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ABSTRACT

Currently, it remains unclear whether in-context learning (ICL) can serve as an al-
ternative mechanism for retrieval-augmented generation (RAG), and its underlying
operation is still poorly understood and largely intuitive. In this paper, we propose
that trained Transformers can be viewed as performing retrieval-augmented gen-
eration through gradient descent. We start by proving a weight construction and
showing the equivalence of data transformations induced by linear self-attention-
based Transformer and RAG training on a regression loss. Motivated by this
construction, we empirically demonstrate that, when trained on simple regression
tasks, self-attention-only Transformers exhibit strong similarity to RAG models
trained via gradient descent. This allows us, at least within the scope of regression
problems, to gain a mechanistic understanding of how in-context learning can
be leveraged to optimize RAG. Moreover, we observe that the distribution of the
data critically affects the generalizability of the learned models in the non-linear
setting, so we propose strategies to enhance the robustness of in-context learning
(ICL) against distributional variability encountered in practice. Among these, we
explore normalization techniques as one representative approach, showing that they
can effectively improve both stability during training and generalization across
domains.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress across a wide range of natural
language processing (NLP) tasks, including link prediction, question answering, text classifica-
tion, and text generation (Li & Ji, [2022; |Achiam et al.| [2023} |Li et al., |2024b; |Guo et al., [2025]).
However, it is challenging for LLMs to incorporate newly emerging knowledge beyond their static
pre-training data. To address this, retrieval-augmented generation (RAG) has emerged as an effective
solution (Lewis et al., [2020; |L1 et al.| 2025)), enabling LLMs to retrieve relevant information from
external corpora, thereby enhancing performance on downstream tasks.

There are three approaches to investigating the retrieval-augmented generation (RAG) capabilities
of attention-based generative models. The first is that zero-shot learning (ZSL) methods (Huang
et al.}2024) enable the retriever to identify relevant documents and supply them, together with the
input sentences, to the predictor model, where both the retriever and predictor remain frozen. While
this approach is computationally efficient, it struggles with personalization, as it fails to incorporate
specific user behaviors or preferences. For the second, fine-tuning methods (L1 et al., [2024¢e; |Zhang
et al.,|2025a)) adapt the trainable retriever and predictor, while this approach can improve performance,
it requires substantial computational resources for retraining. Recently, in-context learning (ICL) has
been leveraged in retrievers and generators by conditioning a number of input—output examples (L1
et al.,[2024d), thereby eliminating the need for additional parameter updates or task-specific training.
Compared with fine-tuning, this approach can substantially reduce computational overhead and
time consumption. Despite the efficiency advantages of applying ICL in RAG, no prior work has
systematically investigated, either theoretically or empirically, whether ICL can achieve accuracy
comparable to jointly fine-tuning the retriever and generator in RAG. In this work, we address this
gap by analyzing whether ICL can serve as an alternative to explicit training in RAG systems, with
the goal of achieving a better balance between efficiency and accuracy.
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To address this objective, we identify two major gaps: 1) A growing body of work has investigated
how Transformers can approximate fine-tuning through gradient descent, viewing it as a mechanism
for ICL. For instance, studies such as (Von Oswald et al., 2023} |Gatmiry et al., 2024; Mahankali
et al.| 2023) demonstrate that models can learn to perform preconditioned gradient descent on input
examples, with explicit weights converging toward the global minimum. More recent research
(Shen et al., |2025; Ren & Liu, 2024)) examines ICL from the perspective of kernel functions, by
reformulating the attention layer as a linear kernel mapping. These studies have achieved substantial
theoretical progress in characterizing the mechanisms underlying ICL and have shown that, despite
being confined to linear regression settings, they can nonetheless capture key behaviors observed in
nonlinear architectures, thereby serving as a convincing proxy for understanding ICL in nonlinear.
Nevertheless, these studies have primarily considered ICL as generators, and, to the best of our
knowledge, no theoretical analysis has explored ICL in the joint setting of trainable retrievers and
generators. 2) Current studies mainly benchmark the performance of different trainable RAG models,
for example, |Li et al.| (2024c) evaluates three retrievers in combination with four different generators.
In contrast, other approaches focus on evaluating the effectiveness of ICL (Wang et al.,[2024; Mosbach
et al.;|2023). For example,[Mosbach et al.| (2023)) evaluates the generalization ability of in-context
learning on in-domain and out-of-domain knowledge. However, no prior work has conducted a
systematic benchmarking or comparative analysis of the performance differences between ICL and
trainable RAG under the unified experimental setting (e.g., using the same dataset).

So, in this paper, we begin by establishing the expressiveness of ICL, showing that trained Transform-
ers can act as a learning algorithm capable of performing both retrieval and generation. Specifically,
We demonstrate that the Transformer (1) formulates a loss function for RAG that depends on the
input question and the documents to be retrieved, and (2) updates its parameters by learning from
the gradient of this loss using the constructed weight values. We provide the theoretical proof for a
Transformer with a single self-attention layer under a linear architecture, and then extend the analysis
to deeper architectures. Finally, we evaluate the expressiveness of ICL as RAG models on four
widely used regression tasks in the nonlinear setting, and provide a systematic comparative analysis
of the performance between ICL and trainable RAG. Our findings reveal that their generalizability
is constrained by the complexity and variability of data distributions. Building on this insight, we
identify the key challenges posed by distributional shifts and propose normalization techniques to
enhance the robustness of ICL in RAG systems. Our contributions are summarized as follows:

* By explicitly constructing the weight matrices, we demonstrate that a linear self-attention
layer performs updates in the form of a weighted sum over input features. This operation is
mathematically equivalent to training a simplified RAG system for joint document selection
and output prediction under a mean squared error objective. Furthermore, we show that
the composition of multiple self-attention layers can iteratively approximate curvature
correction, making the optimization trajectory closely approximate that of conventional
RAG training in terms of convergence properties.

* When optimized on linear regression datasets, self-attention—only Transformers with con-
structed weights can emulate the gradient descent training process of RAG, both on in-
distribution and out-of-distribution validation tasks.

* We extend the analysis of ICL and RAG beyond linear settings and evaluate ICL on four
widely used regression tasks under the non-linear settings. Our results indicate that its
generalizability is substantially limited when the underlying data distribution deviates from
idealized assumptions. To address this limitation, we propose the use of normalization
techniques to mitigate the distributional gaps and enhance robustness.

2 SELF-ATTENTION CAN EMULATE THE GRADIENT-BASED TRAINING OF RAG
ON A LINEAR REGRESSION TASK

In this section, we first introduce the linear self-attention based Transformer, followed by the definition
of the RAG models with two types of retrievers: a linear projection retriever and a dot product retriever,
building on prior work. We then establish the connection between the training RAG and self-attention
by the data transformation. Finally, we present a proposition demonstrating the equivalence between
the training process of RAG and the linear self-attention model.
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2.1 SELF-ATTENTION

To illustrate the connection between in-context learning and the training progress of RAG by gradient
descent, we begin with a multi-head self-attention (SA) block parameterized by 6. Given a sequence

of tokens {eq, ..., en}, the update rule for an element e; can be expressed as
ej < e +SAg(j,{e1,...,en}) =¢; + Z PV, softmax(K}) qn. ), (1)
h

where P,, V},, and K, denote the projection, value, and key matrices for the h-th head, and gy, ; is
the query corresponding to position j. The value matrix is defined as Vj, = [vp, 1, ..., vp,n] With
vh,i = Wh ve;, while the key matrix is K = [kp 1, - .., kn,n] With kp ; = W), ge;. Similarly, the
query vector is computed as g5 ; = W}, ge;. Altogether, the parameters of the SA block are given by
0 = {Pn, Whv, Wh.ic, Wh.o }L, collecting all projection matrices across the H attention heads.
We introduce a key modification to the standard self-attention mechanism by removing the softmax
operation and bias terms. This architecture was also used in previous work (Von Oswald et al., [2023];
Vladymyrov et al., 2024). Based on this motivation, we derive the linear self-attention (LSA) update
rule:

ej < e;+ LSA@(], {61, .. .,eN}) =e; + ZPthKthh»j' )
h

2.2 RETRIEVAL ARGUMENTED GENERATION MODEL

Building upon the reference linear model y(x) = Wz of in-context learning introduced by [Von Os{
wald et al.| (2023), we generalize the formulation to the RAG framework, where we incorporate
two distinct retrieval mechanisms, RAG with linear projection retriever and RAG with dot product
retriever.

RAG with Linear Projection Retriever Inspired by the marginalization mechanism in RAG-
Sequence (Lewis et al.| 2020), where the generator is conditioned on both the query and the retrieved
documents. We incorporate an additional projection matrix Wy in the reference linear model that
operates on a document embedding D = (d;,ds,ds, . . ., dn)T, where each d; corresponds to the em-
bedding of a retrieved document. The projection matrix W, maps each retrieved document embedding
into a k-dimensional representation, which is then combined with the input representation through W .

The resulting model can be expressed as: y = (W, Ws) (Wfd ‘ID> LY = Wlxq+2f:1 W.d;, where

W, 2 WoWg, 27 € Rle, D eRF¥da W, e RIm>xk W) € RWvXda W, € RIvXdm T,
is regarded as the retriever, where the retrieved documents together with the input query z, are used to
predict the final output y. This formulation highlights how retrieval-based features, encoded through
W4, can be integrated with the original input representation z; via linear projection. Let the training
dataset be D = {(z¢, 24, y;)}}¥,, with inputs 2/ € RY= and corresponding labels y; € RNV,

RAG with Dot Product Retriever For the dot product retriever (Karpukhin et al.,2020), given
a query input  and a set of candidate documents {d;}?_,, The linear encoder, represented by
the weight matrix W, is used to compute the embeddings of the query and candidate documents:
x=We(z), d;=W.(d;),to alignour formulation with the reference linear model, we adopt this
design choice following prior work (Xie et al.|[2017)). Subsequently, the input query, together with the
scored documents, is used to generate the final prediction. In the linear case, the attention weight «;
assigned to each document d; is determined by the similarity score between the query and document
embeddings: a; = (W,x,) " (Wed;). Accordingly, the prediction function is defined as,

v =Wy W) (Z?_1<Wexf§T<Wedi> d) = Wata + W2 3_(Werg) T (Wed) i @)

’ i=1

For notational convenience, we define M = WJ W, in the attention weight «;, yielding a; =
x, Md;. Moreover, in equation 3} note that Y (x] Md;)d; = Y1 did] M T xg, let C =
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>oiy did], so the above expression can be simplified as Y7 | (z] Md;)d; = CM " z,. Setting
W =W,CM', we obtain y=Wyxq+W.,CM qu, which leads to the compact formulation below.

y=Wyxy+ Wz, where W =W, <Z dyd] ) MT. (4)

i=1

where z, € R, d; € R4, W, € R *da, W, € Rvxda W, € RIv*da M =W.W, €
Rdaxda O =30 d;d] € Riaxda e Rv,

United RAG with different retrievers In this section, we unify the above linear RAG formulation
as y = Wixy + Waxe, where W; € RNvXNat - 1, € RNv*Ne2 | the matrix T, functions
as a feature selection and weighting operator on the query embedding, allowing the model to
emphasize task-relevant components while suppressing irrelevant ones. In the linear projection
retriever, £1 = 24,22 = D, Wy £ W, Wy. In the dot product retriever, T, = 3 = T4, W =

W. (S0, did] ) M.
2.3  OPTIMIZATION OBJECTIVE FOR UNIFIED RAG

Building on the unified RAG formulation, we now formalize the learning objective by minimizing
the squared error loss:

N
1 7 i
LW, Wa) = o > IWazh + Wazh — uil® (5)

i=1

One step of gradient descent on L with learning rate n yields the following update, where the weight
change is defined as:

=l

@
Il
-

AWy = =V, L(Wy) = — (Wlffli + Wazh — vi) (21)"

(6)
i i iNT
(W1951 + Wy zy — yz) (r3)

==
1=

AWQ = —anzL(Wg) = —

=1

In the transformed targets y; — Ay;, Ay; = Ayt + Ay? = AWiz1 + AWz, Thus, the outcome
of a gradient step can be interpreted as an update to the regression loss. The update of the target y
depends on the input data 2 and AW.

2.4 TRAINING LINEAR RAG WITH GRADIENT DESCENT IS EQUIVALENT TO A LINEAR
SELF-ATTENTION LAYER

We reinterpret the learning RAG in the linear model as a transformation applied directly to the data.
This perspective allows us to draw a connection between RAG and linear self-attention. Specifically,
we describe a construction in which learning occurs simultaneously for all tokens, including the
test token, through updates induced by a linear self-attention layer. In this view, the response to a
query (test) token is transformed from its initial state Wy Ly, Wax2, to the post-update prediction
9= (W1 + AW)zl, + (Wa + AWa)z2,, which corresponds to the result obtained after a single
step of gradient descent.

Lemma (Equivalence). Given a I-head linear attention layer and tokens e; = (x3,x%,y) for
j=1,..., N, we can construct special key, query, and value matrices Wy, Wq, Wy, together with
a projection matrix P, such that a Transformer update on each token e; is equivalent to the training
progress of the above RAG optimization.

Proof. e; + (x],x},97) + (0, —AWyz], —AWazd) = (2], 2},97) + PVK g, the target is
updated according to the weight construction method described below.
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The right side of equation [7] is identical to the right side of equation [§] implying that the RAG
optimization is equivalent to the Transformer update. Where we are provided with NV context tokens
together with an additional query token, indexed by N + 1. Each context token can be written
as e! = (a%,x%,y"), representing one of the N training pairs. The (N + 1)-th token is given by
e; = (7,23,97), ¥ = 0. The model is expected to predict the updated y’ value. Please refer to
Appendix [E|for the detailed mathematical proof. O

3 EXPRESSIVENESS OF ICL AS GRADIENT DESCENT ON
RETRIEVAL-AUGMENTED GENERATION

In this section, we experimentally investigate whether attention-based models are capable of realizing
gradient-based RAG during their forward computation. We incrementally extend our analysis,
beginning with a single linear self-attention layer and extending to multi-layer nonlinear architectures.

Transformer Pre-Training We define each token by concatenating input data, the auxiliary
representation, and the target, e; = (=, 2;,¥;), 1 <1i < N, N is the size of the training data for
each task 7. z; is the document embedding or x;. The training objective is to minimize the expected
squared prediction error across tasks. Formally,

1 B
L(0) = B Z ng({er,i}zj'vzlﬁ eT;N+1) - yT’N+1H2 ©

T=1

where, for each task 7, e; n41 = (Zrest; Zrests 0), Y7, n41 18 the target of en41, that is, y, yy1 =
(Ztest, Ztest: Ytarget)- This objective is optimized using minibatch stochastic gradient descent. At each
iteration, we sample a batch of training tasks and update the parameters 6 by taking a gradient step
on the empirical loss. We denote the optimal parameters after training by 6*.

Following Garg et al.|(2022)); [Von Oswald et al.|(2023)), we generate data for each task using a teacher
model with parameters W, ~ N (0, I). For each task, we sample inputs z,; ~ U(—1,1)" and
construct targets through the task-specific teacher, y, ; = W} xiz + W2 zzl In our experiments, for

the synthetic data, we set N = n; = 10, ny is the feather size, the output dimension is set to 1. In
our experiments, we investigate the effect of varying the document size k € {2, 5, 10, 25}.

Unlike RAG with the linear projection retriever, where the document is explicitly included in the
input as e; = (z;, D, y;) and the model can acquire the ability to select relevant documents during
pre-training, in the dot-product retriever setting, the document cannot be directly concatenated into the
input, instead, we inject the document knowledge into the key and value matrices of the Transformer:
K .
K = [ hzx , V= [‘;LC;X} , where K« and V¢ denote the contextual key and value representations.
Given a document set D = {d;,ds,...,d,}, the mapping function f(.) projects D into the same
dimensional space as the input data « in a batch size B, yielding hy = f(D) € RE*dim(z),

Prediction using a trained transformer When given a new task 7 that is not included in the
training set, in the testing progress, the query token is constructed by concatenating the test input,
auxiliary representation, a zero vector for the target, yielding e, ; = (Z{y, 2iext, 0). The prediction
of the attention-based model is given by Gg (Ziest) = Yo~ ({61,17 ce ej’N}7 ej7N+1) which depends
on all tokens and the model parameters 6*, learned during the training process. The output is read
from the y-component of the updated (/N + 1)-th token. So, the output is g« (Trest)-
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Figure 1: Comparison of one-step training of the linear RAG model with a trained single linear
self-attention (LSA) layer. Outer left: The loss of the trained LSA layer matches that of the RAG
model trained via gradient descent. Center left: After training, the RAG model and the LSA-based
model exhibit near-perfect alignment, as measured by cosine similarity and /5 distance between both
models and their predictions. Center right and Outer right Results for the linear projection layer,
whereas Outer left and Center left correspond to the dot-product layer, both evaluated under the same
evaluation metrics.
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Figure 2: Comparing one step of RAG training with a trained single self-attention layer across
different document counts and scaling factors, we observe that the trained LSA layer, gradient
descent, and their interpolation yield nearly identical losses (in log scale) even when the test data
distribution differs from training, i.e., at a scale of 1. Outer left: Loss comparison between RAG and
the trained Transformer for varying document numbers under a linear projection retriever. Center left:
Loss comparison between RAG and the trained Transformer for varying document numbers under a
dot product retriever.

Prediction using RAG training In equation 8] by defining distinct weight matrices W; and W»
within Wy, and combining them with the projection matrices Wk and W, we construct weighted

*

interaction terms over the context input {e ..., e v} and test point e} ;. This update rule
yields a output §g rae(Ziest), that is determined by the joint effect of these weight matrices, thereby
enabling controlled variation in the model output. For the RAG framework with a linear projection
retriever, we obtain the controlled model output g rag(%esc) by initializing different weight matrices
Wi and W5 within the projection layers Wi, W, and Wy in equation[§] Following [Von Oswald
et al.[ (2023), we initialize the weight matrices W7 and W5 as zero matrices. In the RAG with
dot product retriever, Wo = W, (Z;;l didiT ) M, we initialize all parameters from a zero-mean
Gaussian distribution with variance o2. Specifically, W, € R%*da )M ¢ R94*dd_are sampled

independently as W., M ~ N(0,0?%),C ~ U(-3, %)kde

The document covariance matrix is then constructed as Zle did] € R4a*da and we define
Wy = W.CMT € R%>da, For this control model, we determine the optimal learning rate 7 by
minimizing £(n) over a training set of 10 tasks using line search.

, k is the number of documents.

Evaluation More concretely, to compare trained and constructed LSA layers, Same as
Von Oswald et al| (2023) we sample Ty, = 10* validation tasks and record the fol-
lowing quantities, averaged over validation tasks: 1)The difference in predictions, mea-
sured with the L2 norm, ||96(Zr est) — ¥0,rag(Zrest)|| 2)The cosine similarity between the
aﬁs,rag(wr,mst) age(xr,teu)

sensitivities Do and Do 3) Their difference, according to the L2 norm,
N s
a@e,mg(mr,wst) _ 8@9(11—,@51)
3$te<t O est )

Results 1) We show the results of these comparisons in Figure[I] We find an excellent agreement
between the RAG with two types of retrievers and the trained self-attention layer. Beyond the
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in-distribution setting, we further analyze the behavior of RAG training under out-of-distribution
(OOD) conditions as well as with different numbers of retrieved documents. Specifically, we evaluate
whether the trained self-attention layer continues to align with RAG when the test distribution
deviates from training (i.e., out of scale), and when the number of retrieved documents varies. These
analyses demonstrate the robustness of the correspondence: the trained Transformer, RAG, and
their interpolation exhibit nearly identical loss trends even in OOD scenarios and across varying
retrieval sizes. 2) To evaluate whether the in-context learner captures a generalizable update rule, we
examine the training behavior of RAG with two types of retrievers and a trained linear self-attention
(LSA) layer, under a setting where the testing data distribution differs from that of the training data.
Specifically, we measure the loss under sampling the input query from U (—c, )™ with varying
o, in this work, we set the a = 0.5, 1, 1.5, 2 for the testing data. During training, we fix o = 1,
while at test time we alter its value to probe robustness. In both cases, the single-layer transformer
closely matches the RAG training even outside of the training regime, as illustrated in Figure [2]
3) As illustrated in Figure |2} We compare the loss of RAG training with gradient descent and the
trained Transformer under varying retrieval sizes. in this work, we set the number of document are
n = 2,5,10, 25 With a linear projection retriever, the loss increases significantly as the number of
retrieved documents grows, although the trained Transformer continues to follow gradient descent
closely. In contrast, with a dense retriever, where documents are directly embedded into the weight
matrix W, the loss remains largely unaffected by the retrieval size. This not only demonstrates a
closer alignment between RAG and the Transformer, but also highlights that the dot product retriever
provides faster computation than the linear projection retriever, as no additional projection step is
required.

Multiple-step training of RAG In this section, we explore the deep linear self-attention Trans-
formers. The framework established in our defined proposition naturally extends to K stacked layers.
In this setting, the final prediction is again determined from the y-coordinate of the last test token.
Specifically, after K updates we obtain

K K
UNt1F Y Ay N = un + Y (Wikay + Wik, (10)
k=1 k=1

where yj, n41 denotes the value of the test token at layer k, and Ay, n 41 represents the increment in
the y-coordinate after the k-th self-attention update. The term W}, corresponds to the implicit change
in the underlying linear model parameters W induced by the k-th attention step. To investigate the
impact of increasing model depth, we consider the simplest extension beyond a single self-attention
layer: a two-layer LSA model with shared parameters. In this setting, the same layer is applied
multiple times, effectively reusing identical weights across iterations. This design can be viewed as
learning an iterative procedure, where the model refines its representation by repeatedly applying the
same transformation. In addition, we configure retrieval pools of different sizes for the two retriever
variants, enabling a direct comparison of their behavior under varying retrieval capacities.

As shown in Figure [3] we present the experimental results of RAG with a dot-product retriever. The
loss differences between the trained Transformer and RAG remain closely aligned across different
document numbers, and the prediction differences also converge to similar values. We further
observe that the number of retrieved documents affects the degree of equivalence: with two layers,
the prediction difference at Docs=2 is smaller than at Docs=25. This gap, however, becomes less
pronounced as the model depth increases, for instance, at five layers the discrepancy is considerably
reduced. For further analysis of RAG with a linear-projection retriever, please refer to Appendix B}

4 NORMALIZATION FOR MITIGATING DISTRIBUTIONAL SHIFTS IN ICL

It is not reasonable to assume that training a RAG model is equivalent to in-context learning (ICL) in
linear Transformers when restricted to linear models and synthetic datasets. So, we extend the setting
by introducing MLP layers after the input embedding in the Transformer, thereby incorporating
nonlinearity into the generator. In this section, we mainly focus on RAG with a dot-product retriever
and analyze the performance differences between ICL and trainable RAG models.

For our empirical evaluation, we employed four publicly available real-world datasets for regression
tasks: California Housing, Bike Sharing, Wine Quality, and Predict Calorie Expenditure (sourced
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Figure 3: Comparison across layers with varying numbers of documents for the dot product retriever.
The first row corresponds to models with 2 layers, and the second row corresponds to models with
5 layers. Each column reports a different evaluation metric: (a) loss difference between the trained
Transformer and RAG, (b) cosine similarity, (c) model difference, and (d) prediction difference.

from Kaggle). A detailed description of each dataset is provided in Appendix [F| To examine the
effect of feature scaling, we applied four normalization techniques: Z-score normalization (Bishop
& Nasrabadi, [2006), Min—Max normalization (Bishop & Nasrabadi, |2006), Rank-based normaliza-
tion (Conover, [1999)), and Tanh normalization (Maaten & Hinton, 2008)). In our experimental setup,
the training set was used as the retrieval corpus. The retrieval corpus was normalized using Z-score
normalization, while the input data were separately normalized under each of the four normalization
schemes for comparison across retrievers.

As shown in Figure ] In the Bike Sharing dataset, applying Min—-Max normalization yields perfor-
mance for the trained Transformer that closely matches that of RAG. In real-world datasets, feature
distributions are often bounded and non-Gaussian, making Z-score normalization less effective.
Min-Max scaling, by contrast, uniformly maps all features into the [0,1] range, ensuring consistent
magnitudes across dimensions. This property stabilizes dot-product retrieval in RAG and leads to
closer alignment with ICL behavior. However, for highly skewed and long-tailed features in the
California Housing dataset (e.g., population, income), the majority of samples are compressed into
a very narrow interval, while a few outliers dominate the upper bound. This imbalance causes the
model to distribute weights unevenly across feature dimensions during training. Our evaluation matri-
ces (prediction difference, cosine similarity, and model difference) further confirm that Min—-Max
normalization introduces instability on such skewed datasets. In particular, cosine similarity decreases
and model difference increases as training progresses, indicating that feature scaling directly impacts
the alignment between ICL and RAG dynamics. For additional analyses on Predict Calorie and Wine
Quality, please refer to Appendix Figure[d

5 RELATED WORK

Retrieval-augmented generation (RAG) has been extensively studied to enhance language models with
external knowledge (Li et al.,|2024a; |Lewis et al.,2020; (Guu et al.,[2020; [Li & Huang} 2023} |Li et al.|
2025)). Most existing approaches rely on training or fine-tuning both the retriever and generator to
effectively integrate retrieved information into downstream tasks. For instance, KIEST (Li & Huang,
2023)) dynamically injects entity and attribute knowledge from a knowledge graph during generation,
while |Li et al.| (2025)) leveraged feedback from the model’s outputs to reward the retriever, thereby
improving the relevance of retrieved documents. However, fine-tuning the retriever or predictor
requires substantial computational resources. In contrast, in-context learning (ICL) enables models to
acquire task-specific behavior from only a few demonstrations, without parameter updates. To better
understand this potential, recent research has investigated the underlying mechanism of ICL. Prior
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Figure 4: The first row reports the evaluation results for the Bike Sharing dataset across four
different normalization methods, using evaluation metrics including the loss difference with the
trained Transformer, the training loss of RAG, cosine similarity, model discrepancy, and prediction
difference. The second row presents the corresponding results for the California Housing dataset,
obtained under the same evaluation protocol.

research has shown that Transformers, particularly linear attention models, can implicitly perform
gradient-descent-like updates on in-context data during forward inference |VIadymyrov et al.| (2024));
Zhang et al.|(2025b); [Von Oswald et al.|(2023)). Other works have explained the ICL with transformer
from the perspective of kernel functions |Shen et al.| (2025); [Ren & Liu| (2024), showing that the
attention operation can be interpreted as an instance of kernel regression, where queries and keys
define feature mappings and the value computation corresponds to regression. Building on these
findings, our work takes a step further by investigating whether ICL can reproduce the RAG training.
This perspective not only provides theoretical and empirical evidence for the equivalence between
ICL and RAG, but also lays the groundwork for accelerating RAG training: by leveraging ICL,
models can internalize retrieval-based learning within forward computation, thereby reducing the
need for resource-intensive retriever—generator co-training.

6 CONCLUSION

Training both the retriever and generator in RAG is often computationally intensive, leading to a
trade-off between effectiveness and efficiency. In this paper, we investigate the potential of leveraging
in-context learning (ICL) as an alternative mechanism within RAG. We first provided a mathematical
perspective on the relationship between in-context learning (ICL) and retrieval-augmented generation
(RAG). By constructing an explicit equivalence between linear self-attention Transformers and RAG
training under regression tasks, we demonstrated that Transformers trained through gradient descent
can effectively simulate RAG behavior. Furthermore, we showed that incorporating deeper layers
enables Transformers to refine optimization dynamics. Our empirical analysis highlighted that the
distributional properties of real-world datasets critically affect this equivalence, with normalization
techniques serving as an effective strategy to stabilize training and improve generalization. Our
findings bridge theoretical understanding and empirical evidence, suggesting that ICL can serve as
a principled mechanism for optimizing RAG while also motivating future directions in designing
retrieval-augmented models that are robust, efficient, and accurate.

7 ETHICS STATEMENT

This work is primarily theoretical and empirical in nature, focusing on the connection between
in-context learning and retrieval-augmented generation. All datasets used in our experiments are
publicly available benchmark datasets (California Housing, Bike Sharing, Wine Quality, and Predict
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Calorie Expenditure from Kaggle) that do not contain personally identifiable or sensitive information.
Our findings may contribute to more efficient training of retrieval-augmented models, which could
reduce computational costs and environmental impact.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All datasets used in this work are
publicly available: California Housing and Wine Quality from the Kaggle, Bike Sharing from the
Kaggle, and Predict Calorie Expenditure from Kaggle. We provide details of the preprocessing steps
and dataset splits in Appendix[F

Our models are implemented in JAX and PyTorch, and training configurations (learning rate, batch
size, optimizer, number of steps, and model hyperparameters) are documented in the provided training
scripts. All experiments were conducted on NVIDIA A100 GPUs.
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Figure 5: Comparison across layers with varying numbers of documents for the linear projection
retriever. The first row corresponds to Layer 2, and the second row corresponds to Layer 5. Each
column reports a different evaluation metric: (a) the loss difference between the trained Transformer
and RAG, (b) cosine similarity, (c) model difference, and (d) prediction difference.

A APPENDIX

A.1 USEoOFLLM

Large language models (LLMs) were only used to assist with language polishing and minor gram-
matical editing of this manuscript.

B RAG WITH A NON-LINEAR RETRIEVER ACROSS DIFFERENT LAYERS

In the dot-product retriever, the retrieved documents are projected to the same dimensionality as
the query and injected into the key—value matrices. This preserves a linear structure in the attention
update, making the behavior of RAG closely approximate gradient descent. In contrast, with nonlinear
retrievers, the documents are directly concatenated with the input tokens and processed through
additional nonlinear layers. This alters the feature space and introduces strong interactions between
queries and documents, which accumulate as the number of documents increases, thereby amplifying
the discrepancy between ICL and RAG.

Unlike the main analysis with a dot-product retriever, where we reported results for 2, 5, 10, and 25
documents to establish equivalence, in the nonlinear retriever setting we only evaluated 2, 5, 10, and
15 documents. This choice was made because the computational cost grows substantially with larger
retrieval sizes, and the divergence from ICL is already evident by 15 documents. We therefore omit
25 document experiments, as the trend is clear without them.

C MODEL PERFORMANCES ON CALORIE EXPENDITURE AND WINE QUALITY

In the Predict Calorie, we also see the equivalent of the ICL and training of RAG. In the Wine Quality
dataset, Min—Max normalization amplifies the influence of outliers, causing most samples to be
compressed near zero while a few dominate the scaling. This imbalance not only reduces cosine
similarity, as sensitivity vectors diverge from gradient descent, but also increases fluctuations in
prediction difference, reflecting instability in the alignment between RAG and ICL dynamics.

12
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Figure 6: The first row reports the evaluation results for the Predict Calorie Expenditure dataset
across four different normalization methods, using evaluation metrics including the loss difference
with the trained Transformer, the training loss of RAG, cosine similarity, model discrepancy, and
prediction difference. The second row presents the corresponding results for the Wine Quality dataset,
obtained under the same evaluation protocol.

D RETRIEVER

Main function

v =We W) Z?_l(Wexj;T(Wedi)di] = WaZa Wz;(Wexq) Wedydi (D
Define M and rewrite the similarity.
MEW W, = (Wexy)' (Wedy) =, W, Wed; =z, Md;. )
Hence,
n
y=Wezg+W. Y (x] Md;)d;. 3)

i=1

Converting “scalar x vector” into “matrix x vector.” Note that z:qTM d; is a scalar, and the
following identity holds:

(xg Md;)d; = di(d] M "2q) = (did] )M " . 4)
Therefore,
> (wg Md)di = > (did] )M Tz, = (ZdidZ)M%q. )
=1 i=1 i=1
Define the document second-moment matrix D.
D&Y dd] = ) (¢ Md)d; =DM z,. (6)
i=1 1=1

Substituting back into .
y=Wyxy+W.DM "z, (7)

Then M = W, W, is symmetric, i.e., M " = M. Thus the expression simplifies to
y=Wyxq +W,DMuz,. ®)

The right-hand side is grouped into an equivalent linear mapping:
y=W,+W,DM)z,. )
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E DETAILS IN PROOF 1

Given a 1-head linear attention layer and tokens e; = (acl.m?,yj) for j = 1,...,N, we can
construct special key, query, and value matrices Wy, W, I/f/V, together with a projection matrix
P, such that a Transformer update on each token e; is equivalent to the training progress of the

above RAG optimization. More specifically, e; (2, 23, 47) + (0, —AWhzj, —AWazx;) =
(z],23,97) + PVK q;,

In the training of RAG, we model the updated prediction ¢’ as a combination of the original prediction
and the change induced by weight updates. Specifically, the difference y' — y reflects how the

parameter shifts AW; and AW, affect the output through their interaction With input features 4
and zo.

y' = Wiz + Wizs (10)
= (W1 + AWz + (Wa + AWs) o (1)
= Wix1 + AWiz1 + Wazo + AWsxs (12)
=y + AWizy +yo + AWax, (13)

The loss function and the one step of gradient descent on L With learning rate n yields The Weight
change is defined as:

N
1 ; ; 2
L(Wl, WQ) N Z (Wll‘ll + Wz, — yi) (14)
1=1

AWy = —nVy 1 LW1) = — (Wiz + Wl — y;) - 2 (15)

=|=
M-

1

-
Il

N
n i i i
AWy = =V L(W2) = N ; (Whz| + Wazh —y;) - ah (16)
Ay = Ayl + Ayg = AW1x1 + AWQIQ (17)
(18)

Define y:

==

N N
Ay = < Z(Wlxll + Wozh — yi)m’1> x] + (;\7] (Whiah + Woah — yl)%) 22 (19)

1 =1

=

=l
1=

<
Il
—
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Ay = —( (lr\], (W + Wazh — yi)ﬂ) ] + ( (Whal + Waxh — y¢)$§> z3)  (20)

N N
—Ay = ((Z Z(Wlx‘l + Woalh — yz)x’1> ]+ < (Wit + Woxh — yz)x’2> x3) 21
i=1

=|=

i=1

The update of the target is denoted as:

R IO +<o> )
Y yJ —Ay

0 0

—Ay —(AWla?l + AWQ.’I;Q)
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So, the right part in equation 28 is equal to the right part in equation 23.
F THE DETAILS OF THE DATASET
 California Housing: Given eight features — [’MedInc’, ’HouseAge’, ’AveRooms’,

’AveBedrms’, ’Population’, ’AveOccup’, ’Latitude’, ’Longitude’] — the task
is to predict MedHouseVal. The dataset is split into 16,640 training samples and 2,000 test

samples.

* Bike Sharing: Using the features [’season’, ’yr’, ’mnth’, ’hr’, ’holiday’,
’weekday’, ’workingday’, "weathersit’, "temp’, ’atemp’, “hum’ ,
"windspeed’, ’casual’, ’registered’], the task is to predict count. The dataset

contains 15,641 training samples and 1,738 test samples.

* Wine Quality: Given eleven physicochemical features — [fixed acidity, volatile
acidity, citric acid, residual sugar, chlorides, free sulfur dioxide,
total sulfur dioxide, density, pH, sulphates, alcohol] the task is to predict
the wine quality (a sensory score ranging from 0 to 10). The dataset is split into 4,408
training samples and 490 test samples.

* Predict Calorie Expenditure: Using the features [Gender, Age, Height, Weight,
Duration, Heart_Rate, Body_Templ, the task is to predict the number of Calories
expended. The dataset is split into 13,500 training samples and 1,540 test samples.
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