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Learning Exposure Correction in Dynamic Scenes
Anonymous Authors

ABSTRACT
Exposure correction aims to enhance visual data suffering from
improper exposures, which can greatly improve satisfactory vi-
sual effects. However, previous methods mainly focus on the image
modality, and the video counterpart is less explored in the literature.
Directly applying prior image-based methods to videos results in
temporal incoherence with low visual quality. Through thorough
investigation, we find that the development of relevant communi-
ties is limited by the absence of a benchmark dataset. Therefore, in
this paper, we construct the first real-world paired video dataset,
including both underexposure and overexposure dynamic scenes.
To achieve spatial alignment, we utilize two DSLR cameras and
a beam splitter to simultaneously capture improper and normal
exposure videos. Additionally, we propose an end-to-end Video
Exposure Correction Network (VECNet), in which a dual-stream
module is designed to deal with both underexposure and overexpo-
sure factors, enhancing the illumination based on Retinex theory.
Experimental results based on various metrics and user studies
demonstrate the significance of our dataset and the effectiveness of
our method. The code and dataset will be available soon.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
video exposure correction, retinex theory, dataset, dynamic scene

1 INTRODUCTION
The images or videos taken across various scenarios may not al-
ways be ideal due to the changeable lighting conditions, which
face underexposure and overexposure problems and yield unsat-
isfactory visual effects. How to improve inappropriately exposed
visual data is gradually attracting the attention of researchers in the
multimedia community. Due to the diversity of scenes and lighting
conditions, the exposure correction process of visual data is partic-
ularly complicated, and overexposure and underexposure may exist
at the same time (mixed exposure), which further enlarges the dis-
crepancies of operations. Thus, many exposure correction methods
have been proposed to handle this challenge problem automatically
by utilizing deep learning technologies. Correcting underexposure
and overexposure to normal exposures are much different from
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Figure 1: The above sub-figure is the benchmark for our
proposed video exposure correction. while the below sub-
figures are the visual comparison between an image-based
method LACT [2] and our proposed method. LACT takes sin-
gle frames as input and results in temporal exposure incoher-
ence with low visual quality. Our method utilizes temporal
information to achieve consecutive exposures.

each other, which leads to large discrepancies in training an image-
based multi-exposure correction network. This challenge is further
compounded when dealing with videos captured in dynamic scenes.

In recent years, fueled by various paired image exposure dataset [1,
3], several methods [12, 13, 26, 32, 36] that focus on learning image
exposure correction have been proposed. However, these methods
generally do not handle videos of dynamic scenes, as directly apply-
ing them in a frame-by-frame manner often results in inter-frame
exposure inconsistency with low visual quality [16, 20], as shown
in the below sub-figures of Fig. 1. Some methods [9, 27, 34] focus
on enhancing underexposed videos taken from low-light dynamic
scenes. However, these methods can only achieve a single expo-
sure correction. Due to the discrepant representations between
underexposure and overexposure, the correction procedures differ
greatly from each other, as shown in Fig. 3(a). Training a mixture
of multi-exposure data in their models often leads to poor perfor-
mance across different exposure levels, rendering these methods
unsuitable for practical applications.

To overcome the above challenges, in this work, we focus on the
multi-exposure correction presented in the real-world videos for
the first time. As of our current understanding, there is a noticeable
absence of well-studiedworks or benchmark datasets in this domain.
On the one hand, we aim to collect a high-quality video dataset with
both underexposure and overexposure, and the main difficulties are
as follows. First, collecting paired video datasets requires capturing

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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two videos, one under abnormal exposure conditions and another
under normal light of the same dynamic scene and camera motion.
Second, it requires accurate alignment of each pair of corresponding
frames in the two videos in both spatial and temporal dimensions.
To address the above issues, we first design a two-camera system
with a beam splitter to ensure no parallax between the two cameras
with different aperture and ISO parameter settings. Two DSLR
cameras simultaneously capture improper and normal exposure
videos. Then we perform precise alignment on the captured pairs to
make them aligned with each other. Furthermore, the well-exposed
videos are manually rendered by professional photographers and
then serve as the ground truth of the dataset. Finally, we construct a
new dataset of 119 high-quality videos named DIME, which stands
for "Dynamic scenes InMultiple Exposure". It contains diverse real-
world scenes, camera and object motions, and each paired video is
accurately aligned along the spatial and temporal dimensions.

On the other hand, since there are varying degrees of improper
exposure in the constructed dataset, existing methods prove inad-
equate for deployment. Thus, on the other hand, we propose an
end-to-end Video Exposure Correction Network (VECNet) to en-
hance the videos withmultiple and improper exposures. Specifically,
to adaptively learn the overexposed and underexposed represen-
tations, we formulate a dual-stream strategy to enhance various
illumination components based on Retinex theory. For complemen-
tary reflectance component learning, we design a novel multi-frame
alignment module that aligns neighboring frames into the middle
one to effectively obtain comprehensive feature representations. In
brief, our contributions can be summarized as follows:

• We construct the first high-quality paired video exposure cor-
rection dataset for dynamic real-world scenes with multiple
exposures, camera and object motions, and precise spatial
alignment.

• We propose an effective exposure correction network based
on Retinex theory to enhance overexposed and underex-
posed videos.

• We conduct extensive experiments to demonstrate the supe-
riority of our dataset and method.

2 OUR DIME DATASET
To learn video exposure correction tasks by training our model,
we need a large number of videos, including realistic overexposure
and underexposure errors and corresponding paired and properly
exposed ground truth videos. As discussed in Sec. 2, such datasets
are currently not publicly available to support video exposure cor-
rection research. Therefore, our first task is to create a novel dataset
that captures various videos in dynamic and real-world scenes.

2.1 Hardware Design
Capturing multi-exposure image and video pairs for static scenes
can be easily realized with a single-exposure adjustable DSLR cam-
era [9] or an electric slide rail [27], which make it impractical to
capture paired videos in wider dynamic scenes. We consider utiliz-
ing two cameras with different aperture and ISO parameter settings.
To keep the cameras in sync, we use an infrared remote control to
signal two camera-mounted receivers for simultaneous capture. To
prevent parallax problems caused by different shooting positions

Normal exposure frames
Capture device

Signal receiver

O
ve

r/U
nd

er
 e

xp
os

ur
e 

fra
m

es

Signal generator

Figure 2: We built the optical system to capture the over-
/under- and normal exposure video pairs.

and ensure the same motion trajectory, inspired by [10, 27], we use
a beam splitter to split the incident light into two beams with a
ratio of 1:1 and enter the two camera lenses, respectively, as shown
in Fig. 2. In order to receive the natural incident light from the same
viewpoint, we design and print an opaque 3D model box, which is
also used to hold the beam splitter and connect the cameras. These
components are concentrated on an optical breadboard and then
fixed to the tripod to improve stability.

2.2 Data Collection
We use two Canon EOS R10 cameras to collect paired videos. Specifi-
cally,to minimize the loss of detail in shadows and highlights, we set
one camera to automatic exposuremode and capture video in Canon
Log1 format, which retains more visual information throughout the
dynamic range. We then hand it over to professional photographers
using DaVinci Resolve Studio2 software for manual rendering, ulti-
mately producing high-quality and normal-exposure videos. The
other camera captures low-quality abnormal exposure videos with
the commonly used sRGB format. All the other settings are set to
default values to simulate real capture scenarios. We collect paired
10-second clips for each dynamic scene.

2.3 Data Processing
Due to the slight errors in manually assembling the above hardware,
there is still a misalignment between the paired videos. Therefore,
we utilize a two-stage frame alignment strategy to obtain aligned
pairs. First, we estimate a homography matrix between the under-
/overexposed frame and the corresponding normal exposed frame
using the matched SIFT [19] key points. In this way, we can roughly
crop matching regions into corresponding frames. Then we utilize
a traditional flow estimation algorithm called DeepFlow [35] to
perform pixel-wise alignment. Finally, we use center cropping to
remove alignment artifacts around boundaries, producing precise
spatially aligned frames. Note that we only perform alignment cor-
rection on normal exposed frames and make the low-quality input
1https://cam.start.canon/en/C004/manual/html/UG-03_Shooting-2_0080.html
2https://www.blackmagicdesign.com/products/davinciresolve/studio
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Figure 3: Statistics on our DIME dataset. (a) is the input-ground truth brightness mapping curve statistics. (b) Luminance
distribution for overexposure videos. (c) Luminance distribution for underexposure videos. (d) Luminance distribution for
ground truth videos.

Figure 4: LOE and optical flow of different datasets.

of our network consistent with real captured abnormal exposed
frames. Additionally, we introduce lightness-order-error (LOE) [29]
and optical flow [7] to quantitatively evaluate alignment perfor-
mance and motion activity. As shown in Fig. 4, the paired frames
of our dataset are better aligned and have larger movement than
that of the low-light enhancement datasets, including DRV [5] and
SDSD [27], indicating stronger performance in real dynamic scenes.

We totally captured 119 groups of videos with a total of 21,951
frames to form our DIME dataset. Each video consists of 100-200
frames, and the resolution is 1,920 × 1,080. Fig. 3 presents some
statistical analysis results. Fig. 5 gives three examples of our aligned
video pairs under under-/over-exposure and normal conditions.
Our captured videos vary from indoor to outdoor in real scenes
and include camera and object motion types. See more detailed
information in the supplementary materials.

3 METHODOLOGY
3.1 Overview
The Video Exposure Correction (VEC) task can be formulated as
seeking a mapping function F , which maps consecutive 8-bit per
channel sRGB frames I to enhanced frames O such that O =

F (I). During the training step, given 2N+1 consecutive frames
I[𝑡−𝑁 :𝑡+𝑁 ] captured under different exposure conditions, the center
frame is denoted as the reference frame while the others are sup-
porting frames. The proposed end-to-end VECNet aims to restore
the exposure of the reference frame I𝑡 with the help of supporting
frames, thereby generating the output frame O𝑡 . Based on Retinex
theory [15], the overall architecture of VECNet is shown in Fig. 6,
which is composed of three sub-networks: Multi-frame Fourier
Alignment Module (MFA), Dual-stream Illumination Construction

运动物体；
室外
欠曝

运动物体；
室内
欠曝

运动相机；
室外
过曝

Figure 5: Example videos from our DIME dataset cover under-
/over-exposures, indoor/outdoor, and camera/object motions.

Unit (DIC) and Two-stage Synthesis Restoration Unit (TSR). The
MFAmodule first aligns supporting frames with the reference frame
to maintain temporal consistency and then learns the reflectance
map together. Next, the DIC unit estimates dual-path illumination
maps for the reference frame to adaptively adjust its underexposure
and overexposure factors. Finally, the TSR unit fuses the above
illumination and reflectance maps at feature and image levels, ob-
taining the high-quality output frame O𝑡 with proper exposure.

3.2 Multi-frame Fourier Alignment
Directly applying image exposure correction [1, 12] to each frame
can cause flickering [27] due to ignoring temporal information. To
take advantage of the multi-frame information, we take consecutive
frames as the model’s input. However, since the texture information
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Figure 6: Overview of our framework. It contains three modules, including Multi-frame Fourier Alignment (MFA), Dual-stream
Illumination Construction (DIC), and Two-stage Synthesis Restoration (TSR).
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Figure 7: The details of the Multi-frame Fourier Alignment
module. We apply the discrete Fourier transformation to
map the frames from pixel space to Fourier space, then adopt
the deformable convolution for alignment.

of different frames is misaligned, a direct fusion of multiple frames
could cause blur and artifacts [23, 27]. Existing works mainly warp
supporting frames to the reference frame by pyramid cascading
and deformable convolution [30, 37] or group shift operations [17]
directly at the feature level. However, in the video exposure cor-
rection task, there are differences in degraded exposure between
frames as camera motion produces different light positions. Such ex-
posure mutation interferes with alignment. Recently, [12] conducts
exposure correction from a Fourier-based perspective, i.e., the am-
plitude component of an image reflects the lightness representation,
while the phase component corresponds to structures and is less
related to lightness. Therefore, we reduce the influence of lightness
factors on alignment by adapting the amplitude component. To this

end, we take multi-frame alignment using the Fourier transform in
this section, as shown in Fig. 7.

Specifically, given a channel in a single frame x ∈ R𝐻×𝑊 , the
Fourier transform F converts x to a complex component X in
Fourier space, which can be written as:

F (𝑥) = 1
√
𝐻𝑊

𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝑥 (ℎ,𝑤)𝑒− 𝑗2𝜋 ( ℎ
𝐻
𝑢+ 𝑤

𝑊
𝑣) , (1)

Then, amplitudeA(X ) and phase P(X ) components can be divided
from the complex component X :

A(X ) =
√︁
R2 (X ) + I2 (X ),

P(X ) = arctan
I (X )
R(X ) ,

(2)

where R and I denote the real and imaginary parts of the complex X .
We also apply the same strategy to each channel of input frames and
then get consecutive amplitude components A(X[𝑡−𝑁 :𝑡+𝑁 ] ) and
phase components P(X[𝑡−𝑁 :𝑡+𝑁 ] ). Since the amplitude component
responds more to the lightness, we obtain Ā(𝑋 ) by aggregating
multi-frame amplitude to achieve a unified exposure representation:

Ā(𝑋 ) = H[A(X𝑡−𝑁 ) ⊙ ...A(X𝑡+𝑁 )], (3)

where H is the aggregating function composed of several convolu-
tion and relu function layers. Then the phase component P̃ (𝑋𝑡+𝑖 )
of the supporting frames and aggregated amplitude component
Ā(𝑋 ) are recombined by the inverse Fourier transform F −1. The
process is formulated as:

𝑥𝑡+𝑖 = F −1 (Ā(𝑋 ), P̃ (X𝑡+𝑖 )), (4)

Then the supporting frames are warped to those of the reference
frame by the deformable convolution network (DCN) [6]. We com-
pute the offset 𝛿𝑥𝑡+𝑖 , 𝑖 ∈ [−𝑁, 𝑁 ], 𝑖 ≠ 0 learned from corresponding



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Learning Exposure Correction in Dynamic Scenes ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝑥𝑡+𝑖 ) and 𝑥𝑡 ) for the DCN. The aligned phase component P̃ (𝑌𝑡 ) is
obtained with the learned offset. The process can be formulated as:

𝛿𝑥𝑡+𝑖 = M𝑖 (𝑥𝑡+𝑖 ⊙ 𝑥𝑡 ),
𝑌𝑡+𝑖 = G𝑖 (𝐷𝐶𝑁 (𝑥𝑡+𝑖 , 𝛿𝑥𝑡+𝑖 )),

(5)

where ⊙ denotes channel concatenation, and M𝑖 and G𝑖 are the
mapping functions composed of several convolution layers. Then
the aligned features consisting of multiple single-channel 𝑌𝑡+𝑖 are
sent to learn the reflectance map.

3.3 Dual-stream Illumination Construction
To learn adaptive representations for both underexposure and over-
exposure situations, we exploit dual-stream illumination construc-
tion in our model. From the Retinex theory, the reference frame
I𝑡 can be typically decomposed into an illumination map 𝐿 and a
reflectance map R. However, this strategy can only be learned from
underexposure conditions, as 𝐿 falls into the range of values within
[0, 1]. Existing Retinex-based methods [4, 8] would increase the
exposure of the overexposed inputs.

To suppress overexposure while enhancing underexposure, we
propose a dual-stream mechanism to achieve illumination construc-
tion, sharing parameters with each other. Specifically, as shown in
Fig. 6, we treat the antithetic exposure I𝑖𝑛𝑣

𝑡 as the reverse frame of
I𝑡 . We first encode {I𝑡 ,I𝑖𝑛𝑣

𝑡 } to 𝑧𝑡 , 𝑧𝑖𝑛𝑣𝑡 in the latent space. Then we
use a U-Net [22] to learn the mapping from {𝑧𝑡 , 𝑧𝑖𝑛𝑣𝑡 } to {𝑧𝑡 , 𝑧𝑖𝑛𝑣𝑡 }.
Finally, we decode {𝑧𝑡 , 𝑧𝑖𝑛𝑣𝑡 } to {𝐿𝑡 , 𝐿𝑖𝑛𝑣𝑡 } in the image space. By
calculating with the learned and extended illumination map 𝐿𝑖𝑛𝑣 ,
we can obtain the enhanced image of overexposureI𝑜

𝑡 . This process
can be formulated as:

I𝑢
𝑡 = I𝑡 · 𝐿−1

𝑡 ,

I𝑖𝑛𝑣
𝑡 = 1 − I𝑡 ,
I𝑜
𝑡 = 1 − I𝑖𝑛𝑣

𝑡 · (𝐿𝑖𝑛𝑣𝑡 )−1,

(6)

where I𝑢
𝑡 represents the enhanced frame of underexposure, and ·

denotes element-wise multiplication.

3.4 Two-stage Synthesis Restoration
We apply a reflectance sub-network T to learn the mapping from
aligned consecutive framesY[𝑡−𝑁 :𝑡+𝑁 ] to the reflectance map, each
frame Y𝑡 is composed of {𝑥𝑅𝑡 , 𝑥𝐺𝑡 , 𝑥𝐵𝑡 }. This sub-network is com-
bined with instance normalization [24] (IN) operation and a series
of residual channel attention blocks (RCAB) [38] and downsam-
pling operations. The IN operation is used to map different exposure
features to exposure-invariant feature space [11] while RCABs are
presented to learn high-level residual feature information. In the
synthesis process of stage one, the fusion network S1 takes sepa-
rately learned dual-illumination {𝑧𝑡 , 𝑧𝑖𝑛𝑣𝑡 } and reflectance map to
synthesize intermediate enhanced feature Ĩ𝑡 . It contains a series of
residual channel attention blocks and upsampling operations. In
addition, skip connections are applied for the corresponding layers
of the reflectance module and the synthesis module.

In the synthesis process of stage two, the fusion network S2
takes two enhanced images {I𝑢

𝑡 ,I𝑜
𝑡 } and the intermediate feature

Ĩ𝑡 as inputs to regress the final enhanced image O𝑡 . It uses several
combining modules of convolution layers and non-local blocks [31]

to generate a three-channel weight map, and then multiplies the
above three inputs by their respective weights by channel to obtain
the final result O𝑡 . The process can be formulated as:

Ĩ𝑡 = S1 (𝑧𝑡 ⊙ 𝑧𝑖𝑛𝑣𝑡 ⊙ T (Y[𝑡−𝑁 :𝑡+𝑁 ] ))

O𝑡 = S2 (I𝑢
𝑡 ,I𝑜

𝑡 , Ĩ𝑡 )
(7)

3.5 Objectives
We incorporate a range of loss terms to facilitate the training of
our model. We employ the commonly utilized pixel-wise charbon-
nier loss term, denoted as L𝑝𝑖𝑥 , to measure the accuracy of pixel
reconstruction. To guide the network to estimate and smooth the
dual illumination maps, we apply the total variation [28] loss term
L𝑡𝑣 . They can be formulated as:

L𝑡𝑣 =
∑︁
𝑐

[(𝜕𝑥/𝑦𝐿𝑡 )2 + (𝜕𝑥/𝑦𝐿𝑖𝑛𝑣𝑡 )2], (8)

where all channels (c) of all pixels are summed, 𝜕𝑥/𝑦 are partial
derivatives in horizontal and vertical directions in the image space.
In addition, to ensure exposure continuity between video frames,
we introduce the amplitude consistency loss term L𝑎𝑚𝑝 , which can
be formulated as:

L𝑎𝑚𝑝 = | |A(𝑋O𝑡
) − A(𝑋

𝐼
𝑔𝑡

𝑡
) | |1𝐹 , (9)

where 𝑋 ( ·) represents the frequency component of output 𝑂𝑡 or
ground truth normal exposed image 𝐼𝑔𝑡𝑡 in Fourier space. The overall
function can be written as:

L𝑡𝑜𝑡𝑎𝑙 = 𝜆1L𝑝𝑖𝑥 + 𝜆2L𝑡𝑣 + 𝜆3L𝑎𝑚𝑝 , (10)

where 𝜆1, 𝜆2, and 𝜆3 are weight hyperparameters.

4 EXPERIMENTS
4.1 Implementation Details
We implement our framework with Pytorch on a single NVIDIA
GeForce RTX 3090 GPU. We use 𝑁 = 2 consecutive frames without
intervals as input. We divide the DIME dataset into training, vali-
dation, test sets according to the number of videos in 90:9:20. Then
we use the training set to train our model with a total of 400,000
iterations. The parameters of the network are optimized by the
ADAM optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.99. The learning rate is
0.001, while the batch size is 8. The frames apply random horizontal
and vertical flipping to augment the input data. We train on patches
of size 256 × 256. The weights for the terms in the loss function in
Eq. (9) are 𝜆1, 𝜆2, 𝜆3 = 1.0, 0.01, 100.0. The additional experimental
results are presented in the supplementary materials.

4.2 Baselines
Since there is currently no related method for video exposure cor-
rection, we adopt several image exposure correction methods for
comparison, including MSEC [1], DRBN-ENC [11], ECLNet [13],
FECNet [12], and LACT [2]. We also take low-level tasks adjacent
to video exposure correction, including several methods in the
fields of video low-light enhancement and video restoration, such
as SMOID [14], SDSD [27], RVRT [18], and DIDNet [9].
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Figure 8: Qualitative comparisons of the multi-frame results with different methods on the DIME dataset.

Table 1: Quantitative PSNR and SSIM results of different
methods on Underexposed and Overexposed samples of the
DIME dataset. A higher metric indicates better performance.
The best and second results are marked in bold and under-
lined, respectively.

Method
Under Over Average

PSNR SSIM PSNR SSIM PSNR SSIM
SMOID [14] 16.78 0.8037 17.65 0.8675 17.22 0.8356
SDSDNet [27] 17.51 0.8511 18.83 0.8720 18.17 0.8616
RVRT [18] 16.62 0.7859 16.93 0.8555 16.78 0.8207
DIDNet [9] 17.89 0.8587 21.01 0.9022 19.45 0.8805
MSEC [1] 16.22 0.8271 18.01 0.8854 17.12 0.8563

DRBN-ENC [11] 17.69 0.8580 20.12 0.9203 18.91 0.8892
ECLNet [13] 16.80 0.8062 19.56 0.8915 18.18 0.8489
FECNet [12] 17.61 0.8601 21.02 0.9109 19.32 0.8855
LACT [2] 18.01 0.8651 20.36 0.9153 19.19 0.8902

VECNet (Ours) 18.18 0.8687 22.04 0.9345 20.11 0.9016

4.3 Quantitative Evaluation
We demonstrate the superiority of our method and the impact of
the DIME dataset through experiments in this section. We conduct
quantitative experiments on the test set, which consists of 10 un-
derexposed video pairs and 10 overexposed video pairs with a total
of 3,824 frames, as described in Sec. 2. We adopt the following three
standard metrics to evaluate the pixel-wise accuracy and perceptual
quality of our results: reference-based (i) Peak Signal-to-Noise Ratio

Table 2: Quantitative results of different methods in terms of
NIQE and ALV. A lower metric indicates better performance.
The best and second results are marked in bold and under-
lined, respectively.

Method (Publication)
DIME LLIV-Phone

NIQE ALV NIQE ALV
SMOID [14] (ICCV’19) 5.43 35.32 6.76 6.06
SDSDNet [27] (ICCV’21) 4.35 18.04 4.07 8.99
RVRT [18] (NeurIPS’22) 4.17 20.81 5.75 7.07
DIDNet [9] (ICCV’23) 7.25 42.60 6.93 10.32
MSEC [1] (CVPR’22) 5.38 37.28 5.80 232.8

DRBN-ENC [11] (CVPR’22) 4.48 45.51 5.24 129.4
ECLNet [13] (ACMMM’22) 4.40 23.31 5.38 141.0
FECNet [12] (ECCV’22) 4.52 29.11 5.26 105.5
LACT [2] (ICCV’23) 5.01 35.57 5.62 171.6
VECNet (Ours) 4.08 15.65 4.02 4.94

(PSNR) and (ii) Structural Similarity IndexMeasure (SSIM) [33], non-
reference-based (iii) Natural Image Quality Evaluator (NIQE) [21]
and (iv) Average Luminance Variance (ALV) [16] metrics. Table 1
reports the quantitative evaluation results of different methods. As
exhibited in the table, our proposed VECNet outperforms all other
methods in PSNR and SSIM metrics, demonstrating its superior
performance in video exposure correction tasks.

Validation on unpaired videos. To evaluate the generalization
ability of our method under challenging dynamic scenes, we also
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Figure 9: Qualitative comparisons of the multi-frame results with different methods on the LLIV-Phone dataset.

(a) VECNet (Ours) (b) SMOID [14] (c) SDSDNet [27] (d) RVRT [18] (e) DIDNet [9]

Figure 10: The results of five methods in the user study. In each histogram, the x-axis denotes the ranking index (1∼5, 1
represents the highest), and the y-axis denotes the number of images in each ranking index.

Table 3: Quantitative results of different methods for multi-
exposure videos captured from various devices and the inter-
net, evaluated by NIQE and ALV metrics.

Method iPhone XiaoMi Internet Average
LACT [2] 4.42/38.32 4.85/47.50 4.11/24.13 4.46/36.65
DIDNet [9] 4.10/30.90 4.55/27.66 3.72/18.72 4.12/25.76
VECNet 3.28/22.95 4.40/26.04 3.45/10.77 3.71/19.92

conduct extensive experiments on the LLIV-Phone dataset [16].
Since there is no ground truth, all compared baselines are only
tested on the dataset. Note that we report the results of our model
trained on the DIME training set without further tuning or re-
training on any of these datasets. Table 2 reports the quantitative
results. Our method achieves the best results in terms of NIQE and
ALV, demonstrating stability when handling real-world videos with
various motions.

Various kinds of device video enhancement. We collect a
total of 30 abnormal exposure videos from three devices, 10 from
each device.We test themwith the comparedmethods pretrained on
the DIME training set. As described in Table 3, our method achieves
better results, displaying its effectiveness for more applications. In
addition, we present the luminance curves of the enhanced video
frames to verify the degree and continuity of the exposure, as
shown in Fig. 12. It can be seen that our VECNet behaves more

stable, especially in some cases with drastic light changes (solid
line).

4.4 Qualitative Evaluation
We perform thorough qualitative evaluations on the DIME and
LLIV-Phone datasets to assess the performance of our proposed
method. We present single-frame and multi-frame results in Fig. 8
and Fig. 9, which indicates that VECNet delivers more natural and
reasonable enhancement. In particular, low-light video enhance-
ment methods mainly produce frames with unpleasing regions,
leading to substantial loss of texture. Image-based exposure correc-
tion methods result in significant color deviation, which adversely
affects the visual quality of the images. SMOID and RVRT pro-
duce frames with severe blocking artifacts. Moreover, image-based
methods generate inconsistent exposure frames as the temporal
information has not been well utilized to avoid flickering. After a
comprehensive evaluation of the comparative results of different
methods on two datasets, our proposed method exhibits excellent
visual performance in terms of global brightness, color recovery,
and detail while maintaining temporal stability without flickering
artifacts and motion blur.

4.5 User Study
We conduct a user study with 20 participants to evaluate the subjec-
tive perceptions of different methods. We select 20 testing videos
from the DIME dataset. The videos are then enhanced using 5
video enhancement methods (SMOID, SDSDNet, RVRT, DIDNet,
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Table 4: Ablation study for investigating the components
of the specific modules. For the MFA module, we ablate the
alignment with Fourier transform. For the DIC module, we
ablate the single and dual streams.

Model MFA DIC TSR PSNR SSIM
Fourier single dual stage-1 stage-2

(a) ✓ ✓ 19.03 0.8838
(b) ✓ ✓ ✓ 19.44 0.8905
(c) ✓ ✓ ✓ 19.86 0.8972
(d) ✓ ✓ ✓ ✓ 20.11 0.9016

Ablation study

(a) wo/ phase

(c) w/ stage-1

(b) w/ single path

(d) ours

Input

GT

Figure 11: Visualizations of the ablation study on the pro-
posed modules.

and VECNet) to perform pairwise comparisons. For a fair com-
parison, we provide the original input videos and present 5 kinds
of enhancement results, randomly changing the display order to
prevent bias. The user study is conducted in the same environment
(room, display, and light). Participants are asked to rate their video
quality from best to worst. The human subjects are instructed to
consider authenticity, exposure artifacts, texture contrast, realistic
color, and temporal stability. We calculate the average ranking of
each method on each video and rank the results. As a result, each
method is assigned a rank of 1–5 on that video.

The final results are shown in Fig. 10. VECNet has 13 results
ranked 1, 5 results ranked 2, and a few results ranked 3-5 out of
the 20 videos evaluated. When the histograms are compared, it is
clear that our methods produce better results for human subjective
evaluations across all baselines.

4.6 Ablation Study and Analysis
We provide a series of ablation studies to evaluate the effectiveness
of each component of the proposed method. The experiments are
conducted on the DIME dataset. The ablation results are shown in
Table 4, Fig. 11, and supplementary materials.

For the MFA module, we remove it and directly fuse the original
unaligned multiple frames to learn reflection maps to generate the
final result. It can be seen that MFA brings expected quantitative
performance improvements. The results of Fig. 11 (b) are more
visually appealing with fewer noises and motion blurs than (a),
which further demonstrates the effectiveness of MFA. For the DIC
unit, we replace the symmetrical exposure stream with a single

Figure 12: The lux curves of the video are enhanced by differ-
ent methods. Left are underexposure cases, while right are
overexposure cases.

Figure 13: t-SNE [25] visualization when taking a testing
video (upper part) and testing set (lower part) for example.

path setting. It can be seen that the overexposure correction shows
little improvement from Fig. 11 (b). For the TSR unit, we split the
TSR unit into two separate stages. Comparing Fig. 11 (c) and (d),
we can see that our two-stage strategy helps preserve more color
and texture information.

In addition, we present the statistical visualization of the results
in the feature space. As shown in Fig. 13, after being processed by
our method, the underexposure and overexposure representations
tend to be intersected together with the corresponding ground truth.
It demonstrates the effectiveness of our method for correcting their
exposure representations.

5 CONCLUSION
We build the first high-quality paired video exposure correction
dataset for dynamic real-world scenes with multi-exposures, cam-
era and object motions, and precise spatial alignment. A benchmark
dataset is provided for both training and evaluation of video ex-
posure correction methods. Based on the dataset, we propose a
method for dealing with the underexposed and overexposed in-
puts in a dual-stream manner. By utilizing phase alignment and
synthesis modules, the exposure of the videos is well corrected
and restored. Experiments demonstrate that the proposed method
outperforms several image and video methods in low-level tasks
adjacent to video exposure correction.
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