
Enhanced Expert Merging for Mixture-of-Experts in
Graph Foundation Models

Lei Liu1,3, Xingyu Xia1, Qianqian Xie2,3, Ben Liu1, Wenjie Xu1, Min Peng1,2,3∗
1School of Computer Science, Wuhan University, Wuhan, China

2School of Artificial Intelligence, Wuhan University, Wuhan, China
3Center for Language and Information Research, Wuhan University, Wuhan, China
{liulei95, summer, xieq, liuben123, vingerxu, pengm}@whu.edu.cn

Abstract

Graph foundation models (GFMs) have emerged as a promising paradigm for
learning transferable knowledge across diverse graph-structured data. The inher-
ent heterogeneity in features and graph structures poses significant challenges
for building scalable and generalizable GFMs. Existing research has employed
mixture-of-experts (MoE) models to handle the challenges, assigning the most suit-
able expert to each graph. Despite this, the underlying mechanisms of MoE within
the context of GFMs remain insufficiently explored. In this work, we conduct an
in-depth experimental study on an MoE-based GFM and uncover an intriguing
finding: the experts ranked second and third assigned by the router perform better
than the top-ranked expert. This insight motivates us to investigate the potential
of leveraging knowledge embedded across multiple experts. However, directly
ensembling the outputs of multiple experts would incur substantial computational
overhead, while applying a standard expert merging strategy risks suboptimal
performance. To address these challenges, we introduce two enhanced expert
merging strategies that retain the computational efficiency of expert merging, while
improving performance to approach the effectiveness of expert ensembling. Specif-
ically, we propose (i) a knowledge distillation-inspired expert merging method that
aligns the behavior of parameter-fused experts with expert ensembles, and (ii) a
theoretical parameter proximity approach that leverages the similarity of expert
parameters to approximate ensemble outputs while preserving diversity. Extensive
experiments demonstrate that our methods effectively enhance model performance.

1 Introduction

Graph-structured data are ubiquitous and appear in diverse domains such as social networks [31],
molecular biology [32], recommendation systems [12], and knowledge graphs [9]. As the complexity
and volume of such data continue to increase, the development of graph foundation models (GFMs)
becomes essential to meet the growing demand for generalizable, scalable, and efficient learning
systems capable of handling diverse graph-structured data from various domains. The concept of
GFMs mirrors that of foundation models in natural language processing (NLP) and computer vision
(CV) [1]: they are pre-trained on extensive graph data and can be adapted to a wide range of
downstream graph tasks [24]. However, from a technical perspective, GFMs have yet to catch up
with their counterparts in language and vision [8].

Inspired by the success of foundation models in NLP and CV, the graph learning community is
increasingly focused on developing GFMs [9, 49, 37, 19]. The goal is to learn transferable knowledge

∗Corresponding author. Email: pengm@whu.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

from broad graph data, enabling their application across various graph domains and downstream tasks.
However, building effective GFMs presents two major challenges: (1) feature heterogeneity, which
arises from the diverse types, semantics, and dimensionalities of node and edge features across graphs,
and (2) structure heterogeneity, which reflects differences in graph topologies and connectivity
patterns, such as variations in local neighborhood density or the presence of scale-free or small-world
properties. Currently, there are two main approaches to address feature heterogeneity: (i) Using
language models to encode textual attributes from graphs in multiple domains into a unified textual
semantic space [23, 15]; (ii) Employing singular value decomposition (SVD) to align the feature
dimensions across different graphs [41, 40]. To address structure heterogeneity, recent work has
started incorporating mixture-of-experts (MoE) mechanisms into general graph learning models [40].

The effectiveness of MoE has been widely validated in LLMs [5, 17] and multimodal models [22].
However, its working mechanisms in GFMs remain insufficiently explored. To further investigate the
role of MoE in GFMs, we conduct exploratory experiments on AnyGraph [40], a recently proposed
MoE-based GFM, and discover an interesting phenomenon (shown in Figure 1): the performance of
the second and third-ranked experts assigned by the router is stronger than that of the top-ranked expert.
This insight motivates us to explore the potential of leveraging knowledge from multiple experts. To
this end, we increase the number of selected experts and ensemble their outputs. Experiments reveal
that this approach significantly improves the model’s performance, which is consistent with findings
from previous study [30]. The underlying principle is that consulting multiple experts enables the
model to effectively balance and integrate diverse knowledge.

However, directly increasing the number of selected experts significantly increases training and
inference costs, particularly for large expert models. A common strategy to mitigate these costs
is expert merging, which combines the parameters of the top-k selected experts via weighted av-
eraging [11, 28]. Yet, our findings indicate that this approach often degrades model performance.
Such degradation likely stems from the high specialization of learned experts, leading to significant
parameter disparities that cause interference during merging [44]. To overcome these challenges,
we propose to integrate the efficiency of expert merging with the performance benefits of expert
ensembles. Specifically, we introduce two advanced expert merging strategies:

(1) Knowledge Distillation Enhanced Expert Merging (KDEM): Since the expert ensemble
significantly outperforms the fused expert, we treat the ensemble of the top-k selected experts as the
teacher and the parameter-merged expert as the student to align the behavior of the merged expert with
that of the ensemble. During training, the collective knowledge of the expert ensemble is distilled into
the fused expert, thereby enhancing its capabilities. During inference, the only additional overhead is
the weighted averaging of the selected expert parameters, and only the fused expert processes the
inputs. This avoids the computational overhead of evaluating multiple experts, significantly reducing
inference time. However, ensembling the outputs of multiple experts during training still incurs
considerable time costs. Motivated by the observation that real-world teachers do not instruct students
continuously, we propose periodically applying knowledge distillation to reduce training time.

(2) Parameter Proximity Enhanced Expert Merging (PPEM): To further enhance training effi-
ciency, we undertake a theoretical investigation. Since multi-layer perceptrons (MLPs) constitute the
majority of experts in MoE architectures, we demonstrate that when multiple MLPs have similar pa-
rameters, their parameter-merged MLP output closely approximates the ensemble of their individual
outputs. Based on this theoretical foundation, we propose a strategy to gradually reduce parameter
distances between experts. Specifically, we guide the parameters of the top-k experts toward their
weighted average, thereby improving mergeability while preserving expert diversity. This method
operates directly in parameter space without introducing significant computational overhead.

In summary, our key contributions are as follows:

• To gain deeper insights into the MoE mechanism within graph learning, we examine an MoE-based
GFM, revealing the key limitation of the routing strategy: the experts ranked second and third
frequently surpass the top-ranked expert. This motivates us to explore expert ensembling, which we
find can enhance performance, while a simple expert merging method leads to suboptimal results.

• To effectively and efficiently harness the knowledge of multiple experts, we propose two enhanced
expert merging methods: (i) KDEM, which applies knowledge distillation to align the behavior of
merged experts with that of expert ensembles. (ii) PPEM, which leverages the theoretical finding to
gradually brings the expert parameters closer during training. These methods align the performance
of expert merging with that of expert ensembling while preserving computational efficiency.

2

• We validate our approaches through extensive experiments on 38 graph datasets across various
domains and downstream tasks, demonstrating their effectiveness and efficiency.

2 Preliminaries

Graph-Structured Data. A graph G can be denoted as (V, E), where V = {vi} is the node set and
E = {(vi, vj)} is the edge set. The topological structure of a graph is often represented in the form of
an adjacency matrix A ∈ R|V|×|V|, where the elements are 0 or 1, indicating whether an edge exists
between the corresponding two nodes. Each node vi in the graph typically contains a feature vector
xi ∈ Rd0 , and the feature vectors of all nodes form a feature matrix X ∈ R|V|×d0 .

Graph Foundation Models (GFMs). GFMs aim to learn generalizable graph representations, or
graph vocabulary [27, 37], comprising basic transferable units that encode invariant structural and
semantic properties across diverse graph datasets. Let D = {Gi}mi=1 denote a diverse collection of
graphs used for training, where each graph Gi = (Vi, Ei) consists of a node set Vi, an edge set Ei,
and associated node features Xi, with varying node counts and feature dimensions across graphs.
The GFM training process generally involves learning a universal function f(Gi; θ), parameterized
by θ, that captures key structural and feature-based patterns. Once trained, the GFM can generate
embeddings f(Gnew; θ) for a new graph Gnew, enabling broad application to diverse downstream tasks.

Model Merging and Expert Merging. Model merging (also called model fusion) refers to the pro-
cess of combining multiple pre-trained models into a unified one, typically to improve generalization
and reduce computational costs in machine learning tasks [20]. One common approach is to merge
the parameters of multiple models by performing a weighted average of their learned parameters.
Formally, let {Mi(·; θi)}ki=1 represent k distinct pre-trained models, with θi being the parameters of
them, then the merged model can be obtained byM(·; θ̄) =M(·;

∑k
i=1 αiθi), where αi represents

the weight assigned toMi and
∑k
i=1 αi = 1 ensures that the weights are normalized.

Expert merging [11] is a model merging variant applied within the MoE architecture with top-k gating,
where the selected top-k expert models are combined or fused. The current expert merging strategy is
based on a simple weighted average of the expert parameters. Formally, let {Mk(·; θk)}Kk=1 denote
K expert models, the merged MoE layer with top-k routing can be expressed as follows:

I, α = g(x), y =M(x; θ̄) =M(x;
∑

i∈I
αiθi), (1)

where g is the gating mechanism (also called the router) which outputs the indices I ⊆ {1, 2, · · · ,K}
(|I| = k) and weights α of the selected top-k experts, M(·; θ̄) is the fused expert model with
parameters θ̄, x and y represent the input and output of the MoE layer, respectively.

3 A Deep Dive into Existing GFM

The rapid advancement of foundation models in NLP and CV has highlighted the need for similar
progress in the development of GFMs. Inspired by the success of MoE in language models, researchers
have recently begun to apply MoE to GFMs. Nevertheless, the underlying mechanics of MoE in
the context of GFMs remain insufficiently explored. To address this gap, we conducted an in-depth
experimental investigation of an existing MoE-based GFM to deepen our understanding of MoE
in the graph domain. This section begins with a brief introduction to the recently proposed GFM,
AnyGraph [40], followed by a detailed description of the experimental explorations and observations.

3.1 AnyGraph

AnyGraph is a GFM which uses SVD to address the feature dimension misalignment issue and
employs an MoE architecture to handle structure heterogeneity, i.e., assigning a specialized expert to
each graph. Specifically, for each graph G ∈ D, it first applies SVD to both Laplacian-normalized
adjacency matrix Ã and feature matrix X, and then combines the dimension-reduced representations:

E0 = Combine(SVD(Ã),SVD(X)) ∈ R|V|×d, (2)

3

where d is the reduced dimensionality of the features. Subsequently, it injects higher-order connectiv-
ity information into E0 via a non-parametric message passing mechanism [38], producing:

E1 =

L∑
l=1

E
(l)
0 , E

(l)
0 = Ã ·E(l−1)

0 , E
(0)
0 = E0, (3)

where L is the number of message-passing layers. After this, a non-parametric routing mechanism
evaluates all the K experts on E1, and selects the one with the highest competence score:

Êk =Mk(E1; θk), k ∈ {1, 2, · · · ,K}, (4)

k⋆ = argmax
k

ψk, ψk =
1

S

S∑
s=1

sigmoid
(
ê⊤k,as êk,ps − ê⊤k,as êk,ns

)
, (5)

whereMk denotes the k-th expert, k⋆ is the index of the chosen expert, ψk ∈ (0, 1) denotes the
competence score of Mk, (vas , vps , vns) are sampled anchor-positive-negative triplets, S is the
number of sampled triplets, and êk,i ∈ Êk is the node embedding of vi from expert k. Finally, the
selected expertMk⋆ is applied to obtain the final embedding matrix:

Ê =Mk⋆(E1; θk⋆), (6)

which can be used for downstream tasks. Note that AnyGraph uses the most competent expert, i.e.,
the top-1 expert. More technical details are provided in Appendix B.1.

3.2 Experimental Explorations and Observations

1st 2nd 3rd 4th 5th 6th 7th 8th
Rank of Experts

0.20

0.25

0.30

0.35

0.40

0.45

Pe
rf

or
m

an
ce

Recall
NDCG

Figure 1: Average test performance of experts
ranked by competence score across 18 datasets.

750 1000 1250 1500 1750 2000 2250 2500
Training Time of an Epoch (s)

0.20

0.22

0.24

0.26

0.28

0.30

Pe
rf

or
m

an
ce

Link1-Top1
Link1-Top2-M
Link1-Top3-M
Link1-Top2-E
Link1-Top3-E

Link2-Top1
Link2-Top2-M
Link2-Top3-M
Link2-Top2-E
Link2-Top3-E

Figure 2: Training time vs. performance of top-1
routing, expert ensemble (-E) and merging (-M).

To gain a deeper understanding of the MoE mechanism in AnyGraph, we conducted a series of empir-
ical studies. Our initial investigation focused on the performance of individual experts, specifically
those with varying competence scores ψk. We directly evaluated the pre-trained expert models—
ranked by their competence scores—on the test datasets and observed the following phenomenon:

Observation 1: As illustrated in Figure 1, besides the top-ranked expert, higher-ranked experts also
demonstrate substantial performance. For example, the second- and third-ranked experts outperform
the top-ranked expert.

This suggests that the top-k experts collectively possess valuable predictive knowledge. However,
AnyGraph exclusively utilizes only the single most competent expert, potentially leaving useful
expertise from other high-performing experts untapped. Motivated by this insight, we further explored
strategies to incorporate the knowledge embedded in multiple experts. Specifically, we modified
the MoE layer to select the top-k experts and aggregate their outputs using weighted averaging (see
Appendix B.2 for details). This led to the following observation:

Observation 2: As shown in Figure 2, ensembling the outputs of the top-k experts significantly boosts
performance. However, this improvement comes at the cost of increased computational overhead.

To mitigate this overhead while still leveraging multi-expert knowledge, we turned to recent work on
expert merging [11, 28, 51], which suggests that averaging the parameters of the top-k experts can
effectively reduce training and inference costs. This is because only a single forward pass through
the fused expert is required. Adopting this approach, we made the following observation:

4

Observation 3: As depicted in Figure 2, while parameter merging reduces time overhead, it may lead
to degraded performance in certain cases, such as on the Link1 group. (Link1 and Link2 refer to two
dataset groups comprising 15 and 18 datasets, respectively, which will be described in Section 5.1).

This trade-off raises a key question: Is it possible to develop a method that combines the efficiency of
expert merging with the performance benefits of expert ensembling, thereby enabling both effective
and efficient utilization of knowledge from multiple experts?

4 Methods

This section provides an affirmative response to the question. Observation 2 indicates that ensembling
the outputs of the top-k experts often yields favorable results. Our key insight is to maintain the
efficiency of the parameter-fused expert while aligning its performance more closely with that of
the ensemble. To accomplish this, we propose two methods inspired by knowledge distillation and
theoretical principles, which are discussed in Sections 4.1 and 4.2, respectively.

4.1 Knowledge Distillation Enhanced Expert Merging (KDEM)

Expert 1 Expert 2 Expert KExpert k ……

Gate

Graph

Merged
Expert



Figure 3: Architecture of KDEM.

Knowledge distillation [14] is a technique that involves
transferring knowledge from a large, powerful model
(called the teacher model) to a smaller, weaker model
(called the student model). The goal is to enable the stu-
dent model to achieve similar performance to the teacher
while being more efficient in terms of computational re-
sources, such as memory and inference time. This aligns
perfectly with our goal. Since the performance of the top-
k experts’ ensemble is excellent, we treat it as a teacher
model to teach the parameter-fused expert. This approach
allows the knowledge from the top-k experts’ ensemble
to be transferred to the parameter-fused expert, thereby
enhancing its performance. However, traditional knowl-
edge distillation methods have two potential issues: (1)
The two-stage training paradigm imposes substantial time overhead, since the teacher model must be
fully trained before the student can begin training. (2) The top-k experts selected by the router in the
pre-trained teacher model may not be consistent with those selected during the training of the student
model, leading to potential interference in knowledge transfer.

As demonstrated in Figure 3, we introduce a unified training paradigm that jointly optimizes the
teacher and student models to address these issues. Specifically, for a given graph G, after obtaining
the initial embeddings E1 via Eq.(3), the top-k router assigns k experts {Mi(·; θi)}i∈I to it based
on the competence scores {ψi}Ki=1, yielding expert indices I and corresponding weights α:

I = Topk
(
{ψi}Ki=1

)
, α = softmax ({ψi}i∈I) . (7)

The parameters of these k experts are combined through weighted averaging to form a fused expert.
This fused expert generates the outputs of the MoE layer, which are subsequently used to compute a
self-supervised loss for training the model:

Ê =M(E1; θ̄) =M(E1;
∑
i∈I

αiθi), (8)

Lce = −
1

|B|
∑

(vab
,vpb ,vnb

)∈B

log
exp(ŷab,pb − ŷmax)∑
vnb

exp(ŷab,nb
− ŷmax)

, (9)

where E1 is the embedding matrix from Eq.(3), B is a mini-batch of triplets, in which (vab , vpb) is
the positive edge, (vab , vnb

) is the randomly sampled negative edge, ŷab,pb = ê⊤ab êpb is the inner
product, êi ∈ Ê is the embedding of node vi, and ŷmax is the maximum prediction score in the batch,
which is used to avoid numerical instability.

To encourage the output of the merged expert to closely resemble the ensemble of the top-k experts
while minimizing time overhead, we compute the knowledge distillation loss every few training steps

5

and incorporate it into the self-supervised loss to form the final loss function:

Lkd = MSE(Ê, Ē), Ē =
∑
i∈I

αiMi(E1; θi), (10)

L = Lce + γLkd, (11)

where MSE denotes the mean squared error, and γ is a tunable parameter that controls the influence
of knowledge distillation loss. Notably, we do not explicitly train a separate teacher model. Instead,
during training, the ensemble of the top-k experts, Ē, serves as the teacher, distilling its collective
knowledge into the fused expert. This distilled knowledge is ‘stored’ within individual experts
through gradient backpropagation and parameter updates. During the forward pass, the knowledge is
recovered through expert ensembling. As the expert parameters are updated, the teacher’s knowledge
is concurrently refined, facilitating subsequent rounds of distillation. Furthermore, the teacher model
(Ē) and the student model (Ê) share input samples and gating decisions, ensuring they attend to the
same top-k experts for each graph, thereby eliminating any potential inconsistency in expert selection.

4.2 Parameter Proximity Enhanced Expert Merging (PPEM)

Although KDEM improves the expressivity of expert merging, it also introduces nontrivial com-
putational overhead. To minimize this cost, we carried out a thorough investigation. Noting that
most experts in MoE architectures are instantiated as MLPs [30, 5, 40], we analyzed the theoretical
relationship between the output of a parameter-merged MLP and the ensemble of its constituent MLP
experts. Our analysis culminates in the following theorem (see Appendix A for a formal proof):

Theorem 1. Given k MLPs {fi(·; θi)}ki=1 with identical architectures and Lipschitz continuous
activation function, if their parameters converge pairwise, the merged MLP f(·;

∑k
i=1 αiθi) through

parameter average approximates the convex combination of their outputs. Formally, let ∆θi = θ1−θi
measure the parameter deviation from reference parameter θ1, and

∑k
j=1 αj = 1. Then:

lim
∥∆θi∥→0,∀i∈{2,··· ,k}

∥∥∥∥∥∥f(x;
k∑
i=1

αiθi)−
k∑
j=1

αjfj(x; θj)

∥∥∥∥∥∥ = 0, (12)

where ∥ · ∥ denotes the Euclidean norm on the parameter and output spaces.

Theorem 1 indicates that when the parameters of multiple MLP experts are close to each other, the
output of the expert obtained through parameter fusion is also close to the ensemble of those experts.
Motivated by this, we aim to make the parameters of the top-k MLP experts selected by the router
converge to one another, so that the performance of expert fusion approaches that of expert ensemble.
However, if the parameters of all the experts become too close, they will lose their diversity and
specialization, which would negatively impact the performance of the MoE architecture.

To address this, we propose a method that brings the top-k experts sufficiently close to leverage the
conclusion of Theorem 1, while concurrently maintaining diversity across all experts to preserve the
advantages of the MoE architecture. Concretely, we employ an exponential moving average (EMA)
to gradually guide the parameters of the top-k experts toward their average:

θi ← βθi + (1− β)θ̄, ∀i ∈ I, (13)

where θ̄ =
∑
i∈I αiθi and β ∈ (0, 1) controls how rapidly the experts converge: the closer β is to 1,

the more weight is placed on the expert’s previous parameters, resulting in slower updates and more
stable behavior. To further regulate this process, we apply the EMA periodically.

This method allows the parameters of the top-k experts selected by the router to gradually move in
the same direction, as training progresses, these experts become more similar while retaining their
individual specialization, striking a balance between expert similarity and diversity preservation. For
instance, over 100 epochs with 6000 iterations each, setting β = 0.999 and the period of 100, after
training, each expert retains only about 0.9996000 ≈ 0.002 of its original parameters. By applying the
EMA exclusively to the router’s current top-k experts while leaving the parameters of the remaining
experts unchanged, we preserve the overall diversity and the specialized capabilities of the MoE layer.
The training pipeline and time complexity analysis of the two methods are presented in Appendix C.

6

5 Experiments

5.1 Experimental Settings

Datasets We follow the setup of previous work [40] and use 38 datasets spanning diverse domains.
To assess cross-domain generalization ability, we group the datasets in two ways. First, they are split
into two major groups, Link1 and Link2, balanced in total and domain-specific edge counts. Second,
they are categorized into three domain-specific groups: E-commerce, Academic, and Others. Five
datasets are used for the node classification task. Full dataset details are provided in Appendix D.

Baselines and Evaluation We compare against eleven baselines spanning four categories; details
are provided in Appendix E.1. We adopt a zero-shot setting where models trained on Link1 group
are tested on Link2 group, and vice versa. Results for each dataset group are averaged based on
the number of test samples. For GFM baselines, we use their released pre-trained models; other
baselines follow a few-shot setup. Full evaluation procedures are described in Appendix E.2, and
implementation details and hyperparameters are documented in Appendix E.3.

5.2 Overall Performance

To evaluate the zero-shot prediction capability of our methods, we conduct extensive experiments
across various datasets. The evaluation results are shown in Tables 1 and 2. We observe that:

Table 1: Results under zero-shot (AnyGraph, ours) and few-shot (others, 10% train data) settings. For
link prediction, we report Recall@20 and NDCG@20; for node classification, we use accuracy and
macro-F1 score. The best and second-best results are highlighted in bold and underlined, respectively.

Method Link1 Link2 E-commerce Academic Others Node cls.

Rec NDCG Rec NDCG Rec NDCG Rec NDCG Rec NDCG Acc MacF1

GIN 11.80 5.45 21.62 13.41 13.41 8.06 20.61 9.04 18.43 11.85 36.04 30.60
GAT 13.45 6.78 15.30 8.84 9.64 5.78 11.17 4.67 16.17 20.88 54.83 41.61
GPF 6.80 3.27 16.58 9.84 18.72 10.94 14.83 6.41 4.51 3.44 16.29 16.00
GraphPrompt 5.42 3.11 6.10 3.62 6.06 3.36 7.72 3.40 3.42 2.72 23.15 22.89
GraphCL 20.55 10.76 31.42 19.91 26.05 14.59 28.69 14.31 24.62 15.90 48.75 36.15
AnyGraph 23.94 12.68 46.42 27.21 26.92 15.05 32.74 15.31 46.83 28.97 64.31 43.24

KDEM 24.11 12.80 51.69 32.60 35.05 22.02 32.15 15.21 46.86 30.00 63.56 45.03
PPEM 24.33 12.93 50.77 31.93 33.99 21.17 32.47 15.47 46.52 29.73 62.65 44.16

Table 2: Comparison with other existing GFMs in zero-shot scenario. GR denotes the Goodreads
dataset. Since UniGraph uses Arxiv for instruction fine-tuning in the zero-shot setting, we report its
few-shot result instead. The GFT result is also under a few-shot setting. As GOFA does not support
ranking-based link prediction metrics, we report accuracy to align with its evaluation protocol. The
GOFA result on PubMed-link is under a supervised learning setup and is obtained from its paper.

Method GraphGPT OpenGraph UniGraph GFT GOFA

Data Cora PubMed Ecom. w/o GR Arxiv Cora-link PubMed-link

Metric Acc MacF1 Acc MacF1 Recall NDCG Acc Acc Acc

Baseline 18.13 12.72 70.11 64.91 14.44 10.99 31.35 36.29 86.31 93.97

KDEM 62.45 56.32 70.36 68.83 28.30 20.02 61.86 93.03 93.30
PPEM 62.10 55.93 69.94 67.73 22.76 19.76 61.20 93.14 94.10

(1) MoE-based methods substantially outperform other models. Our methods, alongside AnyGraph,
employ the MoE mechanism to assign the most suitable experts to each graph, achieving higher
zero-shot capabilities. The MoE’s effective handling of heterogeneity across different graphs demon-
strates its potential to become a powerful backbone for GFMs. Other methods, such as classical
GNNs, require supervised training on specific datasets and exhibit weak generalization capabilities.
Pretraining then fine-tuning or prompting paradigms also fail to achieve good performance due to
substantial distribution disparities among graph datasets. These methods struggle to learn transferable
knowledge under distribution shifts and can even lead to negative transfer issues [3].

7

(2) Compared to AnyGraph, our proposed methods achieve superior performance. For example,
KDEM and PPEM achieve a 5.27% and 4.35% improvement in recall, respectively, on the Link2
dataset group. The superior performance stems from our model’s ability to effectively combine the
knowledge of multiple experts, whereas AnyGraph can only utilize a single expert. Incorporating
multiple experts offers the following advantages: (i) More accurate and robust predictions by
combining diverse expertise; (ii) Reduced risk of overfitting on a single, overly specialized expert.
Moreover, our methods yield significantly larger improvements on E-commerce datasets compared
to those from Academic or Others domains, suggesting that the E-commerce domain benefits more
substantially from the integration of multiple experts. The fine-grained experimental results and
analyses for each dataset are provided in Appendix F.

5.3 Ablation Study

Table 3: Effectiveness of the key components.

Method Link1 Link2

Recall NDCG Recall NDCG

Expert Ensemble 25.69 13.50 48.89 30.39

KDEM-kd 22.42 11.66 48.34 29.72
KDEM 24.11 12.80 51.69 32.60

PPEM-EMA 22.42 11.66 48.36 29.62
PPEM 24.33 12.93 50.77 31.93

This section demonstrates the effectiveness
of the submodules in our model by compar-
ing with ablated variants. As a reference,
we present the results of expert ensembling.
From Table 3, we can observe that:

(1) Knowledge distillation significantly en-
hances the performance of expert fusion.
The -kd variant, which directly performs
a weighted average of the parameters of
the selected top-k experts without any addi-
tional enhancements, shows degraded per-
formance compared to KDEM. This may be attributed to the simple fusion method causing interfer-
ence [44] among the expert parameters, leading to the loss of some knowledge during expert fusion.
In contrast, KDEM improves performance by distilling knowledge from the expert ensembling into
the fused expert, guiding it to retain the complementary strengths of each specialist expert.

(2) Encouraging parameter proximity among the top-k experts substantially improves the performance
of expert fusion. Grounded in theoretical derivation, PPEM gradually brings the parameters of the
selected experts closer together, aligning the output of the fused experts with that of expert ensembling,
thereby boosting the overall performance.

(3) Expert merging is a promising method for leveraging the knowledge of multiple experts. Since
ensembling multiple experts incurs a significant training overhead, we evaluated only the top-2 and
top-3 expert ensembles, and the results shown are the best among these. As demonstrated in the
results, KDEM and PPEM achieve performance comparable to expert ensembling on the Link1 group
and even surpass it on Link2, highlighting the potential of expert fusion strategies.

5.4 Computational Efficiency Analysis

Top2 Top3 Top4 Top5 Top6 Top7 Top8
800

900

1000

1100

1200

Ti
m

e
(s

)
 E

xc
ep

t E
ns

em
bl

e

(a) Training time per epoch on Link1

PPEM
KDEM
Top-1

Expert Merging
Expert Ensemble

Top2 Top3 Top4 Top5 Top6 Top7 Top8170

180

190

200

210

220

230

Ti
m

e
(s

)
 E

xc
ep

t E
ns

em
bl

e

(b) Inference time on the entire Link2

PPEM
KDEM
Top-1

Expert Merging
Expert Ensemble

1200

1400

1600

1800

2000

Ti
m

e
(s

)
 E

ns
em

bl
e

230

245

260

275

290

Ti
m

e
(s

)
 E

ns
em

bl
e

Figure 4: Computational efficiency compared with top-1 routing of AnyGraph, standard expert
merging, and expert ensemble (expert ensemble: right y-axis; all other methods: left y-axis).

This section evaluates the computational efficiency of KDEM and PPEM compared to top-1 routing,
standard expert merging, and expert ensemble. As depicted in Figure 4, we observe: (1) Relative to

8

the other methods, the expert ensemble imposes substantial training and inference time overhead. (2)
Compared to top-1 routing, using top-k routing inherently increases training overhead, with training
time gradually growing as k increases. (3) KDEM incurs a marginal increase in training time over
standard expert merging (averaging 4.8%), whereas PPEM exhibits almost no increase. Note that
a relatively small k value often suffices for excellent performance (refer to Appendix G.2), so the
additional training overhead is limited. (4) The inference times for expert merging methods exhibit
only minor fluctuations around that of top-1 routing. These fluctuations are likely due to device
measurement variability, indicating that these expert merging methods introduce negligible increases
in test time. These findings align with our time complexity analysis in Appendix C.2.

5.5 Further Discussion

5.5.1 Discussion of Two-Stage Knowledge Distillation and KDEM

As mentioned in Section 4.1, pretraining a teacher model before performing knowledge distillation
not only incurs substantial training overhead, but also risks inconsistency between the experts selected
during teacher training and those used in the distillation phase, due to the dynamic nature of expert
assignment during training. In contrast, KDEM ensures that the teacher and student attend to the
same set of experts on the same input, thereby maintaining consistency in the information flow.
Moreover, this distillation strategy makes the knowledge transfer process more stable: the teacher’s
outputs are continuously updated throughout training, allowing the student model to optimize along a
convergence path aligned with the teacher. As shown in Table 4, the performance of the two-stage
approach—first training the teacher and then distilling—is clearly inferior to our proposed KDEM.

Table 4: Performance comparison between KDEM and the two-stage approach of training a teacher
model followed by knowledge distillation.

Method Link1 Link2

Recall NDCG Recall NDCG

Two-stage KD 23.19 12.03 47.13 28.61
KDEM 24.11 12.80 51.69 32.60

5.5.2 A Deeper Analysis of PPEM Effectiveness

We posit that expert merging only yields benefits when the top-k experts are both sufficiently
similar—so as to minimize parameter interference—and yet retain enough diversity to maximize
overall knowledge capacity. To test this, we performed two complementary experiments:

50 25 0 25 50 75

60

40

20

0

20

40

60

Cora
Expert 0
Expert 1
Expert 2
Expert 3
Expert 4
Expert 5
Expert 6
Expert 7

75 50 25 0 25 50
60

40

20

0

20

40

60
Products-Home

Expert 0
Expert 1
Expert 2
Expert 3
Expert 4
Expert 5
Expert 6
Expert 7

60 40 20 0 20 40 60

40

20

0

20

40

60
Proteins-1

Expert 0
Expert 1
Expert 2
Expert 3
Expert 4
Expert 5
Expert 6
Expert 7

Figure 5: T-SNE visualization of node embeddings generated by all 8 experts trained with PPEM on
the Cora (academic), Products-Home (e-commerce), and Proteins-1 (biological) datasets. A random
sample of 2,500 nodes is selected from each graph for visualization.

(1) Expert Similarity Analysis: We trained two models, one using PPEM and one using the
vanilla expert merging strategy, and then measured the cosine similarity between the outputs of the
top-2 selected experts on each dataset. Under PPEM, the mean similarity across all test sets was

9

0.953, compared to just 0.828 for the vanilla approach. The higher similarity under PPEM reduces
interference between expert parameters, facilitating a more effective merge of the top-k experts.

(2) Expert Diversity Verification: Figure 5 presents a t-SNE visualization of the output repre-
sentations from all 8 expert models trained with PPEM. Despite the high similarity between the
top-2 experts, the experts remain well separated in the embedding space, confirming that diversity
is preserved. This maintained heterogeneity allows the merged experts to cover a broader range of
knowledge, thereby improving the model’s generalization performance.

5.5.3 Visualization of Routing Mechanism

0 1 2 3 4 5 6 7
Expert ID

Yelp-t
Steam-t

Amazon-t
PPA

Prod-tech
Cit-2019

Citation-20C
Email

.959 .971 .702 .914 .919 .786 .936 .948

.972 .740 .882 .896 .919 .521 .939 .860

.977 .958 .863 .973 .968 .598 .972 .934

.942 .937 .852 .926 .932 .882 .933 .932

.989 .987 .911 .989 .985 .912 .988 .972

.998 .999 .870 .992 .991 .978 .998 .994

.998 .999 .860 .993 .988 .968 .998 .992

.975 .947 .815 .960 .965 .856 .976 .972

Competence Scores

0.6

0.7

0.8

0.9

Figure 6: Competence scores of different
experts in a top-2 merged PPEM model.

We visualize expert routing to intuitively demonstrate its
working mechanism. Figure 6 depicts the competence
scores of a PPEM model trained on Link2 and tested on
Link1. From this visualization, we observe: (1) Shared
expert competence. Many datasets receive similarly high
scores from multiple top-ranked experts. For example,
experts 0 and 3 achieve nearly identical scores on the Prod-
tech dataset, suggesting that combining knowledge from
several experts is advantageous. (2) Domain-consistent
assignments. Related datasets are routed to the same ex-
perts. Notably, both citation datasets assign their highest
scores to experts 1, 0, and 6, indicating that the router cap-
tures underlying domain similarities. A further discussion
of the routing mechanism can be found in Appendix H.

6 Related Work

Graph Foundation Models GFMs are still in their infancy: most are tailored to specific tasks or
domains, with only a handful demonstrating preliminary cross-domain and cross-task transferability.
For instance, ULTRA [9] and GraphAny [49] excel at knowledge graph completion and node
classification, respectively, while DiG [50] and MiniMol [18] focus on the molecular domain. More
versatile methods leverage large language models: OFA [23] generates textual node and edge
descriptions and embeds them in a unified space; GraphGPT [33] and LLaGA [4] align graph and
text embeddings via projection layers before prediction; UniGraph [13] and GOFA [19] design self-
supervised pretraining objectives to learn a graph-language encoder that jointly captures structural
and textual information. However, these methods all rely on text features and cannot directly exploit
the original graph attributes. AnyGraph [40] addresses structural heterogeneity by dispatching
a specialized expert per graph via an MoE layer, enabling improved generalization, but it still
underutilizes the complementary knowledge encoded in its multiple experts.

Additional literature relevant to this study is discussed in Appendix J.

7 Conclusion

This paper presents an in-depth investigation of an existing MoE-based GFM, revealing an interesting
finding: the performance of the second and third-ranked experts assigned by the router exceeds
that of the top-ranked expert. This inspires us to explore the use of multiple experts in MoE
architectures. Additionally, we find that integrating the outputs of multiple experts incurs significant
computational overhead, and directly applying expert merging leads to suboptimal performance. To
address these challenges, we propose two enhanced expert merging strategies: (1) using knowledge
distillation to align the performance of the merged expert with that of the expert ensemble; (2)
based on theoretical principles, using parameter proximity to bring the selected expert parameters
closer together. Extensive experiments demonstrate that our methods achieve excellent performance
without introducing significant time overhead. This work provides new insights into the role of
MoE mechanisms in GFMs and establishes a foundation for efficient expert utilization within MoE
architectures. We envision applying our methods to MoE-based large language models, alleviating
their computational and inference-time overhead while preserving strong performance.

10

Acknowledgments and Disclosure of Funding

This work was supported by Key Project of the National Natural Science Foundation of China
(U23A20316) and CCF-Tencent Rhino-Bird Open Research Fund (CCF-Tencent RAGR20250115).

References
[1] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von

Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[2] Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts. arXiv preprint arXiv:2407.06204, 2024.

[3] Yuxuan Cao, Jiarong Xu, Carl Yang, Jiaan Wang, Yunchao Zhang, Chunping Wang, Lei Chen,
and Yang Yang. When to pre-train graph neural networks? from data generation perspective! In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD, pages 142–153, 2023.

[4] Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large
language and graph assistant. In The Forty-first International Conference on Machine Learning,
ICML, 2024.

[5] Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, et al. Deepseekmoe: Towards ultimate expert specialization
in mixture-of-experts language models. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL, pages 1280–1297,
2024.

[6] Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt
tuning for graph neural networks. In The Thirty-seventh Conference on Neural Information
Processing Systems, NeurIPS, pages 52464–52489, 2023.

[7] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

[8] Michael Galkin, Michael Bronstein, Jianan Zhao, Haitao Mao, and Zhaocheng Zhu. Foundation
models in graph & geometric deep learning. Medium (Towards Data Science), 2024.

[9] Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards
foundation models for knowledge graph reasoning. In The Twelfth International Conference on
Learning Representations, ICLR, 2024.

[10] Haoyu Han, Juanhui Li, Wei Huang, Xianfeng Tang, Hanqing Lu, Chen Luo, Hui Liu, and
Jiliang Tang. Node-wise filtering in graph neural networks: A mixture of experts approach.
arXiv preprint arXiv:2406.03464, 2024.

[11] Shwai He, Run-Ze Fan, Liang Ding, Li Shen, Tianyi Zhou, and Dacheng Tao. Merging experts
into one: Improving computational efficiency of mixture of experts. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, EMNLP, pages
14685–14691, 2023.

[12] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR, pages 639–648, 2020.

[13] Yufei He, Yuan Sui, Xiaoxin He, and Bryan Hooi. Unigraph: Learning a unified cross-
domain foundation model for text-attributed graphs. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V.1, KDD, page 448–459, 2025.

11

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[15] Zhenyu Hou, Haozhan Li, Yukuo Cen, Jie Tang, and Yuxiao Dong. Graphalign: Pretrain-
ing one graph neural network on multiple graphs via feature alignment. arXiv preprint
arXiv:2406.02953, 2024.

[16] Fenyu Hu, Liping Wang, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Graphdive: Graph
classification by mixture of diverse experts. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI, pages 2080–2086, 2022.

[17] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[18] Kerstin Klaser, Blazej Banaszewski, Samuel Maddrell-Mander, Callum McLean, Luis Müller,
Ali Parviz, Shenyang Huang, and Andrew W Fitzgibbon. Minimol: A parameter-efficient
foundation model for molecular learning. In ICML 2024 Workshop on Efficient and Accessible
Foundation Models for Biological Discovery, 2024.

[19] Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
Zhang. Gofa: A generative one-for-all model for joint graph language modeling. In The
Thirteenth International Conference on Learning Representations, ICLR, 2025.

[20] Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A
survey. arXiv preprint arXiv:2309.15698, 2023.

[21] Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-
dataset zero-shot transferability in graphs. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD, pages 1725–1735, 2024.

[22] Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang,
Yatian Pang, Munan Ning, et al. Moe-llava: Mixture of experts for large vision-language models.
arXiv preprint arXiv:2401.15947, 2024.

[23] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, ICLR, 2024.

[24] Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan
Fang, Lichao Sun, Philip S Yu, et al. Graph foundation models: Concepts, opportunities and
challenges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.

[25] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training
and downstream tasks for graph neural networks. In Proceedings of the ACM Web Conference,
WWW, pages 417–428, 2023.

[26] Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and
Hongsheng Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-
experts large language models. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL, pages 6159–6172, 2024.

[27] Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In The Forty-first
International Conference on Machine Learning, ICML, 2024.

[28] Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive
routing. Transactions on Machine Learning Research, 2024.

[29] Joan Puigcerver, Carlos Riquelme Ruiz, Basil Mustafa, and Neil Houlsby. From sparse to soft
mixtures of experts. In The Twelfth International Conference on Learning Representations,
ICLR, 2024.

12

[30] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. In The Fifth International Conference on Learning Representations, ICLR,
2017.

[31] Shashank Sheshar Singh, Samya Muhuri, Shivansh Mishra, Divya Srivastava, Harish Kumar
Shakya, and Neeraj Kumar. Social network analysis: A survey on process, tools, and application.
ACM Computing Surveys, 56(8):1–39, 2024.

[32] Maciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip
Fradkin, and Dominique Beaini. On the scalability of gnns for molecular graphs. In The
Thirty-eighth Conference on Neural Information Processing Systems, NeurIPS, volume 37,
pages 19870–19906, 2024.

[33] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR, pages 491–500, 2024.

[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In The Sixth International Conference on Learning
Representations, ICLR, 2018.

[35] Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Rao
Kompella, and Zhangyang Wang. Graph mixture of experts: Learning on large-scale graphs
with explicit diversity modeling. In The Thirty-seventh Conference on Neural Information
Processing Systems, NeurIPS, 2023.

[36] Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
balancing strategy for mixture-of-experts. arXiv preprint arXiv:2408.15664, 2024.

[37] Zehong Wang, Zheyuan Zhang, Nitesh V Chawla, Chuxu Zhang, and Yanfang Ye. Gft: Graph
foundation model with transferable tree vocabulary. In The Thirty-eighth Conference on Neural
Information Processing Systems, NeurIPS, 2024.

[38] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Wein-
berger. Simplifying graph convolutional networks. In Proceedings of the 36th International
Conference on Machine Learning, ICML, pages 6861–6871, 2019.

[39] Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Zou, and Jure Leskovec. Graphmetro: Mitigating
complex graph distribution shifts via mixture of aligned experts. In The Thirty-eighth Conference
on Neural Information Processing Systems, NeurIPS, 2024.

[40] Lianghao Xia and Chao Huang. Anygraph: Graph foundation model in the wild. arXiv preprint
arXiv:2408.10700, 2024.

[41] Lianghao Xia, Ben Kao, and Chao Huang. Opengraph: Towards open graph foundation models.
In Findings of the Association for Computational Linguistics: EMNLP, pages 2365–2379, 2024.

[42] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In The Seventh International Conference on Learning Representations, ICLR, 2019.

[43] Zhengzhuo Xu, Bowen Qu, Yiyan Qi, SiNan Du, Chengjin Xu, Chun Yuan, and Jian Guo.
Chartmoe: Mixture of diversely aligned expert connector for chart understanding. In The
Thirteenth International Conference on Learning Representations, ICLR, 2025.

[44] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A. Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. In The Thirty-seventh Conference on Neural
Information Processing Systems, NeurIPS, pages 7093–7115, 2023.

[45] Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng
Tao. Model merging in llms, mllms, and beyond: Methods, theories, applications and opportu-
nities. arXiv preprint arXiv:2408.07666, 2024.

13

[46] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In The Thirty-fourth Conference on Neural
Information Processing Systems, NeurIPS, volume 33, pages 5812–5823, 2020.

[47] Hanqing Zeng, Hanjia Lyu, Diyi Hu, Yinglong Xia, and Jiebo Luo. Mixture of weak and strong
experts on graphs. In The Twelfth International Conference on Learning Representations, ICLR,
2024.

[48] Guibin Zhang, Xiangguo Sun, Yanwei Yue, Chonghe Jiang, Kun Wang, Tianlong Chen, and
Shirui Pan. Graph sparsification via mixture of graphs. In The Thirteenth International
Conference on Learning Representations, ICLR, 2025.

[49] Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael M. Bronstein, and Jian
Tang. Fully-inductive node classification on arbitrary graphs. In The Thirteenth International
Conference on Learning Representations, ICLR, 2025.

[50] Shuxin Zheng, Jiyan He, Chang Liu, Yu Shi, Ziheng Lu, Weitao Feng, Fusong Ju, Jiaxi Wang,
Jianwei Zhu, Yaosen Min, et al. Predicting equilibrium distributions for molecular systems with
deep learning. Nature Machine Intelligence, pages 1–10, 2024.

[51] Zexuan Zhong, Mengzhou Xia, Danqi Chen, and Mike Lewis. Lory: Fully differentiable
mixture-of-experts for autoregressive language model pre-training. In The First Conference on
Language Modeling, COLM, 2024.

[52] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai,
Quoc V Le, James Laudon, et al. Mixture-of-experts with expert choice routing. In The
Thirty-sixth Conference on Neural Information Processing Systems, NeurIPS, volume 35, pages
7103–7114, 2022.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We include the paper’s contributions in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of this work in Appendix L.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

15

Justification: We provide clear assumptions and proofs for each theorem and lemma. Please
refer to Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental setup in Appendix E, which can be used to
reproduce our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use only publicly available datasets (such as those released by AnyGraph
https://huggingface.co/datasets/hkuds/AnyGraph_datasets), and we include
an anonymized zip file with all our codes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental setup in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow existing studies in setting up the experiments and currently report
only the mean performance over 5 (or 10) random seeds, capturing variability due to random
initialization, but without including error bars. We can provide the standard deviation if
needed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://huggingface.co/datasets/hkuds/AnyGraph_datasets
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Section 5.4 for the training and testing time and Appendix E.3 for
the hardware device.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms to the ethical guidelines in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Appendix K.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

18

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This research poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use only publicly available datasets and open-source codes, and we
explicitly cite each asset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide detailed documentation for the submitted code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Proof of Theorem 1

To prove Theorem 1, we require the following lemma.
Lemma 2. Given the same conditions as in Theorem 1, if the parameters of k MLPs are sufficiently
close, the output of the merged MLP through parameter averaging will converge to the output of each
individual MLP. Specifically, for any j ∈ {1, 2, · · · , k},

lim
∥∆θi∥→0,∀i∈{2,··· ,k}

∥∥∥∥∥f(x;
k∑
i=1

αiθi)− fj(x; θj)

∥∥∥∥∥ = 0. (14)

Proof of Lemma 2. Without loss of generality, we prove the case for k = 2 and j = 1; the general
case follows similarly.

Let θ1 =
(
W

(1)
1 ,b

(1)
1 , · · · ,W(L′)

1 ,b
(L′)
1

)
and θ2 =

(
W

(1)
2 ,b

(1)
2 , · · · ,W(L′)

2 ,b
(L′)
2

)
denote the

parameters of two MLPs with L′ layers, where W(l),b(l) are the weight matrix and bias of the l-th
layer, respectively. We proceed by induction on the layer index l.

Base Case (l = 1): Let z̃(1) and h
(1)
1 be the outputs of the merged MLP f and the first MLP f1 at

layer 1, respectively. Then:∥∥∥z̃(1) − h
(1)
1

∥∥∥ =
∥∥∥σ ((α1W

(1)
1 + α2W

(1)
2

)
x+ α1b

(1)
1 + α2b

(1)
2

)
− σ

(
W

(1)
1 x+ b

(1)
1

)∥∥∥
≤ C

∥∥∥(α1W
(1)
1 + α2W

(1)
2

)
x+ α1b

(1)
1 + α2b

(1)
2 −

(
W

(1)
1 x+ b

(1)
1

)∥∥∥
= Cα2

∥∥∥(W(1)
2 −W

(1)
1)x+ (b

(1)
2 − b

(1)
1)
∥∥∥ (15)

≤ Cα2

(∥∥∥W(1)
2 −W

(1)
1

∥∥∥ · ∥x∥+ ∥∥∥b(1)
2 − b

(1)
1

∥∥∥)
→ 0 as ∥∆θ2∥ = ∥θ1 − θ2∥ → 0,

where σ(·) is the activation function with Lipschitz constant C, and the first inequality arises from
the Lipschitz continuity of the activation function.

Inductive Step (l ≥ 2): Assume the claim holds for layer l − 1 (i.e., ∥z̃(l−1) − h
(l−1)
1 ∥ → 0). For

layer l, the outputs of f and f1 are denoted as follows:

z̃(l) = σ
((
α1W

(l)
1 + α2W

(l)
2

)
z̃(l−1) + α1b

(l)
1 + α2b

(l)
2

)
, (16)

h
(l)
1 = σ

(
W

(l)
1 h

(l−1)
1 + b

(l)
1

)
, (17)

then we have∥∥∥z̃(l) − h
(l)
1

∥∥∥ =
∥∥∥σ ((α1W

(l)
1 + α2W

(l)
2

)
z̃(l−1) + α1b

(l)
1 + α2b

(l)
2

)
− σ

(
W

(l)
1 h

(l−1)
1 + b

(l)
1

)∥∥∥
≤ C

∥∥∥(α1W
(l)
1 + α2W

(l)
2

)
z̃(l−1) + α1b

(l)
1 + α2b

(l)
2 −

(
W

(l)
1 h

(l−1)
1 + b

(l)
1

)∥∥∥
(18)

= C
∥∥∥W(l)

1

(
z̃(l−1) − h

(l−1)
1

)
+ α2

(
W

(l)
2 −W

(l)
1

)
z̃(l−1) + α2

(
b
(l)
2 − b

(l)
1

)∥∥∥
≤ C

(
∥W(l)

1 ∥ · ∥z̃(l−1) − h
(l−1)
1 ∥+ α2∥W(l)

2 −W
(l)
1 ∥ · ∥z̃(l−1)∥+ α2∥b(l)

2 − b
(l)
1 ∥
)

→ 0 as ∥∆θ2∥ → 0,

where the last step follows from the inductive hypothesis and ∥z̃(l−1)∥ being bounded (since x and
activation functions are bounded). By induction, the lemma holds for all layers.

Proof of Theorem 1. The expression inside the norm of Eq.(12) can be rewritten as:

k∑
j=1

αj

[
f(x;

k∑
i=1

αiθi)− fj(x; θj)

]
. (19)

22

Therefore, Theorem 1 can be proven as follows:

lim
∥∆θi∥→0,∀i∈{2,··· ,k}

∥∥∥∥∥∥f(x;
k∑
i=1

αiθi)−
k∑
j=1

αjfj(x; θj)

∥∥∥∥∥∥
= lim

∥∆θi∥→0,∀i∈{2,··· ,k}

∥∥∥∥∥∥
k∑
j=1

αj

[
f(x;

k∑
i=1

αiθi)− fj(x; θj)

]∥∥∥∥∥∥ (by Eq.(19))

≤ lim
∥∆θi∥→0,∀i∈{2,··· ,k}

k∑
j=1

αj

∥∥∥∥∥f(x;
k∑
i=1

αiθi)− fj(x; θj)

∥∥∥∥∥ (triangle inequality) (20)

=

k∑
j=1

αj lim
∥∆θi∥→0,∀i∈{2,··· ,k}

∥∥∥∥∥f(x;
k∑
i=1

αiθi)− fj(x; θj)

∥∥∥∥∥ (linearity of limits)

= 0. (by Lemma 2)

Remark: Most common activation functions used in neural networks are Lipschitz continuous,
with varying Lipschitz constants: ReLU (Lipschitz constant 1), Leaky ReLU (Lipschitz constant
max(1, α) where α is the slope parameter), ELU (Lipschitz constant max(1, α)), Sigmoid (Lipschitz
constant 0.25), Tanh (Lipschitz constant 1), Softplus (Lipschitz continuous with constant 1), GELU
(Lipschitz continuous but no simple closed-form constant). Thus, our theorem is broadly applicable.

B Details of AnyGraph and Observations

B.1 AnyGraph

For each graph G ∈ D, AnyGraph begins by applying SVD to both its Laplacian-normalized
adjacency matrix Ã ∈ R|V|×|V| and its node feature matrix X ∈ R|V|×d0 , yielding

U1,Λ1,V1 = SVD(Ã), U2,Λ2,V2 = SVD(X). (21)

Here, U1,V1 ∈ R|V|×d and U2 ∈ R|V|×d, V2 ∈ Rd0×d. The initial node embeddings are then
formed by linearly combining these factors and normalizing:

E0 = LayerNorm
(
U1

√
Λ1 +V1

√
Λ1 + Flip(U2

√
Λ2)

)
, (22)

where Flip(·) denotes reversing the order of the d dimensions in each row. Next, it inject multi-hop
connectivity information into E0 via a simplified GCN module to obtain E1 (Eq.(3)). The enriched
embeddings E1 are then passed through an MoE layer, where each graph is dispatched to its most
competent MLP expert according to the routing rule in Eq.(5).

To alleviate the expert training imbalance issue, AnyGraph employs a training frequency regulariza-
tion method to adjust the competence score as follows:

ψ′
k = ψk ·

[
1 +

(
1

2
− mk∑K

i=1mi

)
ρ

]
, (23)

where mk is the current training steps of k-th expert, ρ is a hyperparameter controlling the strength
of recalibration, and ψ′

k is the resulting adjusted score for the k-th expert. If an expert is trained too
frequently, its competence score is multiplied by a penalty factor.

Finally, the entire model is optimized end-to-end using a self-supervised loss:

Lce = −
1

|B|
∑

(vab
,vpb ,vnb

)∈B

log
exp(ŷab,pb − ŷmax)∑
vnb

exp(ŷab,nb
− ŷmax)

, (24)

where (vab , vpb , vnb
) is an anchor-positive-negative triplet, the term ŷi,j = ê⊤i êj is the inner product

of node embeddings, each ê ∈ Ê is the output of the chosen expert (Eq.(6)), and ŷmax = maxi,j ŷi,j
is used for numerical stability.

23

B.2 Experimental Details of Observations

This section provides a detailed explanation of the experiments presented in Section 3.2.

Observation 1: We evaluate the performance of experts with different rankings on the test set using
the publicly available code and pretrained models released by AnyGraph.2 The authors provide two
pretrained models, trained separately on the Link1 and Link2 dataset groups. To assess zero-shot
generalization, we test the model trained on one dataset group against the datasets in the other group.
Figure 1 presents the results of the model trained on Link1 and evaluated on the Link2 dataset group.
The results for the reverse setting—trained on Link2 and testing on Link1—are shown in Figure 7.
As we can see, although the second- and third-ranked experts do not perform as dramatically as in
Figure 1, they remain competitively strong. Moreover, we observe a sudden performance drop as
expert rank increases—for instance, from the fourth-ranked to the fifth-ranked expert in Figure 7. The
same trend is apparent in Figure 1. This suggests that the top-k experts may all contribute positively
to the prediction, while the lowest-ranked few experts may be harmful.

1st 2nd 3rd 4th 5th 6th 7th 8th
Rank of Experts

0.05

0.10

0.15

0.20

0.25

Pe
rf

or
m

an
ce

Recall
NDCG

Figure 7: Average test performance of experts ranked by competence score across 15 datasets (Link1).

Expert 1 Expert 2 Expert KExpert k ……

Gate

Graph



Figure 8: Top-k expert ensembling (expert out-
puts are averaged).

Expert 1 Expert 2 Expert KExpert k ……

Gate

Graph

Merged
Expert



Figure 9: Standard expert merging (expert pa-
rameters are averaged without enhancement).

Observation 2: As depicted in Figure 8, we modify the MoE layer of AnyGraph by selecting the
top-k experts and aggregating their outputs using a weighted average. Specifically, we replace the
top-1 gating in Eq.(5) with a top-k gating mechanism:

I = Topk
(
{ψi}Ki=1

)
. (25)

Here, I denotes the index set of the top-k experts with the highest competence scores. And the final
node embedding matrix in Eq.(6) becomes:

Ê =
∑
i∈I

αiMi(E1; θi), αi =
eψi∑
j∈I e

ψj
, (26)

2Official repository: https://github.com/HKUDS/AnyGraph

24

https://github.com/HKUDS/AnyGraph

where Mi(·; θi) denotes the i-th expert, and αi is its weight, obtained by applying the softmax
function to the competence scores of the selected k experts.

Observation 3: As demonstrated in Figure 9, to reduce the training and inference costs, we further
modify the MoE layer to adopt an expert fusion approach. Concretely, we fuse the parameters of the
top-k selected experts into a single expert by replacing Eq.(26) with:

Ê =M(E1;
∑
i∈I

αiθi), αi =
eψi∑
j∈I e

ψj
, (27)

whereM is the parameter-merged expert.

C Training Pipeline and Complexity Analysis

C.1 Training Pipeline

The training procedures of KDEM and PPEM are presented in Algorithm 1 and Algorithm 2,
respectively. In KDEM, the merged expert is used to compute a self-supervised loss, to which
a knowledge-distillation term is periodically added, and the parameters are updated based on the
combined objective. In PPEM, expert parameters are first updated using the self-supervised loss, and
then the top-k experts are periodically updated via an exponential moving average.

Algorithm 1 Training Pipeline of KDEM

Input: Training graphs D, preprocessed embeddings E1, expert models {Mk(·; θk)}Kk=1, period T1
of applying knowledge distillation.

1: for every epoch do
2: for i-th batch of triplets B = {(vab , vpb , vnb

)} do
3: Get the indices I and weights α of the top-k experts via Eq.(7)
4: Merge the parameters of the top-k experts
5: Get E1 and compute Ê using the merged expert (Eq.(8))
6: Compute self-supervised loss Lce using Ê (Eq.(9))
7: if (i+ 1) is divisible by T1 then
8: Compute Lkd (Eq.(10))
9: end if

10: Compute the final loss (Eq.(11))
11: Update parameters {θi}i∈I via backpropagation
12: end for
13: end for
14: return Expert parameters {θk}Kk=1

C.2 Complexity Analysis

The initial embedding computation and expert routing can be preprocessed, with per-graph time
complexities ofO(|E| ·d ·L) andO(|V| · d2 ·L′ ·K+S ·d ·K), respectively, where L and L′ denote
the number of message passing and MLP layers. Next, we analyze the per-batch time complexity
of the MoE module. Both our method and AnyGraph process data using one expert (merged expert
vs. top-1), with a time complexity of O(|B| · d2 · L′). In addition, our methods incorporate expert
merging, which involves averaging of the expert parameters with a cost of O(k · d2 · L′), where
k ≪ |B|. KDEM periodically applies expert ensembling, and when averaged over each batch, the
time complexity is O(kT1

|B| · d2 · L′), where T1 is the period. In our experiments, T1 is set to
100. PPEM periodically applies an exponential moving average, introducing a time complexity of
O(kT2

· d2 ·L′). Note that during inference, our methods require expert merging only once per dataset,
making the associated computational cost practically negligible.

25

Algorithm 2 Training Pipeline of PPEM

Input: Training graphs D, preprocessed embeddings E1, expert models {Mk(·; θk)}Kk=1, period T2
of exponential moving average (EMA).

1: for every epoch do
2: for i-th batch of triplets B = {(vab , vpb , vnb

)} do
3: Get the indices I and weights α of the top-k experts via Eq.(7)
4: Merge the parameters of the top-k experts
5: Get E1 and compute Ê using the merged expert (Eq.(8))
6: Compute self-supervised loss Lce using Ê (Eq.(9))
7: Update expert parameters {θi}i∈I via backpropagation
8: if (i+ 1) is divisible by T2 then
9: Update expert parameters {θi}i∈I via EMA (Eq.(13))

10: end if
11: end for
12: end for
13: return Expert parameters {θk}Kk=1

D Datasets

Our study leverages an extensive collection of graph datasets drawn from diverse domains, comprising
a total of 14,437,372 nodes and 199,265,688 edges. All datasets in this study are obtained from prior
research [33, 21, 40]. The dataset statistics are presented in Table 5. These datasets are organized
into multiple categories and groups to address specific research questions and evaluation needs. All
datasets are used for link prediction, five additional datasets are also used for node classification.

D.1 Dataset Categories

1. E-commerce Datasets This category includes 13 datasets extracted from various e-commerce
contexts such as online retail services and user-rating platforms. While these datasets display
variability in node feature availability and generation, some share common methods. For example,
Amazon-text, Steam-text, and Yelp-text employ one feature generation strategy, whereas Fitness,
Photo, and Goodreads consistently apply an alternative method.

2. Academic Network Datasets This category encompasses 9 datasets that model scholarly
interactions such as paper citations and author collaborations across diverse research disciplines.
The datasets vary in feature construction methods, employing techniques like bag-of-words models,
NLP-based embeddings, and features derived from large language models. Datasets in this category
include Cora, PubMed, Citeseer, Arxiv, Arxiv-t (which uses a unique feature derivation method), CS,
Citation-2019, Citation-20Century, and OGB-Collab.

3. Biological Information Networks This set comprises six datasets centered on biological entities
such as proteins, drugs, and diseases. Specifically, this group includes the OGB-DDI and OGB-PPA
networks, along with four species-specific protein relation datasets designated Proteins-0, Proteins-1,
Proteins-2, and Proteins-3.

4. Miscellaneous Datasets In addition to the primary domains, we incorporate 5 datasets originating
from distinct and less thematically consistent domains. These datasets provide additional diversity
and include: the Email-Enron network (emails), Web-Stanford (website connectivity), RoadNet-PA
(road networks), P2P-Gnutella06 (peer-to-peer web), and Soc-Epinions1 (trust networks).

D.2 Dataset Grouping for Performance Evaluation

To streamline performance comparisons and effectively prevent information leakage, particularly in
zero-shot settings, the datasets are further organized into groups. This grouping is based on their
respective sources, feature generation methods, and specific domains, as detailed below:

26

Table 5: Statistics of the datasets. All datasets are used for link prediction, and five additional datasets
are also used for node classification (those marked with a check in the last column).

Datasets # Nodes # Edges # Feats Groups Node Cls.
DDI 4,267 1,334,889 0 Link2 / Others
Collab 235,868 1,285,465 128 Link2 / Academic
ML1m 9,746 920,193 0 Link2 / E-commerce
ML10m 80,555 9,200,050 0 Link2 / E-commerce
Amazon-book 144,242 2,984,108 0 Link1 / E-commerce
PPA 576,289 45,495,642 58 Link1 / Others
Yelp2018 69,716 1,561,406 0 Link1 / E-commerce
Gowalla 70,839 1,027,370 0 Link2 / E-commerce
Cora 2,708 10,556 1433 Link2 / Academic ✓
PubMed 19,717 88,648 500 Link1 / Academic ✓
Citeseer 3,327 9,104 3703 Link1 / Academic
Proteins-0 25,449 11,660,646 0 Link2 / Others
Proteins-1 6,568 1,845,960 0 Link2 / Others
Proteins-2 18,108 7,418,688 0 Link2 / Others
Proteins-3 13,015 3,962,930 0 Link2 / Others
Products-home 9,790 131,843 100 Link1 / E-commerce ✓
Products-tech 47,428 2,077,241 100 Link1 / E-commerce ✓
Yelp-t 22,101 277,535 1536 Link1 / E-commerce
Amazon-t 20,332 200,860 1536 Link1 / E-commerce
Steam-t 28,547 525,922 1536 Link1 / E-commerce
Goodreads 676,084 8,582,306 768 Link2 / E-commerce
Fitness 173,055 1,773,500 768 Link2 / E-commerce
Soc-Epinions1 75,879 508,837 0 Link1 / Others
Email-Enron 36,692 183,831 0 Link1 / Others
Web-Stanford 281,903 2,312,497 0 Link2 / Others
RoadNet-PA 1,088,092 1,541,898 0 Link2 / Others
P2P-Gnutella 8,717 31,525 128 Link1 / Others
Citation-2019 765,658 1,917,381 128 Link1 / Academic
Citation-20Century 1,016,241 5,565,798 128 Link1 / Academic
Arxiv 169,343 1,166,243 128 Link2 / Academic ✓
Arxiv-t 169,343 1,166,243 768 Link2 / Academic
Photo 48,362 500,939 768 Link2 / E-commerce
CS 18,333 163,788 6805 Link2 / Academic

1. Balanced Groups: Two primary groups, Link1 and Link2, are formed exclusively from link
prediction datasets. The total number of edges in each group is approximately equal, and within
each domain, the edge counts of the individual datasets are likewise comparable. Datasets collected
from the same source (e.g., Movielens-1M and Movielens-10M) or those sharing identical feature
generation methods (e.g., Fitness and Photo) are kept together to ensure evaluation integrity.

• Link1 Group: Contains 15 datasets such as Products-tech, Yelp2018, Yelp-textfeat, Products-home,
Steam-text, Amazon-text, Amazon-book, Citation-2019, Citation-20Century, PubMed, Citeseer,
OGB-PPA, P2P-Gnutella06, Soc-Epinions1, and Email-Enron.

• Link2 Group: Comprises 18 datasets, i.e., Photo, Goodreads, Fitness, Movielens-1M, Movielens-
10M, Gowalla, Arxiv, Arxiv-t, Cora, CS, OGB-Collab, Proteins-0, Proteins-1, Proteins-2, Proteins-
3, OGB-DDI, Web-Stanford, and RoadNet-PA.

2. Domain-Specific Groups: To enable a more focused analysis of model performance and
generalization capabilities across distinct thematic areas, we define domain-specific groups by
consolidating datasets based on their primary domain of origin or application. This categorization
allows for a targeted assessment of how models perform, adapt, or exhibit specific behaviors within
these coherent operational contexts, revealing domain-specific strengths or limitations:

• E-commerce Group: Containing all datasets from the e-commerce categories.

27

• Academic Group: Containing all datasets from the academic categories.
• Others Group: This comprises all biological datasets along with the other miscellaneous datasets

such as Email-Enron, Web-Stanford, RoadNet-PA, P2P-Gnutella06, and Soc-Epinions1.

E Experimental details

E.1 Baselines

We benchmark our approaches against eleven representative baselines spanning four distinct cate-
gories: recent graph foundation models, graph prompt learning methods, self-supervised pre-training
methods, and classic graph neural networks.

Graph Foundation Models We adopt six recently proposed GFMs, which are described as follows:

• OpenGraph [41] is designed to generalize across diverse and unseen graph data by integrating a
unified graph tokenizer, a scalable graph transformer, and LLM-enhanced data augmentation. This
architecture enables strong zero-shot learning performance by capturing global topological patterns
and adapting to varying graph properties without requiring retraining.

• GraphGPT [33] integrates LLMs with graph structural knowledge through a graph instruction
tuning paradigm. It employs a dual-stage instruction tuning process—starting with self-supervised
graph matching to align graph structures with natural language, followed by task-specific fine-
tuning—to enhance the LLM’s ability to understand and reason over graph data, achieving strong
performance in both supervised and zero-shot graph learning tasks.

• AnyGraph [40] is a versatile GFM designed to address the challenges of structure and feature
heterogeneity across diverse graph datasets. Built upon an MoE architecture, it incorporates a
dynamic expert routing mechanism that enables efficient adaptation to new graph domains and
exhibits scaling law behavior, where performance improves with increased data and model size.

• UniGraph [13] is a unified foundation model for text-attributed graphs, which employs a novel
cascaded architecture of language models and GNNs alongside a self-supervised pre-training
algorithm based on masked graph modeling and instruction tuning.

• GFT [37] treats computation trees as transferable patterns and learns a graph vocabulary by
performing several computation tree reconstruction tasks, encoding general graph knowledge into
the vocabulary, which can then be adapted to downstream tasks through fine-tuning.

• GOFA [19] presents a novel generative foundation model for graph-language tasks by interleaving
trainable GNN layers into a frozen pre-trained LLM compressor, thereby marrying structural graph
understanding with free-form text generation.

Graph Prompt Learning Methods This category includes two prompt-based tuning approaches:

• GraphPrompt [25] unifies pre-training and downstream tasks into a common task template by em-
ploying a learnable prompt. This assists downstream tasks in locating the most relevant knowledge
from the pre-trained model in a task-specific manner.

• GPF [6] is a universal prompt-based tuning method for pre-trained GNN models under any pre-
training strategy. It operates on the input graph’s feature space and can theoretically achieve
an equivalent effect to any form of prompting function, eliminating the need to design specific
prompting functions for each pre-training strategy.

Graph Self-supervised Pre-training Methods We employ GraphCL [46] as a representative
method. GraphCL maximizes agreement between differently augmented views of the same graph,
enabling effective pretraining without labels. It introduces a set of graph-specific augmentations,
such as node dropping and edge perturbation, to generate diverse yet semantically consistent views
for contrastive learning.

Graph Neural Networks This category includes two classic GNNs: Graph Attention Network
(GAT [34]) and Graph Isomorphism Network (GIN [42]). GAT leverages attention mechanisms to
assign different importances to neighboring nodes, while GIN is designed to maximally preserve
graph structure by mimicking the power of the Weisfeiler-Lehman test for graph isomorphism.

28

E.2 Evaluation Protocols

We follow the same dataset splits as prior works [33, 21, 40]. Our method adopts the same zero-shot
setting as AnyGraph. We train two separate models on Link1 and Link2 respectively, then evaluate the
zero-shot performance of the Link1-trained model on Link2 and vice versa. Models are cross-applied
between Link1 and Link2’s domain-specific data. For example, we apply the model trained on Link1 to
the Academic graphs from Link2, and conversely apply the Link2-trained model to Link1’s Academic
data. The results are then aggregated through a weighted average based on the number of edges in
each dataset. For the six graph foundation models, we either report the results from their original
papers or evaluate them using their officially released code. GAT and GIN are trained from scratch
under a few-shot setting (with 10% training samples). GraphCL, GraphPrompt, and GPF undergo
pretraining followed by fine-tuning on the evaluation datasets.

Zero-shot Setting for Node Classification In our zero-shot node classification framework, we
represent label classes as distinct nodes and connect nodes with training labels to their corresponding
class nodes. This method eliminates the need for learning separate parameters for each class,
simplifying the zero-shot learning process. By integrating this method into baseline models, we
enhance their ability to efficiently handle unseen node labels.

Evaluation Metrics For link prediction, we follow previous work [40] and use Recall@20 and
NDCG@20 as evaluation metrics. For node classification, we use accuracy and macro F1 as metrics.
The results for each group of datasets are averaged based on the number of test samples.

E.3 Implementation Details and Hyperparameters

All experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU (24GB VRAM). Our
methods are implemented using PyTorch, where SVD is computed via the built-in svd_lowrank
function for enhanced computational efficiency. When the number of training edges in a large dataset
exceeds 500× the batch size, we randomly sample 500 batches from it in each epoch.The models are
trained for 100 epochs using the Adam optimizer with a batch size of 4096 and a learning rate of
either 1× 10−4 (Link1) or 2× 10−4 (Link2). The number of message passing layers L is set to 3.
We use 8 expert models, each consisting of an 8-layer MLP with 512 units per layer. The training
step interval T1 for knowledge distillation is set to 100, with a loss weight γ=0.01. The training step
interval T2 for the exponential moving average (Eq.(13)) is selected from {10,20,50,100,200}, with
the decay factor β chosen from {0.99,0.999,0.9995,0.9999}. The recalibration strength parameter ρ
(Eq.(23)) is set to 0.2.

F Fine-grained Results

We present the fine-grained link prediction results for each dataset in Table 6. We evaluate AnyGraph,
the standard expert fusion method (Figure 9), and our enhanced expert fusion method under both
full-shot (train on Link1, test on Link1) and zero-shot (train on Link1, test on Link2) settings. As
shown, AnyGraph performs well under the full-shot setting but struggles in the more common
real-world zero-shot scenario. This may be due to its reliance on a single expert, which makes it
susceptible to overfitting on the training set. In contrast, all expert merging methods leverage the
knowledge of multiple experts, outperforming AnyGraph in the zero-shot setting. Moreover, our
methods achieve the best overall performance, surpassing both AnyGraph and vanilla expert merging
strategies, thereby demonstrating the superior generalization ability of our approaches.

The fine-grained node classification results compared to AnyGraph are shown in Table 7. Overall,
KDEM and PPEM achieve higher macro-F1 scores on 4 out of 5 datasets. Specifically, KDEM
improves the average macro-F1 by 1.79% (from 43.24 to 45.03), while PPEM increases it by
0.92% (to 44.16), although both methods show slight decreases in overall accuracy relative to
the baseline. Notably, on the Arxiv dataset, KDEM’s macro-F1 rises substantially from 36.50 to
41.76, underscoring the significant advantage of multi-expert fusion strategies in addressing the class
imbalance issue. Given the large variance in class sizes in the Arxiv test set (ranging from dozens to
over ten thousand), the expert fusion strategy effectively mitigates the challenges posed by skewed
class distributions by enhancing discrimination of minority classes. This is because the multi-expert

29

Table 6: Fine-grained link prediction results for each dataset, compared with AnyGraph and stan-
dard/vanilla expert merging (Figure 9). Vanilla EM refers to the vanilla expert merging method,
which directly computes a weighted average of the parameters from the top-k experts without any
additional enhancements. All models are trained on Link1 and then tested on Link1 (full-shot) and
Link2 (zero-shot), respectively. The results for each dataset are averaged over 5 runs. The averages
over dataset groups are computed by weighting each dataset according to the number of test edges.

Groups Datasets AnyGraph Vanilla EM KDEM PPEM

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

Link1
full-shot

Amazon-book 4.39 3.53 4.41 3.51 4.38 3.50 4.47 3.56
Amazon-t 13.74 9.12 12.25 8.18 12.58 8.32 13.04 8.55
Citation-2019 13.76 6.05 14.49 6.65 15.40 7.10 14.04 6.29
Citation-20C 35.01 14.74 30.09 12.28 31.66 12.76 34.59 14.71
Citeseer 79.34 64.89 79.24 62.06 79.31 65.85 79.47 65.94
Email-Enron 64.43 44.50 64.93 44.83 64.15 44.70 64.52 44.86
P2P-Gnutella 4.72 1.98 3.50 1.22 3.41 1.21 3.61 1.33
PPA 25.64 14.49 24.22 13.56 25.65 14.43 23.96 13.46
Products-home 70.63 42.09 69.87 40.82 69.39 41.31 69.29 41.84
Products-tech 52.42 34.09 51.50 34.14 50.49 33.33 52.32 34.52
PubMed 76.15 68.88 74.99 62.92 74.86 64.11 76.27 68.70
Soc-Epinions1 24.86 15.19 24.57 14.96 24.71 15.26 24.68 15.26
Steam-t 10.63 6.63 8.79 5.44 9.79 6.13 9.21 5.70
Yelp2018 5.08 4.17 4.94 4.05 5.03 4.13 5.00 4.12
Yelp-t 11.01 6.92 7.17 4.46 8.06 5.09 8.13 5.07

Average 27.34 14.09 25.03 12.85 26.20 13.40 26.45 13.65

Link2
zero-shot

CS 79.85 63.54 79.14 62.06 79.59 63.78 79.18 63.88
Fitness 45.59 24.95 52.73 29.96 55.74 33.47 55.50 33.14
Goodreads 27.61 14.88 32.38 17.34 40.23 23.51 38.72 22.43
Photo 47.14 25.36 54.93 30.33 57.79 34.07 56.53 33.45
Arxiv 36.91 16.96 34.75 15.77 35.63 16.59 34.88 15.85
Arxiv-t 38.67 18.58 35.19 16.47 39.71 20.37 39.21 20.32
Collab 3.66 1.76 3.80 1.81 3.46 1.68 3.60 1.74
Cora 82.19 65.87 81.83 67.74 81.73 66.16 81.13 65.27
DDI 7.66 21.01 9.38 19.92 8.45 16.32 9.39 19.67
Gowalla 11.18 8.06 9.66 6.92 12.57 9.26 10.48 7.56
ML10m 6.51 8.56 24.11 28.00 23.40 27.18 19.52 23.66
ML1m 10.65 16.43 13.35 20.15 11.41 17.78 10.50 16.32
Proteins-0 16.93 23.23 17.30 23.73 17.57 23.99 18.81 25.82
Proteins-1 19.68 24.05 23.64 27.78 22.04 25.93 25.77 29.46
Proteins-2 14.02 20.07 17.80 24.95 17.84 25.27 13.66 20.22
Proteins-3 23.94 26.37 23.24 26.02 21.92 25.26 23.05 26.18
RoadNet-PA 89.47 50.42 89.15 52.62 88.83 52.93 88.91 52.83
Web-Stanford 72.39 52.02 71.67 51.79 72.06 52.28 71.83 52.78

Average 45.43† 27.01† 48.34 29.72 51.69 32.60 50.77 31.93
† Since AnyGraph does not report results for each individual dataset, we directly evaluate the released model and present

the results. Therefore, the overall zero-shot average we report may differ slightly from that in the original paper (45.43
vs. 46.42 for recall, and 27.01 vs. 27.21 for NDCG).

mechanism integrates diverse perspectives from different experts, leveraging their diversity to reduce
the risk of errors arising from a single expert’s bias.

Additional node classification results compared with other GFMs are displayed in Table 8. These
models tap into the robust generalization abilities of large language models (LLMs), pretrained
on massive text corpora, to elevate their performance in graph learning. For example, OpenGraph
employs LLMs for data augmentation, while other methods leverage them to encode textual node
attributes or predict node classes directly. The results reveal a striking trend: LLM-based GFMs
deliver superior accuracy on small-scale datasets with fewer classes, such as Cora (7 classes), yet their
performance in zero-shot and few-shot scenarios falters on larger, class-rich datasets like Arxiv (40
classes). This drop-off likely stems from the heightened complexity of processing lengthy contexts
and intricate graph structures, which taxes the models’ reasoning and generalization strengths.

30

Table 7: Fine-grained node classification results, compared with AnyGraph. The results for each
dataset are averaged over 10 runs. The overall average (last row) is computed by weighting each
dataset according to the number of test nodes.

Datasets AnyGraph KDEM PPEM

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

Arxiv 62.05 36.50 61.86 41.76 61.20 39.09
Cora 62.27 56.00 62.45 56.32 62.10 55.93
Products-home 66.36 40.31 65.44 41.37 67.30 48.03
PubMed 69.80 67.49 70.36 68.83 69.94 67.73
Products-tech 74.45 64.89 69.42 48.56 66.31 55.30

Average 64.38 43.24 63.56 45.03 62.65 44.16

Table 8: Fine-grained node classification results, compared with other existing GFMs (accuracy).
The results of GFT are under a few-shot setting. The Arxiv results of GraphGPT and UniGraph are
under supervised learning and few-shot settings, respectively.

GraphGPT OpenGraph UniGraph GFT GOFA KDEM PPEM

Cora 18.13 75.04 69.53 67.36 70.81 62.45 62.10
PubMed 70.11 68.69 72.48 - - 70.36 69.94
Arxiv 62.58 - 31.35 36.29 - 61.86 61.20

G Additional Experimental Results

G.1 Comparison with the Best Single Expert

We demonstrate in Table 9 that both of our enhanced expert merging strategies, KDEM and PPEM,
outperform the best individual expert. This improvement arises because our methods effectively
integrate knowledge from multiple experts, thereby reducing the potential bias or overfitting of any
single expert. Notably, although Figure 7 shows that the second-ranked expert (as assigned by the
router) performs worse than the top-ranked expert in isolation, merging their parameters still leads to
superior overall performance. This is because even lower-ranked experts can capture complementary
patterns or task-relevant nuances that the top expert might miss. By combining their knowledge, the
model can cover a broader set of features or relationships, improving robustness and generalization.
Furthermore, the ensemble effect helps smooth out individual expert errors, allowing the fused model
to achieve better aggregate predictions than any one expert alone.

Table 9: Performance comparison with the single top-performed expert. On the Link1 group, the
top-ranked expert achieves the best performance, while on the Link2 group, the third-ranked expert
performs best.

Method Link1 Link2

Recall NDCG Recall NDCG

Top-performed expert 23.94 12.68 48.22 30.56
KDEM 24.11 12.80 51.69 32.60
PPEM 24.33 12.93 50.77 31.93

G.2 Parameter Sensitivity Analysis

This section studies the impact of key hyperparameters on our models. Based on the results presented
in Figure 10, our observations are as follows:

(1) Selecting multiple experts is essential. As shown in the first subfigure, integrating multiple
experts significantly enhances model performance. This suggests that the fused experts can leverage
complementary expertise, thereby improving generalization ability. However, using too many experts

31

can lead to suboptimal performance, as lower-ranked experts may not be well-suited for the given
graph data, and merging their parameters can cause knowledge conflicts.

(2) While knowledge distillation applied at each training step (T1 = 1) leads to satisfactory perfor-
mance, it will incur significant computational cost. Periodic application of knowledge distillation can
achieve comparable even better performance, similar to real-world scenarios where teachers do not
need to teach students every day.

(3) The experimental results for KDEM are relatively insensitive to the weight of the knowledge
distillation loss, γ, as long as it is not too small. Empirically, a value of 0.01 works well.

(4) The period T2 and decay factor β of the EMA need to be appropriately chosen. Smaller values
for T2 and β lead to faster changes in expert parameters, which may cause the experts to become
too similar, preventing the merged expert from effectively utilizing the diversity of knowledge. This
confirms that experts should retain a degree of diversity while maintaining some level of similarity,
so the fused expert can benefit from the expertise of all contributors.

Top1 Top3 Top5 Top7
Number of Selected Experts (KDEM)

10

20

30

40

50

Pe
rf

or
m

an
ce

1 10 100 200 300
Knowledge Distillation Frequency (T1)

10

20

30

40

50

Pe
rf

or
m

an
ce

1.0 1e-1 1e-2 1e-3
KD Loss Coefficient ()

10

20

30

40

50

Pe
rf

or
m

an
ce

Top2 Top4 Top6 Top8
Number of Selected Experts (PPEM)

5

10

15

20

25

Pe
rf

or
m

an
ce

10 20 50 100 200
Period of Applying EMA (T2)

5

10

15

20

25

Pe
rf

or
m

an
ce

0.99 0.999 0.9995 0.9999
Decay Factor of EMA ()

5

10

15

20

25
Pe

rf
or

m
an

ce

Recall (bar) NDCG (bar) Recall (line) NDCG (line)

Figure 10: Parameter Sensitivity Analysis. The first row shows the test results of the KDEM model
trained on the Link1 group and evaluated on the Link2 group, while the second row shows the test
results of the PPEM model trained on the Link2 group and evaluated on the Link1 group.

G.3 Effect of the Number of Experts

This section investigates the impact of the number of experts on model performance. As presented in
Table 10, the results show that increasing the total number of experts from 2 to 8 yields consistent
gains in both recall and NDCG, with the most pronounced improvements on Link2.

Table 10: Performance of KDEM with varying numbers of experts and activated experts.

Experts # Activated Experts Link1 Link2

Recall NDCG Recall NDCG

2 1 22.85 12.02 45.68 27.64
4 1 22.23 11.72 48.02 29.31
4 2 21.53 11.13 48.64 29.43
4 3 22.66 11.97 48.02 29.31
8 2 24.11 12.80 49.15 30.63
8 3 23.35 12.33 51.69 32.60

32

H Further Discussion of the Expert Assignment Mechanism

To gain a comprehensive understanding of the routing mechanism, we record the expert assignment
behavior of a trained PPEM model (trained on the Link2 group and evaluated on the Link1 group),
and plot the competence scores of all 8 experts across all datasets, as shown in Figure 11. From this,
we derive the following observations and insights.

CS
Fit

ne
ss

Go
od

re
ad

s
Ph

ot
o

ar
xi

v
ar

xi
v-

t
co

lla
b

co
ra dd

i
go

wa
lla

m
l1

0m
m

l1
m

pr
ot

ei
ns

_0
pr

ot
ei

ns
_1

pr
ot

ei
ns

_2
pr

ot
ei

ns
_3

ro
ad

Ne
t-P

A
we

b-
St

an
fo

rd
am

az
on

-b
oo

k
am

az
on

_t
cit

at
io

n-
20

19
cit

at
io

n-
20

C
cit

es
ee

r
em

ai
l-E

nr
on

p2
p-

Gn
ut

el
la

pp
a

pr
od

_h
om

e
pr

od
_t

ec
h

pu
bm

ed
so

c-
Ep

in
1

st
ea

m
_t

ye
lp

20
18

ye
lp

_t

Dataset

0
1

2
3

4
5

6
7

Ex
pe

rt
ID

.990 .998 .992 .995 .997 .995 .998 .992 .786 .964 .869 .793 .887 .800 .905 .862 1.00 .997 .947 .977 .998 .998 .997 .975 .993 .942 .984 .989 .994 .970 .972 .951 .959

.992 .863 .700 .848 .992 .773 .998 .979 .761 .977 .561 .733 .888 .781 .898 .859 1.00 .967 .962 .958 .999 .999 .994 .947 .987 .937 .981 .987 .989 .944 .740 .972 .971

.840 .916 .854 .912 .805 .912 .863 .889 .720 .838 .867 .761 .762 .704 .807 .753 .926 .929 .794 .863 .870 .860 .913 .815 .834 .852 .870 .911 .916 .835 .882 .784 .702

.991 .998 .995 .995 .978 .995 .991 .988 .790 .957 .340 .671 .888 .805 .902 .857 1.00 .975 .942 .973 .992 .993 .996 .960 .985 .926 .980 .989 .991 .934 .896 .952 .914

.984 .981 .914 .972 .961 .971 .984 .983 .822 .968 .984 .899 .892 .839 .914 .880 1.00 .991 .960 .968 .991 .988 .995 .965 .988 .932 .978 .985 .991 .957 .919 .970 .919

.919 .578 .533 .572 .905 .586 .945 .935 .557 .802 .522 .520 .672 .539 .612 .576 .971 .951 .663 .598 .978 .968 .964 .856 .863 .882 .934 .912 .931 .842 .521 .690 .786

.989 .998 .989 .995 .993 .996 .995 .986 .788 .978 .889 .808 .886 .797 .913 .858 1.00 .996 .952 .972 .998 .998 .996 .976 .990 .933 .980 .988 .990 .962 .939 .968 .936

.972 .969 .871 .949 .978 .951 .988 .987 .813 .970 .973 .857 .892 .815 .920 .869 1.00 .993 .952 .934 .994 .992 .995 .972 .985 .932 .975 .972 .988 .963 .860 .968 .948

Competence Scores Across All Datasets

0.4

0.5

0.6

0.7

0.8

0.9

Figure 11: Competence scores of 8 experts across all datasets. These expert scores are obtained from
a PPEM model trained on the Link2 set and evaluated on the Link1 group. The left half of the figure
corresponds to the training datasets (from CS to Web-Stanford), while the right half represents the
test datasets (from Amazon-book to Yelp-t).

H.1 Transferability of the Routing Mechanism

We observe that the routing mechanism exhibits strong transferability from the pretraining data to
previously unseen test data. For example, in the training set (Link2), Experts 0, 3, and 6 consistently
specialize in e-commerce datasets such as Photo, Goodreads, and Fitness. Similarly, in the test set
(Link1), the e-commerce dataset Products-Tech is assigned the highest routing scores to these same
experts, indicating that the router effectively generalizes expert assignment patterns across domains.

H.2 Additional Insights

We also observe that Expert 2 and Expert 5 are rarely selected. To understand the root cause, we
analyze the model’s training dynamics and find that these two experts receive minimal updates,
leading to a training imbalance. A similar phenomenon is observed in AnyGraph, which employs
the same routing mechanism, suggesting that this issue is not unique to our model. We hypothesize
that the limited diversity in the training set–comprising only 18 graphs–results in a small number of
structural clusters, reducing the opportunity for all experts to be engaged.

Table 11: Results of changing the calibration parameter ρ. Increasing ρ enforces stricter expert
balancing but leads to a drop in performance.

ρ 0 0.1 0.2 0.3 0.4

Balanced ✗ ✗ ✗ ✓ ✓

Recall 48.20 48.35 50.77 49.11 49.84
NDCG 30.07 29.83 31.93 30.08 30.47

To encourage more balanced expert utilization, we adjust the calibration range parameter ρ (Eq.(23)).
Although increasing this parameter leads to a more uniform expert assignment, as shown in Table 11,
it results in a drop in overall model performance. This trade-off is consistent with findings from
prior work [36, 43], which suggest that enforcing balanced routing may result in suboptimal expert
selection. Notably, in LLMs based on the MoE paradigm, load balancing is typically adopted not to
improve performance, but to accelerate training and inference through parallelization strategies.

33

The load balancing strategies are not the main focus of this work and fall outside the scope of
our study. Potential directions for future work include exploring auxiliary-loss-free load balancing
methods [36] or incorporating expert pruning strategies [26].

H.3 Change the Routing Mechanism

The routing mechanism we adopt is non-parametric; to more comprehensively investigate the impact
of routing strategies, we replace it with a trainable, parameterized router commonly used in LLMs [7].
Specifically, we average-pool the representations E1 (Eq.3) and feed them into a linear router to
compute an affinity score for each expert, then select the top-k experts with the highest scores for
fusion. In addition, we also evaluate the expert choice router [52] as an alternative routing strategy.
As reported in Table 12, using these trainable, parameterized routers yields inferior results—likely
because the heuristic non-parametric router more accurately assigns structurally similar graphs to the
same experts, whereas the learnable router can introduce instability during training [52, 29].

Table 12: Effect of changing the router to commonly used trainable ones.

Method Link1 Link2

Recall NDCG Recall NDCG

PPEM w/ standard trainable router 22.19 11.82 50.25 31.38
PPEM w/ expert choice routing - - 50.06 30.91
PPEM 24.33 12.93 50.77 31.93

I Deeper Discussions of the Two Approaches

The two enhanced expert merging strategies, KDEM (Section 4.1) and PPEM (Section 4.2), though
distinct in their mechanics—KDEM operating in the output space and PPEM in the parameter
space—share common characteristics and offer insightful perspectives on optimizing the MoE layers.

Commonalities of KDEM and PPEM (1) Alignment with Expert Ensemble Performance.
Both methodologies address the observed performance degradation that can occur with standard
expert merging techniques and fundamentally strive to elevate the performance of expert merging
to levels comparable with more computationally intensive yet effective expert ensembling. While
KDEM leverages knowledge distillation to directly align the merged expert’s outputs with those of
the ensemble, PPEM exploits a theoretical insight to approximate ensemble behavior by bringing
expert parameters closer via EMA. (2) Computational Efficiency. Efficiency remains a core tenet
for both, as they aim to sidestep the substantial computational demands of direct expert ensembling.
KDEM introduces a modest additional computational step through periodic ensemble computation,
whereas PPEM is engineered to deliver comparable outcomes with negligible overhead by operating
directly within the parameter space. (3) Regularization Effect. KDEM explicitly introduces a
regularization effect via its distillation mechanism, guiding the merged expert toward the “soft
target” distribution of the ensemble. This encourages the merged expert to adopt a broader, more
generalizable representation. PPEM, by fostering parameter similarity among selected experts, may
also confer an implicit regularization effect. This can prevent individual experts from diverging too
dramatically, potentially improving model robustness and generalization by reducing interference
during the merge.

Insights Gained from the Two Methods (1) Flexibility in Design. The existence of two viable
strategies highlights the flexibility in designing expert merging techniques. KDEM’s output-space
approach leverages a well-established technique (knowledge distillation), making it intuitive and
adaptable to various MoE setups. PPEM’s parameter-space method, rooted in theoretical principles,
offers a computationally lean alternative that requires minimal overhead. This versatility suggests
that future methods could explore hybrid approaches or context-specific adaptations based on dataset
characteristics or resource constraints. (2) Trade-Offs and Practical Considerations. KDEM offers
robust performance improvements but requires periodic ensemble computations, adding moderate
training cost. It may be preferable when computational resources allow for this overhead and high

34

accuracy is paramount. PPEM achieves comparable results with negligible cost, making it ideal
for resource-constrained scenarios. The choice between KDEM and PPEM could be tailored to
specific applications, such as prioritizing efficiency in large-scale e-commerce systems or accuracy in
academic graph analysis. (3) Potential for Hybridization. The success of two different approaches
indicates that they may possess complementary advantages and potentially offers synergistic benefits
if combined. Future work could explore this synergy to fully release potential.

J Extended Related Work

Model Merging and Expert Merging Model merging integrates parameters from multiple net-
works to harness their complementary strengths (see surveys [45, 20]). Expert merging—its counter-
part in MoE architectures—combines only specialized experts rather than entire models, yielding
two key benefits: reduced compute costs and fully differentiable routing via soft fusion. For exam-
ple, MEO [11] averages the parameters of the top-k experts to cut overhead, SMEAR [28] fuses
all experts to avoid discrete router optimization (and outperforms gradient-estimation baselines),
and Lory [51] generalizes SMEAR’s principles to large autoregressive LMs. Nonetheless, existing
merging strategies remain relatively rudimentary and do not fully realize the potential of combining
multiple experts’ knowledge.

Mixture-of-Experts (MoE) on Graphs With the widespread application of MoE in the NLP
domain [2], they have recently been adopted in graph learning as well. For example, GraphDIVE [16]
utilizes MoE to integrate multi-view graph representations, addressing class imbalance issues in graph
classification. GMoE [35] treats multiple independent message-passing functions as experts and uses
a gating mechanism to assign aggregation experts for each node. MoG [48] dynamically selects
sparsification strategies for nodes with tailored sparsifier experts. GraphMETRO [39] employs an
MoE architecture to address complex graph distribution shifts, enhancing the generalization ability of
graph neural networks. Mowst [47] utilizes a weak MLP expert for features and a strong GNN expert
for structure and designs a novel MoE mechanism to integrate their expert knowledge. Node-MoE
[10] employs an MoE framework to adaptively select appropriate filter experts for different nodes.
GraphAlign assigns different feature transformation experts to each node, aligning the features from
different data sources. Despite these advancements, research on MoE in graphs still requires further
exploration to fully maximize its potential.

K Broader Impact

Our work advances MoE-based GFMs by enabling efficient fusion of multiple experts, leading to
improved accuracy and robustness across a variety of graph-related tasks, such as academic network
analysis, molecular interaction prediction, and recommendation systems. These improvements have
the potential to accelerate discovery in domains like drug development by more effectively modeling
molecular interaction graphs and to enhance personalization in e-commerce platforms.

In addition, since MoE layers in large language models are typically composed of MLPs, our
proposed expert fusion strategies are readily applicable to this broader class of models. By reducing
both training and inference overhead while maintaining performance competitive with top-k expert
ensembles, our methods contribute to more sustainable machine learning practices by lowering
computational costs and associated carbon emissions. Furthermore, this efficiency paves the way for
more practical deployment of LLMs on resource-constrained edge devices.

L Limitations

To ensure a fair comparison with AnyGraph and highlight the advantages of our proposed expert
merging strategy, we follow its setup by excluding graph-level tasks (e.g., graph classification). We
leave a comprehensive investigation of these tasks to future work. Since our approach does not
integrate LLMs, it cannot generate free-text responses to broad graph queries as GOFA [19] does;
nonetheless, our model demonstrates strong graph understanding and can serve as an effective graph
encoder, which, when coupled with an LLM-based decoder and instruction fine-tuning, could achieve
comparable capabilities. We leave these extensions to future work.

35

	Introduction
	Preliminaries
	A Deep Dive into Existing GFM
	AnyGraph
	Experimental Explorations and Observations

	Methods
	Knowledge Distillation Enhanced Expert Merging (KDEM)
	Parameter Proximity Enhanced Expert Merging (PPEM)

	Experiments
	Experimental Settings
	Overall Performance
	Ablation Study
	Computational Efficiency Analysis
	Further Discussion
	Discussion of Two-Stage Knowledge Distillation and KDEM
	A Deeper Analysis of PPEM Effectiveness
	Visualization of Routing Mechanism

	Related Work
	Conclusion
	Proof of Theorem 1
	Details of AnyGraph and Observations
	AnyGraph
	Experimental Details of Observations

	Training Pipeline and Complexity Analysis
	Training Pipeline
	Complexity Analysis

	Datasets
	Dataset Categories
	Dataset Grouping for Performance Evaluation

	Experimental details
	Baselines
	Evaluation Protocols
	Implementation Details and Hyperparameters

	Fine-grained Results
	Additional Experimental Results
	Comparison with the Best Single Expert
	Parameter Sensitivity Analysis
	Effect of the Number of Experts

	Further Discussion of the Expert Assignment Mechanism
	Transferability of the Routing Mechanism
	Additional Insights
	Change the Routing Mechanism

	Deeper Discussions of the Two Approaches
	Extended Related Work
	Broader Impact
	Limitations

