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Abstract

Driving-related safety-critical events (SCEs), including001
crashes and near-crashes, provide essential insights for the002
development and safety evaluation of automated driving003
systems. However, two major challenges limit their ac-004
cessibility: the rarity of SCEs and the presence of sensi-005
tive privacy information in the data. The Second Strategic006
Highway Research Program (SHRP 2) Naturalistic Driving007
Study (NDS)—the largest NDS to date—collected millions008
of hours of multimodal, high-resolution, high-frequency009
driving data from thousands of participants, capturing010
thousands of SCEs. While this dataset is invaluable for011
safety research, privacy concerns and data use restrictions012
significantly limit public access to the raw data. To ad-013
dress these challenges, we introduce SynSHRP2, a publicly014
available, synthetic, multimodal driving dataset containing015
over 1,874 crashes and 6,924 near-crashes derived from the016
SHRP 2 NDS. The dataset features de-identified keyframes017
generated using Stable Diffusion and ControlNet, ensuring018
the preservation of critical safety-related information while019
eliminating personally identifiable data. Additionally, Syn-020
SHRP2 includes detailed annotations on SCE type, envi-021
ronmental and traffic conditions, and time-series kinematic022
data spanning 5 seconds before and during each event. Syn-023
chronized keyframes and narrative descriptions further en-024
hance its usability. This paper presents two benchmarks025
for event attribute classification and scene understanding,026
demonstrating the potential applications of SynSHRP2 in027
advancing safety research and automated driving system028
development.029

1. Introduction030

Driving safety research is increasingly using approaches031
based on artificial intelligence to tackle tasks such as crash032
detection, scene understanding, driver monitoring, and un-033
safe maneuver detection. These advancements rely on high-034
quality multimodal datasets with accurately labeled safety-035

critical events (SCEs), including crashes and near-crashes. 036
However, the rarity of such events, high collection costs, 037
lack of data labels, and strict privacy regulations make ac- 038
cessing suitable datasets challenging, hindering progress 039
and fair benchmarking across models. 040

A common limitation for publicly accessible transporta- 041
tion safety data has been a lack of SCEs due their rarity 042
[5, 18, 24, 65]. The average police-reported crash rate in the 043
US is 3.29 crashes per million miles traveled in 2022, and 044
thousands of hours of data collection are needed to capture 045
a single crash [44]. The majority of the publicly accessi- 046
ble data is not large enough to capture a reasonable num- 047
ber of crashes for robust analysis. For instance, the popu- 048
lar BDD100k dataset contains over 1,000 hours of driving 049
videos with time-series data but lacks labeled SCEs [65]. 050

Large-scale naturalistic driving study (NDS) could be 051
a valuable source to address the rarity of SCEs. NDS is 052
characterized by continuous driving data collection using 053
multiple sensors instrumented on participants’ vehicles un- 054
der natural driving conditions. The largest NDS to date, 055
the Second Strategic Highway Research Program (SHRP 2) 056
contains millions of hours of driving data with thousands of 057
SCEs identified [14]. The SHRP 2 NDS dataset required in- 058
vesting approximately $155 million in data collection, stor- 059
age, and management, resulting in over 1,000,000 hours of 060
driving data. The collected data include four camera views, 061
3-D acceleration, radar, yaw rate, GPS, and lighting [17]. 062

High-quality annotation is another major challenge. 063
Driving scenarios are complex and involve environmental 064
factors, traffic flow conditions, traffic control, the ego ve- 065
hicle, and driver behavior. Annotating and labeling SCEs 066
requires expertise of the safety domain and considerable re- 067
sources. For example, the SHRP 2 NDS undertook a com- 068
prehensive research project to develop effective annotation 069
methodologies for its extensive dataset. Factors directly re- 070
lated to driving and how to operationally annotate a driving 071
scene is a huge undertaking [22]. 072

However, due to strict privacy policies, access to such 073
data requires significant effort and costs [38]. As with 074
SHRP 2, researchers must undergo rigorous user certifi- 075
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cation processes, including Institutional Review Board ap-076
proval, and are granted only time-limited access under strict077
data use policies.078

Artificially generated synthetic data, produced by plat-079
forms such as Wayve’s GAIA-1 [23] and the CARLA sim-080
ulator [15], offers an alternative source of multimodal driv-081
ing data. However, challenges persist with synthetic data082
in SCE-related research: accurately configuring the numer-083
ous parameters influencing SCEs is complex; ensuring high084
fidelity to real-world conditions is difficult; and synthetic085
datasets may not fully capture the variability of actual driv-086
ing scenarios, limiting their practical applicability.087

Another challenge in publicly accessible multimodal088
driving data is the lack of benchmarking [2, 4, 7, 28, 35,089
37, 40, 46, 49, 52, 52, 56, 62]. For instance, both Shi et al.090
[46] and Arvin et al. [2] utilize the SHRP 2 NDS dataset for091
crash detection algorithm development but with different092
configurations. Shi et al. [46] uses 59,997 normal driving093
instances, 1,820 crashes, and 6,848 near-crashes for three-094
way classification (crash vs. near-crash vs. normal driving),095
whereas Arvin et al. [2] selects a smaller subset consisting096
of 7,566 normal driving instances and 1,315 crashes and097
near-crashes for two-way classification (crash/near-crash098
vs. normal driving). This variability in data usage, com-099
bined with differences in implementation and hyperparam-100
eter tuning, makes it challenging to compare results fairly.101
These challenges highlight the urgent need for standardized102
datasets and evaluation protocols to enable consistent and103
fair benchmarking in driving safety studies.104

This study advances driving safety assessment by in-105
troducing a fully public driving safety evaluation dataset106
and establishing a benchmark for SCE risk evaluation, in-107
cluding attribute detection and scene understanding. The108
dataset integrates multimodal data—tabular records, time-109
series signals, keyframe images, and natural language de-110
scriptions—to support research in crash prediction, driving111
behavior analysis, and multimodal learning. To balance pri-112
vacy and data utility, we develop a Stable Diffusion-based113
workflow with ControlNet to de-identify personally iden-114
tifiable information (PII) while preserving critical driving115
context. Derived from the SHRP 2 NDS, the dataset con-116
tains 1,874 crashes and 6,924 near-crashes, each labeled117
with event type, conflict type, and incident type. It also118
includes five key timestamps, time-series sensor data span-119
ning 5 seconds before and during each event, and annotated120
narrative descriptions, providing a comprehensive resource121
for benchmarking event attribute classification and scene122
understanding in driving safety research.123

The rest of the paper is organized as follows: related124
works are discussed in Section 2; Section 3 and 4 detail125
the SynSHRP2 data and processing workflow; Section 5126
presents two tasks along with their corresponding bench-127
marks; and summary and conclusion are provided in Sec-128

tion 6. 129

2. Related Works 130

2.1. Publicly accessible multimodal driving datasets 131

There are two main classes of multimodal driving datasets: 132
real-world and synthetic. Real-world datasets include 133
nuScenes, which offers a comprehensive, multimodal sen- 134
sor suite for complex urban scenarios [5]; the Waymo 135
Open Dataset, which provides synchronized multi-sensor 136
data—incorporating LiDAR, radar, and multiple cam- 137
eras—along with detailed 3D object annotations [51]; and 138
KITTI, a benchmark that has set standards for object de- 139
tection and tracking [18]. Naturalistic datasets such as 140
SHRP 2 capture high-frequency video and vehicle teleme- 141
try from thousands of drivers in real-world settings, offering 142
detailed insights into driver behavior, distraction, and crash- 143
risk factors that are critical for enhancing road safety [22]. 144
BDD100K offers a large-scale collection of driving videos 145
and annotated images across various weather and lighting 146
conditions [65]; Brain4cars focuses on driver maneuver an- 147
ticipation using both in-cabin and exterior views [24]. 148

On the synthetic side, WayveScenes101 is a high- 149
resolution dataset designed for novel view synthesis in au- 150
tonomous driving [70]. Several CARLA-derived datasets 151
are also available. These include KITTI-CARLA [12] for 152
real-to-synthetic comparisons, CarlaSC [55] for semantic 153
scene completion, CARLA-Loc [21] for simultaneous lo- 154
calization and mapping evaluation, and Paris-CARLA-3D 155
[13] for dense point clouds. They offer a diverse suite of 156
synthetic resources that enable robust scene reconstruction 157
and performance evaluation under various simulation sce- 158
narios. 159

While these datasets offer valuable insights into au- 160
tonomous driving and driving safety, research on SCEs is 161
constrained by data limitations. Real-world datasets strug- 162
gle to capture SCEs due to their rarity and privacy concerns, 163
while synthetic datasets cannot yet fully replicate the com- 164
plexity and nuance of SCEs. 165

2.2. Stable Diffusion models for synthetic genera- 166
tion 167

Stable Diffusion [42] is a class of diffusion models designed 168
for efficient computation by operating on latent representa- 169
tions extracted through an autoencoder [19]. This approach 170
significantly reduces the computational cost while main- 171
taining high-quality image synthesis. Stable Diffusion is 172
one of the state-of-the-art methods for generating synthetic 173
images and has become a powerful tool for realistic image 174
generation [10], upscaling [34], image denoising [27, 69], 175
and video generation [58]. Its versatility enables applica- 176
tions across diverse fields, including graphic design [66], 177
animation [45, 60], music production [50], and robotics 178
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Figure 1. Example illustrating all data types in SynSHRP2.

[6, 30].179

ControlNet [67] is a trainable neural network structure180
designed to guide the generation process of a pretrained181
Stable Diffusion model. It enables users to impose addi-182
tional conditions, such as Canny edges, human pose, and183
text prompts, ensuring that the generated images adhere184
to specified constraints. This flexibility extends the appli-185
cability of ControlNet to image editing and manipulation186
[59], including artistic style transfer [61], object composi-187
tion [29], reconstruction and restoration [32], and medical188
imaging [26]. A notable extension, IP-Adapter [64], refines189
ControlNet by enhancing image prompt capabilities, ensur-190
ing that generated images closely resemble the input refer-191
ence image.192

3. SynSHRP2 Dataset193

The SynSHRP2 dataset is a high-quality, synthetic, multi-194
modal dataset of real-world SCEs designed to advance re-195
search in driving safety, vision-language model (VLM) de-196
velopment, and automated driving system (ADS)/advanced197
driver assistance system (ADAS) evaluation. SynSHRP2198
provides multimodal data on SCEs, including time-series199
kinematic signals, synthetic images of SCE scenarios, de-200
tailed annotations, and event narrative descriptions. Syn-201
SHRP2 utilizes Stable Diffusion with ControlNet to accu-202
rately de-identify PII while preserving critical safety-related203
information, ensuring privacy protection without compro-204
mising data integrity. This section introduces the detailed205
dataset setups and the methodology for de-identified syn-206
thetic scene generation workflows.207

3.1. Dataset setups208

The dataset consists of 1,874 crashes and 6,924 near-crash209
events, organized into four components: tabular records,210
sensor data, keyframe images, and comprehensive narrative211
descriptions of events. An example illustrating all modali-212
ties is shown in Figure 1.213

Tabular records. The tabular records provide detailed 214
annotations for each SCE, capturing essential information 215
about the event’s context and severity. Key fields include 216
Event ID (unique identifier), Timestamps of Keyframes (cap- 217
turing five critical moments: 5 seconds before Event Start, 218
Event Start, Reaction Start, Impact, and Event End), and 219
Event Type (classifying events as crash or near-crash). Con- 220
flict Type identifies the objects involved in the conflict (e.g., 221
lead vehicle, following vehicle, and parked vehicle), with 222
multiple conflicts listed in sequence, prioritizing the most 223
severe. Incident Type specifies the nature of the conflict 224
(e.g., rear-end collision, road departure), while Crash Sever- 225
ity ranks the crash event based on vehicle dynamics, prop- 226
erty damage, known injuries, and risk level to drivers and 227
road users. SynSHRP2 includes two event types, 16 con- 228
flict types, 18 incident types, and four levels of crash sever- 229
ity, offering comprehensive description for understanding 230
the diverse nature of SCEs. Detailed descriptions of these 231
fields are provided in the appendix. 232

Sensor data. The sensor data, recorded using an inertial 233
measurement unit (IMU) and radar sensors, provides de- 234
tailed time-series measurements, spanning from 5 seconds 235
before the Event Start to 5 seconds after the Event End. 236
Key fields include Timestamps for precise temporal align- 237
ment, Longitudinal, Lateral, and Vertical Accelerations, 238
and Speed to track vehicle dynamics. Pedal Brake State in- 239
dicates braking activity, while Lane Width, Left Line Right 240
Distance, and Right Line Left Distance capture the vehi- 241
cle’s lane position. This continuous sensor data offers a dy- 242
namic view of the vehicle’s behavior, complementing the 243
tabular records and providing comprehensive description of 244
driver response and vehicle control during SCEs. Detailed 245
descriptions of these sensor data fields are provided in the 246
appendix. 247

Event narratives. Narrative descriptions are provided 248
for each SCE, manually annotated by trained data coders. 249
These annotations capture key contextual details such as 250
traffic density, lighting conditions, road surface conditions, 251
locality, event type, conflict type, and incident type, offering 252
rich insights into each SCE. 253

Synthetic Keyframe images. The keyframes correspond 254
to five critical timestamps: 5 seconds before Event Start, 255
Event Start, Reaction Start, Impact, and Event End, each 256
image with a resolution of 1920 × 1080. These keyframes 257
are extracted from SHRP 2 NDS front-view videos and have 258
undergone a PII de-identification process, detailed in Sec- 259
tion 3.2. 260

3.2. Synthesize De-identified Keyframes 261

This process synthesizes de-identified keyframe images 262
from the SHRP 2 NDS front-view video dataset with the 263
following objectives: 1) Upscale resolution; 2) Protect PII, 264
including vehicle stickers, street names, and pedestrians; 265
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Figure 2. Workflow of the de-identified keyframe synthesis process. The pipeline begins with a keyframe input, applying super-resolution
to upscale image resolution. Semantic segmentation then identifies object-related pixels, while Canny edge detection is used for objects
where orientation is critical. The new frame is synthesized part by part by masking corresponding segments. Image cropping removes
unnecessary elements like timestamps. For the ”Impact” keyframe, this completes the process. For subsequent keyframes, an IP-adapter
utilizes the first keyframe as an image prompt to ensure consistency across frames.

3) Preserve essential traffic information, such as spatial-266
temporal relationships among road users, key traffic scene267
setups (e.g., intersections, highways, rural roads), and traf-268
fic control signs/devices; 4) Ensure consistency across con-269
secutive frames; and 5) Remove irrelevant elements like270
video timestamps and the vehicle’s front hood.271

To achieve this, we developed a comprehensive video272
frame synthesis method consisting of five key components:273
1) StableSR [54] is applied to the selected keyframes of274
the videos in the SHRP 2 NDS dataset for image upscal-275
ing. 2) Semantic segmentation [20] is applied to the up-276
scaled frames to achieve pixel-level precision in general-277
ization control. 3) Through stable diffusion with semantic278
segmentation and Canny Edge Detection ControlNets [43],279
detected objects are reproduced on the corresponding seg-280
ments. For objects whose orientation can contain impor-281
tant traffic information, line sketches are used to control the282
orientation of the reproduction. 4) IP-adapter [64] is ap-283
plied on ”Component 3” to ensure the consistency of the284
generated objects in each frame of the videos. 5) Image285
cropping is applied to remove timestamps and the vehicle’s286
front hood. This method can be extended to synthesize other287
de-identified datasets. Figure 2 illustrates the workflow of288
the proposed approach. The following sections describe the289
first four components when applied to keyframes from a290
general video.291
Stable Diffusion-based upscaling. We use StableSR (SR)292
[54] for upscaling the keyframes. Specifically, denote It293
as the t-th frame of the video with size N × N , then the294
corresponding upscaled image can be denoted as295

Ît = SR(It) (1)296

where Ît is an image with size M ×M , M > N .297
Sematic segmentation for pixel-level object classifica-298

tion. To identify objects with PII (e.g., vehicles and pedes- 299
trian) in a keyframe, we use semantic segmentation (Seg) to 300
classify the pixels therein. The output of the process can be 301
written as 302

{P1, · · · ,PO} = Seg(Ît) (2) 303

where PO is the segment of pixels classified as object O. 304
Synthesis of de-identified keyframes. To protect PII 305
while retaining critical traffic information, a keyframe 306
is reproduced part by part based on the classes of ob- 307
jects detected by semantic segmentation. Denote Ĩt = 308
{P̃1, · · · , P̃O} as the synthesized frame with semantic seg- 309
mentation based on Ît, where P̃O is the synthesized seg- 310
ment corresponding to segment PO

1. For each object O, if 311
object O contains no PII, the corresponding segment is di- 312
rectly passed to the blue synthesized frame, i.e., P̃O = PO. 313
If object O contains PII, its corresponding segment P̃O will 314
be synthesized through a large pre-trained stable diffusion 315
model (SD) [42] with ControlNets (ConNet) [67] via the 316
following process to achieve de-identification: 317
1. To retain critical traffic information, the synthesized seg- 318

ment must maintain the same orientation as the original. 319
For instance, if the original segment depicts the rear of 320
a vehicle, the generated segment should also show the 321
rear, not the front, ensuring the accuracy of the traffic 322
scenario. To achieve this, we extract the outline sketch 323
of the segment LO using the Canny Edge Detection al- 324
gorithm (Canny) [43]: LO = Canny(PO). 325

2. To control the properties of the segment to be synthe- 326
sized, we use text prompts TO, consisting of positive 327
prompts PTO and negative prompts NTO, i.e., TO = 328
{PTO, NTO}. Positive prompts indicate desired prop- 329

1Segment P̃O and segment PO should have the same number of pixels
for all obejcts O.
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erties, such as ”high quality,” ”naturalistic,” and the ob-330
ject’s semantic meaning (O). Negative prompts specify331
undesired properties, including ”low quality,” ”cartoon,”332
and ”watermarks.”333

3. To incorporate the above information into the stable dif-334
fusion process for synthesis of the segment, two Con-335
trolNets are added on top of a pre-trained large diffusion336
model. One ControlNet’s inputs are the outline sketch337
LO and the text prompts TO. This ControlNet controls338
the diffusion model of the properties and orientation of339
the synthesized segment. The other ControlNet’s inputs340
are the original segment of the object PO. This Control-341
Net guides the diffusion model in determining the seg-342
ment’s location within the image. Then, the segment P̃O343
is reproduced as344

P̃O = SD(ConNet(LO, TO),ConNet(PO); z), (3)345

where z ∼ N (0, 1) is used for sampling images, en-346
abling image generation based on the diffusion model’s347
density function.348

Consistent object representation with IP-Adapter. To349
ensure consistent object representation across consecutive350
keyframes, we adopt IP-Adapter [64]. The previously syn-351
thesized frame serves as the image prompt to guide the dif-352
fusion process. Specifically, IP-Adapter(ĨtImpact

) func-353
tions as an additional ControlNet alongside the two exist-354
ing ControlNets in Equation (3) to facilitate the generation355
of keyframes It, for t = 1, 2, · · · , assuming I0 is the first356
keyframe. The generation of I0 follows Equation (3) di-357
rectly.358

4. Implementation of Synthetic Image Genera-359

tion360

The platform is ComfyUI v0.3.14 [8], running on Python361
3.10 and Rocky Linux 9.3, with model training per-362
formed on a workstation equipped with dual Intel Xeon363
Gold 6338 CPUs, 256 GB RAM, and two Nvidia Tesla364
A100 (80 GB) GPUs. For super-resolution, we em-365
ployed StableSR [54] with its ComfyUI node implemen-366
tation [57]. The de-identified keyframe synthesis was per-367
formed using Stable Diffusion XL (SDXL) [39] as the base368
model, leveraging the RealArchVisXL checkpoint [25].369
The Canny and Segmentation ControlNet modules were370
implemented via ComfyUI-ControlNet-Aux [16], while371
ComfyUI-IPAdapter-Plus [11] was used for image adapta-372
tion.373

4.1. Module effectiveness374

This section compares the proposed approach with alterna-375
tive methods, including Upscale + Masking, Canny Con-376
trolNet, and IP-Adapter ControlNet, to demonstrate its ef-377
fectiveness in synthetic image generation and privacy de-378
identification.379

Figure 3. Comparison of synthetic image generation approaches.

Upscale + Masking process. The proposed resolution up- 380
scale + semantic segmentation ControlNet approach is de- 381
signed to maintain the structural integrity of critical driv- 382
ing safety-related elements while ensuring effective de- 383
identification. An alternative method is img2img generation 384
with a detailed text prompt. As shown in Figure 3, a syn- 385
thetic frame was generated using the alternative approach 386
with CFG = 3.5, denoise = 0.4, and other hyperparameters 387
set identically. The prompt used was: 388

“A suburban intersection on an overcast day, viewed 389
from a dashcam perspective. An older four-door sedan is 390
turning left through the intersection under a green traffic 391
light. Tall evergreen trees line the background, and there’s a 392
sidewalk on the right side. The scene is photorealistic with 393
natural, muted daytime lighting, capturing the sense of a 394
real-life moment in motion.” 395

The Upscale + Masking approach preserves key driv- 396
ing safety-related infrastructure, such as roads, traffic lights, 397
and pavements, which appear in the same or highly similar 398
patterns as the original frame. The car models and back- 399
ground greenery are modified for de-identification. How- 400
ever, in the detailed text prompt approach, despite explic- 401
itly mentioning details like “intersection under a green traf- 402
fic light” and “a sidewalk on the right side,” the generated 403
frame fails to maintain spatial consistency. The road di- 404
rection changes, an additional vehicle appears that was not 405
present in the original frame, and traffic lights are misplaced 406
with incorrect colors, distorting SCE evaluation. This com- 407
parison highlights the advantages of the upscale + masking 408
process method in maintaining structural consistency while 409
ensuring privacy preservation. 410

Canny ControlNet. If semantic segmentation is used as 411
the sole control mechanism, it presents a limitation in accu- 412
rately preserving the directionality of vehicles, such as dis- 413
tinguishing between the front and rear. As shown in Figure 414
4, the highlighted car in the original frame represents the 415
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Figure 4. Comparison between synthetic images with and without
Canny.

Figure 5. Comparison between synthetic images with and without
IP-Adapter.

rear of a vehicle, indicating a conflict with the leading vehi-416
cle. A synthetic frame generated without Canny ControlNet417
produces a vehicle facing the wrong direction (front view),418
distorting the event context. Using Canny ControlNet en-419
sures that the generated vehicle correctly maintains its rear-420
facing orientation, preserving the integrity of the original421
scene. The synthetic frame with Canny ControlNet also re-422
tains critical details, such as the status of brake lights, which423
accurately reflect the original frame—an essential factor for424
driving safety evaluation.425
IP-Adapter ControlNet. After generating the synthetic426
frame at the ”Impact” timestamp, the remaining five427
keyframes are generated while maintaining visual consis-428
tency. To achieve this, IP-Adapter is utilized to enforce429
structural and stylistic coherence across frames. Figure430
5 presents a comparison of generated keyframes with and431
without IP-Adapter. In the ”Impact” frame, the front vehi-432
cle is black. With IP-Adapter, subsequent frames retain this433
attribute, preserving key scene elements. However, with-434
out IP-Adapter, visual inconsistencies emerge—e.g., in the435
”Event Start” frame, the front vehicle changes to red, dis-436
rupting continuity.437

5. Tasks and Benchmarks438

The multimodal nature of SynSHRP2 supports a multitude439
of tasks, including detection, tracking, and prediction. In440

this section, we present two tasks on the SynSHRP2 dataset, 441
including SCE attribute detection and SCE scene under- 442
standing. Additionally, several benchmarks are evaluated 443
on these two tasks. By this means, we provide the insight 444
of SynSHRP2 and suggest avenues for future research. 445

5.1. Task 1: SCE attribute detection 446

Problem Setup. Utilizing the SynSHRP2 kinematic 447
dataset, we present a number of benchmarks to detect SCE 448
attributes, including three subtasks: distinguish event sever- 449
ity types, incident types, and conflict types, which are cru- 450
cial for the safe operation of ADS and ADAS. The distri- 451
bution of SCE by event attributes can be found in the ap- 452
pendix. In brief, there are five event severity types (combin- 453
ing ”Crash Severity” and ”Event Type”), 15 incident types 454
(excluding category ”None,” ”Other,” and ”Unknown”), and 455
16 conflict types. Each SCE includes 5 seconds of triaxial 456
acceleration and speed data. 457

Data Pre-processing. The model inputs are triaxial accel- 458
eration and speed around the occurrence of an SCE. The 459
temporal localization of each SCE is pinpointed at the ”Im- 460
pact” timestamp from the SynSHRP2 database, serving as 461
the center of the SCE. A temporal window encompassing 462
25 kinematic data points (representing 2.5 seconds) both 463
preceding and succeeding the ”Impact” timestamp was ex- 464
tracted, resulting in a 5-second interval of triaxial accelera- 465
tion and speed record data. 466

Model Implementation. The dataset was randomly di- 467
vided into training, testing, and validation subsets in the 468
proportion of 7:2:1. The validation set was used to tune 469
the hyperparameters, and the evaluation performance was 470
based on the independent testing set. The software environ- 471
ment was based on Python 3.11 running on Rocky Linux 472
9.3. The model was trained on a high-performance GPU 473
workstation with dual Intel Xeon Gold 6442 CPUs @ 2.60 474
GHz, 512 GB RAM, and one Nvidia Tesla H100 80 GB 475
GPU. 476

We evaluated six benchmark models for the SCE at- 477
tribute detection task, including 1-D SwinTransformer [47], 478
CNN-GRU + XGBoost [46], CNN-LSTM [2], logistic re- 479
gression [56], Adaboost [35], and random forest [52]. 480
These models have superior performance on the original 481
SHRP 2 NDS dataset [47]. 482

We use the following setup for each model. The 1-D 483
Swin Transformer model employs four Swin blocks, with 484
the attention mechanism consistently utilizing 16 heads 485
across all blocks. The CNN-GRU + XGBoost model con- 486
sists of a convolutional layer followed by multiple GRU lay- 487
ers, which extract representations for XGBoost to employ 488
classification. The CNN-LSTM model consists of a convo- 489
lutional layer followed by an LSTM layer, culminating in a 490
fully connected layer for classification. The statistical met- 491
rics used for logistic regression, Adaboost, and the random 492
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Method Base Models Accuracy mAP AUC Balanced Accuracy Macro Precsion Macro F1
5-way event severity type classification

Shi et al. [47] 1-D SwinTransformer 0.876 0.594 0.910 0.582 0.679 0.619
Shi et al. [46] CNN-GRU + XGBoost 0.869 0.593 0.923 0.557 0.633 0.577
Arvin et al. [2] CNN-LSTM 0.878 0.582 0.909 0.570 0.607 0.582
Winlaw et al. [56] Statistical metrics + Logistic regression 0.865 0.608 0.921 0.482 0.616 0.527
Osman et al. [35] Statistical metrics + Adaboost 0.855 0.497 0.837 0.523 0.636 0.552
Taccari et al. [52] Statistical metrics + Random forest 0.871 0.665 0.926 0.584 0.649 0.605

15-way incident type classification
Shi et al. [47] 1-D SwinTransformer 0.592 0.295 0.757 0.285 0.337 0.294
Shi et al. [46] CNN-GRU + XGBoost 0.594 0.310 0.829 0.243 0.345 0.262
Arvin et al. [2] CNN-LSTM 0.609 0.324 0.842 0.296 0.326 0.296
Winlaw et al. [56] Statistical metrics + Logistic regression 0.589 0.259 0.827 0.208 0.244 0.192
Osman et al. [35] Statistical metrics + Adaboost 0.557 0.156 0.620 0.186 0.163 0.168
Taccari et al. [52] Statistical metrics + Random forest 0.607 0.320 0.829 0.261 0.416 0.264

16-way conflict type classification
Shi et al. [47] 1-D SwinTransformer 0.581 0.226 0.774 0.188 0.197 0.180
Shi et al. [46] CNN-GRU + XGBoost 0.566 0.247 0.794 0.206 0.268 0.212
Arvin et al. [2] CNN-LSTM 0.585 0.256 0.826 0.211 0.289 0.213
Winlaw et al. [56] Statistical metrics + Logistic regression 0.576 0.222 0.809 0.171 0.219 0.163
Osman et al. [35] Statistical metrics + Adaboost 0.535 0.159 0.733 0.158 0.141 0.146
Taccari et al. [52] Statistical metrics + Random forest 0.590 0.258 0.805 0.193 0.282 0.188

Table 1. Benchmark comparison in SCE attribute detection.

forest model include mean, standard deviation, maximum,493
minimum, and the 25th, median, and 75th percentiles of the494
extracted kinematic data.495

All benchmark models were trained from scratch, with496
batch sizes optimized for one Tesla H100 GPU. The best497
validation accuracy epoch was selected for testing on an in-498
dependent set. The optimization was conducted via Adam499
with an initial learning rate of 3e-4, with a cosine learning500
rate scheduler to refine the learning as the model converges,501
continuing until a minimum in validation loss is observed.502

Benchmark Comparison. Six metrics were used to eval-503
uate benchmark performance: accuracy, mean average pre-504
cision (mAP), area under the receiver operating character-505
istic curve (AUC), balanced accuracy, macro precision, and506
macro F1. The latter three metrics focus on the imbalanced507
category scenarios.508

Table 1 presents the results for the three subtasks. Over-509
all, deep learning models, particularly CNN-LSTM and 1-D510
Swin Transformer, demonstrated strong performance across511
subtasks, outperforming traditional statistical methods in512
most metrics. For five-way event severity classification, the513
1-D Swin Transformer achieved the highest macro preci-514
sion (0.679) and macro F1 (0.619), while the statistical met-515
rics + random forest led in mAP (0.665), AUC (0.926), and516
balanced accuracy (0.584). In 15-way incident type classi-517
fication, CNN-LSTM performed best in accuracy (0.609),518
mAP (0.324), AUC (0.842), and balanced accuracy (0.296),519
whereas the random forest model attained the highest macro520
precision (0.416). Similarly, for 16-way conflict type clas-521
sification, CNN-LSTM dominated AUC (0.826), balanced522
accuracy (0.211), macro precision (0.289), and macro F1523

(0.213), while random forest led in accuracy (0.590) and 524
mAP (0.258). 525

5.2. Task 2: SCE scene understanding 526

Problem Setup. Utilizing the SynSHRP2 synthetic image 527
dataset and annotated ground truth narratives, we bench- 528
mark several VLMs to generate narrative descriptions of 529
SCEs, which are vital for understanding SCE scenes. To 530
ensure data quality, we continuously verify keyframes and 531
manually annotate these ground truth narrative descriptions. 532
The dataset version used for this task is the one available as 533
of February 24, 2025. 534
Model Implementation. To mitigate hallucinations by 535
VLMs, we combine SCE attribute information into the 536
prompt for VLMs, which has proven to be an effective ap- 537
proach in such tasks Shi et al. [48]. Specifically, the narra- 538
tive is generated using the user prompt: ”Describe this driv- 539
ing event without personally identifiable information in one 540
paragraph, including environment, [Event severity type], 541
and [Conflict type].” The [Event severity type] and [Con- 542
flict type] come from the detailed annotations of SCEs. 543

We evaluated six state-of-the-art VLM benchmarks for 544
the SCE scene understanding task, including Llama 3.2- 545
Vision [16], LLaVA-Llama3 [9], MiniCPM-V [63], LLaVA 546
[33], LLaVA-Phi3 [41], and Moondream2 [53]. To make a 547
fair comparison, all VLM benchmarks were not fine-tuned 548
and used with their default setup. The narratives are gen- 549
erated by the same prompt and evaluated quantitatively by 550
comparing them to the event narrative of SynSHRP2. 551
Benchmark Comparison. The generated narratives are 552
evaluated using four types of metrics, including BLEU-4 553
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Model Size BLEU-4 ROUGE-L precision ROUGE-L recall ROUGE-L F1 METEOR BERT precision BERT recall BERT F1
Llama 3.2-Vision [1] 11B 0.017 0.138 0.253 0.174 0.229 0.534 0.598 0.564
LLaVA-Llama3 [9] 8B 0.011 0.118 0.236 0.156 0.193 0.521 0.565 0.542
MiniCPM-V [63] 8B 0.011 0.138 0.202 0.156 0.209 0.550 0.596 0.571
LLaVA [33] 7B 0.011 0.161 0.210 0.176 0.195 0.555 0.582 0.568
LLaVA-Phi3 [41] 3.8B 0.012 0.147 0.212 0.167 0.205 0.555 0.586 0.570
Moondream2 [53] 1.8B 0.011 0.175 0.151 0.160 0.147 0.523 0.506 0.514

Table 2. Benchmark comparison in SCE scene understanding.

[36], ROUGE-L [31], METEOR [3], and BERTScore [68].554
To comprehensively evaluate the generative narratives rela-555
tive to the ground truth, precision, recall, and F1 scores from556
ROUGE-L and BERTScore are used, providing a balanced557
measure.558

As shown in Table 2, larger models like Llama 3.2-559
Vision and LLaVA variants performed better in recall-based560
metrics, while some smaller models exhibited competi-561
tive precision. Llama 3.2-Vision (11B) achieved the high-562
est BLEU-4 score (0.017), ROUGE-L recall (0.253), ME-563
TEOR (0.229), and BERT recall (0.598), demonstrating564
strong recall and overall SCE scene understanding perfor-565
mance. LLaVA (7B) led in ROUGE-L F1 (0.176) and566
BERT precision (0.555), while MiniCPM-V (8B) attained567
the highest BERT F1 score (0.571), indicating a balanced568
precision-recall trade-off. Moondream2 (1.8B) excelled in569
ROUGE-L precision (0.175) but had lower recall scores.570

6. Conclusion571

This paper introduces SynSHRP2, a publicly available syn-572
thetic multimodal driving dataset containing 1,874 crash573
and 6,924 near-crash events derived from the SHRP 2574
NDS dataset. SynSHRP2 features de-identified keyframes575
generated by Stable Diffusion and ControlNet, ensuring576
the preservation of critical safety-related information while577
eliminating personally identifiable information. Addition-578
ally, SynSHRP2 includes detailed annotations on SCE at-579
tributes, environmental and traffic conditions, and time-580
series kinematic data spanning 5 seconds before and during581
each SCE. Synchronized synthetic keyframes of video and582
SCE narratives further enhance the usability of SynSHRP2.583
The method and implementation details for synthesizing584
the dataset are provided. Two benchmarks for SCE at-585
tribute classification and scene understanding are presented586
to demonstrate the potential applications of SynSHRP2 in587
advancing safety research and ADS development.588

By publicly releasing this dataset for research, we aim589
to advance studies on realistic driving scenarios and traffic590
SCEs using NDS data, as well as support the development591
of safe ADS. Future work will focus on synthesizing de-592
identified NDS video datasets.593
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Appendix: Variable dictionary887

Table 3. Variable dictionary for sensor data.

Variable Definition Unit/Category Frequency
Longitudinal acceleration Vehicle acceleration in the longitudinal direction versus

time.
g 10Hz

Lateral acceleration Vehicle acceleration in the lateral direction versus time. g 10Hz
Vertical acceleration Vehicle acceleration vertically (up or down) versus time. g 10Hz
Speed Vehicle speed indicated on speedometer collected from

network.
km/h 10Hz

Pedal brake state On or off press of brake pedal. 0=off, 1=on,
2=invalid data,

3=data not available

Varies

Lane width Distance between the inside edge of the innermost lane
marking to the left and right of the vehicle.

cm 30Hz

Left line right distance Distance from vehicle centerline to inside of left side lane
marker based on vehicle based machine vision.

cm 30Hz

Right line left distance Distance from vehicle centerline to inside of right side
lane marker based on vehicle based machine vision.

cm 30Hz

1
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Table 4. Variable dictionary for tabular records

Variable Definition Category Count
Event Type The outcome of each event. Crash 1874

Near-Crash 6924
Crash severity A ranking of crash severity based IV - Low-risk Tire Strike 800

on vehicle dynamics, property III - Minor Crash 777
damage, injury data, and risk to II - Police-reportable Crash 183
road users. I - Most Severe 114

Incident type The subject vehicle’s conflict type Rear-end, striking 3916
in the most severe incident. Road departure (left or right) 1262

Sideswipe, same direction (left or right) 1052
Turn into path (same direction) 397
Animal-related 372
Turn into path (opposite direction) 328
Turn across path 328
Rear-end, struck 205
Straight crossing path 178
Pedestrian-related 169
Road departure (end) 137
Backing into traffic 119
Opposite direction (head-on or sideswipe) 91
Backing, fixed object 87
Pedalcyclist-related 67

Conflict type The note about the other object(s) Conflict with a lead vehicle 3290
involved in the incident. Conflict with vehicle in adjacent lane 1571

Single vehicle conflict 1479
Conflict with vehicle turning into another vehicle
path (same direction)

394

Conflict with animal 372
Conflict with vehicle turning into another vehicle
path (opposite direction)

326

Conflict with vehicle turning across another vehi-
cle path (opposite direction)

253

Conflict with obstacle/object in roadway 187
Conflict with a following vehicle 186
Conflict with parked vehicle 175
Conflict with vehicle moving across another vehi-
cle path (through intersection)

175

Conflict with pedestrian 169
Conflict with merging vehicle 131
Conflict with oncoming traffic 90
Conflict with vehicle turning across another vehi-
cle path (same direction)

74

Conflict with pedal cyclist 67
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