
Published in Transactions on Machine Learning Research (06/2025)

Seeing Beyond Labels: Source-Free Domain Adaptation via
Hypothesis Consolidation of Prediction Rationale

Yangyang Shu yangyang.shu@unsw.edu.au
School of Systems and Computing, University of New South Wales

Yuhang Liu yuhang.liu01@adelaide.edu.au
Australian Institute for Machine Learning, The University of Adelaide

Xiaofeng Cao xiaofengcao@tongji.edu.cn
School of Computer Science and Technology, Tongji University

Qi Chen qi.chen04@adelaide.edu.au
Australian Institute for Machine Learning, The University of Adelaide

Bowen Zhang b.zhang@adelaide.edu.au
Australian Institute for Machine Learning, The University of Adelaide

Ziqin Zhou ziqin.zhou@adelaide.edu.au
Australian Institute for Machine Learning, The University of Adelaide

Anton van den Hengel anton.vandenhengel@adelaide.edu.au
Australian Institute for Machine Learning, The University of Adelaide

Lingqiao Liu∗ lingqiao.liu@adelaide.edu.au
School of Computer Science, The University of Adelaide

Reviewed on OpenReview: https: // openreview. net/ forum? id= 3997

Abstract

Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model
needs to be adapted to a new domain without access to target domain labels or source
domain data. The primary difficulty in this task is that the model’s predictions may be
inaccurate, and using these inaccurate predictions for model adaptation can lead to misleading
results. To address this issue, this paper proposes a novel approach that considers multiple
prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
By consolidating these hypothesis rationales, we identify the most likely correct hypotheses,
which we then use as a pseudo-labeled set to support a semi-supervised learning procedure
for model adaptation. This approach distinguishes itself from conventional semi-supervised
learning by relying solely on pseudo-labels rather than ground-truth annotations. To achieve
the optimal performance, we propose a three-step adaptation process: model pre-adaptation,
hypothesis consolidation, and semi-supervised learning. Extensive experimental results
demonstrate that our approach achieves state-of-the-art performance in the SFUDA task
and can be easily integrated into existing approaches to improve their performance. The
codes are available at https://github.com/GANPerf/HCPR.

∗Corresponding author.

1

https://openreview.net/forum?id=3997
https://github.com/GANPerf/HCPR


Published in Transactions on Machine Learning Research (06/2025)

1 Introduction

The success of deep learning models in visual tasks is largely dependent on whether the training and testing
data share similar distributions (He et al., 2016; Liang et al., 2020b). However, when the distribution of the
testing data differs significantly from that of the training data, also known as domain shift, the performance
of these models can decrease substantially Tzeng et al. (2017); Peng et al. (2019). To mitigate the effects of
domain shift and reduce the need for data annotations, Unsupervised Domain Adaptation (UDA) techniques
have been developed to transfer knowledge from annotated source domains to new but related target domains
without requiring annotations in the target domain Hoffman et al. (2018); Long et al. (2018); Dai et al. (2020);
Feng et al. (2021); Mei et al. (2020). However, most UDA-based methods rely on access to labeled source
domain data during adaptation, such an access may not always be feasible due to privacy concerns. As a
result, Source-Free Unsupervised Domain Adaptation (SFUDA) Liang et al. (2020a); Yang et al. (2021b;a);
Chen et al. (2022); Yang et al. (2022); Zhang et al. (2022); Karim et al. (2023) gains much attention recently,
which only requires a pre-trained model from the source domain and unlabeled data from the target domain.

The main challenge in SFUDA research is how to generate supervision solely from unlabeled data. The
current approaches in SFUDA research primarily focus on either generating pseudo-labels Liang et al. (2020a);
Yang et al. (2021b;a); Litrico et al. (2023) or conducting unsupervised feature learning Huang et al. (2021);
Chen et al. (2022); Zhang et al. (2022); Karim et al. (2023); Litrico et al. (2023) to address this issue. To
generate reliable pseudo-labels, existing methods Liang et al. (2020a); Yang et al. (2021b;a) often utilize
the distribution of the target domain data to refine the initial predictions from the source domain, i.e., via
clustering Liang et al. (2020a) or using the predictions of neighboring samples Yang et al. (2021a); Litrico et al.
(2023). On the other hand, unsupervised feature learning, such as contrastive learning, is often employed as
an auxiliary task to encourage the features to adapt to the target domain Huang et al. (2021); Chen et al.
(2022); Zhang et al. (2022); Karim et al. (2023); Litrico et al. (2023).

In our study, we propose a novel approach to tackle the challenge of SFUDA. Our strategy involves deferring
the utilization of label predictions to update the model in the early stages and carefully selecting the most
reliable predictions to construct a pseudo-labeled set. The key innovation of our approach lies in considering
multiple prediction hypotheses for each sample, accommodating the possibility of multiple potential labels for
each data point. We treat each label assignment as a hypothesis and delve into the rationale and supporting
evidence behind each prediction. We utilize a representation derived from GradCAM Selvaraju et al. (2017)
to encode the rationale for predicting an instance to a hypothetical label. Our methodology is inspired by the
belief that assessing the correctness of a prediction can be more reliable by analyzing the reasoning behind
a particular prediction, rather than solely relying on prediction probabilities. Subsequently, we develop a
consolidation method to determine the most trustworthy hypothesis and utilize it as the labeled dataset in
a semi-supervised learning framework. By employing this technique, we effectively transform the SFUDA
problem into a conventional semi-supervised learning problem.

Concretely, our approach consists of three key steps: model pre-adaptation, hypothesis consolidation, and
semi-supervised learning. We have empirically observed that pre-adapting the model can enhance the
effectiveness of the second step. To accomplish this, we introduce a straightforward objective that encourages
prediction smoothness from the network. In the final step, we leverage the widely-used FixMatch Sohn et al.
(2020) algorithm as our chosen semi-supervised learning method. Through extensive experimentation, we
demonstrated the clear advantages of our approach over existing methods in the SFUDA domain and show
that the proposed method can be easily integrated into existing approaches to bring improvement.

2 Related Work

2.1 UDA

Unsupervised domain adaptation aims to transfer knowledge learned from a labeled source domain to an
unlabeled target domain. Various approaches have been proposed to address this task, including discrepancy
minimization Tzeng et al. (2014); Ganin & Lempitsky (2015); Long et al. (2015), adversarial learning Hoffman
et al. (2018); Long et al. (2018); Tzeng et al. (2017); Vu et al. (2019), contrastive learning Dai et al. (2020);

2



Published in Transactions on Machine Learning Research (06/2025)

Kang et al. (2019), and methods grounded in a causal perspective Liu et al. (2025) that seek to identify
high-level latent causal variables Liu et al. (2024a; 2022; 2024b;c). Recently, self-training using labeled source
data and pseudo-labeled target data has emerged as a prominent approach in unsupervised domain adaptation
(UDA) research Feng et al. (2021); Mei et al. (2020); Xie et al. (2020); Yu et al. (2021); Zou et al. (2018).
However, these methods typically rely on access to the source data, making them inapplicable when source
data is unavailable.

2.2 SFUDA

Source-free unsupervised domain adaptation involves adapting a pre-trained model from a source domain to a
target domain without access to source data+labels or target labels Li et al. (2024); Fang et al. (2024); Zhang
et al. (2024). Existing SFUDA methods can be broadly categorized into two classes: i) Label Refinement:
Methods such as SHOT Liang et al. (2020a), G-SFDA Yang et al. (2021b), NRC Yang et al. (2021a), and
GPL Litrico et al. (2023) focus on refining pseudo labels. SHOT generates pseudo labels using centroids
obtained in an unsupervised manner. G-SFDA, NRC, and GPL refine pseudo labels through consistent
predictions and nearest neighbor knowledge aggregation from local neighboring samples. ii) Contrastive
Feature Learning: Approaches like HCL Huang et al. (2021), C-SFDA Karim et al. (2023), AdaContrast Chen
et al. (2022), GPL Litrico et al. (2023), and DaC Zhang et al. (2022). HCL and C-SFDA use a contrastive
loss similar to moco He et al. (2016), where positive pairs consist of augmented query samples and negatives
are other samples. AdaContrast and GPL exclude same-class negative pairs based on pseudo labels. DaC
divides the target data into source-like and target-specific samples, computes source-like class centroids, and
generates negative pairs using these centroids. These methods aim to tackle SFUDA by refining pseudo labels
or leveraging contrastive feature learning, demonstrating the potential of different strategies in addressing the
challenges of adapting models without access to labeled source data or target label.

3 Method
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GradCAM for ‘laptop’
Pred: ‘laptop’ 

GradCAM for ‘clock’
Pred: ‘clock’ 

GradCAM for ‘keyboard’      GradCAM for ‘laptop’
Pred: ‘keyboard’ 

GradCAM for ‘sign’              GradCAM for ‘clock’
                               Pred: ‘sign’ 

Figure 1: The visualizations illustrate the GradCAM Selvaraju et al. (2017) for predicting the image to a
specific class. In the right-half section, it can be observed that even though the prediction is incorrect, the
obtained rationale (region highlighted in the GradCAM) based on the correct label remains reasonable and
resembles the rationale of the corresponding class depicted in the left-half section.

In the source-free unsupervised domain adaptation (SFUDA) setting, only pretrained source models and
unlabeled data in the target domain are given. The task is to adapt the model to the target domain by using
unlabeled target data only. Our approach sequentially applies three steps as described in Sec. 3.1), Sec. 3.2)
and Sec. 3.3).
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Figure 2: In our method, we generate multiple prediction hypotheses based on the posterior probability of the
current model. An image I and its hypothetical label form a hypothesis, for example, (I, y = clock). For each
hypothesis, GradCAM is calculated based on the hypothetical label, resulting in the corresponding rationale
representation a. Subsequently, we calculate the centroid for the rationale representation of each class.

3.1 Model Pre-adaptation via Encouraging Smooth Prediction

The first step of our approach is to make an initial adaptation to reduce the domain gap. The motivation for
introducing this pre-adaptation phase arises from the observation that early predictions from a source model
can be noisy and overconfident due to domain shift, which negatively impacts the reliability of downstream
pseudo-labels. To mitigate this, we hypothesize that enforcing prediction smoothness across the target
data manifold helps the model form more consistent and transferable representations. Our method first
encourages alignment among similar samples and separation among dissimilar ones to stabilize the model
before pseudo-labeling. 1 Specifically, we create a memory Q ∈ RNq×d to store Nq randomly sampled image
embedding and update it after each batch training. Then for each target sample xi, we find the z-nearest
neighbor N N (xi) and z-samples FN (xi) that are furthest to xi based on the Euclidean distance between the
image embedding of xi and embedding in Q (d = 256 and z = 3 in our implementation). Then we optimize
the following objective:

LP A = LSM + λLF AR =
NB∑
i=1

∑
x′

j
∈N N (xi)

KL(p(xi), p(x′
j)) + λ

NB∑
i=1

∑
x′

j
∈FN (xi)

p(xi)⊤p(x′
j), (1)

where p denotes the posterior class probability predicted by the source model after applying softmax to the
logits, and KL represents Kullback-Leibler divergence is computed between the softmaxed class probability
distributions of two target samples xi and x′

j as a measure of distributional similarity. NB is the number
of samples within a mini-batch. The first term is used to ensure similar samples have similar predictions.
However, using the first term alone may lead to a trivial solution that assigns identical prediction for every
instance. Thus we use the second term to counter-act it as it ensures that the least similar samples should
have divergent posterior probabilities, i.e., the inner product between posterior should close to zero.

3.2 Hypothesis Consolidation from Prediction Rationale

After pre-adaptation, the model generally exhibits improved adaptation to the target domain. However,
there may still be instances where the model produces incorrect predictions, making it challenging to rectify

1Other pre-adaptation approaches may also work, such as the method in Liang et al. (2020a), please refer to Sec. 4.6 for more
experimental evidence.
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misclassifications solely based on predicted posterior probabilities. Therefore, in the second step, we explore
a more robust methodology for analyzing predictions.

We begin by considering multiple prediction hypotheses for each individual instance. Specifically, for each
instance, we consider the top k̃ classes with the highest posterior probabilities as potential prediction
hypotheses, denoted as (xi, yh

ik), k ∈ top k̃. In other words, we acknowledge the correct class label could exist
within one of these top k̃ classes, even though we do not know which one.

To further analyze each hypothesis (xi, yh
ik), we calculate the GradCAM Selvaraju et al. (2017) to identify

the regions that contribute to supporting the prediction for yh
ik, resulting in a representation called the

rationale representation aik. This rationale representation encodes the evidence supporting the corresponding
hypothesis. Drawing inspiration from prior work Shu et al. (2022; 2023), we formally calculate aik using
following equation:

aik =
1

HW

H∑
m=1

W∑
n=1

([
∂logit(yh

ik)
∂[ϕ(xi)]m,n

⊤

[ϕ(xi)]m,n

]
+

· [ϕ(xi)]m,n

)
, (2)

where aik ∈ Rd′ , ϕ(xi) ∈ RH×W ×d′ is the feature map of the last convolutional layer of the network with
H height, W width, and d′ channels. [ϕ(xi)]m,n ∈ Rd′ is the feature vector located at the (m, n)-th grid.

logit(yh
ik) is the logit for class yh

ik, [·]+ = max(·, 0).
[

∂logit(yh
ik)

∂[ϕ(xi)]m,n

⊤
[ϕ(xi)]m,n

]
+

is equivalent to GradCAM

value at the (m, n)-th grid. Essentially, the calculation of aik performs weighted average pooling over ϕ(xi)
according to the GradCAM. Figure 1 shows the GradCAM calculated from different hypotheses for the same
image. Upon observation, we notice that even if the ground-truth class is not ranked as the top prediction by
the model, its associated rationale remains reasonable and similar to the common rationale patterns for the
corresponding class. This inspires us to leverage this observation to analyze the model’s current predictions.
For example, if an instance has a prediction hypothesis that exhibits a rationale similar to the corresponding
class’s common rationale but is not ranked as the top prediction, then the top prediction may not be correct.

Formally, we calculate the class-wise rationale centroid as the average rationale representation from each
hypothetical class, representing the common rationale for each class:

āc =
∑

ik 1(yh
ik = c)aik∑

ik 1(yh
ik = c)

, (3)

where c represents a class and 1(yh
ik = c) = 1 if k = c. The idea of using multiple hypotheses with the

rationale representation is illustrated in Figure 2.

Next, we generate a ranking index rik for each prediction hypothesis (xi, aik, yh
ik) by ranking the Euclidean

distance between aik and its corresponding rationale centroid āyh
ik

, i.e., the centroid for class yh
ik, in the

ascending order. For each instance xi, we obtain k̃ ranking indices rik, k ∈ top k̃ classes, one for each
hypothesis. Then, a hypothesis {xi, yik′} is considered reliable if it satisfies the following two conditions:
(1) rik′ < τ1, indicating the rationale for {xi, yik′} is typical as its rationale representation is close to the
rationale centroid. (2) rij > τ2 ∀j ̸= k′, where τ2 > τ1 are two predefined ranking thresholds. The second
condition ensures that there are no conflicting hypotheses, i.e., no other hypothesis is likely to be true for the
same instance as their rationale appears to be unusual.

With those criteria, we can collect a set of reliable hypotheses P as samples with their corresponding
hypothetical labels. Representative examples of this procedure are depicted in Figure 3. It is important to
note that in the second step, we aim to select the most reliable hypothesis rather than correcting hypotheses.
This is because we believe that the task of correcting predictions or hypotheses can be better accomplished
through the use of semi-supervised learning, which allows for the gradual propagation of pseudo-labels.

By focusing on identifying the most reliable hypothesis based on the proximity of the rationale representation
to the rationale centroid and the absence of conflicting rationales, we can create a high-quality set of
pseudo-labeled samples (see Section 4.5). These pseudo-labels can then be used in a semi-supervised learning
framework to refine the model’s predictions and gradually improve its performance.
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Figure 3: These examples demonstrate the generation of reliable hypotheses. In Case 1, the rank ID of the
second hypothesis derived from the image is lower than τ1, while all other hypotheses from the same image
have ranks larger than τ2. Consequently, the second hypothesis of I1 is selected as a reliable hypothesis.
In Case 2, no hypothesis is selected because it has two hypotheses with rank IDs less than τ2, indicating a
conflict between those hypotheses. Similarly, Case 3 is not selected because none of its hypotheses has rank
IDs lower than τ1.

3.3 Semi-Supervised Learning

After completing the second step of hypothesis consolidation, we obtain a reliable pseudo-label set P , while the
remaining samples are treated as the unlabeled set U . At this stage, we are ready to apply a semi-supervised
algorithm to perform the final step of adaptation. For this purpose, we utilize one of the state-of-the-art
semi-supervised methods, FixMatch Sohn et al. (2020), which combines consistency regularization and
pseudo-labeling to address this task.

Specifically, we start by sampling a labeled mini-batch Bl from the reliable pseudo-label set P and an unlabeled
batch Bu from the unlabeled set U . We then optimize the following objective function using these batches:

LF M =
∑

xb∈Bl

CE(ŷb, p(Aw(xb))) +
∑

xu∈Bu

1
(

max
xu

(
p(Aw(xu))

)
≥ τ

)
CE(ŷu, p(As(xu))), (4)

where ŷu = arg max
c

p(y = c|Aw(xu)). Aw(·) and As(·) are the weakly-augmented and strongly-augmented
operations, respectively. τ is the threshold defined in FixMatch to identify reliable pseudo-label (we set the
same with FixMatch as 0.95), and CE is the cross-entropy between two probability distributions.

We present the overall training process of our proposed SFUDA method in Algorithm 1.

4 Experiments

4.1 Datasets

Office-Home Venkateswara et al. (2017) consists of 15,500 images categorized into 65 classes. It includes
four distinct domains: Real-world (Rw), Clipart (Cl), Art (Ar), and Product (Pr). To evaluate the proposed
method, researchers perform 12 transfer tasks on this dataset, involving adapting models across the four
domains. The evaluation reports each domain shift Top-1 and the average Top-1 accuracy. Originally, the
DomainNet dataset Peng et al. (2019) consisted of over 500,000 images, including six domains and 345
classes. For our evaluation, we follow the approach described in Saito et al. (2019) and focus on four domains:
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Algorithm 1 SFUDA with Hypothesis Consolidation of Prediction Rationale
Require: Unlabeled target data Dt, pre-trained model, memory Q stores Nq randomly sampled image

embedding, two ranking thresholds τ1 and τ2; the number of steps of updating model pre-adaptation K1,
the number of steps of updating semi-supervised learning K2.
for K1 steps do

Sample a mini-batch of NB training data {xi}NB
i=1 from Dt, find z-nearest neighbor N N (xi) and z-furthest

neighbor FN (xi).
Update model by Eq. 1.
Update memory Q

end for
For each sample xi in Dt, calculate rationale representation of each class via Eq. 2.
Calculate class-wise rationale centroid for each class via Eq. 3.
Collect a set of reliable hypotheses with their corresponding hypothetical labels as a reliable pseudo-label
set P, and the remaining samples as the unlabeled set U .
for K2 steps do

Sample a labeled mini-batch Bl from P and an unlabeled batch Bu from U .
Update model by Eq. 4.

end for

Real World (Rw), Sketch (Sk), Clipart (Cl), and Painting (Pt). We assess our proposed method on seven
domain shifts within these four domains. VisDA-C Peng et al. (2017) contains 152,000 synthetic images
from the source domain and 55,000 real object images from the target domain. It consists of 12 object classes,
and there is a significant synthetic-to-real domain gap between the two domains. Our evaluation reports
per-class Top-1 accuracies, as well as the average Top-1 accuracy on this dataset.

4.2 Implementation Details

To ensure fair comparisons with previous work Liang et al. (2020a); Chen et al. (2022); Karim et al. (2023),
we employ the ResNet-50 He et al. (2016) as the network backbone for the Office-Home and DomainNet
datasets, and ResNet-101 for the VisDA-C dataset. The network architecture follows the same configuration
as SHOT Liang et al. (2020a). Specifically, we replace the original fully connected (FC) layer in ResNet-50/101
with a bottleneck layer of 256 dimensions and apply batch normalization Ioffe & Szegedy (2015). This modified
setup serves as the feature extractor+projector head, producing feature representations and embedding of
dimensions d′ = 2048 and d = 256, respectively. Additionally, we include an extra fully connected layer with
weight normalization Salimans & Kingma (2016) as a task-specific classifier.

In the first step of model pre-adaptation, we use a batch size of 64. The value of λ is set as λ = λ0 ·(1+10·p′)−5,
where λ0 = 1, and p′ represents the training progress variable ranging from 0 to 1, calculated as iter

max_iter . In
the second step of hypothesis consolidation, we set the number of nearest/furthest neighbor per instance z as
3, and set hypothesis per instance k̃ as 4, respectively. The ranking thresholds τ1 and τ2 are determined as a
percentage of the total number of samples on the three datasets, specifically set at 0.8% and 1.6%. In the
third step of semi-supervised learning, we set the size of Bl and Bu to 64.

We use the SGD optimizer with a momentum of 0.9 and a weight decay of 1e−3 for all datasets. The learning
rate is set as 1e−4 for all datasets, except for the bottleneck layer and the additional fully connected layer,
where it is set as 1e−3. We train for 40 epochs on the Office-Home and DomainNet datasets, where 9 epochs
are dedicated to the model pre-adaptation. For the VisDA-C dataset, we train for 15 epochs, with 7 epochs
allocated for the model pre-adaptation. All images from the datasets undergo augmentation, including weak
and strong augmentation. Weak augmentation involves a standard flip-and-shift augmentation strategy, while
strong augmentation is similar to the approach used in the work of Sohn et al. (2020).
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Table 1: Accuracy (%) on medium-sized Office-Home dataset (ResNet-50). “SF” denotes source-free. We
highlight the best results.

Method SF Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.
ResNet-50 He et al. (2016) × 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
GSDA Hu et al. (2020) × 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.0 80.0 72.2 60.6 83.1 70.3
RSDA Gu et al. (2020) × 53.3 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
SRDC Tang et al. (2020) × 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
FixBi Na et al. (2021) × 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
G-SFDA Yang et al. (2021b) ✓ 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
SHOT Liang et al. (2020a) ✓ 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6
SHOT++ Liang et al. (2021) ✓ 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0
NRC Yang et al. (2021a) ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
CoWA Lee et al. (2022) ✓ 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
HCL Huang et al. (2021) ✓ 64.0 78.6 82.4 64.5 73.1 80.1 64.8 59.8 75.3 78.1 69.3 81.5 72.6
AaD Yang et al. (2022) ✓ 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
DaC Zhang et al. (2022) ✓ 59.1 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8
VMP Jing et al. (2022) ✓ 57.9 77.6 82.5 68.6 79.4 80.6 68.4 55.6 83.1 75.2 59.6 84.7 72.8
SFDA-DE Ding et al. (2022) ✓ 59.7 79.5 82.4 69.7 78.6 79.2 66.1 57.2 82.6 73.9 60.8 85.2 72.9
C-SFDA Karim et al. (2023) ✓ 60.3 80.2 82.9 69.3 80.1 78.8 67.3 58.1 83.4 73.6 61.3 86.3 73.5
RECS Tian & Sun (2024) ✓ 57.4 79.6 81.9 69.9 81.2 80.0 69.4 58.1 82.8 73.4 60.9 85.2 73.3
Ours ✓ 59.9 79.6 82.7 70.3 81.8 80.4 68.5 57.8 83.5 72.5 59.8 86.0 73.6

Table 2: Effectiveness analysis on contrastive-based method and our methods. “BS” and “Mem” represent
the batch size and peak memory on a single GPU. The running time is measured on 1 Tesla A100 GPU with
40 epochs.

DomainNet (Rw→Cl) Batch Size Memory Time Accuracy
AdaConstrast Chen et al. (2022) 128 >32G - 70.2

C-SFDA Karim et al. (2023) 256 >64G - 70.8
GPL Litrico et al. (2023) 256 >64G 3h 74.2

Ours 128 17G 2h 76.9

Table 3: Accuracy (%) on large-scale DomainNet dataset (ResNet-50). “SF” denotes source-free. We
highlight the best results.

Method SF Rw→Cl Rw→Pt Pt→Cl Cl→Sk Sk→Pt Rw→Sk Pt→Rw Avg.
ResNet-50 He et al. (2016) × 58.8 62.2 57.7 50.3 52.6 47.3 73.2 57.4
MCC Jin et al. (2020) × 44.8 65.7 41.9 34.9 47.3 35.3 72.4 48.9
CDAN Long et al. (2018) × 65.0 64.9 63.7 53.1 63.4 54.5 73.2 62.5
GVB Cui et al. (2020) × 68.2 69.0 63.2 56.6 63.1 62.2 78.3 65.2
MME Saito et al. (2019) × 70.0 67.7 69.0 56.3 64.8 61.0 76.0 66.4
TENT Wang et al. (2020) ✓ 58.5 65.7 57.9 48.5 52.4 54.0 67.0 57.7
G-SFDA Yang et al. (2021b) ✓ 63.4 67.5 62.5 55.3 60.8 58.3 75.2 63.3
NRC Yang et al. (2021a) ✓ 67.5 68.0 67.8 57.6 59.3 58.7 74.3 64.7
SHOT Liang et al. (2020a) ✓ 67.7 68.4 66.9 60.1 66.1 59.9 80.8 67.1
AdaConstrast Chen et al. (2022) ✓ 70.6 69.8 69.3 58.5 66.2 60.2 80.2 67.8
AaD Yang et al. (2022) ✓ 70.2 69.8 68.6 58.0 65.9 61.5 80.5 67.8
DaC Zhang et al. (2022)* ✓ 70.0 68.8 70.9 62.4 66.8 60.3 78.6 68.3
C-SFDAKarim et al. (2023) ✓ 70.8 71.1 68.5 62.1 67.4 62.7 80.4 69.0
GPL Litrico et al. (2023) ✓ 74.2 70.4 68.8 64.0 67.5 65.7 76.5 69.6
Ours ✓ 76.9 71.8 75.4 65.5 69.9 64.6 83.2 72.5
* This work uses ResNet-34 as backbone.
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Table 4: Accuracy (%) on large-scale VisDA-C dataset (ResNet-101). “SF” denotes source-free. We highlight
the best results.

Method SF plane bcyle bus car horse knife mcyle person plant sktbrd train truck Avg.
ResNet-101 He et al. (2016) × 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
MCC Jin et al. (2020) × 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
STAR Lu et al. (2020) × 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
RWOT Xu et al. (2020) × 95.1 87.4 85.2 58.6 96.2 95.7 90.6 80.0 94.8 90.8 88.4 47.9 84.3
CAN Kang et al. (2019) × 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
SHOT Liang et al. (2020a) ✓ 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 90.5 89.1 86.3 58.2 82.9
DIPE Wang et al. (2022) ✓ 95.2 87.6 78.8 55.9 93.9 95.0 84.1 81.7 92.1 88.9 85.4 58.0 83.1
HCL Huang et al. (2021) ✓ 93.3 85.4 80.7 68.5 91.0 88.1 86.0 78.6 86.6 88.8 80.0 74.7 83.5
A2Net Xia et al. (2021) ✓ 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
G-SFDA Yang et al. (2021b) ✓ 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
NRC Yang et al. (2021a) ✓ 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
SFDA-DE Ding et al. (2022) ✓ 95.3 91.2 77.5 72.1 95.7 97.8 85.5 86.1 95.5 93.0 86.3 61.6 86.5
AdaContrast Chen et al. (2022) ✓ 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8
CoWA Lee et al. (2022) ✓ 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
DaC Zhang et al. (2022) ✓ 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3
BDT Kundu et al. (2022) ✓ - - - - - - - - - - - - 87.8
C-SFDA Karim et al. (2023) ✓ 97.6 88.8 86.1 72.2 97.2 94.4 92.1 84.7 93.0 90.7 93.1 63.5 87.8
RECS Tian & Sun (2024) ✓ 95.3 90.0 85.8 72.7 96.9 97.7 91.5 88.0 95.3 93.6 90.0 56.5 87.8
Ours ✓ 98.0 88.0 86.4 82.3 97.8 96.2 92.1 85.0 95.5 91.7 93.8 56.2 88.6

4.3 Comparison with State-of-the-arts

4.3.1 Quantitative Results

We compare our proposed method against popular source-present and source-free methods on three benchmark
datasets: Office-Home, DomainNet, and VisDA-C. We report the Top-1 accuracy, and the results are presented
in Table 1 to Table 4. In the Office-Home dataset, as shown in Table 1, our proposed method achieves the
best performance in terms of Top-1 average accuracy, which is comparable to the most recent source-free
method C-SFDA. Additionally, our method in 3 sub-transfer tasks achieves the highest accuracy (see bold
in Table 1) vs. only one sub-transfer task in C-SFDA. For the DomainNet dataset, as demonstrated in
Table 3, our proposed method exhibits significant improvements over all baselines. With an average Top-1
accuracy of 72.5%, our method outperforms the best source-free baseline by nearly 3% and surpasses the best
source-present baseline by 6.1%. Moreover, our method achieves the best performance in almost all domain
shifts. On the VisDA-C dataset, presented in Table 4, our proposed method outperforms the state-of-the-art
method C-SFDA Karim et al. (2023) by 0.8%. Furthermore, our method achieves the best performance in
specific classes such as “plane”, “bus”, “car”, and “horse”. These results clearly demonstrate the superiority
of our proposed method across the evaluated datasets, showcasing its effectiveness in source-free domain
adaptation scenarios.

4.3.2 Effectiveness Analysis

We conducted an analysis and comparison of the memory usage and running time of our method with recent
works, including AdaContrast Chen et al. (2022), C-SFDA Karim et al. (2023), and GPL Litrico et al. (2023).
Interestingly, our method requires normal memory usage, whereas the other methods consume more than
32GB of memory. Despite using standard memory, our approach achieves higher accuracy in comparison.
Additionally, the running time of our method is considerably less than that of GPL.

4.4 Ablation Studies

4.4.1 Component-wise Analysis

In this section, we conduct ablation studies to analyze the contribution of each component in our method
on three benchmark datasets: Office-Home, DomainNet, and VisDA-C. The results are summarized in
Table 5, in which the HCPR (Hypothesis Consolidation from Prediction Rationale) component makes the
most contributions to the promotion of accuracy. Specifically, compared to only using FixMatch, combining
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Table 5: Ablation study of the proposed components calculated by average accuracy (%) on the Office-Home
(O-H), DomainNet (DN) and VisDA-C datasets. PA stands for model pre-adaptation (Sec. 3.1), HCPR
(Sec. 3.2) stands for hypothesis consolidation from prediction rationale, FM stands for FixMatch (Sec. 3.3 ).

# PA HCPR FM O-H DN VisDA-C
0 × × × 60.2 55.6 46.6
1 × × ✓ 64.2 60.6 62.3
2 × ✓ ✓ 68.6 70.6 85.2
3 ✓ × × 72.1 67.4 86.2
4 ✓ ✓ × 72.7 69.6 87.5
5 ✓ × ✓ 72.2 67.5 86.2
6 ✓ ✓ ✓ 73.6 72.5 88.6

both FixMatch and HCPR significantly improves accuracy by 4.4%, 10.0%, and 22.9% on the respective
datasets. Additionally, in the case of combining both PA (Pre-Adaptation) and HCPR, we execute PA
again following HCPR to integrate the consolidation outcomes from HCPR. This showcases a substantial
enhancement in accuracy, with improvements of 0.6%, 2.2%, and 1.3% on the respective datasets compared
to solely employing PA. Last but not least, Removing HCPR from the method leads to a performance drop
of 1.4%, 5%, and 2% points on Office-Home, DomainNet, and VisDA-C, respectively.

4.4.2 Impact of Model Pre-adaptation

Table 6: Comparison of step 1 w/o FAR, w/o step 1, SHOT as step 1, and Ours on the per-class accuracy
and average top-1 accuracy on the VisDA-C dataset.

Method plane bcyle bus car horse knife mcyle person plant sktbrd train truck Avg.
step 1 w/o FAR 92.2 78.5 78.3 75.1 90.4 91.3 85.4 78.5 84.8 88.7 86.8 0.0 77.5
w/o step 1 97.8 83.3 80.8 77.4 95.8 98.1 91.2 82.3 94.8 82.8 92.2 46.5 85.2
SHOT as step 1 97.5 84.6 83.0 74.2 96.5 93.7 92.8 86.7 93.5 92.6 89.7 56.9 86.8
Ours 98.0 88.0 86.4 82.3 97.8 96.2 92.1 85.0 95.5 91.7 93.8 56.2 88.6

To assess the impact of model pre-adaptation, we perform experiments using four different settings on the
VisDA-C dataset: model pre-adaptation removing the second term LF AR in Eq. 1 referring to “step 1 w/o
FAR”; the proposed method without model pre-adaptation referring to “w/o step 1”; Using SHOT’s loss
as model pre-adaptation to replace Eq. 1, referring to “SHOT as step 1”; and the proposed method with
model pre-adaptation using Eq. 1 referring to “Ours”. The experimental results are shown in Table 6. As we
can see, we have the following observations: First, compared to “SHOT as step 1”, the proposed method
encouraging smooth prediction has a better average accuracy (86.8% vs. 88.6%), which demonstrates the
superiority of making a smooth prediction on the data manifold compared to one-hot prediction in Liang
et al. (2020a). Second, when removing step 1, referring to “w/o step 1,” the average accuracy dropped by
3.4%. This indicates that Eq. 1 is helpful for model pre-adaptation and improves the ability of the model to
distinguish image classes in the target domain. Third, when removing LF AR in step 1 referring to “step 1
w/o FAR”, the average performance drop dramatically from 88.6% to 77.5%. This demonstrates that the
LF AR plays a vital role in keeping class balance and avoiding some missed classes.

4.4.3 Impact of k̃ —the Number of Prediction Hypotheses Per Instance

In our method, we choose labels from the top k̃ highest posterior probabilities as the prediction hypothesis.
In this section, we investigate the impact of the value of k̃. Table 7 shows the accuracy achieved with different
k̃. From the result, we can see that using 2 hypotheses has already led to good performance and choosing 3-6
hypotheses leads to optimal performance.
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Table 7: DomainNet (Pt→Cl) Top-1 accuracy (%) of the proposed method with the different number of the
prediction hypotheses k̃. We find k̃ = 4 yields the optimal results.

k̃ 2 3 4 5 6
Accuracy 73.7 74.2 75.4 75.3 74.8

Figure 4: Accuracy of different z in our method on the DomainNet (Pt→Cl) dataset. When step 1 (0-9
epochs) achieves and maintains the best results, HCPR plays a pivotal role in enhancing the performance of
the model.

4.4.4 Impact of the z —the Number of Nearest and Furthest Neighbor

Table 8: DomainNet (Pt→Cl) accuracy (%) of the proposed method with different number of the z.

z 1 2 3 4 5
Accuracy 73.2 74.7 75.4 74.7 74.3

In the initial step of our model pre-adaptation, we select the z-nearest and z-furthest neighbors for each
target sample. In this analysis, we examine the influence of the z value. Figure 4 and Table 8 showcase the
performance throughout the training process and top-1 accuracy of classification on the DomainNet (Pt→Cl)
dataset for different values of z. The results indicate that even with just one nearest and furthest neighbor,
we achieve favorable classification accuracy, and selecting 2-5 nearest and furthest neighbors yields optimal
performance. Moreover, as observed in Figure 4, it is worth noting that when step 1 (0-9 epochs) achieves
and maintains the best results, HCPR plays a pivotal role in enhancing the performance of the model.

4.4.5 Impact of the Two Ranking Thresholds τ1 and τ2

To assess the influence of ranking thresholds in our method, we examined the percentage values τ1 and τ2
relative to the total number of samples. Specifically, we analyzed their impact on the Top-1 average accuracy
on the VisDA-C dataset, as illustrated in Figure 5. Our analysis, depicted in Figure 5, revealed that the
proposed method exhibits robustness to the specific values of τ1 and τ2.

4.4.6 The Benefit of Using Rationale Representations

To further understand the benefit of using the rationale representation from multiple hypotheses, we explore
an alternative method that replaces the proposed second step by using feature centroids rather than rationale
centroids. Since the feature is invariant to the prediction hypothesis, only the top predicted class will be
considered. More specially, we first generate pseudo-label for each instance and calculate the feature centroid
similar to our approach. Then we rank instances based on the Euclidean distances between their features and
the corresponding class centroid. The top τ1 features closest to the class centroid are assigned reliable pseudo
labels, while the remaining samples are left for step 3. We refer to this method as “near-centroid selection".
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Figure 5: VisDA-C average accuracy (%) of the proposed method using different τ1 and τ2.

Table 9: Average accuracy (%) of our HCPR vs. near centroid collection on the Office-Home and
DomainNet datasets.

Method Office-Home DomainNet
near-centroid selection 72.6 69.6

Ours 73.6 72.5

Figure 6: Office-Home accuracy of Ours and Ours w/ updating step 2 across varying epochs.
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Figure 7: Accuracy of different components in our method with Recursive HCPR on the Office-Home (Cl→Pr)
dataset.

Table 9 presents the comparison results on the Office-Home and DomainNet datasets. As seen, while such an
approach still leads to improvement over using step 1 and step 3 alone (by cross-referencing Table 5), it is
still inferior to the use of HCPR. This clearly demonstrates the benefits of the latter.

4.4.7 Investigation of Recursively Applying HCPR

One may wonder if recursively applying HCPR will lead to additional improvement. To this end, we create a
variant of our method by alternatively applying step 2 and step 3, hoping that they may mutually enhance
each other. We conducted experiments on the Office-Home (Cl→Pr) dataset. The results are depicted in
Figure 6, where the red curve represents our method using the second step only once, i.e., the hypothesis
consolidation occurs between model pre-adaptation (0-9 epochs) and semi-supervised learning (10-40 epochs).
The blue curve represents our method with the second step updated at the 15th, 20th, and 25th epochs.
From the results, we observed that recursively applying HCPR does not lead to an improvement as one may
expect.

We also conduct experiments with HCPR applied recursively to only model pre-adaptation or FixMatch.
Specifically, we conduct experiments using the Office-Home (Cl→Pr) dataset and configure the following
scenarios:

• Combining Step 1 and Step 2, with Step 2 calculated at the 9th, 15th, and 20th epochs (indicated by
the green curve in Figure 7).

• Combining Step 3 and Step 2, with Step 2 calculated at the 7th, 15th, and 20th epochs (indicated by
the yellow curve in Figure 7).

• Combining Step 2 and Step 3, with Step 2 calculated at the 0th, 15th, and 20th epochs (indicated by
the purple curve in Figure 7).

• Our method, is represented by the red curve.

Our observations indicate that utilizing Step 2 only once is sufficient, and the recursive HCPR application
does not yield improvements. However, we do note that HCPR plays a crucial role in enhancing FixMatch,
particularly in improving the quality of pseudo-labels.

4.5 Pseudo-label Quantity and Quality

In this section, we assess both the quality and quantity of pseudo-labels generated by each component of our
method, comparing them with the source model alone and SHOT. Pseudo-label quantity is measured by the
ratio of selected samples to the total samples, while pseudo-label quality is defined as the precision of the
selected samples. The results are shown in Table 10. As seen, using the original source model generates good
pseudo-label quality within the selected group, but only a small number of samples satisfy the high confidence
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Table 10: Comparison of pseudo-label quantity and quality on DomainNet (Rw→Cl). Quantity (%) refers
to the proportion of selected samples to total samples. Quality (%) refers to the precision (%) of the chosen
sample. “con” represents confidence.

DomainNet (Rw->Cl) Quantity (%) Quality (%)
source model only (con>0.95) 3.95 95.80

SHOT (con>0.95) 61.83 80.38
PA only (con>0.95) 79.13 80.76

HCPR only 21.35 84.02
PA+HCPR 24.65 90.76

(a) Pseudo-label quantity and quality w.r.t. different
epochs.

(b) Classification accuracy w.r.t. different epochs.

Figure 8: Pseudo-label quantity, quality and classification accuracy of our method over training on DomainNet
(Rw→Cl).

condition. On the other hand, SHOT and PA select a large number of samples but with a relatively poor
quality of approximately 80%. In comparison, PA+HCPR achieves both good pseudo-label quality (90.76%),
and a substantial quantity of pseudo-labels (24.65%). When comparing HCPR only and PA only, we observed
that PA generates nearly four times as many pseudo-labels as HCPR but with lower quality. This suggests
the presence of significant noise in the pseudo-labels generated by PA.

The training progress to both the quantity and quality of pseudo-labels can be shown in Figure 8. Our
findings revealed that in the initial step with PA (0-9th epochs), there is a significant increase in the quantity
of pseudo labels, albeit accompanied by a gradual decrease in their quality. However, with the assistance of
HCPR (after 9th epch, before 10th epoch), the quality of pseudo-labels experiences a significant increase,
accompanied by a substantial quantity. In the subsequent third step involving FM (10-40th epochs), the
quality of pseudo labels has a gradual improvement, which subsequently stabilizes at a consistent level.

4.6 Incorporating the Proposed Method into Existing Approaches

4.6.1 Prediction-level alignment

The proposed method can be seamlessly integrated into existing network architectures, such as SHOT Liang
et al. (2020a) and AaD Yang et al. (2022). Specifically, we replace the pre-adaptation phase in our first step
with SHOT and AaD, resulting in the combined approach referred to as “SHOT+Ours" and “AaD+Ours".
The integration process can be summarized as follows: first, pseudo labels are generated using SHOT’s
unsupervised nearest class centroid approach and AaD’s feature clustering and cluster assignment approach.
Then, to refine these pseudo labels and address potential noise and inaccuracies, we utilize hypothesis
consolidation of prediction rationale. The refined pseudo-label set is used as the labeled dataset, while
the remaining samples are treated as unlabeled. Consequently, the SFUDA problem is transformed into a
semi-supervised learning problem. The experimental results, as shown in Table 11, demonstrate the superiority
of the proposed method integrated into the SHOT and AaD objectives. Across the Office-Home (Avg. ↑ 1.6%
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Table 11: Accuracy (%) of our method combined with existing SHOT and AaD methods on the Office-Home,
VisDA-C and DomainNet datasets.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.
SHOT Liang et al. (2020a) 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6
SHOT+Ours 58.7 79.5 82.1 69.6 80.7 80.0 69.1 56.9 82.3 74.5 59.2 85.3 73.2
AaD Yang et al. (2022) 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
AaD+Ours 59.8 79.4 82.7 70.0 81.6 80.0 68.5 57.6 83.2 72.7 59.4 86.1 73.4

Method plane bcyle bus car horse knife mcyle person plant sktbrd train truck Avg.
SHOT Liang et al. (2020a) 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 90.5 89.1 86.3 58.2 82.9
SHOT+Ours 97.5 84.6 83.0 74.2 96.5 93.7 92.8 86.7 93.5 92.6 89.7 56.9 86.8
AaD Yang et al. (2022) 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.0 88.0
AaD+Ours 97.8 87.6 86.7 83.4 97.7 95.4 94.2 83.8 94.6 91.2 92.8 55.6 88.4

Method Rw→Cl Rw→Pt Pt→Cl Cl→Sk Sk→Pt Rw→Sk Pt→Rw Avg.
SHOT Liang et al. (2020a) 67.7 68.4 66.9 60.1 66.1 59.9 80.8 67.1
SHOT+Ours 70.5 70.6 72.5 63.6 68.0 61.1 82.8 69.9
AaD Yang et al. (2022) 70.6 69.8 69.3 58.5 66.2 60.2 80.2 67.8
AaD+Ours 75.4 71.3 75.2 64.2 68.4 63.3 82.8 71.5

and ↑ 0.7%), VisDA-C (Avg. ↑ 3.9% and ↑ 0.4%), and DomainNet-126 (Avg. ↑ 2.8% and ↑ 3.7%) datasets,
the integrated approach consistently outperforms the baseline of SHOT and AaD. This indicates that our
method complements existing SFUDA baselines and consistently improves their performance by incorporating
our approach as a replacement for the model pre-adaptation phase.

Our proposed model pre-adaptation strategy is specifically designed to encourage smooth predictions by
aligning similar samples and separating dissimilar ones, which differs from prior methods, such as SHOT,
that rely on one-hot predictions or clustering-based objectives. This smoothness constraint helps the model
adapt more gradually to the target domain distribution and mitigates overconfident early pseudo-labels.

4.6.2 Embedding-level alignment

Table 12: Accuracy (%) on the VisDA-C dataset comparing our method with Local Aggregation (LA) Zhuang
et al. (2019) used as the pre-adaptation step.

Method plane bcyle bus car horse knife mcyle person plant sktbrd train truck Avg.
Local Aggregation Zhuang et al. (2019) as step 1 97.5 90.1 84.5 77.4 97.6 94.1 93.1 84.0 95.4 92.9 93.4 55.6 88.0
Ours 98.0 88.0 86.4 82.3 97.8 96.2 92.1 85.0 95.5 91.7 93.8 56.2 88.6

This section further investigates the relationship to embedding-level alignment methods, particularly the
Local Aggregation (LA) loss Zhuang et al. (2019). LA focuses on optimizing the embedding space, whereas
our method guides the model’s prediction behavior. This distinction is particularly relevant for source-free
domain adaptation, where prediction stability directly influences pseudo-label quality. To empirically validate
this connection, we replaced our pre-adaptation objective with LA and evaluated the performance on the
VisDA-C dataset. As shown in Table 12, the LA-based pre-adaptation achieves an average accuracy of
88.0%, which is competitive but still slightly lower than our full method’s 88.6%. Moreover, our approach
outperforms LA on most individual classes.

4.7 Visualization

In t-SNE visualization, we compare the results with the state before adaptation by examining three approaches:
source model only, AaD Yang et al. (2022), and our method shown in Figure 9. The source model only
demonstrates shortcomings, experiencing false predictions within each class and struggling to establish clear
intra-class boundaries. While AaD generally achieves accurate predictions within each class, it falls short
in generating clear intra-class boundaries. In contrast, our method excels in achieving accurate predictions
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(a) Source model only (b) AaD (c) Ours

Figure 9: t-SNE Visualization after 40 training epochs on target features for a randomly selected subset of 6
DomainNet (Rw→Cl) Classes. Comparison of results with two baselines: Source Model Only and AaD Yang
et al. (2022). Each color in the graphs represents a class of samples. It is evident from the visualizations that
the proposed method surpasses both "Source model only" and "AaD" in terms of qualitative performance.
This superiority is demonstrated through the generation of intrinsic local consistency and clear intra-class
boundaries.

within each class and successfully generates distinct intra-class boundaries, which showcases its ability to
enhance prediction accuracy and produce well-defined intra-class boundaries.

5 Limitation and Future Work

The current approach relies on having access to the entire target training set to perform crucial steps like
pre-adaptation and identifying the reliable pseudo-labeled set. However, in real-world applications, online
adaptation is often more desirable as it doesn’t require holding a large number of target examples. As part of
our future work, we aim to extend the key idea of this research to the online streaming setting. By doing so,
we can develop a methodology that adapts in real-time to incoming data, allowing for more efficient and
effective adaptation in dynamic environments. This extension will enhance the applicability and practicality
of the proposed approach in various domains.

Additionally, our method involves several hyperparameters (e.g., the number of neighbors, hypotheses per
instance, ranking thresholds, etc.), which may raise concerns about robustness in the absence of labeled target
data. While we follow the standard practice in the SFUDA community by selecting hyperparameters using
unlabeled input data, we acknowledge that this practice is not ideal in practical deployment scenarios where
labeled target data is unavailable.

To address this limitation, we now include a discussion of alternative unsupervised hyperparameter selection
techniques. Motivated by recent progress in unsupervised model selection, we additionally explored the
applicability of Transfer Score Yang et al. (2023) to tune the critical hyperparameter k̃ on the DomainNet
(Pt→Cl). Specifically, we evaluated multiple candidate values of k̃ using the Transfer Score computed
from unlabeled target data. The results revealed that k̃=4 yielded the highest Transfer Score (1.64) and
corresponded to the best performance on the target test set. In contrast, suboptimal values of k̃ led to both
lower transfer scores and degraded model accuracy. This suggests that Transfer Score may offer a promising
direction for unsupervised hyperparameter selection in our setting, warranting further exploration in future
work.

6 Conclusion

In conclusion, this paper introduces a novel approach for Source-Free Unsupervised Domain Adaptation
(SFUDA), where a model needs to adapt to a new domain without access to target domain labels or source
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domain data. By considering multiple prediction hypotheses and analyzing their rationales, the proposed
method identifies the most likely correct hypotheses, which are then used as pseudo-labeled data for a
semi-supervised learning procedure. The three-step adaptation process, including model pre-adaptation,
hypothesis consolidation, and semi-supervised learning, ensures optimal performance. Experimental results
demonstrate that the proposed approach achieves state-of-the-art performance in the SFUDA task and can
be seamlessly integrated into existing methods to enhance their performance.
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