D
i=1 ziei | zi ∈ Z

}
, where {e1, e2, . . . ,eD} is the standard basis

for RD, meaning each ei is a unit vector with a 1 in the i-th position and 0 elsewhere. This lattice
forms a grid-like structure in RD with each point having exactly 2D one-hop (adjacent lattice)
neighbors. For a planar graph D = 2, hence, each node has a total of 4 neighbors.
Definition H.2 (h-hop shells). Let G = (V,E) be a graph with shortest-path distance ρ : V ×V → N.
The h-hop shell (or h-hop neighborhood) of a node v ∈ V is defined as Nh(v) = {u ∈ V : ρ(v, u) =
h}. That is, Nh(v) consists of all nodes that are exactly h hops away from v.
Definition H.3 (Quasi-isometric graphs). Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs
equipped with shortest-path distance functions ρ1 : V1 × V1 → R≥0 and ρ2 : V2 × V2 → R≥0,
respectively (in our case distances are in N). We say that G1 and G2 are quasi-isometric if there
exist constants λ ≥ 1, C ≥ 0, and D ≥ 0, and a function f : V1 → V2 such that for all u, v ∈ V1:
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1
λρ1(u, v)− C ≤ ρ2(f(u), f(v)) ≤ λρ1(u, v) + C, Every node in V2 is within distance D of some
f(u), i.e., ∀v ∈ V2, ∃u ∈ V1 such that ρ2(v, f(u)) ≤ D.

I PROOFS FOR THEORETICAL RESULTS IN SECTION 6

Proof of Lemma 6.1. Since G is grid-like in D dimensions, its structure mimics that of ZD. In RD,
the volume of a ball of radius h scales as hD (recall the volume of a sphere in R3 is 4

3πh
3). Let

Bh(v) = {u ∈ V : ρ(v, u) ≤ h}, (47)

denote the ball of radius h centered at v. Then for large h (asymptotic bound),

|Bh(v)| = Θ(hD). (48)

Since the h-hop neighborhood is the set difference

Nh(v) = Bh(v) \Bh−1(v). (49)

This effectively means that the size of Nh(v) is approximately the difference between the volume of
two consecutive balls:

|Nh(v)| = |Bh(v)| − |Bh−1(v)|. (50)

A standard asymptotic argument implies

|Nh(v)| = Θ(hD−1), (51)

since we can approximate the aforementioned difference via:

|Bh(v)| − |Bh−1(v)| = ChD − C(h− 1)D ≈ ChD − C(hD −DhD−1) = CDhD−1, (52)

using the binomial expansion and assuming large h (we are concerned with long-range interactions),
where the leading order term dominates. Intuitively, this corresponds to the surface growth of the
ball, which in RD scales as hD−1 (the area of a sphere in R3 is 4πh2). Thus, there exist constants
C1,C2 > 0 and an integer h0 such that for all h ≥ h0,

C1 h
D−1 ≤ |Nh(v)| ≤ C2 h

D−1. (53)

Proof of Theorem 6.2. Assume that within Nh(v) there is a unique node u∗ with a strong influence
I(v, u∗) = I∗ > 0 and that for all other nodes u ∈ Nh(v) \ {u∗}, the influence I(v, u) is negligible
(∆ ≈ 0). Then:

The total (or sum) influence is

Isum(v, h) =
∑

u∈Nh(v)

I(v, u) ≥ I(v, u∗) = I∗. (54)

The mean influence is given by

Imean(v, h) =
1

|Nh(v)|
∑

u∈Nh(v)

I(v, u) =
1

|Nh(v)|
(I∗ +

∑
u∈Nh(v)|u∗

I(v, u)) =
I∗ +∆

|Nh(v)|
. (55)

Using the lower bound on |Nh(v)|,

Imean(v, h) ≤
I∗ +∆

C1 hD−1
. (56)

Since hD−1 → ∞ as h→ ∞ for D ≥ 2, it follows that

Imean(v, h) → 0, (57)

while Isum(v, h) ≥ I∗ remains non-vanishing.
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Proof of Corollary 6.3. For a planar graph that is grid-like (for example, a two-dimensional lattice),
set D = 2. Then, |Nh(v)| = Θ(h2−1) = Θ(h). Repeating the same argument as above: the total
influence satisfies Isum(v, h) ≥ I∗. The mean influence is bounded by Imean(v, h) ≤ I∗

|Nh(v)| ≤
I∗

C1 h .

Hence, as h→ ∞, Imean(v, h) → 0, which demonstrates that for a planar graph the dilution of the
mean aggregated influence occurs at a rate proportional to 1/h.

Proof of Corollary 6.4. Since G is grid-like in D dimensions, the size of the aggregated h-hop
neighborhood (the ball) grows as |Bh(v)| = Θ(hD). Assuming that only one node u∗ in Bh(v) has a
significant influence I∗ while the influence of all other nodes is negligible, the total (or sum) influence
satisfies IBsum(v, h) ≥ I∗. Thus, the mean influence over Bh(v) is IBmean(v, h) ≤ I∗

Θ(hD)
. That is, there

exists a constant C′ > 0 such that IBmean(v, h) ≤ I∗

C′ hD . Since hD → ∞ as h → ∞ for D ≥ 1, it
follows that IBmean(v, h) → 0.

Proof of Corollary 6.5. For any node v ∈ V , by the distinguished node assumption (reused from
Theorem 6.2) there is at least one u∗ ∈ Nh(v) with

I(v, u∗) ≥ I∗. (58)

Since the total influence is a sum over nonnegative contributions, it follows that

Th(v) =
∑

u∈Nh(v)

I(v, u) ≥ I(v, u∗) ≥ I∗. (59)

Averaging over all nodes in V ,

Th =
1

|V |
∑
v∈V

Th(v) ≥
1

|V |
∑
v∈V

I∗ = I∗. (60)

This bound is independent of the size |Nh(v)| of the h-hop neighborhood and hence remains valid
even as |Nh(v)| (or the overall number of nodes) tends to infinity.

Th =
1

|V |
∑
v∈V

Th(v) ≥ I∗, ∀h. (61)
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