
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RETRIEVAL-AUGMENTED GENERATION AS IN-
CONTEXT OPTIMIZATION: A GRADIENT DESCENT
PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Currently, it remains unclear whether in-context learning (ICL) can serve as an al-
ternative mechanism for retrieval-augmented generation (RAG), and its underlying
operation is still poorly understood and largely intuitive. In this paper, we propose
that trained Transformers can be viewed as performing retrieval-augmented gen-
eration through gradient descent. We start by proving a weight construction and
showing the equivalence of data transformations induced by linear self-attention-
based Transformer and RAG training on a regression loss. Motivated by this
construction, we empirically demonstrate that, when trained on simple regression
tasks, self-attention-only Transformers exhibit strong similarity to RAG models
trained via gradient descent. This allows us, at least within the scope of regression
problems, to gain a mechanistic understanding of how in-context learning can
be leveraged to optimize RAG. Moreover, we observe that the distribution of the
data critically affects the generalizability of the learned models in the non-linear
setting, so we propose strategies to enhance the robustness of in-context learning
(ICL) against distributional variability encountered in practice. Among these, we
explore normalization techniques as one representative approach, showing that they
can effectively improve both stability during training and generalization across
domains.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress across a wide range of natural
language processing (NLP) tasks, including link prediction, question answering, text classifica-
tion, and text generation (Li & Ji, 2022; Achiam et al., 2023; Li et al., 2024b; Guo et al., 2025).
However, it is challenging for LLMs to incorporate newly emerging knowledge beyond their static
pre-training data. To address this, retrieval-augmented generation (RAG) has emerged as an effective
solution (Lewis et al., 2020; Li et al., 2025), enabling LLMs to retrieve relevant information from
external corpora, thereby enhancing performance on downstream tasks.

There are three approaches to investigating the retrieval-augmented generation (RAG) capabilities
of attention-based generative models. The first is that zero-shot learning (ZSL) methods (Huang
et al., 2024) enable the retriever to identify relevant documents and supply them, together with the
input sentences, to the predictor model, where both the retriever and predictor remain frozen. While
this approach is computationally efficient, it struggles with personalization, as it fails to incorporate
specific user behaviors or preferences. For the second, fine-tuning methods (Li et al., 2024e; Zhang
et al., 2025a) adapt the trainable retriever and predictor, while this approach can improve performance,
it requires substantial computational resources for retraining. Recently, in-context learning (ICL) has
been leveraged in retrievers and generators by conditioning a number of input–output examples (Li
et al., 2024d), thereby eliminating the need for additional parameter updates or task-specific training.
Compared with fine-tuning, this approach can substantially reduce computational overhead and
time consumption. Despite the efficiency advantages of applying ICL in RAG, no prior work has
systematically investigated, either theoretically or empirically, whether ICL can achieve accuracy
comparable to jointly fine-tuning the retriever and generator in RAG. In this work, we address this
gap by analyzing whether ICL can serve as an alternative to explicit training in RAG systems, with
the goal of achieving a better balance between efficiency and accuracy.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address this objective, we identify two major gaps: 1) A growing body of work has investigated
how Transformers can approximate fine-tuning through gradient descent, viewing it as a mechanism
for ICL. For instance, studies such as (Von Oswald et al., 2023; Gatmiry et al., 2024; Mahankali
et al., 2023) demonstrate that models can learn to perform preconditioned gradient descent on input
examples, with explicit weights converging toward the global minimum. More recent research
(Shen et al., 2025; Ren & Liu, 2024) examines ICL from the perspective of kernel functions, by
reformulating the attention layer as a linear kernel mapping. These studies have achieved substantial
theoretical progress in characterizing the mechanisms underlying ICL and have shown that, despite
being confined to linear regression settings, they can nonetheless capture key behaviors observed in
nonlinear architectures, thereby serving as a convincing proxy for understanding ICL in nonlinear.
Nevertheless, these studies have primarily considered ICL as generators, and, to the best of our
knowledge, no theoretical analysis has explored ICL in the joint setting of trainable retrievers and
generators. 2) Current studies mainly benchmark the performance of different trainable RAG models,
for example, Li et al. (2024c) evaluates three retrievers in combination with four different generators.
In contrast, other approaches focus on evaluating the effectiveness of ICL (Wang et al., 2024; Mosbach
et al., 2023). For example, Mosbach et al. (2023) evaluates the generalization ability of in-context
learning on in-domain and out-of-domain knowledge. However, no prior work has conducted a
systematic benchmarking or comparative analysis of the performance differences between ICL and
trainable RAG under the unified experimental setting (e.g., using the same dataset).

So, in this paper, we begin by establishing the expressiveness of ICL, showing that trained Transform-
ers can act as a learning algorithm capable of performing both retrieval and generation. Specifically,
We demonstrate that the Transformer (1) formulates a loss function for RAG that depends on the
input question and the documents to be retrieved, and (2) updates its parameters by learning from
the gradient of this loss using the constructed weight values. We provide the theoretical proof for a
Transformer with a single self-attention layer under a linear architecture, and then extend the analysis
to deeper architectures. Finally, we evaluate the expressiveness of ICL as RAG models on four
widely used regression tasks in the nonlinear setting, and provide a systematic comparative analysis
of the performance between ICL and trainable RAG. Our findings reveal that their generalizability
is constrained by the complexity and variability of data distributions. Building on this insight, we
identify the key challenges posed by distributional shifts and propose normalization techniques to
enhance the robustness of ICL in RAG systems. Our contributions are summarized as follows:

• By explicitly constructing the weight matrices, we demonstrate that a linear self-attention
layer performs updates in the form of a weighted sum over input features. This operation is
mathematically equivalent to training a simplified RAG system for joint document selection
and output prediction under a mean squared error objective. Furthermore, we show that
the composition of multiple self-attention layers can iteratively approximate curvature
correction, making the optimization trajectory closely approximate that of conventional
RAG training in terms of convergence properties.

• When optimized on linear regression datasets, self-attention–only Transformers with con-
structed weights can emulate the gradient descent training process of RAG, both on in-
distribution and out-of-distribution validation tasks.

• We extend the analysis of ICL and RAG beyond linear settings and evaluate ICL on four
widely used regression tasks under the non-linear settings. Our results indicate that its
generalizability is substantially limited when the underlying data distribution deviates from
idealized assumptions. To address this limitation, we propose the use of normalization
techniques to mitigate the distributional gaps and enhance robustness.

2 SELF-ATTENTION CAN EMULATE THE GRADIENT-BASED TRAINING OF RAG
ON A LINEAR REGRESSION TASK

In this section, we first introduce the linear self-attention based Transformer, followed by the definition
of the RAG models with two types of retrievers: a linear projection retriever and a dot product retriever,
building on prior work. We then establish the connection between the training RAG and self-attention
by the data transformation. Finally, we present a proposition demonstrating the equivalence between
the training process of RAG and the linear self-attention model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 SELF-ATTENTION

To illustrate the connection between in-context learning and the training progress of RAG by gradient
descent, we begin with a multi-head self-attention (SA) block parameterized by θ. Given a sequence
of tokens {e1, . . . , eN}, the update rule for an element ej can be expressed as

ej ← ej + SAθ(j, {e1, . . . , eN}) = ej +
∑
h

PhVh softmax(K⊤
h qh,j), (1)

where Ph, Vh, and Kh denote the projection, value, and key matrices for the h-th head, and qh,j is
the query corresponding to position j. The value matrix is defined as Vh = [vh,1, . . . , vh,N] with
vh,i = Wh,V ei, while the key matrix is Kh = [kh,1, . . . , kh,N] with kh,i = Wh,Kei. Similarly, the
query vector is computed as qh,j = Wh,Qej . Altogether, the parameters of the SA block are given by
θ = {Ph,Wh,V ,Wh,K ,Wh,Q}Hh=1, collecting all projection matrices across the H attention heads.
We introduce a key modification to the standard self-attention mechanism by removing the softmax
operation and bias terms. This architecture was also used in previous work (Von Oswald et al., 2023;
Vladymyrov et al., 2024). Based on this motivation, we derive the linear self-attention (LSA) update
rule:

ej ← ej + LSAθ(j, {e1, . . . , eN}) = ej +
∑
h

PhVhK
⊤
h qh,j . (2)

2.2 RETRIEVAL ARGUMENTED GENERATION MODEL

Building upon the reference linear model y(x) = Wx of in-context learning introduced by Von Os-
wald et al. (2023), we generalize the formulation to the RAG framework, where we incorporate
two distinct retrieval mechanisms, RAG with linear projection retriever and RAG with dot product
retriever.

RAG with Linear Projection Retriever Inspired by the marginalization mechanism in RAG-
Sequence (Lewis et al., 2020), where the generator is conditioned on both the query and the retrieved
documents. We incorporate an additional projection matrix Wd in the reference linear model that
operates on a document embedding D = (d1, d2, d3, . . . , dn)

⊤, where each di corresponds to the em-
bedding of a retrieved document. The projection matrix Wd maps each retrieved document embedding
into a k-dimensional representation, which is then combined with the input representation through W1.

The resulting model can be expressed as: y = (W1 W2)

(
xq

WdD

)
, y = W1xq+

∑k
i=1 Wzdi, where

Wz ≜ W2Wd, xq ∈ Rdq , D ∈ Rk×dd , Wd ∈ Rdm×k, W1 ∈ Rdy×dq , W2 ∈ Rdy×dm . Wz

is regarded as the retriever, where the retrieved documents together with the input query xq are used to
predict the final output y. This formulation highlights how retrieval-based features, encoded through
Wd, can be integrated with the original input representation x1 via linear projection. Let the training
dataset be D = {(xq

i , x
d
i , yi)}Ni=1, with inputs xq

i ∈ RNx and corresponding labels yi ∈ RNy .

RAG with Dot Product Retriever For the dot product retriever (Karpukhin et al., 2020), given
a query input x and a set of candidate documents {di}ni=1, The linear encoder, represented by
the weight matrix We is used to compute the embeddings of the query and candidate documents:
x = We(x), di = We(di), to align our formulation with the reference linear model, we adopt this
design choice following prior work (Xie et al., 2017). Subsequently, the input query, together with the
scored documents, is used to generate the final prediction. In the linear case, the attention weight αi

assigned to each document di is determined by the similarity score between the query and document
embeddings: αi = (Wexq)

⊤(Wedi). Accordingly, the prediction function is defined as,

y = (Wq, Wz)

(
xq∑n

i=1(Wexq)
⊤(Wedi) di

)
= Wqxq +Wz

n∑
i=1

(Wexq)
⊤(Wedi) di (3)

For notational convenience, we define M = W⊤
e We in the attention weight αi, yielding αi =

x⊤
q Mdi. Moreover, in equation 3, note that

∑n
i=1(x

⊤
q Mdi)di =

∑n
i=1 did

⊤
i M

⊤xq, let C =

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

∑n
i=1 did

⊤
i , so the above expression can be simplified as

∑n
i=1(x

⊤
q Mdi)di = CM⊤xq. Setting

W = WzCM⊤, we obtain y = Wqxq +WzCM⊤xq , which leads to the compact formulation below.

y = Wqxq +Wxq, where W = Wz

(
n∑

i=1

did
⊤
i

)
M⊤. (4)

where xq ∈ Rdd , di ∈ Rdd , We ∈ Rr×dd , Wq ∈ Rdy×dd , Wz ∈ Rdy×dd ,M = W⊤
e We ∈

Rdd×dd , C =
∑n

i=1 did
⊤
i ∈ Rdd×dd , y ∈ Rdy .

United RAG with different retrievers In this section, we unify the above linear RAG formulation
as y = W1x1 + W2x2, where W1 ∈ RNy×Nx1 , W2 ∈ RNy×Nx2 , the matrix W1 functions
as a feature selection and weighting operator on the query embedding, allowing the model to
emphasize task-relevant components while suppressing irrelevant ones. In the linear projection
retriever, x1 = xq, x2 = D, W2 ≜ W1Wd. In the dot product retriever, x1 = x2 = xq, W2 =
Wz

(∑n
i=1 did

⊤
i

)
M⊤.

2.3 OPTIMIZATION OBJECTIVE FOR UNIFIED RAG

Building on the unified RAG formulation, we now formalize the learning objective by minimizing
the squared error loss:

L(W1,W2) =
1

2N

N∑
i=1

∥W1x
i
1 +W2x

i
2 − yi∥2 (5)

One step of gradient descent on L with learning rate η yields the following update, where the weight
change is defined as:

∆W1 = −η∇W1
L(W1) = −

η

N

N∑
i=1

(
W1x

i
1 +W2x

i
2 − yi

)
(xi

1)
⊤

∆W2 = −η∇W2L(W2) = −
η

N

N∑
i=1

(
W1x

i
1 +W2 x

i
2 − yi

)
(xi

2)
⊤

(6)

In the transformed targets yi −∆yi, ∆yi = ∆y1i +∆y2i = ∆W1x1 +∆W2x2. Thus, the outcome
of a gradient step can be interpreted as an update to the regression loss. The update of the target y
depends on the input data x and ∆W .

2.4 TRAINING LINEAR RAG WITH GRADIENT DESCENT IS EQUIVALENT TO A LINEAR
SELF-ATTENTION LAYER

We reinterpret the learning RAG in the linear model as a transformation applied directly to the data.
This perspective allows us to draw a connection between RAG and linear self-attention. Specifically,
we describe a construction in which learning occurs simultaneously for all tokens, including the
test token, through updates induced by a linear self-attention layer. In this view, the response to a
query (test) token is transformed from its initial state W1x

1
test,W2x

2
test, to the post-update prediction

ŷ = (W1 +∆W1)x
1
test + (W2 +∆W2)x

2
test which corresponds to the result obtained after a single

step of gradient descent.

Lemma (Equivalence). Given a 1-head linear attention layer and tokens ej = (xj
1, x

j
2, y

j) for
j = 1, . . . , N , we can construct special key, query, and value matrices WK ,WQ,WV , together with
a projection matrix P , such that a Transformer update on each token ej is equivalent to the training
progress of the above RAG optimization.

Proof. ej ← (xj
1, x

j
2, y

j) + (0,−∆W1x
j
1,−∆W2x

j
2) = (xj

1, x
j
2, y

j) + PV K⊤qj , the target is
updated according to the weight construction method described below.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

xj
1

xj
2

yj

←
xj

1

xj
2

yj

+

(
0
0

−(∆W1x1 +∆W2x2)

)
(7)

xj
1

xj
2

yj

←
xj

1

xj
2

yj

+ η
N

∑N
i=1

((
0 0 0
0 0 0
W1 W2 −Iy

)
︸ ︷︷ ︸

WV

xi
1

xi
2

yi

)⊗((Ix 0 0
0 Ix 0
0 0 0

)
︸ ︷︷ ︸

WK

xi
1

xi
2

yi

)⊤((Ix 0 0
0 Ix 0
0 0 0

)
︸ ︷︷ ︸

WQ

xj
1

xj
2

yj

) (8)

The right side of equation 7 is identical to the right side of equation 8, implying that the RAG
optimization is equivalent to the Transformer update. Where we are provided with N context tokens
together with an additional query token, indexed by N + 1. Each context token can be written
as ei = (xi

1, x
i
2, y

i), representing one of the N training pairs. The (N + 1)-th token is given by
ej = (xj

1, x
j
2, y

j), yj = 0. The model is expected to predict the updated yj value. Please refer to
Appendix E for the detailed mathematical proof.

3 EXPRESSIVENESS OF ICL AS GRADIENT DESCENT ON
RETRIEVAL-AUGMENTED GENERATION

In this section, we experimentally investigate whether attention-based models are capable of realizing
gradient-based RAG during their forward computation. We incrementally extend our analysis,
beginning with a single linear self-attention layer and extending to multi-layer nonlinear architectures.

Transformer Pre-Training We define each token by concatenating input data, the auxiliary
representation, and the target, ei = (xi, zi, yi), 1 ≤ i ≤ N , N is the size of the training data for
each task τ . zi is the document embedding or xi. The training objective is to minimize the expected
squared prediction error across tasks. Formally,

L(θ) = 1

B

B∑
τ=1

∥∥ŷθ({eτ,i}Ni=1, eτ,N+1

)
− yτ,N+1

∥∥2 (9)

where, for each task τ , eτ,N+1 = (xtest, ztest, 0), yτ,N+1 is the target of eN+1, that is, yτ,N+1 =
(xtest, ztest, ytarget). This objective is optimized using minibatch stochastic gradient descent. At each
iteration, we sample a batch of training tasks and update the parameters θ by taking a gradient step
on the empirical loss. We denote the optimal parameters after training by θ∗.

Following Garg et al. (2022); Von Oswald et al. (2023), we generate data for each task using a teacher
model with parameters Wτ ∼ N (0, I). For each task, we sample inputs xτ,i ∼ U(−1, 1)nI and
construct targets through the task-specific teacher, yτ,i = W 1

τ x
1
τ,i +W 2

τ x
2
τ,i. In our experiments, for

the synthetic data, we set N = nI = 10, nI is the feather size, the output dimension is set to 1. In
our experiments, we investigate the effect of varying the document size k ∈ {2, 5, 10, 25}.
Unlike RAG with the linear projection retriever, where the document is explicitly included in the
input as ei = (xi,D, yi) and the model can acquire the ability to select relevant documents during
pre-training, in the dot-product retriever setting, the document cannot be directly concatenated into the
input, instead, we inject the document knowledge into the key and value matrices of the Transformer:

K =

[
Kctx
hd

]
, V =

[
Vctx
hd

]
, where Kctx and Vctx denote the contextual key and value representations.

Given a document set D = {d1, d2, . . . , dn}, the mapping function f(.) projects D into the same
dimensional space as the input data x in a batch size B, yielding hd = f(D) ∈ RB×dim(x).

Prediction using a trained transformer When given a new task τ that is not included in the
training set, in the testing progress, the query token is constructed by concatenating the test input,
auxiliary representation, a zero vector for the target, yielding e∗N+1 = (x∗

test, z
∗
test, 0). The prediction

of the attention-based model is given by ŷθ∗(xtest) = ŷθ∗
(
{e∗τ,1, . . . , e∗τ,N}, e∗τ,N+1

)
which depends

on all tokens and the model parameters θ∗, learned during the training process. The output is read
from the y-component of the updated (N + 1)-th token. So, the output is ŷθ∗(xtest).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 2500 5000 7500
Training steps

1.0

1.1

1.2

1.3

Lo
ss

RAG
Trained TF

0 2500 5000 7500
Training steps

0.0

0.5

1.0

1.5

2.0

0.0

Lo
ss

Partial diff
Preds diff
Partial diff
Preds diff

0.0
0.2
0.4
0.6
0.8
1.0

Co
sin

e
sim

Partial cosinePartial cosine

0 2500 5000 7500
Training steps

0.6

0.7

0.8

0.9

Lo
ss

RAG
Trained TF

0 2500 5000 7500
Training steps

0.0

0.5

1.0

1.5

2.0

0.0

Lo
ss

Partial diff
Preds diff
Partial diff
Preds diff

0.0
0.2
0.4
0.6
0.8
1.0

Co
sin

e
sim

Partial cosinePartial cosine

Figure 1: Comparison of one-step training of the linear RAG model with a trained single linear
self-attention (LSA) layer. Outer left: The loss of the trained LSA layer matches that of the RAG
model trained via gradient descent. Center left: After training, the RAG model and the LSA-based
model exhibit near-perfect alignment, as measured by cosine similarity and ℓ2 distance between both
models and their predictions. Center right and Outer right Results for the linear projection layer,
whereas Outer left and Center left correspond to the dot-product layer, both evaluated under the same
evaluation metrics.

2 5 10 25
Num document

2

4

6

8

10

Lo
ss

RAG
Trained TF

2 5 10 25
Num document

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

RAG
Trained TF

0.5 1 1.5 2
where x U(,)

0

250

500

750

1000

Lo
ss

RAG
Trained TF

0.5 1 1.5 2
where x U(,)

0

200

400

600

800

1000

Lo
ss

RAG
Trained TF

Figure 2: Comparing one step of RAG training with a trained single self-attention layer across
different document counts and scaling factors, we observe that the trained LSA layer, gradient
descent, and their interpolation yield nearly identical losses (in log scale) even when the test data
distribution differs from training, i.e., at a scale of 1. Outer left: Loss comparison between RAG and
the trained Transformer for varying document numbers under a linear projection retriever. Center left:
Loss comparison between RAG and the trained Transformer for varying document numbers under a
dot product retriever.

Prediction using RAG training In equation 8, by defining distinct weight matrices W1 and W2

within WV and combining them with the projection matrices WK and WQ, we construct weighted
interaction terms over the context input {e∗τ,1, . . . , e∗τ,N} and test point e∗τ,N+1. This update rule
yields a output ŷθ,rag(xtest), that is determined by the joint effect of these weight matrices, thereby
enabling controlled variation in the model output. For the RAG framework with a linear projection
retriever, we obtain the controlled model output ŷθ,rag(xtest) by initializing different weight matrices
W1 and W2 within the projection layers WK ,WQ, and WV in equation 8. Following Von Oswald
et al. (2023), we initialize the weight matrices W1 and W2 as zero matrices. In the RAG with
dot product retriever, W2 = Wz

(∑n
i=1 did

⊤
i

)
M⊤, we initialize all parameters from a zero-mean

Gaussian distribution with variance σ2. Specifically, Wz ∈ Rdy×dd , M ∈ Rdd×dd , are sampled
independently as Wz, M ∼ N (0, σ2), C ∼ U

(
− 1

2 ,
1
2

)k×dd , k is the number of documents.
The document covariance matrix is then constructed as

∑k
i=1 did

⊤
i ∈ Rdd×dd and we define

W2 = WzCM⊤ ∈ Rdy×dq . For this control model, we determine the optimal learning rate η by
minimizing L(η) over a training set of 104 tasks using line search.

Evaluation More concretely, to compare trained and constructed LSA layers, Same as
Von Oswald et al. (2023) we sample Tval = 104 validation tasks and record the fol-
lowing quantities, averaged over validation tasks: 1)The difference in predictions, mea-
sured with the L2 norm, ∥ŷθ(xτ,test)− ŷθ,rag(xτ,test)∥ 2)The cosine similarity between the
sensitivities ∂ŷθ,rag(xτ,test)

∂xtest
and ∂ŷθ(xτ,test)

∂xtest
. 3) Their difference, according to the L2 norm,∥∥∥∂ŷθ,rag(xτ,test)

∂xtest
− ∂ŷθ(xτ,test)

∂xtest

∥∥∥.

Results 1) We show the results of these comparisons in Figure 1. We find an excellent agreement
between the RAG with two types of retrievers and the trained self-attention layer. Beyond the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

in-distribution setting, we further analyze the behavior of RAG training under out-of-distribution
(OOD) conditions as well as with different numbers of retrieved documents. Specifically, we evaluate
whether the trained self-attention layer continues to align with RAG when the test distribution
deviates from training (i.e., out of scale), and when the number of retrieved documents varies. These
analyses demonstrate the robustness of the correspondence: the trained Transformer, RAG, and
their interpolation exhibit nearly identical loss trends even in OOD scenarios and across varying
retrieval sizes. 2) To evaluate whether the in-context learner captures a generalizable update rule, we
examine the training behavior of RAG with two types of retrievers and a trained linear self-attention
(LSA) layer, under a setting where the testing data distribution differs from that of the training data.
Specifically, we measure the loss under sampling the input query from U(−α, α)nI with varying
α, in this work, we set the α = 0.5, 1, 1.5, 2 for the testing data. During training, we fix α = 1,
while at test time we alter its value to probe robustness. In both cases, the single-layer transformer
closely matches the RAG training even outside of the training regime, as illustrated in Figure 2.
3) As illustrated in Figure 2, We compare the loss of RAG training with gradient descent and the
trained Transformer under varying retrieval sizes. in this work, we set the number of document are
n = 2, 5, 10, 25 With a linear projection retriever, the loss increases significantly as the number of
retrieved documents grows, although the trained Transformer continues to follow gradient descent
closely. In contrast, with a dense retriever, where documents are directly embedded into the weight
matrix W , the loss remains largely unaffected by the retrieval size. This not only demonstrates a
closer alignment between RAG and the Transformer, but also highlights that the dot product retriever
provides faster computation than the linear projection retriever, as no additional projection step is
required.

Multiple-step training of RAG In this section, we explore the deep linear self-attention Trans-
formers. The framework established in our defined proposition naturally extends to K stacked layers.
In this setting, the final prediction is again determined from the y-coordinate of the last test token.
Specifically, after K updates we obtain

yN+1 +

K∑
k=1

∆yk,N+1 = yN+1 +

K∑
k=1

(W 1
kx

1
N+1 +W 2

kx
2
N+1), (10)

where yk,N+1 denotes the value of the test token at layer k, and ∆yk,N+1 represents the increment in
the y-coordinate after the k-th self-attention update. The term Wk corresponds to the implicit change
in the underlying linear model parameters W induced by the k-th attention step. To investigate the
impact of increasing model depth, we consider the simplest extension beyond a single self-attention
layer: a two-layer LSA model with shared parameters. In this setting, the same layer is applied
multiple times, effectively reusing identical weights across iterations. This design can be viewed as
learning an iterative procedure, where the model refines its representation by repeatedly applying the
same transformation. In addition, we configure retrieval pools of different sizes for the two retriever
variants, enabling a direct comparison of their behavior under varying retrieval capacities.

As shown in Figure 3, we present the experimental results of RAG with a dot-product retriever. The
loss differences between the trained Transformer and RAG remain closely aligned across different
document numbers, and the prediction differences also converge to similar values. We further
observe that the number of retrieved documents affects the degree of equivalence: with two layers,
the prediction difference at Docs=2 is smaller than at Docs=25. This gap, however, becomes less
pronounced as the model depth increases, for instance, at five layers the discrepancy is considerably
reduced. For further analysis of RAG with a linear-projection retriever, please refer to Appendix B.

4 NORMALIZATION FOR MITIGATING DISTRIBUTIONAL SHIFTS IN ICL

It is not reasonable to assume that training a RAG model is equivalent to in-context learning (ICL) in
linear Transformers when restricted to linear models and synthetic datasets. So, we extend the setting
by introducing MLP layers after the input embedding in the Transformer, thereby incorporating
nonlinearity into the generator. In this section, we mainly focus on RAG with a dot-product retriever
and analyze the performance differences between ICL and trainable RAG models.

For our empirical evaluation, we employed four publicly available real-world datasets for regression
tasks: California Housing, Bike Sharing, Wine Quality, and Predict Calorie Expenditure (sourced

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 2500 5000 7500
Training steps

0.0

0.2

0.4

0.6

lo
ss

Docs=2
Docs=5
Docs=10
Docs=25

0 2500 5000 7500
Training steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

Docs=2
Docs=5
Docs=10
Docs=25

0 2500 5000 7500
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 d

iff

Docs=2
Docs=5
Docs=10
Docs=25

0 2500 5000 7500
Training steps

0.2

0.4

0.6

0.8

Pr
ed

s d
iff

Docs=2
Docs=5
Docs=10
Docs=25

0 2500 5000 7500
Training steps

0.0

0.2

0.4

0.6

lo
ss

Docs=2
Docs=5
Docs=10
Docs=25

0 2500 5000 7500
Training steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

Docs=2
Docs=5
Docs=10
Docs=25

0 2500 5000 7500
Training steps

0.0

0.5

1.0

1.5

2.0

M
od

el
 d

iff

Docs=2
Docs=5
Docs=10
Docs=25

0 2500 5000 7500
Training steps

0.2

0.4

0.6

0.8

1.0

Pr
ed

s d
iff

Docs=2
Docs=5
Docs=10
Docs=25

Figure 3: Comparison across layers with varying numbers of documents for the dot product retriever.
The first row corresponds to models with 2 layers, and the second row corresponds to models with
5 layers. Each column reports a different evaluation metric: (a) loss difference between the trained
Transformer and RAG, (b) cosine similarity, (c) model difference, and (d) prediction difference.

from Kaggle). A detailed description of each dataset is provided in Appendix F. To examine the
effect of feature scaling, we applied four normalization techniques: Z-score normalization (Bishop
& Nasrabadi, 2006), Min–Max normalization (Bishop & Nasrabadi, 2006), Rank-based normaliza-
tion (Conover, 1999), and Tanh normalization (Maaten & Hinton, 2008). In our experimental setup,
the training set was used as the retrieval corpus. The retrieval corpus was normalized using Z-score
normalization, while the input data were separately normalized under each of the four normalization
schemes for comparison across retrievers.

As shown in Figure 4. In the Bike Sharing dataset, applying Min–Max normalization yields perfor-
mance for the trained Transformer that closely matches that of RAG. In real-world datasets, feature
distributions are often bounded and non-Gaussian, making Z-score normalization less effective.
Min–Max scaling, by contrast, uniformly maps all features into the [0,1] range, ensuring consistent
magnitudes across dimensions. This property stabilizes dot-product retrieval in RAG and leads to
closer alignment with ICL behavior. However, for highly skewed and long-tailed features in the
California Housing dataset (e.g., population, income), the majority of samples are compressed into
a very narrow interval, while a few outliers dominate the upper bound. This imbalance causes the
model to distribute weights unevenly across feature dimensions during training. Our evaluation matri-
ces (prediction difference, cosine similarity, and model difference) further confirm that Min–Max
normalization introduces instability on such skewed datasets. In particular, cosine similarity decreases
and model difference increases as training progresses, indicating that feature scaling directly impacts
the alignment between ICL and RAG dynamics. For additional analyses on Predict Calorie and Wine
Quality, please refer to Appendix Figure 6.

5 RELATED WORK

Retrieval-augmented generation (RAG) has been extensively studied to enhance language models with
external knowledge (Li et al., 2024a; Lewis et al., 2020; Guu et al., 2020; Li & Huang, 2023; Li et al.,
2025). Most existing approaches rely on training or fine-tuning both the retriever and generator to
effectively integrate retrieved information into downstream tasks. For instance, KIEST (Li & Huang,
2023) dynamically injects entity and attribute knowledge from a knowledge graph during generation,
while Li et al. (2025) leveraged feedback from the model’s outputs to reward the retriever, thereby
improving the relevance of retrieved documents. However, fine-tuning the retriever or predictor
requires substantial computational resources. In contrast, in-context learning (ICL) enables models to
acquire task-specific behavior from only a few demonstrations, without parameter updates. To better
understand this potential, recent research has investigated the underlying mechanism of ICL. Prior

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2000 4000
Training steps

0.0

0.2

0.4

0.6

lo
ss

Z-Score
Min-Max
Rank
Tanh

0 2000 4000
Training steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

Z-Score
Min-Max
Rank
Tanh

0 2000 4000 6000 8000
Training steps

0.2

0.3

0.4

0.5

0.6

M
od

el
 d

iff

Z-Score
Min-Max
Rank
Tanh

0 2500 5000 7500
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

s d
iff

Z-Score
Min-Max
Rank
Tanh

0 2000 4000
Training steps

0.0

0.2

0.4

0.6

lo
ss

Z-Score
Min-Max
Rank
Tanh

0 2000 4000
Training steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

Z-Score
Min-Max
Rank
Tanh

0 2000 4000 6000 8000
Training steps

5

10

15

20

M
od

el
 d

iff

Z-Score
Min-Max
Rank
Tanh

0 2500 5000 7500
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

s d
iff

Z-Score
Min-Max
Rank
Tanh

Figure 4: The first row reports the evaluation results for the Bike Sharing dataset across four
different normalization methods, using evaluation metrics including the loss difference with the
trained Transformer, the training loss of RAG, cosine similarity, model discrepancy, and prediction
difference. The second row presents the corresponding results for the California Housing dataset,
obtained under the same evaluation protocol.

research has shown that Transformers, particularly linear attention models, can implicitly perform
gradient-descent-like updates on in-context data during forward inference Vladymyrov et al. (2024);
Zhang et al. (2025b); Von Oswald et al. (2023). Other works have explained the ICL with transformer
from the perspective of kernel functions Shen et al. (2025); Ren & Liu (2024), showing that the
attention operation can be interpreted as an instance of kernel regression, where queries and keys
define feature mappings and the value computation corresponds to regression. Building on these
findings, our work takes a step further by investigating whether ICL can reproduce the RAG training.
This perspective not only provides theoretical and empirical evidence for the equivalence between
ICL and RAG, but also lays the groundwork for accelerating RAG training: by leveraging ICL,
models can internalize retrieval-based learning within forward computation, thereby reducing the
need for resource-intensive retriever–generator co-training.

6 CONCLUSION

Training both the retriever and generator in RAG is often computationally intensive, leading to a
trade-off between effectiveness and efficiency. In this paper, we investigate the potential of leveraging
in-context learning (ICL) as an alternative mechanism within RAG. We first provided a mathematical
perspective on the relationship between in-context learning (ICL) and retrieval-augmented generation
(RAG). By constructing an explicit equivalence between linear self-attention Transformers and RAG
training under regression tasks, we demonstrated that Transformers trained through gradient descent
can effectively simulate RAG behavior. Furthermore, we showed that incorporating deeper layers
enables Transformers to refine optimization dynamics. Our empirical analysis highlighted that the
distributional properties of real-world datasets critically affect this equivalence, with normalization
techniques serving as an effective strategy to stabilize training and improve generalization. Our
findings bridge theoretical understanding and empirical evidence, suggesting that ICL can serve as
a principled mechanism for optimizing RAG while also motivating future directions in designing
retrieval-augmented models that are robust, efficient, and accurate.

7 ETHICS STATEMENT

This work is primarily theoretical and empirical in nature, focusing on the connection between
in-context learning and retrieval-augmented generation. All datasets used in our experiments are
publicly available benchmark datasets (California Housing, Bike Sharing, Wine Quality, and Predict

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Calorie Expenditure from Kaggle) that do not contain personally identifiable or sensitive information.
Our findings may contribute to more efficient training of retrieval-augmented models, which could
reduce computational costs and environmental impact.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All datasets used in this work are
publicly available: California Housing and Wine Quality from the Kaggle, Bike Sharing from the
Kaggle, and Predict Calorie Expenditure from Kaggle. We provide details of the preprocessing steps
and dataset splits in Appendix F.

Our models are implemented in JAX and PyTorch, and training configurations (learning rate, batch
size, optimizer, number of steps, and model hyperparameters) are documented in the provided training
scripts. All experiments were conducted on NVIDIA A100 GPUs.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

William Jay Conover. Practical nonparametric statistics. john wiley & sons, 1999.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in neural information processing
systems, 35:30583–30598, 2022.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can
looped transformers learn to implement multi-step gradient descent for in-context learning? arXiv
preprint arXiv:2410.08292, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Jiatan Huang, Mingchen Li, Zonghai Yao, Zhichao Yang, Yongkang Xiao, Feiyun Ouyang, Xiaohan
Li, Shuo Han, and Hong Yu. Ritek: A dataset for large language models complex reasoning over
textual knowledge graphs. arXiv preprint arXiv:2410.13987, 2024.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Mingchen Li and Lifu Huang. Understand the dynamic world: An end-to-end knowledge informed
framework for open domain entity state tracking. Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2023.

Mingchen Li and Shihao Ji. Semantic structure based query graph prediction for question answering
over knowledge graph. arXiv preprint arXiv:2204.10194, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mingchen Li, Chen Ling, Rui Zhang, and Liang Zhao. A condensed transition graph framework for
zero-shot link prediction with large language models. arXiv preprint arXiv:2402.10779, 2024a.

Mingchen Li, Chen Ling, Rui Zhang, and Liang Zhao. Zero-shot link prediction in knowledge graphs
with large language models. In 2024 IEEE International Conference on Data Mining (ICDM), pp.
753–760. IEEE, 2024b.

Mingchen Li, Zaifu Zhan, Han Yang, Yongkang Xiao, Jiatan Huang, and Rui Zhang. Benchmarking
retrieval-augmented large language models in biomedical nlp: Application, robustness, and self-
awareness. arXiv preprint arXiv:2405.08151, 2024c.

Mingchen Li, Huixue Zhou, Han Yang, and Rui Zhang. Rt: a retrieving and chain-of-thought
framework for few-shot medical named entity recognition. Journal of the American Medical
Informatics Association, 31(9):1929–1938, 2024d.

Mingchen Li, Halil Kilicoglu, Hua Xu, and Rui Zhang. Biomedrag: A retrieval augmented large
language model for biomedicine. Journal of Biomedical Informatics, 162:104769, 2025.

Mufei Li, Siqi Miao, and Pan Li. Simple is effective: The roles of graphs and large language models
in knowledge-graph-based retrieval-augmented generation. arXiv preprint arXiv:2410.20724,
2024e.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar. Few-shot fine-
tuning vs. in-context learning: A fair comparison and evaluation. arXiv preprint arXiv:2305.16938,
2023.

Ruifeng Ren and Yong Liu. Towards understanding how transformers learn in-context through a
representation learning lens. Advances in Neural Information Processing Systems, 37:892–933,
2024.

Zhaiming Shen, Alexander Hsu, Rongjie Lai, and Wenjing Liao. Understanding in-context learning
on structured manifolds: Bridging attention to kernel methods. arXiv preprint arXiv:2506.10959,
2025.

Max Vladymyrov, Johannes Von Oswald, Mark Sandler, and Rong Ge. Linear transformers are
versatile in-context learners. Advances in Neural Information Processing Systems, 37:48784–48809,
2024.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Fan Wang, Chuan Lin, Yang Cao, and Yu Kang. Benchmarking general-purpose in-context learning.
arXiv preprint arXiv:2405.17234, 2024.

Rui Xie, Jia Wen, Andrew Quitadamo, Jianlin Cheng, and Xinghua Shi. A deep auto-encoder model
for gene expression prediction. BMC genomics, 18(Suppl 9):845, 2017.

Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, Zheng Yuan, Huachi Zhou, Zijin Hong, Hao Chen,
Yilin Xiao, Chuang Zhou, Yi Chang, et al. A survey of graph retrieval-augmented generation for
customized large language models. arXiv preprint arXiv:2501.13958, 2025a.

Yedi Zhang, Aaditya K Singh, Peter E Latham, and Andrew Saxe. Training dynamics of in-context
learning in linear attention. arXiv preprint arXiv:2501.16265, 2025b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

0 20000 40000
Training steps

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Docs=2
Docs=5
Docs=10
Docs=15

0 20000 40000
Training steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

Docs=2
Docs=5
Docs=10
Docs=15

0 20000 40000
Training steps

0.5

1.0

1.5

2.0

2.5

3.0

M
od

el
 d

iff

Docs=2
Docs=5
Docs=10
Docs=15

0 5000 10000
Training steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ed

s d
iff

Docs=2
Docs=5
Docs=10
Docs=15

0 20000 40000
Training steps

0.0

0.2

0.4

0.6

Lo
ss

Docs=2
Docs=5
Docs=10
Docs=15

0 20000 40000
Training steps

0.80

0.85

0.90

0.95

1.00

Co
sin

e
sim

Docs=2
Docs=5
Docs=10
Docs=15

0 20000 40000
Training steps

0.5

1.0

1.5

2.0

2.5

3.0

M
od

el
 d

iff

Docs=2
Docs=5
Docs=10
Docs=15

0 5000 10000
Training steps

0.0

0.2

0.4

0.6

Pr
ed

s d
iff

Docs=2
Docs=5
Docs=10
Docs=15

Figure 5: Comparison across layers with varying numbers of documents for the linear projection
retriever. The first row corresponds to Layer 2, and the second row corresponds to Layer 5. Each
column reports a different evaluation metric: (a) the loss difference between the trained Transformer
and RAG, (b) cosine similarity, (c) model difference, and (d) prediction difference.

A APPENDIX

A.1 USE OF LLM

Large language models (LLMs) were only used to assist with language polishing and minor gram-
matical editing of this manuscript.

B RAG WITH A NON-LINEAR RETRIEVER ACROSS DIFFERENT LAYERS

In the dot-product retriever, the retrieved documents are projected to the same dimensionality as
the query and injected into the key–value matrices. This preserves a linear structure in the attention
update, making the behavior of RAG closely approximate gradient descent. In contrast, with nonlinear
retrievers, the documents are directly concatenated with the input tokens and processed through
additional nonlinear layers. This alters the feature space and introduces strong interactions between
queries and documents, which accumulate as the number of documents increases, thereby amplifying
the discrepancy between ICL and RAG.

Unlike the main analysis with a dot-product retriever, where we reported results for 2, 5, 10, and 25
documents to establish equivalence, in the nonlinear retriever setting we only evaluated 2, 5, 10, and
15 documents. This choice was made because the computational cost grows substantially with larger
retrieval sizes, and the divergence from ICL is already evident by 15 documents. We therefore omit
25 document experiments, as the trend is clear without them.

C MODEL PERFORMANCES ON CALORIE EXPENDITURE AND WINE QUALITY

In the Predict Calorie, we also see the equivalent of the ICL and training of RAG. In the Wine Quality
dataset, Min–Max normalization amplifies the influence of outliers, causing most samples to be
compressed near zero while a few dominate the scaling. This imbalance not only reduces cosine
similarity, as sensitivity vectors diverge from gradient descent, but also increases fluctuations in
prediction difference, reflecting instability in the alignment between RAG and ICL dynamics.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 2000 4000
Training steps

0.00

0.02

0.04

0.06

0.08

0.10

lo
ss

Z-Score
Min-Max
Rank
Tanh

0 2000 4000
Training steps

0.80

0.85

0.90

0.95

1.00

Co
sin

e
sim

Z-Score
Min-Max
Rank
Tanh

0 2000 4000 6000 8000
Training steps

0.2

0.3

0.4

0.5

M
od

el
 d

iff

Z-Score
Min-Max
Rank
Tanh

0 2000 4000 6000
Training steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ed

s d
iff

Z-Score
Min-Max
Rank
Tanh

0 2000 4000
Training steps

0.15

0.10

0.05

0.00

0.05

0.10

lo
ss

Z-Score
Min-Max
Rank
Tanh

0 1000 2000 3000 4000
Training steps

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

Z-Score
Min-Max
Rank
Tanh

0 2000 4000 6000 8000
Training steps

0.3

0.4

0.5

0.6

0.7

0.8

M
od

el
 d

iff

Z-Score
Min-Max
Rank
Tanh

0 2000 4000 6000
Training steps

0.1

0.2

0.3

0.4

0.5

Pr
ed

s d
iff

Z-Score
Min-Max
Rank
Tanh

Figure 6: The first row reports the evaluation results for the Predict Calorie Expenditure dataset
across four different normalization methods, using evaluation metrics including the loss difference
with the trained Transformer, the training loss of RAG, cosine similarity, model discrepancy, and
prediction difference. The second row presents the corresponding results for the Wine Quality dataset,
obtained under the same evaluation protocol.

D RETRIEVER

Main function

y = (Wq,Wz)

[
xq∑n

i=1(Wexq)
⊤(Wedi) di

]
= Wqxq +Wz

n∑
i=1

(Wexq)
⊤(Wedi) di. (1)

Define M and rewrite the similarity.
M ≜ W⊤

e We ⇒ (Wexq)
⊤(Wedi) = x⊤

q W
⊤
e Wedi = x⊤

q Mdi. (2)
Hence,

y = Wqxq +Wz

n∑
i=1

(x⊤
q Mdi) di. (3)

Converting “scalar × vector” into “matrix × vector.” Note that x⊤
q Mdi is a scalar, and the

following identity holds:

(x⊤
q Mdi) di = di(d

⊤
i M

⊤xq) = (did
⊤
i)M

⊤xq. (4)
Therefore,

n∑
i=1

(x⊤
q Mdi) di =

n∑
i=1

(did
⊤
i)M

⊤xq =
(n∑

i=1

did
⊤
i

)
M⊤xq. (5)

Define the document second-moment matrix D.

D ≜
n∑

i=1

did
⊤
i ⇒

n∑
i=1

(x⊤
q Mdi) di = DM⊤xq. (6)

Substituting back into y.
y = Wqxq +WzDM⊤xq. (7)

Then M = W⊤
e We is symmetric, i.e., M⊤ = M . Thus the expression simplifies to

y = Wqxq +WzDMxq. (8)

The right-hand side is grouped into an equivalent linear mapping:
y = (Wq +WzDM)xq. (9)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

E DETAILS IN PROOF 1

Given a 1-head linear attention layer and tokens ej = (x1
j , x

2
j , yj) for j = 1, . . . , N , we can

construct special key, query, and value matrices WK ,WQ,WV , together with a projection matrix
P , such that a Transformer update on each token ej is equivalent to the training progress of the
above RAG optimization. More specifically, ej ← (xj

1, x
j
2, y

j) + (0,−∆W1xj ,−∆W2xj) =

(xj
1, x

j
2, y

j) + PV K⊤qj ,

In the training of RAG, we model the updated prediction y′ as a combination of the original prediction
and the change induced by weight updates. Specifically, the difference y′ − y reflects how the
parameter shifts ∆W1 and ∆W2 affect the output through their interaction With input features x1

and x2.

y′ = W ′
1x1 +W ′

2x2 (10)
= (W1 +∆W1)x1 + (W2 +∆W2)x2 (11)
= W1x1 +∆W1x1 +W2x2 +∆W2x2 (12)
= y1 +∆W1x1 + y2 +∆W2x2 (13)

The loss function and the one step of gradient descent on L With learning rate η yields The Weight
change is defined as:

L(W1,W2) =
1

2N

N∑
i=1

(
W1x

i
1 +W2x

i
2 − yi

)2
(14)

∆W1 = −η∇W1L(W1) = − η

N

N∑
i=1

(
W1x

i
1 +W2x

i
2 − yi

)
· xi

1 (15)

∆W2 = −η∇W2L(W2) = − η

N

N∑
i=1

(
W1x

i
1 +W2x

i
2 − yi

)
· xi

2 (16)

∆y = ∆y1 +∆y2 = ∆W1x1 +∆W2x2 (17)
(18)

Define y:

∆y =

(
− η

N

N∑
i=1

(W1x
i
1 +W2x

i
2 − yi)x

i
1

)
xj
1 +

(
− η

N

N∑
i=1

(W1x
i
1 +W2x

i
2 − yi)x

i
2

)
xj
2 (19)

∆y = −(

(
η

N

N∑
i=1

(W1x
i
1 +W2x

i
2 − yi)x

i
1

)
xj
1 +

(
η

N

N∑
i=1

(W1x
i
1 +W2x

i
2 − yi)x

i
2

)
xj
2) (20)

−∆y = (

(
η

N

N∑
i=1

(W1x
i
1 +W2x

i
2 − yi)x

i
1

)
xj
1 +

(
η

N

N∑
i=1

(W1x
i
1 +W2x

i
2 − yi)x

i
2

)
xj
2) (21)

The update of the target is denoted as:xj
1

xj
2

yj

←
xj

1

xj
2

yj

+

(
0
0
−∆y

)
(22)

(
0
0
−∆y

)
=

(
0
0

−(∆W1x1 +∆W2x2)

)
(23)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(
0
0
−∆y

)
=

η

N

N∑
i=1

 0 0 0
0 0 0

(W1x
i
1 +W2x

i
2 − yi)xi

1 (W1x
i
1 +W2x

i
2 − yi)xi

2 0

xj
1

xj
2
0

 (24)

=
η

N

N∑
i=1

 0
0

(W1x
i
1 +W2x

i
2 − yi)

⊗ (xi
1 xi

2 0
)xj

1

xj
2
0

 (25)

=
η

N

N∑
i=1

(0 0 0
0 0 0

W1 W2 −1

)xi
1

xi
2
y

⊗ (xi
1 xi

2 0
)xj

1

xj
2
0

 (26)

=
η

N

N∑
i=1

(0 0 0
0 0 0

W1 W2 −1

)xi
1

xi
2
y

⊗ (xi
1 xi

2 0
)(1 0 0

0 1 0
0 0 0

)xj
1

xj
2
y

 (27)

=
η

N

N∑
i=1

(0 0 0
0 0 0

W1 W2 −1

)xi
1

xi
2
y

⊗
(1 0 0

0 1 0
0 0 0

)xj
1

xj
2
y

⊤(1 0 0
0 1 0
0 0 0

)xj
1

xj
2
y


(28)

So, the right part in equation 28 is equal to the right part in equation 23.

F THE DETAILS OF THE DATASET

• California Housing: Given eight features — [’MedInc’, ’HouseAge’, ’AveRooms’,
’AveBedrms’, ’Population’, ’AveOccup’, ’Latitude’, ’Longitude’] — the task
is to predict MedHouseVal. The dataset is split into 16,640 training samples and 2,000 test
samples.

• Bike Sharing: Using the features [’season’, ’yr’, ’mnth’, ’hr’, ’holiday’,
’weekday’, ’workingday’, ’weathersit’, ’temp’, ’atemp’, ’hum’,
’windspeed’, ’casual’, ’registered’], the task is to predict count. The dataset
contains 15,641 training samples and 1,738 test samples.

• Wine Quality: Given eleven physicochemical features — [fixed acidity, volatile
acidity, citric acid, residual sugar, chlorides, free sulfur dioxide,
total sulfur dioxide, density, pH, sulphates, alcohol] the task is to predict
the wine quality (a sensory score ranging from 0 to 10). The dataset is split into 4,408
training samples and 490 test samples.

• Predict Calorie Expenditure: Using the features [Gender, Age, Height, Weight,
Duration, Heart_Rate, Body_Temp], the task is to predict the number of Calories
expended. The dataset is split into 13,500 training samples and 1,540 test samples.

15

	Introduction
	Self-attention can emulate the gradient-based training of RAG on a linear regression task
	Self-attention
	Retrieval argumented generation model
	Optimization Objective for Unified RAG
	Training linear RAG with Gradient Descent Is Equivalent to a Linear Self-Attention Layer

	Expressiveness of ICL as gradient descent on retrieval-augmented generation
	Normalization for Mitigating Distributional Shifts in ICL
	Related Work
	Conclusion
	Ethics statement
	Reproducibility Statement
	Appendix
	Use of LLM

	RAG with a non-linear retriever across different layers
	Model performances on Calorie Expenditure and Wine Quality
	Retriever
	Details in Proof 1
	The details of the Dataset

