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ABSTRACT

Offline reinforcement learning (RL) aims to learn from static datasets and thus
faces the challenge of value estimation errors for out-of-distribution actions.
The in-sample learning scheme addresses this issue by performing implicit TD
backups that does not query the values of unseen actions. However, pre-
existing in-sample value learning and policy extraction methods suffer from
over-regularization, limiting their performance on suboptimal or compositional
datasets. In this paper, we analyze key factors in in-sample learning that might
potentially hinder the use of a milder constraint. We propose Actor-Critic with
Temperature adjustment and In-sample Value Ensemble (ACTIVE), a novel in-
sample offline RL algorithm that leverages an ensemble of V -functions for critic
training and adaptively adjusts the constraint level using dual gradient descent.
We theoretically show that the V -ensemble suppresses the accumulation of initial
value errors, thereby mitigating overestimation. Our experiments on the D4RL
benchmarks demonstrate that ACTIVE alleviates overfitting of value functions
and outperforms existing in-sample methods in terms of learning stability and
policy optimality.

1 INTRODUCTION

Reinforcement learning (RL) has achieved significant success in various sequential decision-making
tasks (Mnih et al., 2015; Silver et al., 2016). However, a notable drawback of online RL is the
requirement for a huge number of continual environmental interactions, which might be impractical
since real-world interactions can be costly or dangerous. Offline RL aims to learn from static datasets
without further interactions (Levine et al., 2020), which in principle makes it possible to exploit
large previously collected datasets. In practice, the distributional shift between the data-collecting
policy (also known as the behavior policy) and the learned policy poses significant challenges for
offline RL algorithms. Improving the policy beyond the level of the dataset requires querying the
values of actions sampled from the policy, which are likely to be out-of-distribution. These out-of-
distribution actions can produce highly overestimated Q-values (Kumar et al., 2019; Fujimoto et al.,
2019), which can be further propagated with bootstrapping, resulting in catastrophic inaccuracies in
value estimation.

To address the overestimation problem, prior offline RL methods typically add pessimism to the
learning objective either by constraining the policy to be close to the behavior policy (Wu et al.,
2019; Fujimoto et al., 2019; Kumar et al., 2019; Peng et al., 2019; Nair et al., 2020; Fujimoto & Gu,
2021) or by regularizing the value function to make pessimistic predictions for out-of-distribution
actions (Kumar et al., 2020; Kostrikov et al., 2021; An et al., 2021; Yang et al., 2022). More recently,
implicit TD backups have been proposed in IQL (Kostrikov et al., 2022) that completely avoid
querying values of unseen actions by approximating the in-sample maximum of Q-values using
expectile regression. However, when the dataset is skewed towards suboptimal policies or mixed
with lower-quality data, prior in-sample learning methods could suffer from performance drop due
to over-regularization (Xiao et al., 2023).

In this paper, we aim at improving the overall performance of IQL-style in-sample offline RL meth-
ods (Kostrikov et al., 2022; Xu et al., 2023; Garg et al., 2023). Empirically, we find that in implicit
TD backups, V (s) could easily overfit the initial error of Q(s, a), causing catastrophic overestima-
tion and performance degradation. This phenomenon prevents the use of a larger expectile τ or a
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lower level of implicit regularization α (Xu et al., 2023). Based on this observation, we propose an
in-sample value learning scheme based on a V -ensemble that mitigates the overfitting of value func-
tions, thus allowing for less regularization. The in-sample V -ensemble captures in-sample epistemic
uncertainty, which is then used as a penalty during bootstrapping and advantage estimation. To bet-
ter balance generalization and regularization in suboptimal datasets, we propose a policy extraction
loss inspired by automated entropy adjustment in SAC (Haarnoja et al., 2018) that adaptively adjusts
the strength of imitation based on dual gradient descent.

Our primary contribution is Actor-Critic with Temperature adjustment and In-sample Value Ensem-
ble (ACTIVE), an ensemble-based in-sample offline RL algorithm that combines the aforementioned
modifications. We conduct theoretical analysis of the output dynamics of the Q-function and the er-
ror suppression effect of the V -ensemble. To promote understanding of the in-sample epistemic
uncertainty, we empirically analyze the distribution of advantage functions obtained using a single
network and a V -ensemble on D4RL datasets (Fu et al., 2020), highlighting the need for a more
discriminative advantage estimate. Our experiments on the D4RL benchmark show that ACTIVE
improves upon existing in-sample methods in terms of learning stability and final policy perfor-
mance.

2 RELATED WORK

Model-free Offline RL. The majority of recently proposed model-free offline RL methods rely on
either policy constraints or value regularization. Policy constraints can be implemented through
distance constraints towards dataset actions (Kumar et al., 2019; Fujimoto & Gu, 2021; Ran et al.,
2023), or through explicit modelling of the behavior policy (Wu et al., 2019; Fujimoto et al., 2019;
Siegel et al., 2020; Ghasemipour et al., 2021; Zhou et al., 2021; Wu et al., 2022). Policy constraints
can also be imposed implicitly using weighted behavior cloning (Wang et al., 2018; Peng et al.,
2019; Nair et al., 2020). Value regularization methods drive the critic to be pessimistic about out-of-
distribution state-action pairs (Kumar et al., 2020; Kostrikov et al., 2021; An et al., 2021; Yang et al.,
2022). Recently, in-sample learning was proposed in IQL (Kostrikov et al., 2022) that completely
avoids querying the values of any unseen actions. Generalizations of IQL, including EQL (Garg
et al., 2023) and SQL (Xu et al., 2023) have been proposed. More recently, IDQL (Hansen-Estruch
et al., 2023) demonstrates the connection between IQL and actor-critic methods by introducing an
implicit actor. Our work is based on the generalized IQL framework. In contrast, our work reveals a
major difficulty in implicit TD learning and provides an ensemble-based solution that can be applied
to any variant of IQL.

Ensembles and Uncertainty Estimation. A number of studies have successfully employed ensem-
bles for uncertainty estimation in offline RL. Ensembles can be applied to the critic in model-free
offline RL (Agarwal et al., 2020; An et al., 2021; Bai et al., 2022; Ghosh et al., 2022; Ghasemipour
& Gu, 2022; Yang et al., 2022) or the dynamics models in model-based offline RL (Yu et al., 2020;
Kidambi et al., 2021; Sun et al., 2023). In most of these methods, ensembles provide estimates
of epistemic uncertainty (Clements et al., 2019), which are then used to form a pessimistic value
prediction for out-of-distribution samples. Addtionally, modifications like OOD sampling in PBRL
(Bai et al., 2022) and gradient diversification in EDAC (An et al., 2021) have been proposed to
specifically target out-of-distribution samples. In our work, we focus on in-sample learning, which
does not query the values of any unseen actions during critic training. Unlike previous approaches,
the ensemble in our method captures in-sample epistemic uncertainty, which is used to suppress
error accumulation and form a more discriminative advantage estimate for in-distribution samples.

Over-regularization in Offline RL. While staying close to the offline dataset limits potential over-
estimation and stabilizes training, recent studies have argued that these constraints can be overly
conservative in certain cases (Jin et al., 2021; Buckman et al., 2021; Xie et al., 2021). In practice, it
has been reported that over-regularization occurs in a variety of offline RL algorithms (Zhou et al.,
2021; Kumar et al., 2022; Fu et al., 2022; Xiao et al., 2023). To balance conservatism and gener-
alization, MCQ (Lyu et al., 2022) proposed to learn a mildly conservative Q-function by actively
training on OOD actions. From the policy constraint perspective, PRDC (Ran et al., 2023) pro-
posed to constrain the policy toward the nearest-neighbor state-action pair. In contrast, we aim to
mitigate the over-regularization of in-sample methods by combining SAC-style automated entropy
adjustment with weighted behavior cloning.
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3 PRELIMINARIES

3.1 OFFLINE REINFORCEMENT LEARNING

RL is formulated as a Markov Decision Process (MDP) defined as a tuple (S,A, p0, p, r, γ), with
state space S, action space A, initial state distribution p0(s), transition dynamics p(s′|s, a), reward
function r(s, a) and discount factor γ ∈ (0, 1). The goal of RL is to find a policy π(a|s) : S ×A →
[0, 1] that maximizes the expected return Eπ[

∑∞
t=0 γ

tr(st, at)] in the MDP. In this work, we focus
on offline RL, where the agent only has access to a fixed datasetD = {(s, a, r, s′)} collected using a
different behavior policy or potentially multiple policies. The behavior policy is denoted as µ(a|s),
which is the action distribution conditioned on states observed in the dataset.

3.2 GENERALIZED IMPLICIT Q-LEARNING

Implicit Q-Learning. Instead of explicitly constraining the policy or regularizing the Q-function,
Implicit Q-learning (IQL) (Kostrikov et al., 2022) approximates the in-sample maximum of the Q-
function using a value network Vψ(s) and expectile regression:

LV (ψ) = E(s,a)∼D[L
τ
2(Qθ̂(s, a)− Vψ(s))], where Lτ2(u) = |τ − 1(u < 0)|u2. (1)

The Q-function can then be learned by bootstrapping off the value estimate of the next state, thus
avoiding any queries to values of out-of-distribution actions:

LQ(θ) = E(s,a,s′)∼D[(r(s, a) + γVψ(s
′)−Qθ(s, a))2]. (2)

For policy extraction, IQL uses Advantage Weighted Regression (AWR) (Peng et al., 2019):

Lπ(ϕ) = E(s,a)∼D[exp(β(Qθ̂(s, a)− Vψ(s))) log πϕ(a|s)]. (3)

Generalized Implicit Q-Learning. Recently, Hansen-Estruch et al. (2023) showed that IQL can be
rederived as an actor-critic method. For arbitrary convex loss f , define the general IQL V -update
as:

V ∗(s) = argmin
V (s)

Ea∼µ[f(Q(s, a)− V (s))]. (4)

The following theorem states that f corresponds to an implicit actor πimp(a|s):
Theorem 3.1 (Hansen-Estruch et al. (2023)). Denote ∂f

∂V (s) as f ′, then for every state s and convex
loss function f such that f ′(0) = 0, the solution to the optimization problem defined in Equation (4)
is also a solution to the optimization problem

argmin
V (s)

Ea∼πimp [(Q(s, a)− V (s))2]

where πimp(a|s) ∝ w(s, a)µ(a|s), w(s, a) = |f ′(Q(s,a)−V ∗(s))|
|Q(s,a)−V ∗(s)| .

Different choices of loss function f give rise to different implicit actor distributions. Recent variants
of IQL like EQL (Garg et al., 2023) and SQL (Xu et al., 2023) matches the critic objectives for
fα(u) = exp(u/α)− u/α and fα(u) = 1(1+ u/2α > 0)(1+ u/2α)− u/α respectively. Xu et al.
(2023) pointed out that α in the loss functions can be seen as the regularization coefficient in the
behavior-regularized MDP problem:

max
π

E

[ ∞∑
t=0

γt
(
r(st, at)− α · F (

π(at|st)
µ(at|st)

)

)]
(5)

for some regularization function F .

In generalized IQL algorithms, the strength of regularization is usually controlled using a single
scalar hyperparameter. In IQL (Kostrikov et al., 2022), computing a larger expectile τ ∈ (0, 1)
can, in theory, better approximate the in-sample maximum V ≈ maxa′∈A, µ(a′|s′)>0Q(s′, a′). This
enables better filtering of suboptimal actions by using the advantage function Q(s, a)−V (s) during
policy extraction. Similarly, using a smaller α in Equation (5) (Xu et al., 2023) better approximates
the unconstrained policy optimization problem.
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4 VALUE LEARNING WITH IN-SAMPLE V -ENSEMBLE

4.1 OVERFITTING OF V -FUNCTION AND IN-SAMPLE ERROR ACCUMULATION

Intuitively, a higher τ (or a lower α in SQL (Xu et al., 2023)) should be used in mixed datasets in
order to better approximate the in-sample maximum of Qθ(s, a), thus filtering out suboptimal ac-
tions as much as possible. However, we show that the overfitting of V -function impedes the desired
modification. Empirically, we find that the initial error of Qθ(s, a) would be captured by an overfit-
ted Vψ(s) and propagated among states through bootstrapping. The result is that in-sample offline
RL algorithms remain susceptible to catastrophic overestimation, despite the complete avoidance
of value queries for unseen actions. Also, the use of a higher τ (or a lower α) makes Vψ(s) more
sensitive to highly overestimated Qθ(s, a) values, which exacerbated the overfitting of V -function.
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Figure 1: Normalized score and batch average
Q(s, a) of SQL and IVE-SQL. “SQL (no mod)”
stands for SQL without value function Dropout
and layer normalization.

To demonstrate the problem computationally,
we train SQL agents on the D4RL (Fu et al.,
2020) antmaze-umaze-d-v2 dataset for 1M up-
dates. The result is shown in Figure 1. The
AntMaze datasets typically require a larger τ
(or a smaller α) for effective value propaga-
tion. In vanilla SQL without additional regu-
larization on the value function Vψ(s), taking
α down to 0.1 results in numerical instabili-
ties. To stabilize bootstrapping, the official im-
plementation of SQL applied Dropout (Srivas-
tava et al., 2014) with p = 0.5 and layer nor-
malization (Ba et al., 2016) to Vψ(s). Without
Dropout and layer normalization, the critic di-
verges with a small α = 0.1 in SQL, and yet
critic divergence could still happen after these modifications.

Remark 4.1. We remark that the problem of V -function overfitting is related to the advantage spar-
sity defined as s(Q,V ;D) = E(s,a)∼D[1(Q(s, a) − V (s) ≤ 0)] (Xu et al., 2023). In regions with
high epistemic uncertainty (Clements et al., 2019), V (s) could easily overfit Q(s, a), resulting in
highly sparse advantage estimates. Note that for some variants like SQL (Xu et al., 2023) where the
weight is simply max{Q(s, a) − V (s), 0}, such state-action pair provides zero learning signal. In
the limit, AWR is equivalent to behavior cloning when the advantage distribution is a Dirac delta
δ(0) with mean zero, making it harder to learn selectively from the dataset.

4.2 VALUE LEARNING WITH IN-SAMPLE V -ENSEMBLE

To mitigate overfitting of the V -function, we propose using an ensemble of m value functions
{Vψi

(s)}mi=1 to perform in-sample updates. Given a generalized IQL loss function f , the V -
functions are independently optimized using the following loss function:

LfV (ψi) = E(s,a)∼D[f(Qθ̂(s, a)− Vψi(s))]. (6)

The Q-function can then be learned by bootstrapping against an aggregate of the V -ensemble. To
control V -function overfitting and stabilize bootstrapping, we can use the ensemble minimum:

LQ(θ) = E(s,a,s′)∼D[(r(s, a) + γmin
i
Vψi(s

′)−Qθ(s, a))2]. (7)

To extract the policy from learned Qθ(s, a) and {Vψi(s)}, we can perform AWR (Peng et al., 2019)
or its variants using the advantage estimate Â(s, a) = Qθ̂(s, a) − Ec[Vψi

](s), where Ec[Vψi
] is the

c-th quantile of {Vψi
}mi=1. AWR with V -ensemble maximizes the following objective:

LAWR
π (ϕ) = E(s,a)∼D[exp(βAWR(Qθ̂(s, a)− Ec[Vψi ](s))) log πϕ(a|s)] (8)

where c ∈ [0, 1] and βAWR ∈ [0,∞] is an inverse temperature.

4
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Figure 2: Kernel density estimation of advantage
functions obtained by training on 4 datasets from
the D4RL benchmark using single network SQL
(gray) and V -ensemble (blue, red and orange).
Ec[V ] denotes the c-th quantile of the ensemble.

The effect of the V -ensemble on in-sample
learning is twofold. First, we take the ensemble
minimum during bootstrapping in Equation (7),
which serves as a penalty for high-uncertainty
states. The bootstrapping target can be inter-
preted as utilizing the lower-confidence bound
(LCB) of V -predictions. Assume that V (s) fol-
lows a Gaussian distribution with mean µ(s)
and standard deviation σ(s). The ensemble
{Vi(s)}mi=1 contains samples of V (s). Similar
to (An et al., 2021), the expected ensemble min-
imum can be approximated as (Royston, 1982):

E
[

min
1≤i≤m

Vi(s)

]
≈ µ(s)− Φ−1

(
m− π

8

m− π
4 + 1

)
σ(s)

(9)

As we will show in our empirical evaluations,
this penalty effectively mitigates the numerical
instabilities encountered when a large τ (or small α) is used. Second, the V -ensemble also reshapes
the advantage distribution used by AWR. Unlike algorithms with out-of-distribution (OOD) evalua-
tions (e.g. SAC-N (An et al., 2021)) in which uncertainty penalties are intuitive for OOD state-action
pairs, the V -ensemble captures in-sample epistemic uncertainty which is less well understood. Here
we provide an empirical study of the impact of V -ensemble on the advantage distribution. Figure 2
illustrates the distribution of advantage estimates obtained using Vanilla SQL and V -ensemble of
size m = 5 on 4 D4RL Gym MuJoCo datasets, from which we can see that V -ensembles gen-
erally produce advantage distributions that are less sparse but sometimes biased. We find that the
bias-sparsity trade-off controlled by Ec[·] could significantly affect training outcome, and we will
provide more empirical analyses in Section 7.

4.3 THEORETICAL ANALYSIS

To analyze the output dynamics of Q-functions with generalized IQL updates using the in-sample
V -ensemble, we draw upon the work on the Neural Tangent Kernel (NTK) (Jacot et al., 2018; Lee
et al., 2019; Ghasemipour & Gu, 2022). We will begin by establishing some additional assumptions
and notations. First of all, Theorem 3.1 indicates that there exists an implicit policy πimp determined
by V ∗, such that the V -function can be equivalently learned by regressing towards Q(s, πimp(s))
using a MSE loss. This leads to the following assumption:
Assumption 4.2. Given the currentQ-network, the corresponding πimp can be sampled for any state
s appearing in the dataset D = {(s, a, r, s′)}. πimp(s) denotes a sample of πimp(a|s).

To facilitate our analysis, we also frame the problem as a fixed-policy evaluation featuring a slightly
different learning target (justified by Equation (9)) by making the following assumptions.
Assumption 4.3. The implicit policy πimp is kept fixed throughout the value learning process.

Assumption 4.4. The regression target for Qθ(s, a) is r(s, a) + γ(Eens[V ](s′)−
√

Vens[V ](s′)).

Next, we present notations relevant to our NTK-based analysis. Let O, O′, X , R and X̃ denote data
matrices containing s, s′, (s, a), r and (s, πimp(s)) where (s, a, r, s′) appears in the offline dataset
D. We consider NTK-parameterized Qθ and Vψ . For any two state-action data matrices A and B,
the initial NTK ofQθ is given by Θ̂

(0)
i (A,B) = ∇θQθi(A) ·∇θQθi(B)⊤|t=0. At infinite width, the

kernel converges to a deterministic one denoted by Θ̂(0). Analogously, we define the initial NTK (at
infinite width) of Vψ acting on state data matrices as Θ̂(0)

V . Let Cimp = Θ̂(0)(X̃ ,X ) · Θ̂(0)(X ,X )−1

and CV = Θ̂
(0)
V (O′,O) · Θ̂(0)

V (O,O)−1. For policy evaluation, define Q(0) = Qθ and V (0) = Vψj

with parameters θ, ψj sampled from the initial weight distribution. Ensemble indices are specified if
necessary. {Q(t)} and {V (t)} denote the sequence of intermediate estimates during training, where
V (t) is updated using Q(t),∀t ≥ 1. Assume γ∥CV Cimp∥ < 1.

5
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We are now ready to present our main theoretical result:

Theorem 4.5. Let Ω = CV (Q
(0)(X̃ )− CimpQ

(0)(X )),B =

√
Eens

[(
V (0)(O′)− CV · V (0)(O)

)2]
.

After t+ 1 iterations of update (6) and (7) (with 4.4), the Q-estimate for (s, a) ∼ X is given by:

Q(t+1)(X ) =
[
1 + · · ·+ (γCV Cimp)

t
]
R

+ γ
[
1 + · · ·+ (γCV Cimp)

t−1
]
(Ω−B) +O

(
γt∥CV Cimp∥t

)
.

(10)

See Appendix A for a detailed proof. Note that X̃ in Ω is likely to select high Q(0) values due to
the implicit optimization of πimp. And Theorem 4.5 indicates that the proposed Q-function update
penalizes the “initial error” term Ω by B ≥ 0, thus reducing the chance of catastrophic overestima-
tion. Note that Assumption 4.3 is a strong one which is not satisfied in the actual IQL algorithm.
The output dynamics of IQL under varying implicit policies remains an area of further study.

5 POLICY EXTRACTION WITH ADAPTIVE CLONING TEMPERATURE

Improving value learning alone can be helpful for the optimization of the implicit policy πimp,
but may not completely solve the over-regularization problem since AWR always imposes a KL-
divergence constraint (Peng et al., 2019). Inspired by the automated entropy adjustment technique
used in SAC (Haarnoja et al., 2018), we formulate a constrained optimization problem where the
average likelihood of the state-action pairs from the dataset is constrained, while the likelihood at
different states can vary. Formally, consider the following constrained optimization problem:

min
ϕ

−Es∼D,a∼πϕ
[Qθ̂(s, a)] s.t. E(s,a)∼D[log πϕ(a|s)] ≥ HD (11)

whereHD is a given constant. The Lagrangian of Equation (11) is given by

L(ϕ, β) = −Es∼D,a∼πϕ
[Qθ̂(s, a)] + β(−E(s,a)∼D[log πϕ(a|s)] +HD). (12)

Similar to (Haarnoja et al., 2018), we perform approximate dual gradient descent on the constrained
optimization problem, which alternates between optimizing the Lagrangian with respect to the pri-
mal variable π and optimizing the dual variable β by minimizing the following loss:

L(β) = E(s,a)∼D[β(log πϕ(a|s)−HD)]. (13)

Minimizing loss (13) increases the value of β if log πϕ(a|s) < HD and vice versa. One potential
problem of this approach is that ifHD is overestimated, the behavior of (12) will gradually approach
behavior cloning. We can alleviate this issue by combining (12) with weighted behavior cloning as:

Lπ(ϕ) = −Es∼D,a∼πϕ
[Qθ̂(s, a)]− βE(s,a)∼D[w(s, a) log πϕ(a|s)] (14)

where w(s, a) can be computed using learned Q(s, a) and V -ensemble. As an example, for AWR:

w(s, a) = exp(Qθ̂(s, a)− Ec[Vψi ](s)). (15)

By optimizing the loss in Equation (14), in the worst case where β blows up due to an overestimated
HD, we can still get similar behavior to weighted behavior cloning.
Remark 5.1. Estimating the optimal HD is difficult, since the average log-likelihood over D of the
best policy π∗

D that can be learnt fromD varies greatly with the quality ofD. We describe the tuning
procedure forHD in Appendix B.

6 ALGORITHM SUMMARY Algorithm 1 ACTIVE
Hyperparameters: f = fα, m,HD, LR λ, λβ , EMA η.
Initialize: ϕ, θ, θ̂, {ψi}mi=1, β, D.
for each gradient step do
ψi ← ψi − λ∇ψi

LfV (ψi) (Equation (6))
θ ← θ − λ∇θLQ(θ) (Equation (7))
θ̂ ← (1− η)θ̂ + ηθ
β ← β − λβ∇ββ (Equation (13))
ϕ← ϕ− λ∇ϕLπ(ϕ) (Equation (14))

end for

We now describe our complete al-
gorithm which combines our modi-
fications on value learning and pol-
icy extraction. We refer to the
resulting algorithm as Actor-Critic
with Temperature adjustment and
In-sample Value Ensemble (AC-
TIVE) and summarize the approach
in Algorithm 1.
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Table 2: Average normalized score over the final 10 evaluations and 5 seeds. ± captures the standard
deviation over seeds. The results of CQL, TD3+BC, IQL and SQL are taken from the authors. The “-
I” and “-S” suffixes indicate the use of IQL-style and SQL-style V -function losses, respectively. The
highest scores are bolded. Additionally, scores higher than the corresponding reproduced baseline
(IQL for ACTIVE-I, SQL for ACTIVE-S) are marked in blue.

Dataset CQL TD3+BC IQL SQL IQL
(Reproduced)

SQL
(Reproduced)

ACTIVE-I ACTIVE-S

halfcheetah-m 44.0 ±0.8 48.3 ±0.3 47.4 ±0.2 48.3 ±0.2 47.4 ±0.1 47.8 ±0.0 50.6 ±0.1 52.3 ±0.2
hopper-m 58.5 ±2.1 59.3 ±4.2 66.2 ±5.7 75.5 ±3.4 64.4 ±2.7 63.8 ±2.3 80.1 ±3.8 86.1 ±3.4
walker2d-m 72.5 ±0.8 83.7 ±2.1 78.3 ±8.7 84.2 ±4.6 80.1 ±1.3 82.8 ±0.4 84.8 ±0.7 87.2 ±1.0
halfcheetah-m-r 45.5 ±0.5 44.6 ±0.5 44.2 ±1.2 44.8 ±0.7 43.6 ±0.2 43.9 ±0.3 51.1 ±0.3 51.7 ±0.2
hopper-m-r 95.0 ±6.4 60.9 ±18.8 94.7 ±8.6 101.7 ±3.3 86.0 ±13.4 85.6 ±12.3 101.1 ±1.6 102.8±0.7
walker2d-m-r 77.2 ±5.5 81.8 ±5.5 73.8 ±7.1 77.2 ±3.8 70.3 ±5.6 69.2 ±6.3 85.4 ±3.5 79.3 ±4.6
halfcheetah-m-e 90.7 ±4.3 90.7 ±4.3 86.7 ±5.3 94.0 ±0.4 88.2 ±1.6 91.2 ±1.2 93.2 ±0.4 92.9 ±1.0
hopper-m-e 105.4 ±6.8 98.0 ±9.4 91.5 ±14.3 111.8 ±2.2 98.7 ±7.9 104.9 ±5.4 89.2 ±10.9 109.9 ±2.0
walker2d-m-e 109.6 ±0.7 110.1 ±0.5 109.6 ±1.0 110.0 ±0.8 110.0 ±0.4 111.2 ±0.1 112.0 ±0.4 111.7 ±0.3
antmaze-u 74.0 78.6 87.5 ±2.6 92.2 ±1.4 85.8 ±3.2 90.0 ±3.1 91.6 ±1.4 90.8 ±1.5
antmaze-u-d 84.0 71.4 62.2 ±13.8 74.0 ±2.3 60.6 ±14.2 49.6 ±6.9 78.4 ±5.1 43.8 ±22.1
antmaze-m-p 61.2 10.6 71.2 ±7.3 80.2 ±3.7 76.2 ±6.2 72.8 ±3.2 74.6 ±5.5 78.8 ±1.7
antmaze-m-d 53.7 3.0 70.0 ±10.9 75.1 ±4.2 73.8 ±3.7 62.2 ±8.1 75.2 ±2.2 67.0 ±3.3
antmaze-l-p 15.8 0.2 39.6 ±5.8 50.2 ±4.8 48.2 ±6.5 38.2 ±5.2 51.2 ±5.8 51.2 ±5.7
antmaze-l-d 14.9 0.0 47.5 ±9.5 52.3 ±5.2 47.2 ±3.5 41.6 ±4.4 48.2 ±5.8 42.6 ±3.2
kitchen-c 43.8 ±11.2 - 61.4 ±9.5 76.4 ±8.7 67.0 ±3.4 60.4 ±1.3 68.2 ±3.6 66.5 ±3.3
kitchen-p 49.8 ±10.1 - 46.1 ±8.5 72.5 ±7.4 58.8 ±8.7 70.8 ±4.1 69.6 ±3.0 73.5 ±3.0
kitchen-m 51.0 ±6.5 - 52.8 ±4.5 67.4 ±5.4 47.9 ±3.7 46.9 ±11.8 52.1 ±2.9 73.2 ±1.4

7 EXPERIMENTS

In this section, we present empirical evaluations of ACTIVE against baseline algorithms. We first
compare our method with baseline model-free offline RL methods on the D4RL benchmark. We
then analyze the effect of in-sample V -ensemble (IVE) and adaptive cloning temperature (ACT) in
ablation studies. Finally, we present an empirical comparison of the running time of ACTIVE and
prior in-sample learning methods.

7.1 COMPARISONS ON OFFLINE RL BENCHMARKS

Table 1: Comparison against ensemble-based algorithms
with similar ensemble sizes (m). The results of RORL
and MSG are taken from the authors.

Dataset RORL (m = 10) MSG (m = 4) ACTIVE-I
(m≤ 7)

ACTIVE-S
(m≤ 7)

antmaze-u 96.7 ± 1.9 98.6 ± 1.4 91.6 ± 1.4 90.8 ± 1.5
antmaze-u-d 90.7 ± 2.9 76.6 ± 7.6 78.4 ± 5.1 43.8 ± 22.1
antmaze-m-p 76.3 ± 2.5 83.0 ± 7.1 74.6 ± 5.5 78.8 ± 1.7
antmaze-m-d 69.3 ± 3.3 83.0 ± 6.2 75.2 ± 2.2 67.0 ± 3.3
antmaze-l-p 16.3 ± 11.1 46.8 ± 14.7 51.2 ± 5.8 51.2 ± 5.7
antmaze-l-d 41.0 ± 10.7 58.2 ± 9.6 48.2 ± 5.8 42.6 ± 3.2
Average 65.1 74.4 69.9 62.3

Comparisons and Baselines. First, we
evaluate our method on Gym MuJoCo,
AntMaze and Kitchen datasets of the
D4RL benchmark (Fu et al., 2020). For
a fair comparison, we follow the setting
of IQL (Kostrikov et al., 2022) in which
Gym MuJoCo and AntMaze datasets
take the “-v2” version while Kitchen
datasets take the “-v0” version. Note
that AntMaze and Kitchen datasets con-
tain fewer near-optimal trajectories than
Gym MuJoCo datasets, and learning ef-
fective policies from them requires “stitching” together sub-trajectories. We compare our method
with popular model-free offline RL methods, including CQL (Kumar et al., 2020), TD3+BC (Fuji-
moto & Gu, 2021), IQL (Kostrikov et al., 2022) and SQL (Xu et al., 2023). The results are presented
in Table 2. We can see that our method performs comparably to the best-performing prior method
and outperforms the corresponding in-sample baselines (IQL for ACTIVE-I, SQL for ACTIVE-S),
especially on suboptimal or diverse datasets (e.g. the m/m-r datasets, antmaze-u-d, kitchen-m).

Additionally, we compare ACTIVE with popular ensemble-based algorithms, including RORL
(Yang et al., 2022) and MSG (Ghasemipour & Gu, 2022) on AntMaze tasks, and SAC-N (An et al.,
2021) on Kitchen tasks. While it is known that ensemble-based methods like SAC-N performs well
on MuJoCo tasks, AntMaze and Kitchen tasks can be more realistic and challenging (Fu et al., 2020).
The results on AntMaze with similar ensemble sizes are shown in Table 1. Note that MSG does not
rely solely on ensembles but instead requires a CQL-like regularizer. In contrast, ACTIVE does not
require additional explicit regularization. Due to the lack of official results on Kitchen tasks, we run
SAC-N with ensemble size m = 20 and 40. In both cases we find that SAC-N rapidly diverges and
failed to learn any meaningful policy, as shown in Table 8. Note that an ensemble of size m = 40 is
already much larger than the value ensemble required in our method (typically 5 ≤ m ≤ 7).
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Figure 3: Normalized score of
IVE-IQL with different ensem-
ble size m and expectile τ .

Effect of In-sample V -Ensemble (IVE). We demonstrate the ef-
fect of V -ensemble and its interaction with τ (or α). First we
compare IVE-S and SQL on the simpler antmaze-u dataset. The
result is shown in Figure 1. Note that Dropout can also be used to
capture epistemic uncertainty (Gal & Ghahramani, 2016) but in
SQL it is only used to mitigate overfitting. In ACTIVE we take
a different approach of taking the ensemble minimum in boot-
strapping and policy extraction. It is evident that our method suc-
cessfully prevents catastrophic errors and is more consistent in
reaching higher scores. We present additional results for reduc-
ing catastrophic overestimation on the antmaze-u-d dataset shown
in Figure 11 in Appendix C. For harder tasks, such as “diverse”
versions of the datasets, a larger τ is desired in IQL to extract
better policies but performs poorly due to numerical instabili-
ties. In ACTIVE, a fixed-size V -ensemble m = 6 allows for a
larger expectile τ ∈ {0.9, 0.95, 0.99}, while a larger ensemble
size m ∈ {1, 2, 3, 6} stabilizes bootstrapping off large expectile
estimates τ = 0.99, as shown in Figure 3. This suggests that on
datasets that require more value propagation, performance gains
can be obtained by using a V -ensemble and gradually increase τ .

In Section 4.2, we mentioned that IVE introduces a bias-sparsity trade-off controlled by c in Ec[Vi].
While the advantage bias could be optimistic when c < 0.5, The value functions learned by IVE
is still pessimistic due to the target r + γmini Vi. Here we demonstrate the impact of Ec[Vi] on
policy performance. As shown in Figure 4, Ec[Vi] could effectively aid training by trading bias off
for sparsity control. For most MuJoCo datasets we find that a large c = 1.0 is beneficial for action
filtering. In cases where the advantage is more sparse (e.g. antmaze-u-d), a small c could facilitate
learning. To promote understanding of the in-sample epistemic uncertainty, we present additional
visualizations shown in Figure 15 in Appendix C.
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Figure 4: Normalized score of IVE-I/S with advantage estimates computed using different ensemble
aggregates. Ec[V ] denotes the c-th quantile of the V -ensemble.

Effect of Adaptive Cloning Temperature (ACT). As discussed in Section 5, over-regularization
can happen when the dataset is skewed towards suboptimal policies, and the average likelihood of
dataset actions given by the learned policy can overshoot. We present learning curves of SQL and
ACT-S on suboptimal datasets in Figure 5. During training, ACT successfully adjusts batch average
log π(a|s) to a neighborhood of the target likelihood HD. We can see that in the early stages of
training, ACT performs similarly to weighted behavior cloning. On the other hand, a slightly lower
HD allows for more generalization and results in better performance.
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7.2 ABLATION STUDIES

In this section, we present the results of an ablation study over the components of ACTIVE, in-
cluding In-sample V -Ensemble (IVE) and Adaptive Cloning Temperature (ACT). Learning curves
and performance profiles are shown in Figures 6(a) and 6(b). We can see that the performance im-
provement on compositional datasets like AntMaze is mainly attributed to IVE, while ACT mainly
improves performance on suboptimal datasets in the MuJoCo suite. We present additional results on
Kitchen tasks in Figure 12 in Appendix C.
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Figure 6: Average learning curves with stratified bootstrap confidence intervals (CIs) and perfor-
mance profiles generated using rliable (Agarwal et al., 2021) on (a) MuJoCo and (b) AntMaze tasks.

7.3 RUN TIME Table 3: Run time of ACTIVE
and baselines on the halfcheetah-
medium-v2 dataset.

Algorithm Iter/s Time (min)
IQL 744 22.27
SQL 727 22.79
ACTIVE-I 650 25.89
ACTIVE-S 627 26.48

In this section, we compare the run time of ACTIVE and
baseline in-sample algorithms by running them on the same
hardware and software configuration for 1M steps. The result
is displayed in Table 3. We can see that while ACTIVE in-
troduces ensembles for uncertainty estimation, for small net-
works the run time does not increase significantly thanks to
parallelization.

8 DISCUSSION

Although we have shown in Section 7.1 that adaptive temperature adjustment does improve final
performance on certain datasets, a SAC-style policy extraction loss in Equation (14) with an in-
sample critic does not achieve similar results as EDAC (An et al., 2021) on MuJoCo tasks. We argue
that critics trained in an in-sample manner may only generalize in a close neighborhood of dataset
samples. And for effective generalization to take place in offline RL tasks, it may be necessary to
perform out-of-sample updates. Given that in-sample critics can be empirically more accurate (Fu
et al., 2022), how to combine in-sample learning and out-of-sample learning for balancing general-
ization and regularization may be worth investigating. These discussions are beyond the scope of
this work, and we leave them for future works.

Recent generalizations of IQL such as EQL (Garg et al., 2023) studied the Bellman error distribu-
tion in MDPs and proposed using Gumbel regression to learn the V -function. And in ACTIVE,
the Bellman error distribution could be affected by the V -ensemble. We analyze the Bellman error
distribution of single-net IQL and IVE in Figure 13 in Appendix C, in which we do not observe sig-
nificant difference between the two set of distributions. Nevertheless, the Bellman error distribution
in offline RL methods may be worth investigating and remains an area of further study.

9 CONCLUSION

We have introduced ACTIVE, an offline RL algorithm designed to alleviate over-regularization in
existing in-sample learning methods. ACTIVE provides an ensemble-based value learning scheme
and a policy extraction loss based on dual gradient descent that can be applied to any variant of
implicit TD backups. Experimental results show that our method effectively mitigates overfitting
of V -function and prevents over-regularization on suboptimal datasets. Compared to existing in-
sample offline RL algorithms, ACTIVE exhibits better stability and final policy performance on a
variety of offline datasets.
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A PROOF OF THEOREM 4.5

Following the assumptions and notations introduced in Section 4.3, we present the proof of Theo-
rem 4.5. The proof builds on existing work on NTK and ensemble-based offline RL methods (Lee
et al., 2019; Ghasemipour & Gu, 2022).

Proof. Consider the linearization (w.r.t. parameters) of Q(0) at initialization:

Qlin(s, a) := Q(0)(s, a) +∇θQ(0)(s, a) ·
(
θlin − θ(0)

)
. (16)

Let Q(0)
lin = Qlin, and consider performing updates on the linearized network to get {Q(t)

lin}. Lee
et al. (2019) shows that with a MSE loss and infinite network width, subject to technical conditions
on the learning rate, the predictions of the trained networks Q(t) coincide with the predictions of the
trained linearized networks Q(t)

lin , i.e. ∀(s, a), t, Q(t)
lin(s, a) = Q(t)(s, a). Since we have augmented

V to train on X̃ using a MSE loss by Theorem 3.1 and Assumption 4.2, we can analogously define
the linearized V (0)

lin and analyze the dynamics of V (t)
lin instead:

Vlin(s) := V (0)(s) +∇ψV (0)(s) ·
(
ψlin − ψ(0)

)
. (17)

Learning V . Following Lee et al. (2019) (Section 2.2, Equations 9-11, by performing continuous-
time gradient descent to the limit of t→∞ so that (I − e−ηΘ̂0t)→ I), we can derive:

V
(t)

lin (O′) = V (0)(O′) + Θ̂
(0)
V (O′,O) · Θ̂(0)

V (O,O)−1 ·
(
Q

(t)
lin (X̃ )− V

(0)(O)
)

= V (0)(O′) + CV ·
(
Q

(t)
lin (X̃ )− V

(0)(O)
)
.

(18)

Under the NTK setting, ∀s,Eens[V
(0)(s)] = 0. Therefore we have:

Eens[V
(t)

lin (O′)] = Eens

[
V (0)(O′) + CV ·

(
Q

(t)
lin (X̃ )− V

(0)(O)
)]

= CV ·Q(t)
lin (X̃ )

Vens[V
(t)

lin (O′)] = Eens

[(
V (0)(O′) + CV ·

(
Q

(t)
lin (X̃ )− V

(0)(O)
))2

]
− (CV ·Q(t)

lin (X̃ ))
2

= Eens

[(
V (0)(O′)− CV · V (0)(O)

)2
]
.

(19)

To simplify the notation, let B :=

√
Vens[V

(t)
lin (O′)].

Bootstrapping Q against V . By Assumption 4.4, the data matrix containing the learning target for
Q is Y(t) = R+ γ · LCB(V (t)

lin (O′)), where

∀s′,LCB(V (t)
lin (s′)) = Eens[V

(t)
lin (s′)]−

√
Vens[V

(t)
lin (s′)]. (20)

Following Lee et al. (2019) (Section 2.2, Equation 9, t→∞), we can derive:

Q
(t+1)
lin (X ) = Y(t)

Q
(t+1)
lin (X̃ ) = Q(0)(X̃ ) + Θ̂(0)(X̃ ,X ) · Θ̂(0)(X ,X )−1 ·

(
Y(t) −Q(0)(X )

)
= Q(0)(X̃ ) + Cimp ·

(
Y(t) −Q(0)(X )

)
.

(21)
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Analogous to the proof of Theorem 3.1 in Ghasemipour & Gu (2022), we can recursively compute
Y(t):

Y(t) = R+ γ · LCB(V (t)
lin (O′))

= R+ γ

[
Eens[V

(t)
lin (O′)]−

√
Vens[V

(t)
lin (O′)]

]
= R+ γ

[
CV ·Q(t)

lin (X̃ )−B
]

= R+ γ
[
CV ·

(
Q(0)(X̃ ) + Cimp ·

(
Y(t−1) −Q(0)(X )

))
−B

]
= R+ γ(Ω−B) + γCV CimpY(t−1)

= · · ·

=
[
1 + · · ·+ (γCV Cimp)

t−1
]
(R+ γ(Ω−B)) + (γCV Cimp)

t
(
R+ γ LCB(V

(0)
lin (O′)

)
=

[
1 + · · ·+ (γCV Cimp)

t
]
R+ γ

[
1 + · · ·+ (γCV Cimp)

t−1
]
(Ω−B) +O

(
γt∥CV Cimp∥t

)
.

(22)

Plugging into Equation (21) and using the NTK property, we have:

Q(t+1)(X ) = Q
(t+1)
lin (X ) =

[
1 + · · ·+ (γCV Cimp)

t
]
R+O

(
γt∥CV Cimp∥t

)
+ γ

[
1 + · · ·+ (γCV Cimp)

t−1
]
(Ω−B).

(23)

B IMPLEMENTATION DETAILS

General. We implement ACTIVE and reproduce IQL (Kostrikov et al., 2022) and SQL (Xu et al.,
2023) based on the author-provided source code. We mainly tune the implicit regularization level (α
or τ ) along with ensemble size m and target likelihood HD while most remaining hyperparameters
remained unchanged from the corresponding baseline (IQL for ACTIVE-I, SQL for ACTIVE-S).
For learning curves presented in the paper, we evaluate the agent for 10 episodes every 5000 steps.
For benchmark results in Table 2, we follow IQL and SQL by averaging over 10 evaluations every
5000 training steps on MuJoCo/Kitchen, and averaging over 100 evaluations every 0.1M training
steps on AntMaze. The full hyperparameters setting is shown in Tables 4 to 7.

Ensemble Aggregate for Bootstrapping. We use mini Vψi
(s) as ensemble aggregate for bootstrap-

ping on most D4RL datasets. On walker2d-medium-replay-v2, we use 1
m

∑m
i Vψi

(s) instead as it
empirically performs better. The full setup can be found in Table 7.

Importance Weight in ACTIVE. To isolate the effect of weight distribution and weight scaling
(which is controlled by adaptive temperature β), for every batch we normalize w(s, a) in Equa-
tion (14) by dividing each element by the batch mean (mean + ϵ, ϵ = 1× 10−4 for ACTIVE-S).

Tuning HD. In this work, we tune HD for each different dataset. To choose HD in an offline
manner, we first run IVE-SQL/IQL to obtain the average log likelihoodH0 evaluated on the dataset
(estimated using the final minibatches). And then starting withHD = H0 we decreaseHD until the
turning point of β (i.e. when β starts to decrease) gets lower than 1/2 of the total training iterations.

Software. We use the following software versions:

• D4RL 1.1 (Fu et al., 2020) (Apache-2.0 license)
• Jax 0.4.9 (Bradbury et al., 2018) (Apache-2.0 license)
• MuJoCo 2.1.0 (Todorov et al., 2012) (Apache-2.0 license)
• Gym 0.23.1 (Brockman et al., 2016) (MIT license)

Hardware. We use the following hardware:
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• NVIDIA RTX 3090
• Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Table 4: ACTIVE-I/S general hyperparameters.

Hyperparameter Value

Actor learning rate 3× 10−4

2× 10−4 for AntMaze in ACTIVE-S

Critic learning rate 3× 10−4

2× 10−4 for AntMaze in ACTIVE-S

Value learning rate 3× 10−4

2× 10−4 for AntMaze in ACTIVE-S
Batch size 256
Optimizer Adam

Network (all) 3 layers ReLU activated MLPs with 256 units
Discount γ 0.99
Polyak η 0.005

Layer normalization Off
Value Dropout Off
Actor Dropout Off (p = 0.1 for Kitchen)

Table 5: ACTIVE hyperparameters used in Kitchen domain.

ACTIVE-I ACTIVE-S
Dataset τ βAWR m c HD α m c HD
kitchen-complete-v0 0.97 0.3 5 0.0 Off 0.05 5 0.0 Off
kitchen-partial-v0 0.9 0.5 5 0.0 Off 0.3 5 0.0 Off
kitchen-mixed-v0 0.95 0.3 5 0.0 Off 0.1 7 0.0 Off

Table 6: ACTIVE hyperparameters used in AntMaze domain.

ACTIVE-I ACTIVE-S
Dataset τ βAWR m c HD α m c HD
antmaze-umaze-v2 0.99 3.0 5 0.0 -5.25 0.02 5 0.0 -5.25
antmaze-umaze-diverse-v2 0.99 10.0 6 0.0 -4.0 0.5 7 0.0 -4.0
antmaze-medium-play-v2 0.99 10.0 6 0.0 -5.0 0.01 5 0.0 -5.0
antmaze-medium-diverse-v2 0.99 10.0 5 0.0 -5.0 0.02 5 0.0 -5.0
antmaze-large-play-v2 0.99 10.0 6 0.0 -5.25 0.02 5 0.0 -5.25
antmaze-large-diverse-v2 0.99 10.0 6 0.0 -5.3 0.01 5 0.0 -5.3

Table 7: ACTIVE hyperparameters used in MuJoCo domain.

ACTIVE-I ACTIVE-S

Dataset τ βAWR m c HD α m c HD
Ens. agg.

for Q-update
halfcheetah-medium-v2 0.9 3.0 5 1.0 1.0 0.03 5 1.0 -1.0 min
hopper-medium-v2 0.9 3.0 5 1.0 0.0 0.1 5 1.0 -0.9 min
walker2d-medium-v2 0.9 3.0 5 1.0 1.0 0.1 5 1.0 0.0 min
halfcheetah-medium-replay-v2 0.9 3.0 5 1.0 -11.0 0.1 5 1.0 -11.0 min
hopper-medium-replay-v2 0.9 3.0 5 1.0 -5.0 0.1 5 1.0 -5.0 min
walker2d-medium-replay-v2 0.9 3.0 5 1.0 -7.0 1.0 5 0.0 -3.0 mean
halfcheetah-medium-expert-v2 0.7 3.0 5 0.0 1.75 1.0 5 0.0 1.75 min
hopper-medium-expert-v2 0.7 3.0 5 0.0 0.0 1.0 5 0.0 0.0 min
walker2d-medium-expert-v2 0.7 3.0 5 0.0 1.75 1.0 5 0.0 1.75 min
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Figure 7: Learning curves of ACTIVE-S, IVE-S and SQL on MuJoCo datasets.
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Figure 8: Learning curves of ACTIVE-I, IVE-I and IQL on AntMaze datasets.
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Figure 9: Learning curves of IVE-S and SQL on Kitchen datasets.

0.00 0.25 0.50 0.75 1.00
Training Iterations 1e6

0

20

40

60

80

No
rm

al
ize

d 
Sc

or
e

kitchen-complete-v0

IQL
IVE-IQL

0.00 0.25 0.50 0.75 1.00
Training Iterations 1e6

0

20

40

60

80
No

rm
al

ize
d 

Sc
or

e
kitchen-partial-v0

0.00 0.25 0.50 0.75 1.00
Training Iterations 1e6

0

20

40

60

No
rm

al
ize

d 
Sc

or
e

kitchen-mixed-v0

Figure 10: Learning curves of IVE-I and IQL on Kitchen datasets.
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Figure 13: Kernel density estimation of Bellman errors obtained by training on 4 datasets from the
D4RL benchmark using single network SQL (gray) and V -ensemble (blue).

10 5 0 5 10
Advantage Estimate

0.0

0.1

0.2

0.3

Ke
rn

el
 D

en
sit

y 
Es

tim
at

io
n halfcheetah-ran-v2

Q 1
m

i
Vi

Q min
i

Vi

Q V

5.0 2.5 0.0 2.5 5.0
Advantage Estimate

0.0

0.5

1.0

Ke
rn

el
 D

en
sit

y 
Es

tim
at

io
n halfcheetah-med-v2

Q 1
m

i
Vi

Q min
i

Vi

Q V

5.0 2.5 0.0 2.5 5.0
Advantage Estimate

0.0

0.5

1.0

Ke
rn

el
 D

en
sit

y 
Es

tim
at

io
n halfcheetah-exp-v2

Q 1
m

i
Vi

Q min
i

Vi

Q V

50 25 0 25 50
Advantage Estimate

0.00

0.02

0.04

0.06

0.08

Ke
rn

el
 D

en
sit

y 
Es

tim
at

io
n walker2d-ran-v2

Q 1
m

i
Vi

Q min
i

Vi

Q V

10 5 0 5 10
Advantage Estimate

0.00

0.25

0.50

0.75

1.00

Ke
rn

el
 D

en
sit

y 
Es

tim
at

io
n walker2d-med-v2

Q 1
m

i
Vi

Q min
i

Vi

Q V

10 5 0 5 10
Advantage Estimate

0.0

0.5

1.0

1.5

Ke
rn

el
 D

en
sit

y 
Es

tim
at

io
n walker2d-exp-v2

Q 1
m

i
Vi

Q min
i

Vi

Q V

50 25 0 25 50
Advantage Estimate

0.000

0.025

0.050

0.075

0.100

Ke
rn

el
 D

en
sit

y 
Es

tim
at

io
n hopper-ran-v2

Q 1
m

i
Vi

Q min
i

Vi

Q V

10 5 0 5 10
Advantage Estimate

0.0

0.2

0.4

0.6

0.8

Ke
rn

el
 D

en
sit

y 
Es

tim
at

io
n hopper-med-v2

Q 1
m

i
Vi

Q min
i

Vi

Q V

10 5 0 5 10
Advantage Estimate

0.0

0.5

1.0

Ke
rn

el
 D

en
sit

y 
Es

tim
at

io
n hopper-exp-v2

Q 1
m

i
Vi

Q min
i

Vi

Q V

Figure 14: Kernel density estimation of the advantage distribution on 12 datasets from the D4RL
benchmark obtained using single network SQL (gray) and V -ensemble (blue and orange).
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Figure 15: Uncertainty estimate meani Vi − LCB(Vi) and reward visualization using t-SNE (van
der Maaten & Hinton, 2008) projections of observations in Kitchen trajectories.

Table 8: Comparison against SAC-N on Kitchen tasks.

Dataset SAC-N (m = 20) SAC-N (m = 40) ACTIVE-S
kitchen-c 0.0 ± 0.0 0.0 ± 0.0 66.5 ± 3.3
kitchen-p 0.0 ± 0.0 0.0 ± 0.0 73.5 ± 3.0
kitchen-m 0.0 ± 0.0 0.0 ± 0.0 73.2 ± 1.4

18


	Introduction
	Related Work
	Preliminaries
	Offline Reinforcement Learning
	Generalized Implicit Q-Learning

	Value Learning with In-sample V-Ensemble
	Overfitting of V-function and In-sample Error Accumulation
	Value Learning with In-sample V-Ensemble
	Theoretical Analysis

	Policy Extraction with Adaptive Cloning Temperature
	Algorithm Summary
	Experiments
	Comparisons on Offline RL Benchmarks
	Ablation Studies
	Run Time

	Discussion
	Conclusion
	Proof of thm:main
	Implementation Details
	More Results

