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Abstract

While automatic dialogue tutors hold great po-
tential in making education personalized and
more accessible, research on such systems
has been hampered by a lack of sufficiently
large and high-quality datasets. Collecting
such datasets remains challenging, as recording
tutoring sessions raises privacy concerns and
crowdsourcing leads to insufficient data qual-
ity. To address this, we propose a framework
to generate such dialogues by pairing human
teachers with a Large Language Model (LLM)
prompted to represent common student errors.
We describe how we use this framework to col-
lect MATHDIAL , a dataset of 3k one-to-one
teacher-student tutoring dialogues grounded in
multi-step math reasoning problems. While
models like GPT-3 are good problem solvers,
they fail at tutoring because they generate factu-
ally incorrect feedback or are prone to revealing
solutions to students too early. To overcome
this, we let teachers provide learning opportuni-
ties to students by guiding them using various
scaffolding questions according to a taxonomy
of teacher moves. We demonstrate MATH-
DIAL and its extensive annotations can be used
to finetune models to be more effective tutors
(and not just solvers). We confirm this by au-
tomatic and human evaluation, notably in an
interactive setting that measures the trade-off
between student solving success and telling so-
lutions. The dataset is released publicly.

https://github.com/eth-nlped/mathdial

1 Introduction

Dialogue tutoring systems have demonstrated sig-
nificant potential in augmenting learning outcomes
across various domains (Wollny et al., 2021; Ji

*Equal contribution.

Problem Statement: 
James writes a 3-page letter to 2 different friends twice a week. How many pages 
does he write a year?

Correct Answer:
He writes each friend 3*2=6 pages a week. So he writes 6*2=12 pages every week. 
That means he writes 12*52=624 pages a year. 

Student Solution / Confusion: 
Calculate the number of letters written in a week: 3 pages x 2 letters = 6 pages per 
week. Calculate the number of letters written in a year: 6 pages per week x 52 weeks 
= 312 pages per year. 

Teacher: Hi Winnie, could you please walk me through your solution?
Student: Sure! I first calculated the number of letters written in a week, which is 3 
pages x 2 letters = 6 pages per week. Then I multiplied that number by 52 weeks to 
get the number of pages written in a year, which is 312 pages per year.

Teacher: That sounds correct. Great work!

Teacher: You calculated the number of pages written per week correctly. However, 
James writes two letters per week. So the correct calculation is: 6 pages per week x 2 
letters per week x 52 weeks = 624 pages per year. Does that make sense?

Instruct-GPT

ChatGPT

Teacher: There is one important keyword there: twice. What does it refer to?

Factually incorrect

Leaking solution

G
rounding

Figure 1: Current models achieve high accuracy in solv-
ing MWPs but struggle with teaching since they often
give incorrect feedback or reveal directly the solution
too early. MATHDIAL mitigates this using scaffold-
ing questions and grounding annotations.

et al., 2023). However, the progress of scaling
them is considerably hindered by a lack of high-
quality datasets, which actually provide students
with space for exploration by scaffolding their
learning (Tack and Piech, 2022; Macina et al.,
2023). The current datasets are frequently marred
with issues like low pedagogical quality, are too
small, or focus on noisy classroom settings. While
recording tutoring sessions might be a scalable al-
ternative, it bears strong privacy concerns (Dem-
szky and Hill, 2023). On the other hand, crowd-
sourcing dialogues is costly, requires synchronizing
annotators, and can lead to insufficient quality due
to poor annotator training (Stasaski et al., 2020).

At the same time, recent advancements in Large
Language Models (LLMs) have enabled signifi-
cant improvements in generative dialogue systems
(Budzianowski and Vulić, 2019; Thoppilan et al.,
2022; Xu et al., 2023) and simultaneously shown

https://github.com/eth-nlped/mathdial


Dataset Domain Dialogues Dialogic Settings Grounding Teacher Bigram Uptake Avg. words
Pairs Information Moves Entropy per utterance

MATHDIAL (ours) Math 2 861 14 197 1:1 semi-synthetic confusion, answers 4 3.54 0.83 17.3
CIMA (Stasaski et al., 2020) Language 391 3 315 1:1 role-playing image, answer 5 3.12 0.83 13.0
TSCC (Caines et al., 2020) Language 102 2 013 1:1 tutoring ✗ 5 3.55 0.66 12.3
TalkMoves (Suresh et al., 2022) Science 567 9 280 classroom ✗ 10 2.93 0.67 9.6
NCTE (Demszky and Hill, 2023) Math 1 660 2 348 classroom ✗ ✗ 3.57 0.76 29.2

Table 1: Comparison of dialogue tutoring datasets. MATHDIAL has grounding annotations, and is significantly
larger while keeping high diversity and utterance lengths.

great success in reasoning over educational do-
mains, such as math problems (Cobbe et al., 2021;
Wei et al., 2022; Wang et al., 2023b; OpenAI, 2023).
However, this has not yet translated to improve-
ments in dialogue tutoring systems, as showcased
by the lack of pedagogical understanding and factu-
ally incorrect behaviour of GPT-3 (Tack and Piech,
2022) and open-source LLMs (Macina et al., 2023).
Figure 1 shows examples of generations that reveal
information to students too early and misunder-
stand their solutions. This is also confirmed in our
human evaluation: when asked ChatGPT to tutor a
student as a teacher, it directly reveals the solution
66% of times and provides incorrect feedback
59% of times (cf. Section 6.3).

To address these issues, we collect and present
a dialogue tutoring dataset called MATHDIAL .
The dataset has rich tutoring quality which we mea-
sure by equitable tutoring (Tanner, 2013): provid-
ing opportunities for the student to learn, think and
explore potential solutions. For this, we take inspi-
ration from human tutoring strategies (Nye et al.,
2014) and active learning approaches in classrooms
(Freeman et al., 2014) that show a positive impact
on student learning gains.

We collect our dataset using a novel data collec-
tion approach. This approach pairs human teach-
ers with an LLM that simulates students and their
errors, which the same teachers rate as represen-
tative of real students in our study. MATH-
DIAL is grounded in math word problems and stu-
dent confusions and therefore provides a challeng-
ing testbed for creating faithful and equitable dia-
logue tutoring models that can reason over complex
data. Figure 1 shows one dialogue from MATH-
DIAL , where a teacher scaffolds student learning
by asking an interactive scaffolding question in-
stead of leaking the solution.

We benchmark various models on the task of gen-
erating tutor responses for MATHDIAL , using
both finetuning and prompting. We find that fine-
tuning smaller open-source LLMs on our dataset
can make them significantly more equitable and

faithful to the teaching material than prompting
larger LLMs (Section 6.3). Moreover, we propose
an interactive, end-to-end tutoring simulation be-
tween a teacher and student model where we mea-
sure a trade-off between student solving success
and teachers directly revealing answers in (Sec-
tion 6.4). Open-source LLMs that are finetuned
on our dataset achieve similar student-solving
success as ChatGPT while telling solutions less
often. Finally, we highlight open challenges on this
dataset, such as generalization to new problems.

2 Background & Related Work

2.1 Dialogue Datasets & Collection
Methodologies

Research on task-oriented dialogue systems has
mainly focused on customer service, for instance,
restaurant reservations (Henderson et al., 2014;
Gašic et al., 2014). Notably, Wen et al. (2017) col-
lect such dialogues with the Wizard-of-Oz (WoZ)
paradigm (Kelley, 1984), where crowdworkers are
connected to roleplay interlocutors. One plays the
user who interacts with the system, and the other
roleplays the system and is often exclusively given
access to domain knowledge. WoZ has been used
to collect many popular datasets, such as Multi-
WoZ (Budzianowski et al., 2018) and extensions
(Kim et al., 2020; Zhu et al., 2020), Taskmaster
(Byrne et al., 2019), and open-domain datasets like
Wizard-of-Wikipedia (Dinan et al., 2019). Other
collection methods include crowdworkers filling
dialogue outlines (Shah et al., 2018; Rastogi et al.,
2020; Majewska et al., 2023), or scraping from the
web (Li et al., 2017; Dziri et al., 2019).

Multiple works have shown shortcomings in
using non-expert crowdworkers. For instance,
document-grounded corpora often contain hallu-
cinations in ground-truth data (Dziri et al., 2022),
and task-oriented corpora tend to suffer from anno-
tation errors and low lexical diversity (Casanueva
et al., 2022). More closely related to this work, cur-
rent tutoring corpora lack sufficient tutoring quality



Figure 2: Overview of the data collection pipeline: First, student confusions are oversampled from an LLM and
sorted by frequency. Then, a human teacher synchronously interacts with a student simulated by an LLM that is
instructed with a student profile and incorrect solution.

(Tack and Piech, 2022; Macina et al., 2023).
MATHDIAL mitigates these issues by adapt-

ing the WoZ paradigm to using human teachers as
experts in collaboration with an LLM.

2.2 Dialogue Tutoring Corpora & Teacher
Moves

Theoretical and empirical studies have shown
the importance of questioning in human learning
(Roscoe and Chi, 2008; Shahriar and Matsuda,
2021; Shridhar et al., 2022). Therefore, prior re-
search has explored which types of questions in tu-
toring conversations improve student learning. Nye
et al. (2014), for instance, show the effectiveness of
deep reasoning questions, and (Howe et al., 2019)
find that elaboration and challenging of previous
contributions can benefit student learning. This
has led to a series of human-authored dialogue tu-
toring systems, like AutoTutor (Nye et al., 2014),
which guide students in problem-solving using nat-
ural language explanations. Assisting students to
succeed in complex tasks commonly referred to as
scaffolding (Reiser, 2004; Anghileri, 2006). More
recently, several rule-based dialogue systems with
predefined goals have been proposed (Ruan et al.,
2019; Winkler et al., 2020; Cai et al., 2021), but
scaling them requires extensive human authoring
and quickly becomes complex. As a consequence,
building effective automatic tutors at scale remains
an open problem.

While data-driven approaches seem like a
promising direction (Macina et al., 2023; Wang
et al., 2023a), only a limited number of tutoring

corpora are publicly available to our knowledge:
CIMA (Stasaski et al., 2020), TSCC (Caines et al.,
2020), TalkMoves (Suresh et al., 2022), and NCTE
(Demszky and Hill, 2023). All of them suffer from
several limitations, such as missing grounding in-
formation (TSCC, TalkMoves, NCTE), low tutor-
ing quality (CIMA), small dataset sizes (all), or a
focus on noisy classroom scenarios (see Table 1).

2.3 Synthetic Dialogue Data Creation
LLMs have recently found their way as synthetic di-
alogue dataset generators due to their increasingly
human-like behaviour. Both methods using fine-
tuning (Dai et al., 2022) and prompting (Kim et al.,
2022; Chen et al., 2023) haven been proposed. The
human-like behaviour also manifests in them show-
ing similar biases in logical reasoning as humans
(Dasgupta et al., 2022; Binz and Schulz, 2023), and
can be comparable to gold-human annotations for
generation tasks (Ziems et al., 2023). Consequently,
they have been used to simulate students for teacher
training (Markel et al., 2023), suggesting that one
might also rely upon them to create meaningful
tutors. However, Tack and Piech (2022); Macina
et al. (2023) show that they can not yet perform
well as teachers out-of-the-box, because they of-
ten incorrectly assess student solutions and reveal
answers too quickly.

3 MATHDIAL Collection Pipeline

This section introduces a framework for collecting
high-quality tutoring conversations, highlighted in
Figure 2. The core idea behind it is to connect



Category Intent Example
Seek Strategy So what should you do next?

Guiding Student Focus Can you calculate . . . ?Focus
Recall Relevant Information Can you reread the question and tell me what is . . . ?

Asking for Explanation Why do you think you need to add these numbers?
Seeking Self Correction Are you sure you need to add here?
Perturbing the Question How would things change if they had . . . items instead?

Probing

Seeking World Knowledge How do you calculate the perimeter of a square?
Revealing Strategy You need to add . . . to . . . to get your answer.Telling
Revealing Answer No, he had . . . items.

Greeting/Fairwell
Hi . . . , how are you doing with the word problem?
Good Job! Is there anything else I can help with?Generic

General inquiry Can you go walk me through your solution?

Table 2: Teacher moves with examples of utterances and their intents from the MATHDIAL dataset.

an expert annotator, who roleplays a teacher, with
an LLM that simulates the student.1 We use this
methodology to collect dialogues based on GSM8k
(Cobbe et al., 2021), a diverse collection of grade
school multi-step math word problems (MWPs).

First, we estimate student confusion for a given
MWP by using temperature sampling to obtain di-
verse solutions from an LLM. We then select the
most frequent incorrect solution. Therefore, each
tutoring dialogue deals with the solution of exactly
one MWP and one confusion. As a next step, we
pair a human teacher with the LLM to create a dia-
logue that should resolve the confusion. We ground
the LLM in one of six student profiles. These stu-
dent profiles consist of common misconceptions
of students learning algebra, such as struggling to
recognize the problem type, and are taken from
Booth et al. (2017). A detailed description of these
profiles is found in Section C.

The teacher has access to the MWP and its cor-
rect step-by-step solution, as well as the initial stu-
dent confusion (cf. Figure 7). Then, the teacher is
tasked to guide the student to solve the problem by
employing a sequence of scaffolding moves, which
we refer to as a teaching strategy. The teachers
themselves can use their expertise to determine the
strategy but are required to select the current move
before writing a response, as we have found this
to lead to more diverse pedagogical patterns. We
describe these moves in Section 3.4. The dialogue
ends when the teacher marks the problem as solved
or a certain time limit is reached.

In addition to the collected dialogues, we obtain
metadata that future work can explore for build-
ing more effective tutor models. In particular, for
each dialogue MATHDIAL contains the MWP,

1In contrast, in WoZ two users are connected, with one
simulating a system.

step-by-step solution, the exact step that led to stu-
dent confusion, and annotations indicating if it was
resolved over the course of the dialogue. Step-
by-step and student solutions are also provided as
equations.

3.1 Teacher Selection

We recruit professionals with teaching experience
through Prolific2. We only select teachers who have
completed at least 500 submissions and achieved a
100% completion rate. Annotators read guidelines
for the task in an initial training phase (cf. Section
D.3) and then complete a test on an example con-
versation to assess their understanding of the task.
We only select annotators with 100% test scores for
further rounds of data collection, similar to Zhang
et al. (2023). We employ 91 expert annotators, of
which 71 identify as female and 18 as male. The
majority of annotators are nationals of the UK, fol-
lowed by the USA, Canada, Australia, India, and
Germany, with a median age of 39 years.

3.2 Problem & Confusion Selection

We employ an LLM to generate plausible stu-
dent confusions and base the dialogues on them.
We pick the most frequent incorrect solution sam-
pled from ChatGPT (gpt-3.5-turbo) (Ouyang et al.,
2022) using chain-of-thought prompting. To be
precise, we first use temperature sampling to ob-
tain N = 50 reasoning paths for every MWP in
GSM8k, with T = 0.7 and no top-k truncation
Wang et al. (2023b). Then, we group incorrect so-
lutions according to their final numeric answer and
pick one from the set with the largest cardinality.
More details can be found in Appendix B. As we
will show in Section 4.1, teachers think that the

2https://www.prolific.co

https://www.prolific.co


majority of sampled confusions are plausible and
could also have been made by a real student.

3.3 Student Turn Generation

We use InstructGPT (text-davinci-003) (Ouyang
et al., 2022) to generate student turns. We prompt
the model with the previous dialogue history and
additional information that grounds the next turn.
The prompt contains the MWP, the initial student
confusion, as well as the student profile which ex-
plains the type of confusion and persona of the
student.

3.4 Taxonomy of Teacher Moves

This section defines the taxonomy of all teacher
moves that are used in MATHDIAL . We base
the first two on the work of Reiser (2004), who sug-
gest that scaffolding strategies can be split into two
main categories: structure and problematize. These
form the basis for the Focus and Probing moves
employed in our study. Focus is used to constrain
the student to make direct progress towards solving
the problem. Probing is used to generalize certain
aspects of the problem which allows the student to
explore its underlying concepts. More concretely,
a teacher might construct a new, related problem
that targets only one specific concept that is needed
to solve the original MWP. However, scaffolding
might also fail, for example when a student gets
stuck. Then, teachers may need to reveal parts of
the answer. This is called Telling. Finally, turns
that just serve as conversational elements and have
limited pedagogical value are classed as Generic.
Table 2 lists finer-grained intents for each of these
four categories along with a set of accompanying
examples.

4 MATHDIAL Analysis

We quantitatively evaluate the collected tutoring
dialogues to assess their quality. For this, we out-
line descriptive statistics in Table 1. First of all,
we can see that our dataset is significantly larger
in terms of the number of dialogues and utterances
than all related datasets that are listed. By open-
sourcing such a large dataset, we fill a crucial gap
of sufficiently-sized open-source tutoring corpora
which has so far hindered research in the area
(Macina et al., 2023).

Furthermore, MATHDIAL exhibits a higher
diversity, measured in bigram entropy (Zhang et al.,
2018), than CIMA and TalkMoves. The diversity

is similar to NCTE and TSCC which consist of
transcripts of classroom and one-to-one tutoring
sessions, respectively. This supports the obser-
vation that expert annotators tend to create more
diverse utterances than untrained crowdworkers
(Casanueva et al., 2022), and also that LLMs can be
used to generate diverse tutoring dialogues. Finally,
we measure the Uptake (Demszky et al., 2021) of
annotated teacher utterances. Uptake indicates how
coherent the teacher’s utterance is with respect to
the previous student’s turn. We find that MATH-
DIAL and CIMA have similar uptake. Both surpass
the other datasets in our comparison.

4.1 How well can LLMs simulate students?
Our collection methodology relies on LLMs for
simulating students. Therefore, it is crucial to en-
sure that the turns simulated by the LLM also match
what a teacher would expect of a real student, who
in our case is a sixth grader. In this section, we
evaluate this quantitatively.

Figure 3 shows that annotators rate the majority
of generations by the model positively along two
dimensions. The first one says that the confusion
of the student is typical confusion of a sixth grader.
The second one says that the interaction with the
student as a whole is as expected of a sixth grader.
We release these annotations with our final dataset
which allows users of MATHDIAL to filter out
utterances that are of a lower quality.

Moreover, LLMs can be prone to incorrect arith-
metic calculations. Therefore, we asked annota-
tors to distinguish conceptual errors from such sim-
ple calculation mistakes. Arithmetic errors may
be easily resolved through calculators but concep-
tual errors are likely to require tutors to resolve
them, for example by scaffolding. Annotators iden-
tified around 80% of the confusions as conceptual,
leaving around a fifth containing arithmetic errors.
Again, we include these annotations to allow for
data filtering.

4.2 Which teaching strategies do annotators
choose?

In this Section, we evaluate when teachers use
which teacher moves in the conversations. Figure 4
shows that teachers most frequently use Focus ques-
tions which are found in 37% of utterances. Focus
is followed by Generic and Probing. Telling is
the rarest move. To validate these annotations, we
sampled 17 conversations consisting of 102 teacher
utterances and asked two independent annotators to



Figure 3: Teacher judgments on the ability of Instruct-
GPT to simulate students. Teachers rate the simulated
behaviour as largely plausible. Lighter regions on top
account for questions where the confusion was not re-
solved.

annotate their moves. We obtain an agreement of
κ = 0.60 between the two annotators and κ = 0.49
and κ = 0.34, respectively, between either of the
annotators and the teacher. We note that Probing
and Focus appear to be particularly challenging to
distinguish and acknowledge that the boundary be-
tween them may be subjective. Merging these two
categories into one larger ‘scaffolding’ category
improves agreements to κ = 0.67, κ = 0.75 and
κ = 0.55. Our observations are in line with related
works that have shown low inter-annotator agree-
ment between experts for detailed teacher moves
in classroom settings (Kelly et al., 2020).

The sequence of moves employed by the teach-
ers constitutes their teaching strategy which we
analyze in the following. Figure 4 shows the distri-
bution of teacher moves for different stages of the
conversations. We find that the initial utterance by
the teacher is usually generic and serves as a con-
versation opener, oftentimes by asking the student
to repeat the question or solution attempt. During
the conversation, teachers mainly use scaffolding
to either probe the student or focus the conversa-
tion on a specific part of the problem. The more
the conversations progress the more likely teachers
are to resort to Telling because students often get
stuck at a specific subproblem and are unable to
resolve it themselves. As a consequence, less Prob-
ing is used. This has been shown to keep students
engaged in the conversation who otherwise become
frustrated by being stuck (VanLehn, 2011).
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Figure 4: Overall distribution of teacher moves (left) and
their distribution at each dialogue step (right). Teachers
tend to start with Focus and Probing and then increas-
ingly use Telling as the conversation progresses.

4.3 How often can student confusion be
resolved?

The goal of MATHDIAL is to enable building
tutors that can help students resolve their confu-
sion. Therefore, we would like to know how often
teachers can do so in our collected data. This is an-
notated by the teachers themselves, who assessed
that they were successful in almost 89% of the con-
versations. In ca. 75% of the conversations by
using mainly scaffolding questions, and only in
around 14% by revealing the majority of the an-
swer. The conversations in which confusions could
not be resolved can still be useful, as they, for in-
stance, can be used to train classifiers to determine
when human intervention in such tutoring sessions
is required.

5 Modeling Tutors with MATHDIAL

We focus our initial studies on MATHDIAL on
the task of tutor response generation. Tutor re-
sponse generation aims to model the teacher in a
dialogue by generating follow-up turns to guide the
student towards learning and solving the problem.
In the following subsections, we compare different
finetuned and prompted language models on the
task and evaluate how much detailed information
that can be given to the model, such as step-by-step
solutions of the MWP, influence performance.

5.1 Training details

We use neural conditional language models that
given a tutoring dialogue history uT1 , grounding



MATHDIAL MATHDIALseen MATHDIALunseen
sBLEU (↑) BERTScore (↑) KF1 (↑) BERTScore (↑) Uptake (↑) sBLEU (↑) KF1 (↑) sBLEU (↑) KF1 (↑)

Model (uT+1, ûT+1) (uT+1,MWP) (uT , uT+1)

BART139M 4.5 52.0 15.0 46.3 86.6 5.2 16.0 3.3 13.5
BART406M 5.7 52.8 16.1 47.2 87.9 6.5 16.1 4.3 16.1
T5250M 7.2 51.1 27.2 54.3 94.8 8.4 27.7 5.2 26.3
T5780M 9.0 53.8 23.0 51.4 91.6 10.7 23.1 6.3 23.7
Flan-T5250M 8.2 52.9 23.5 52.0 92.0 9.6 24.2 5.7 22.4
Flan-T5780M 9.7 55.0 22.1 51.5 91.7 11.3 22.5 6.9 21.6
Flan-T53B 7.8 54.8 17.7 48.4 88.8 8.9 18.1 5.9 17.0
OPT125M 3.9 51.9 12.3 44.4 81.7 4.4 13.1 3.4 11.2
OPT1.3B 3.8 52.1 11.5 44.2 82.6 4.4 12.5 2.9 9.9
ChatGPT (0-shot) 2.2 47.7 22.6 50.3 92.7 2.1 22.8 2.3 22.2

Table 3: Results of finetuned and zero-shot prompted models on the tutor response generation task. We find that i)
models finetuned on our dataset can outperform much larger prompted models, ii) there is still a gap in terms of
generalization, iii) simply scaling the same pretrained model does not immediately improve results.

information K, and a teacher move A, we wish to
generate a continuation of the dialogue uT+1 ⊂ V∗.
Here V∗ denotes all strings that can be constructed
from the model vocabulary V using Kleene’s clo-
sure. K is a string composed of information anno-
tated in MATHDIAL , namely the MWP, step-by-
step solution, and the students’ solution attempt.
We study locally-normalized models of the form

pθ(uT+1 | uT1 ,K,A) =

NT+1∏
n=1

pθ([uT+1]n | [uT+1]
n−1
1 , uT1 ,K,A),

where θ denotes the parameters of the model and T
is moved throughout the dialogue to evaluate each
intermediate teacher turn. We either optimize these
parameters by finetuning for 10 epochs or zero-shot
prompting an LLM. When finetuning, we use an
initial learning rate of 6.25e−5 and linear learning
rate decay without warm-up, and optimize the neg-
ative log-likelihood of the ground-truth response
using the AdamW optimizer (Loshchilov and Hut-
ter, 2019). We experiment with state-of-the-art pre-
trained Transformer (Vaswani et al., 2017) models
and make use of the checkpoints provided by the
transformers library (Wolf et al., 2020). In particu-
lar, we finetune BART (Lewis et al., 2020), Flan-T5
(Chung et al., 2022) which is based on T5 (Raffel
et al., 2020) and was finetuned on the instruction-
following flan collection (Longpre et al., 2023),
as well as OPT (Zhang et al., 2022). Finally, we
zero-shot prompt ChatGPT (Brown et al., 2020).

Data split We split our data into a training split
containing 80% of the conversations and a test set
containing the remaining 20%. Around 60% of
the problems in the test set are also found in the
training data, where at least one conversation was

based on it, and therefore constitute our ‘seen’ split.
The remaining 40% are unseen during training and
test the ability of the model to generalize to new
problems. The dataset split is published with the
dataset.

Metrics We assess our models using the sacre-
bleu (Post, 2018) implementation of BLEU
(sBLEU) (Papineni et al., 2002), as well as
BERTScore 3 (Zhang et al., 2020) between gen-
erated response (uT+1) and annotated response
(ûT+1) for each teacher response in the conver-
sation. Furthermore, in line with previous works
(Dziri et al., 2022; Daheim et al., 2023), we report
BERTScore and the token level F1 (KF1) between
generated utterance and math word problem as a
proxy for faithfulness. However, we note that an
increase in these metrics can be caused by an in-
crease in overlap, which may also indicate more
telling and can be undesirable. However, finding
good evaluation metrics for assessing the faithful-
ness of dialogue tutors remains an open problem.
Finally, we measure the Uptake of the generated
response (Demszky et al., 2021).

We propose two evaluation metrics for end-to-
end tutoring, where a tutor model is evaluated inter-
actively by using it to teach an LLM that simulates
a student. Success@k measures the percentage of
conversations where the student reaches the cor-
rect final answer at least once within the first k
turns (equivalent of % solve rate in prior work).
Telling@k measures the percentage of conversa-
tions where the teacher explicitly tells the final
answer before the student has reached it on their
own within the first k turns.

3We use the deberta-large-mnli checkpoint



sBLEU (↑) BERTScore(↑)
(uT+1, ûT+1)

Flan-T5780M 8.0 53.0
+ question 8.6 53.2
+ incorrect solution 8.3 53.5
+ ground-truth 9.5 55.0
+ all 9.7 55.0

Table 4: Ablation on the influence of grounding informa-
tion, which shows that the ground-truth solution gives
the model the most valuable information.

6 Results

6.1 Tutor Response Generation
Table 3 shows our main results for the task of tutor
response generation on MATHDIAL . A first gen-
eral observation is that automatic metrics appear
low when compared to state-of-the-art models on
other dialogue data. This might be explained by
two main challenges that tutoring models face: a
high level of ambiguity when it comes to sound
teaching strategies and complex problems that the
models need be able to correctly assess. In contrast,
the data that ground responses in other dialogue
tasks often needs a lesser amount of interpretation.

Scaling models in terms of their parameter size
is not directly reflected in improved metrics. This
indicates that just using larger models might not
be enough to build meaningful tutors on MATH-
DIAL . Still, as shown in BERTScore and lexical
overlap between response and grounding informa-
tion, smaller models appear to rely more on the
grounding information and might paraphrase less
which might make teaching less engaging for stu-
dents. Instruction tuning seems to have a largely
positive effect in tutoring, as well. This is exhibited
by the improvements that Flan-T5 yields over T5.

In order to be used in real-world settings, dia-
logue tutoring models need to be able to generalize
to new problems. However, we find that there is
still a large gap in the performance of all finetuned
models between seen and unseen problems. This
indicates a clear need to build models that can gen-
eralize better. Uptake on the other hand is generally
high and for different models even higher than the
ground-truth annotations. Finally, finetuned mod-
els tend to outperform zero-shot prompted GPT in
terms of automatic metrics but the validity of them
for evaluating such models may be questioned.

6.2 Influence of grounding information
MATHDIAL provides a large set of annotations

that can be used to ground the responses of dia-

logue tutors trained on it. Table 4 shows results
obtained with Flan-T5780M when giving different
information. The results show that the step-by-step
solution is crucial for the model. Question and
incorrect solution are not as crucial but are also
often repeated by student or teacher throughout the
dialogue. Future work can explore this information
in more detail to improve tutoring models.

6.3 Human Evaluation

Model Coherence (↑) Correctness (↑) Equitable (↑)
3-point 0/1 3-point

Flan-T5780M 2.85 0.89 2.19
Flan-T53B 2.84 0.91 2.18
OPT1.3B 2.61 0.72 1.95
ChatGPT 2.89 0.43 1.43
Ground-truth 2.94 0.98 2.42

Table 5: Human evaluation shows that finetuning mod-
els on MATHDIAL increases their performance in
terms of correctness and equitable tutoring.

Finally, we conduct a human evaluation accord-
ing to three criteria: 1) Coherence: how coherent
the teacher’s response is with respect to the preced-
ing dialogue, 2) Correctness: whether it is in itself
correct, and 3) Equitable tutoring. Equitable tu-
toring describes how well the model provides the
student with room for exploring the problem and
solution space. We use three expert annotators that
each annotate n = 50 responses. We obtain agree-
ments of κ = 0.29, κ = 0.69, and κ = 0.34 for
the three categories. We find that the ground-truth
data that we have collected shows high scores in
all three criteria which confirms its quality. Then,
we find that small fine-tuned models perform much
better in terms of correctness and equitable tutoring
than a prompted large language model (ChatGPT),
even though the latter is pretrained on much more
data and has a significantly larger parameter count.
This shows the importance of high-quality data for
training meaningful tutors. The automatic metrics
are only partially confirmed. For instance, Flan-
T53B is rated slightly better than Flan-T5780M in
correctness despite lower automatic scores.

6.4 Interactive Evaluation of Dialogue Tutors

Good tutoring models need to maintain high quality
not only when viewed per-utterance but especially
over an entire conversation. In order to assess this,
we use them to tutor an InstructGPT student and
measure their success (Success@k), as well as the
rate of telling (Telling@k). The tutor models are
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NextStep 25% 0% 25% 0%
ChatGPT 29% 16% 53% 32%

Flan-T5780M 30% <1% 39% 4%
Ground Truth 59% <1% 82% 4%

Figure 5: Performance of our tutor model and 3 base-
lines on interactive tutoring of the student model. We
find the model trained on MATHDIAL to have a simi-
lar success@5 rate with less telling.

used as outlined in the previous subsections and the
student model uses the same settings as during data
collection. We compare our Flan-T5780M model
with a simple baseline that repeatedly asks “What
is the next step?" (NEXTSTEP), ChatGPT, and the
ground-truth conversations.

Figure 5 shows that NEXTSTEP has the lowest
success rate, but never tells solutions by construc-
tion. ChatGPT, on the other hand, has a high suc-
cess rate but also the highest rate of telling. This is
a crucial shortcoming because high telling is coun-
terproductive to effectively teach students. Flan-
T5780M achieves a balance between the two and
shows a similar amount of telling as the ground
truth.

We note that the gap in success rate between
Flan-T5780M and ChatGPT, at least in the initial
steps, stems mostly from longer problems, as is ev-
ident from Figure 6. Overall, no model can match
the success rate of the ground-truth annotations.
This indicates a large room for future improve-
ments and research.

7 Conclusion

We introduce a new framework for semi-synthetic
dialogue dataset collection. We use it to collect a
pedagogically rich dataset for tutoring math word
problems that follow equitable tutoring practices
and learning sciences research on scaffolding stu-
dent understanding, called MATHDIAL . Our
dataset consists of ca. 3k tutoring conversations
grounded in math word problems from GSM8k.
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Flan-T5780M 65% 0% 68% 2%

ChatGPT 57% 14% 77% 20%
Problems with 3 step Solutions

Flan-T5780M 18% 0% 30% 7%
ChatGPT 17% 19% 43% 38%

Problems with 4 step Solutions
Flan-T5780M 27% 1% 34% 2%

ChatGPT 29% 20% 52% 32%

Figure 6: Performance of our tutor model and ChatGPT
on interactive tutoring of the student model on problems
with solutions of different lengths (n is the number of
steps in the ground truth solution). The performance
of all models drops for problems with more than 2 step
solutions.

We benchmark open-source models on the
task of tutor response generation and show that
smaller models finetuned on our MATHDIAL

can significantly surpass the performance of much
larger prompted LLMs. Moreover, in our pro-
posed interactive tutoring simulation, the finetuned
model achieves similar student-solving success as
prompted LLM while keeping the direct telling
rate lower. Nevertheless, models still require better
reasoning over student solutions and better gener-
alization to unseen problems.

Our dataset fills a crucial gap towards studying
effective dialogue tutors at scale by providing a
significantly larger amount of dialogues than other
available corpora in one-on-one tutoring and pro-
vides a tough testbed towards better tutoring mod-
els. We hope that it can spark more research in this
meaningful but understudied area of NLP.

8 Limitations

In this work, we used an LLM to simulate stu-
dent confusion. However, we acknowledge that
these models have a limited understanding of hu-
man learning and this is a key limitation in our
dataset – certain kinds of student confusions may
be under- or over-represented in our dataset. Future



work can focus on addressing this limitation.

Furthermore, in our setup, teachers were interact-
ing with an LLM role-playing as a student. How-
ever, it is possible that some teachers might have
learned to interact with the student model in a dif-
ferent way than they would do in the classroom.
Moreover, it is also possible that some teachers
may have lost motivation when found out they are
not interacting with real students, leading to lower
data quality. In the future, we would like to ex-
plore solutions to build better LLM-based student
models (Zhou et al., 2023).

The methodology to collect the dataset was
instantiated just for the domain of math reason-
ing. The collection of additional domain-specific
datasets is necessary to further generalize the effec-
tiveness of our methodology.

Inspired by previous work in scaffolding, we
acknowledge our focus is on a subset of common
teaching moves. However, this does not cover all
the goals of human tutors, such as meta-cognitive
support or building rapport with a student. More-
over, text tutoring limits teachers’ use of additional
instructional practices such as drawings.

Finally, measuring a student’s immediate success
in solving a problem does not capture all the as-
pects of student learning. From a learning perspec-
tive, focusing on and measuring long-term learning
is desired. Therefore, even if students struggle
to answer a specific problem correctly, teachers
asking scaffolding questions requiring conceptual
understanding offer even better promise for deeper,
wider, and more long-term learning.
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GPT-2 - how can I help you? towards the use of pre-
trained language models for task-oriented dialogue
systems. In Proceedings of the 3rd Workshop on Neu-
ral Generation and Translation, pages 15–22, Hong
Kong. Association for Computational Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
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generated "####" which represents the final result.
Most of the generated outputs have this format and
we discard all generations not following it. We
sample N = 50 reasoning path candidates using
the same settings as suggested by (Wang et al.,
2023b). After sampling multiple reasoning pairs
and corresponding answer pairs (ri, ai) we use a
majority vote over ai which does not lead to a
ground truth answer a: argmaxa

∑n
i=1 1(ai ̸= a).

We select problems with at most four solution steps.
Since our initial experiments show the occurence
of rounding errors, which related work finds to be
more common in LLMs than humans (Frieder et al.,
2023), we limit them by discarding confusions that
are within 0.1 of the original solution. Moreover,
to filter out other simple calculation errors which
are not interesting from a learning standpoint we
parse all the intermediate equations which are in
the format << a× b = c >> and use a calculator
to check for inconsistencies.

The full prompt used is:

Q: Natalia sold clips to 48 of her friends
in April, and then she sold half as many
clips in May. How many clips did Natalia
sell altogether in April and May?

A: Natalia sold 48/2 = «48/2=24»24 clips
in May. Natalia sold 48+24 = «48+24=72»72
clips altogether in April and May. ####
72

Q: Weng earns $12 an hour for babysitting.
Yesterday, she just did 50 minutes of
babysitting. How much did she earn?

A: Weng earns 12/60 = «12/60=0.2»0.2 per
minute. Working 50 minutes, she earned
0.2 x 50 = «0.2*50=10»10. #### 10

Of the problems in the GSM8k dataset, 5684
problems were queried after eliminating problems
with more than 5 steps in the solution. This yielded
2, 313 problems with at least one wrong solution.
We then eliminated student solutions having fewer
than 300 characters (having too few characters
makes it harder to pinpoint where exactly the er-
ror occurred) or more than 500 characters (longer
solutions require annotators to spend more time
understanding the error), leaving us with 1, 379
wrong solutions. Finally, we eliminate problems
where all 50 or 49 out of 50 proposed solutions
have the same (wrong) final answer, leaving us
with our final set of 1131 problems.

C Student model

C.1 Prompt

We use InstructGPT (text-davinci-003) with
the following prompt using temperature sampling
with T = 0.4 and no top-k truncation:

Student Persona: (STUDENT PERSONA)\n\n

Math problem: (MATH PROBLEM)\n\n

Student solution: (STUDENT SOLUTION)\n\n

Context: (STUDENT NAME) thinks their
answer is correct. Only when the
teacher provides several good reasoning
questions, (STUDENT NAME) understands
the problem and corrects the solution.
(STUDENT NAME) can use a calculator and
thus makes no calculation errors. Send
EOM tag at the end of the student
message.\n\n

(DIALOGUE HISTORY)

C.2 Student characteristics

To build a dataset that would reflect students of var-
ious backgrounds, we use numerous student names
associated with their given pronouns. List of all stu-
dent characteristics based on prior work studying
misconceptions in learning algebra (Booth et al.,
2017):

• has a problem with understanding what steps
or procedures are required to solve a problem.

• has a problem with understanding underlying
ideas and principles and a recognition of when
to apply them.

• struggle most with understanding what the
problem is asking them to do.

• has difficulty determining which pieces of in-
formation are relevant and which are irrele-
vant to solving the problem.

• struggle to put the numbers in the correct or-
der in the equation or determine the correct
operation to use.

• struggle to recognize the problem type and
therefore do not know what strategy to use to
solve it.



C.3 Common error cases

We manually screened some conversations and
teacher feedback to understand common error cases
of student model. The most common problem
among them was the occurence of simple arith-
metic errors (e.g. 7-2=9) and inconsistent student
behaviour (e.g. student returning to the incorrect
answer after figuring out the correct one in the
previous utterance). These errors are captured in
the teacher quality Likert scale rating of student
behaviour. We acknowledge further analysis is
needed to better understand the fine-grained stu-
dent model behavior on problems with different
numbers of steps e.g. by cognitive task analysis
(Koedinger and McLaughlin, 2016).

D Data collection interface

We use Prolific for data collection and hire annota-
tors with teaching experience. To ensure the data
quality we filter only annotators with 100% com-
pletion rate with more than 500 total submissions.
All the payments to the annotators exceeded the
US federal minimum wage and the final batch of
annotators were paid the equivalent of $12/hour.
The data collection interface is shown in Figure 7.
Annotators were restricted to having a maximum of
five conversations in one annotation session. One
conversation takes ca. 6 minutes. Data collection
took place over a period of 2 months.

D.1 Annotation pipeline

For each annotator, we randomly assign a student
and math word problem. Teachers were instructed
to first analyze the student homework solution and
then start the conversation to scaffold student prob-
lem understanding. Post-conversation question-
naire is filled out by teachers to rate the conversa-
tion and get feedback on the type of student error.

Comparing solutions As shown in Figure 8, the
teacher first analyzes and compares the correct so-
lution with the incorrect student solution (student
confusion). The teacher marks the exact line of a
first student error and categorizes the problem into
the following categories:

• Reached correct solution but proceeded fur-
ther

• Extra quantity or Missing quantity

• Unit conversion error

Figure 7: Web interface of the tool for collecting dia-
logue tutoring conversations. The left panel shows math
word problem, correct solution, and student solution.
The right panel contains conversation history, a panel
for selecting the category of response, and a text area to
send a response to the student. After clicking Send, the
student model is immediately invoked using an internal
API call.

• Calculation error easily solved by a calculator

• Missing / Wrong factual knowledge

• Misunderstanding of a question

• None of the above

Tutoring conversation Next, the teacher has a
conversation (see Figure 7) with a student and uses
scaffolding moves to help the student understand
the problem. The conversation ends when the stu-
dent correctly solves the problem or if the total
conversation time exceeds 10 minutes.

Post conversation questionnaire Teacher fills
the post conversation questionnaire as shown in
Figure 9.

D.2 Annotators training phase
We let annotators read best practices on how to
have a productive conversation with students (cf.
Section D.3 and D.4) and tested them on their un-
derstanding of our task afterwards. We started the
data annotation with all the annotators able to suc-
cessfully pass the test. Moreover, to improve the
training phase we manually checked several con-
versations by each annotator in terms of the quality
and usage of diverse scaffolding questions.



Figure 8: Teacher first compares student solution with
the correct solution and marks the exact step of the error.

D.3 Annotation Guidelines

Teachers were instructed to have a one-on-one tutor-
ing session with different 6th-grade students. They
were told that students received a math word prob-
lem for homework and submitted their solutions
beforehand. In a tutoring conversation, teachers
were asked to go through the student’s solution
and try to let the student understand using a se-
ries of sensemaking questions to support student
reasoning and learning. Specifically, they were
instructed to not just correct student solutions by
telling what’s correct/incorrect, but to give students
the opportunity to explore the problem with a focus
on core aspects, such as their chosen strategy. How-
ever, as the goal is to focus on conceptual errors,
they were allowed to let students use calculators or
correct their arithmetic mistakes.

D.4 Teacher moves taxonomy

Table 2 refers to the details of teacher moves used
during annotation. In summary, Focus comprises
of all conversation elements that direct the student
towards the solution without actually giving out any
of the solution, while Probing attempts to develop
reasoning skills and world knowledge relevant to
the problem, but not necessarily specific to the
given problem. Telling is giving out parts of the
solution, either calculations or strategy or both. All
other conversational elements, including trying to
understand what the student has already tried, fall
under Generic.

Most importantly, scaffolding questions that are
productive for long-term learning are Focus and
Probing. On the other hand, Telling represents

Figure 9: Post questionnaire.

giving out the partial or full answer to the student
and should be mostly used when a student is stuck.

D.5 Background for teacher moves

Scaffolding (Reiser, 2004; Anghileri, 2006) assists
students to succeed in tasks that would otherwise be
complex and differentiates between guidance (e.g.
decomposing problem, clarifying) from cognitive
activation (e.g. causing cognitive conflicts, activat-
ing prior knowledge (Limón, 2001)). The effective
teacher moves to scaffold students’ understanding
have been studied extensively by analyzing and an-
notating real human tutoring conversations (Nye
et al., 2014; VanLehn, 2011). Experienced teachers
can through natural language guide students’ fo-
cus and uncover misconceptions (Nye et al., 2014).
The teacher moves in the form of scaffolding to sup-
port student understanding by asking open-ended
questions, activating their prior knowledge, or caus-
ing cognitive conflicts (Limón, 2001). A teacher
asking scaffolding questions provides learning op-
portunities for students to actively construct their
knowledge. However, at the same time asking only
difficult questions could lead to a loss of learner
motivation and potentially the end of the dialogue.
On the other hand, only constantly revealing an-
swers does not lead to long-term learning.



D.6 Postprocessing

As we are interested in real educational use cases
for our tutoring system, we apply a safety filter to
filter out conversations with any sensitive content.
In particular, we use the Perspective API4 to filter
out conversations containing toxic content (<1%).

D.7 Initial pilots

We initially explored two additional approaches
of data collection: i) human-human conversations,
and ii) synthetic generation by LLMs. The frame-
work we used in the final data collection enables
us to scalably create data since we are only reliant
on one user who can quickly create entire conver-
sations with the LLM, taking ca. 6 minutes per 7+
turn conversation. We found this more efficient and
performant than both human-human conversations
and synthetic data generation. Specifically, the
human-to-human collection is too time-consuming
(on average 15 minutes per conversation in our
pilot experiments) and requires waiting times to
synchronously connect participants (Choi et al.,
2018), and synthetic generation has proven to be
error-prone (see example in Figure 10); for exam-
ple, models fail to understand student solutions
and themselves make arithmetic errors that are not
expected from teachers.

E Interactive evaluation of tutoring

The student model in all 3 cases is an InstructGPT
model (text-davinci-003) as defined in Section
C.1, with the student name fixed to “Kayla". The
first utterance of the teacher is hardcoded to “Hi
Kayla, could you walk me through your solution?".
For Flan-T5780M teacher model decoding, we used
sampling without a beam search. For the Chat-
GPT teacher model (gpt-3.5-turbo), the follow-
ing prompt is used:
A tutor and a student work together to
solve the following math word problem.\n

Math problem: (MATH PROBLEM)\n

The correct solution is as follows:
(CORRECT SOLUTION)\n

Your role is tutor. The tutor is
a soft-spoken empathetic person who
dislikes giving out direct answers to
students and instead likes to answer
with other questions that would help
the student understand the concepts

4https://perspectiveapi.com

so students can solve the problem
themselves.

F Human Evaluation Protocol

The following dimensions were rated by annota-
tors:

• Coherence - ”The response naturally follows
up on the previous utterance and context and
has no logical conflicts with the context.”

• Correctness - ”The response is factually and
mathematically correct and respects the learn-
ing concepts being taught.”

• Equitable tutoring - ”The response gives a
learning opportunity for the student by provid-
ing space for reflection, explanation, pointing
to follow-up challenge, or engaging the stu-
dent in other ways.

We use a 3-point Likert scale ranging from 1 (poor)
and 3 (very good) for coherence and equitable tu-
toring and a binary scale for correctness.

ChatGPT prompt is the same as in the interactive
tutoring scenario (Section E) with an additional
section containing student solution.

https://perspectiveapi.com


Context Conversation
Q: Sam memorized six more digits of pi than
Carlos memorized. Mina memorized six times as
many digits of pi as Carlos memorized. If Mina
memorized 24 digits of pi, how many digits did
Sam memorize?

Ground truth: Carlos memorized 24/6=4
digits of pi. Sam memorized 4+6=10 digits of pi.
Final Answer: 10

Student solution: Step 1: Carlos memo-
rized 18 digits of pi. Step 2: Mina memorized 24
digits of pi. Step 3: Sam memorized 6 more digits
of pi than Carlos, so he memorized 24 digits of pi
(18 + 6 = 24). Final Answer: 24

T: (probing) You outlined that Carlos memorized
18 digits of pi - where did you get this figure from?

S: I got this figure by taking the number of
digits that Mina memorized (24) and subtracting
the number of digits that Carlos memorized more
than Mina (6). So 24 - 6 = 18.

T: (probing) If the question says that Mina
memorised six times as many digits of pi as
Carlos memorised, and she memorised 24, what
do you think that means for the digits of pi that
Carlow memorised?

S: It means that Carlos memorized 4 digits
of pi (24/6 = 4).

T: (focus) That’s brilliant - really well done. So,
if that means that Carlos memorised 4 digits of
pi, and the question says that Sam memorised six
more digits of pi than Carlos, how many digits of
pi has Sam memorised?

S: Sam has memorized 10 digits of pi (4 +
6 = 10).

T: (focus) That’s absolutely perfect! So,
based on that, how many digits of pi did Carlos,
Mina and Sam each memorise?

S: Carlos memorized 4 digits of pi, Mina
memorized 24 digits of pi, and Sam memorized
10 digits of pi.

T: (focus) Well done Luca! You got it right!

Table 6: Examples of MATHDIAL conversations. T refers to a teacher utterance, S refers to a student utterance.
Each conversation is grounded in the correct solution and student solution. Bold text is information for the reader
indicating error categories.



Figure 10: In our initial pilot study we observed that synthetic data generation by InstructGPT strictly followed the
same structure of only asking next-step questions (highlighted in yellow) and was prone to inconsistencies in factual
correctness and order of steps (highlighted in red).


