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Abstract

Traditional methods for 3D object compression operate
only on structural information within the object vertices,
polygons, and textures. These methods are effective at
compression rates up to 10× for standard object sizes but
quickly deteriorate at higher compression rates with tex-
ture artifacts, low-polygon counts, and mesh gaps. In con-
trast, semantic compression ignores structural information
and operates directly on the core concepts to push to ex-
treme levels of compression. In addition, it uses natural
language as its storage format, which makes it natively
human-readable and a natural fit for emerging applications
built around large-scale, collaborative projects within aug-
mented and virtual reality. It deprioritizes structural in-
formation like location, size, and orientation and predicts
the missing information with state-of-the-art deep genera-
tive models. In this work, we construct a pipeline for 3D
semantic compression from public generative models and
explore the quality-compression frontier for 3D object com-
pression. We apply this pipeline to achieve rates as high as
105× for 3D objects taken from the Objaverse dataset and
show that semantic compression can outperform traditional
methods in the important quality-preserving region around
100× compression.

1. Introduction

The growing popularity of augmented and virtual reality
platforms are set to enable near limitless virtual worlds
where users can manipulate an ever-increasing number of
objects. To make this possible, devices will need large re-
sources to store textures, 3D assets, and animations that
must be transferred over the network and stored locally
on device. This requires new methods for compression
and decompression algorithms that can handle the grow-
ing amount of required storage. Semantic compression has
been proposed as a new paradigm for storing extremely
compressed data [20]. It focuses on preserving only the

*Equal contribution

Figure 1. Semantic Compression: Extreme compression requires
primarily storing semantic as opposed to structural information,
such as point clouds, polygons, or frequencies. Semantic com-
pression enables extreme ratios by preserving human-oriented se-
mantics as opposed to structural information or its derivatives. In
particular, the structured semantic compression outperforms tra-
ditional methods in the region around 10 − 100× compression,
beyond which only semantic-based methods can be applied.

human-centric, semantic information in the input by disre-
garding precise, structural information. These semantics are
typically represented with natural language descriptions,
which have co-evolved with human society to efficiently
describe the most important concepts. These descriptions
lead to extremely small representations at the cost of lost
structural information such as pixels or polygons.

The quality-compression tradeoffs are summarized in
Figure 1, which divides the compression landscape into
structural, semantic, and structured semantic regions. Most
traditional methods are found within the structural region,
such as JPEG for images, MPEG for videos, and decimated
meshes for 3D objects. This work, on the other hand, intro-
duces methods for structured semantic compression using
edge maps and pure semantic compression using natural
language. It further claims that optimal compression with
respect to human preferences must transition between the
structural and semantic regions, and that this central region
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Figure 2. Semantic Scaling: As the size of the input grows, with
more objects and more complex objects (higher resolution, denser
point clouds, or more polygons), semantic compression becomes
more efficient. Traditional compression scales linearly with the
input, while semantic compression scales sub-linearly with the
semantic content. The initial memory for the compressed world
model is amortized over many objects.

outperforms traditional structured compression for most ob-
jects.

Overall, semantic compression gives rise to two primary
advantages over traditional compression: orders of mag-
nitude more objects and storage natively within a human-
readable format. This opens up a new set of applications,
from augmented and virtual reality, to direct and private
storage within brain-computer interfaces. It enables shared
virtual worlds with millions of objects that can be collab-
oratively edited by non-experts. Since the storage format
is human-readable, it is portable across many systems and
provides the most general interface to end-users.

Another key advantage is its scalability with input data
size, as shown in Figure 2. Traditional methods scale lin-
early with the input structural data, like resolution or poly-
gon count, while semantic compression scales with the se-
mantic complexity, such as the number of independent con-
cepts in the input. With most data, the semantic complexity
is sub-linear in the input size since most of the structural
resolution is redundant and can be regenerated with trained
models. It also has privacy implications since certain sensi-
tive features can be removed or obfuscated in storage, such
as facial features or other personally identifying informa-
tion.

Despite these advantages, semantic compression comes
with additional challenges, especially related to increased
computations. It shifts the burden from memory and stor-
age to additional computations that are required to regener-
ate 3D objects during decompression. With current technol-

Figure 3. Semantic Factorization: Across most media formats,
the structural and semantic dimensions can be factorized and com-
pressed separately. This stores 3D point clouds or 2D projections
in addition to natural language description.

ogy, this requires large multi-modal language models that
require billions of floating-point operations. Furthermore,
the language model itself can consume a lot of memory,
therefore, semantic compression must be used with tens or
hundreds of objects to amortize this cost over a large num-
ber of stored objects. This, however, fits well with emerging
applications in the metaverse which contain vast numbers of
objects.

In this work, we explore the quality-compression trade-
offs for traditional, structured semantic, and semantic com-
pression of 3D objects, discuss the high-level advantages of
semantic compression, and highlight the current technolog-
ical limitations to guide future work. We summarize our
contributions as follows:
1. Construct the first semantic compression pipeline for

3D objects that outperforms traditional methods in the
region beyond 10× compression in terms of human-
evaluated quality and compression rate.

2. Explore the quality-performance trade-offs of extreme
semantic compression with and without structural infor-
mation for 3D objects.

3. Compare automated metrics with human evaluations for
3D reconstructions and highlight the limitations of F-
Score and CLIP with semantic compression.

2. Background

Traditional compression methods have achieved impressive
compression rates by removing human-imperceptible infor-
mation. These perceptual compression methods, however,
are limited by operating within the structural input space
(e.g., pixels or voxels) or direct transformations of them
(frequencies or polygons). JPEG, for instance, operates

2



Figure 4. 3D Objects: 3D objects are composed of files for the
texture and mesh, where the mesh breaks down into vertices and
polygons between them. The mesh typically dominates the size of
the object.

within the frequency domain and removes the least percep-
tible frequencies according to empirical quantization tables.
Semantic compression instead functions within the seman-
tic domain and maps out directions that minimize the per-
ceptual differences.

It can also be combined with light-weight structural hints
such as sparse point clouds or 2D edge maps to form a hy-
brid structured semantic approach. This approach attempts
to operate on the factorized space of semantic and struc-
tural information and compress them separately, as shown
in Figure 3 for 3D objects. The structural information, as
measured in bits, increases from polygons, to point clouds,
to colored voxels, while the semantic information progres-
sively includes more detailed concepts. These two dimen-
sions, while not being completely orthogonal, align well
with human preferences, preferring structural fidelity for
low compression rates and semantic quality at high com-
pression rates.

2.1. Generative Models

Until the last few years, it was not possible to accu-
rately map out the semantic space in an automated way.
However, recent advances in generative models, especially
transformer-based diffusion models [1, 18, 21] and large
language models [9, 10, 15], have enabled semantic com-
pression in a growing number of fields. These models can
transform between the input space and natural language,
prioritize semantic features over others, condition on struc-
tural information, and then transform back into the origi-
nal space. Unlike discriminative models, which learn the
function p(y|x) and predict a label y for a given observa-
tion x, generative models learn p(x) or p(x, y). This means
that generative models directly approximate the input dis-

Figure 5. Semantic Compression: Further semantic compression
loses more and more detail with the benefit of significant memory
savings. Top row includes the original with additional structural
information, and the bottom row is pure semantic compression.
Compression ratios are listed under each object.

tribution, and then semantic compression can use this com-
pressed distribution to avoid storing redundant structural de-
tail.

This work focuses on diffusion models, such as DALLE3
from OpenAI, which have become the standard generative
architecture for visual tasks. They operate by transform-
ing a data sample through iterative noise addition and re-
moval. The process consists of a forward diffusion phase,
where noise is incrementally added to the data, and a re-
verse process, where the model learns to remove this noise
step-by-step, reconstructing a sample from noise. The for-
ward diffusion process is governed by:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

where βt is a noise schedule parameter that determines the
level of noise added at each step t. In addition, diffusion
models like ControlNet [21] enable conditional generation
by introducing guidance variables (e.g. additional structural
information like edges). When used in semantic compres-
sion, this allows storing additional structural information to
be used during decompression.

2.2. 3D Objects
Recent advances in 3D diffusion models [13, 14, 16, 19]
and the availability of large-scale 3D object datasets like
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Figure 6. Structural Control: Higher thresholds t lead to less
detail in the edge map and therefore higher compression rates, yet
this comes at the cost of lost fine-grained detail. The compression
rates are listed underneath each object and increase with less struc-
tural control.

Objaverse [4, 5] have opened up possibilities of semantic
compression of 3D scenery. These objects contain a com-
bination of mesh information, including vertices, polygons,
normal vectors, and texture information, as shown in Fig-
ure 4. Traditional compression of 3D objects relies on the
separate traditional compression of the mesh and texture.
For the mesh, methods like decimation are popular, which
iteratively merges vertices and polygons from the mesh [8]
and can typically achieve compression ratios up 10× de-
pending on the input (Appendix D for more detail). For
the texture, traditional image compression using JPEG is
the most common, yet since the mesh typically dominates
the file size, texture compression has more limited bene-
fit. These techniques combined together typically can only
achieve rates up to 15× without significant quality degrada-
tion, which opens opportunities for semantic compression
to improve further.

3. Method

This work builds a semantic compression pipeline using
public models with optional structural control using edge
maps. The inputs and outputs of this process are shown
in Figure 5. The original wooden statue is passed to the

Threshold

Resolution 50 300 550 800 Breakeven

64 83.73.9 92.22.6 93.03.2 93.33.1 87.98
128 86.45.9 95.51.7 96.32.0 96.32.0 89.70
256 89.17.4 97.40.6 98.01.0 98.11.1 90.98
512 92.07.0 98.50.1 99.00.5 99.00.6 91.99

1024 95.44.5 99.30.1 99.50.3 99.50.3 92.79
2028 98.01.9 99.60.1 99.70.1 99.70.2 93.43

Table 1. Edge Map Sparsity: Nearly all object views have suf-
ficient sparsity to benefit from the COO format. The breakeven
sparsity is the sparsity necessary for the COO format outperform
the dense format. Values are averaged across 100 views of objects.

pipeline to be compressed using structured semantic or pure
semantic compression. This leads to relatively high com-
pression ratios compared to the mesh- and texture-based
methods shown in the first row. The entire pipeline is shown
in detail in Figure 7.

3.1. Compression
The first step of the compression pipeline involves extract-
ing six views of the input object at fixed orientations. These
views are then concatenated and passed to the OpenAI
GPT4 model [15] for a descriptive summary (prompts listed
in Appendix A). The additional views capture information
from all sides of the input image that could be potentially
lost with just a single forward or top view. This descrip-
tion is then further compressed in another request to limit it
to the d most important characters. Since this is a soft re-
quest to GPT4, the result is filtered and clamped to ensure
the representation does not exceed d characters, including
spaces, and only includes lowercase English letters. Any
language in theory can be used for semantic compression,
but the English models are the most mature.

For structural semantic compression, the frontal view of
the object is passed to OpenCV to extract an edge map to
preserve the approximate structure of the view. The level of
detail in the output map is controlled through a joint thresh-
old of the pixel gradient magnitudes. Higher thresholds re-
duce the edge detail by approximately removing all gradi-
ent magnitudes less than this threshold. This edge map is
returned as a dense binary image, where each pixel is either
black or white, and then it is further compressed by using
the sparse coordinate format (COO) and downsampling so
each coordinate can be represented with an 8-bit integer.
Profiling in Table 1 shows that most natural views of ob-
jects are sparse enough across resolutions that they benefit
from sparse storage.

3.2. Structural Control
At the core of this structural semantic compression method
is the Canny edge detection algorithm [2]. This begins with
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Figure 7. Method Overview: Multiple views are extracted at fixed orientations from the object, which are then passed into GPT4 for
structured descriptions. This description is then further compressed and optionally combined with a compressed edge map from the frontal
view. These data are then decompressed and passed to the (conditioned) image generative model, either ControlNet or DALLE3. This
view is finally passed to sudo.ai to project from one view to a corresponding mesh and texture files.

smoothing the image with a Gaussian filter and then calcu-
lating its gradients to identify edges. The gradient of the
image IG is computed in the x- and y-directions as Ix and
Iy , respectively. The gradient magnitude M(x, y) and ori-
entation θ(x, y) are given by:

M(x, y) =
√
I2x + I2y

θ(x, y) = arctan

(
Iy
Ix

)
Pixels are then classified as edges based on two thresh-

olds: thigh and tlow. Pixels with gradient magnitudes
M(x, y) above thigh are considered strong edges. Those
with M(x, y) between tlow and thigh are classified as weak
edges if they are connected to strong edges; otherwise, they
are suppressed.

This yields the final edge map, where only weak edges
and connected strong edges are preserved. For simplicity,
we fix the ratio of the two thresholds as:

t = thigh = 2 · tlow

This ratio simplifies the hyper-parameters to only a sin-
gle threshold, t, which then determines the level of struc-
tural detail. By tuning this threshold, the edge map can
focus on only significant contours and ignore the smaller
detail in the image, which makes its overall structure rela-
tively sparse. This is shown in Figure 6 for increasing t and
therefore less edge detail. The tree creature loses its facial
features as t increases from 100 to 500, and the cup gets a
simpler design. In the limit without any structure, the model
attempts to capture the underlying ideas instead.

3.3. Decompression
The decompression process takes the compression text and
optional edge embeddings and attempts to recreate the orig-
inal data. First, it recreates the primary view based on the
uncompressed description, routing either to DALLE3 in the
unstructured case or ControlNet [21] with additional edge
information. DALLE3 offers high quality results across a
large number of themes, yet it currently offers no structural
conditioning. ControlNet, on the other hand, is built from
the Stable Diffusion model and has weaker overall perfor-
mance but accepts multiple forms of structural control, in-
cluding Canny edge, depth, and HED (holistically-nested
edge detection) maps. Within these options, the Canny
edge maps offer the most efficient structural information
and highest quality of results in practice. The background
from the returned view is then filtered away to isolate only
the object for the next steps.

This filtered, reconstructed view is then passed to the
Zero123++ image-to-3D generative model [19], through its
API access with sudo.ai. This model uses this image to syn-
thesize multiple views and then transforms them into a co-
herent 3D object, including mesh and texture files. Detailed
examples for each intermediate step are listed in the Ap-
pendix C.

3.4. Comparison
A large-scale comparison across methods, hyper-
parameters, and objects is shown in Figure 8. The
compression rate increases from left to right, beginning
with traditional mesh and texture compression, structured
semantic compression, and then finally pure semantic
compression. The edge threshold t is listed for the
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Figure 8. Compression Examples: Traditional compression is limited to within 15× for most objects while maintaining quality, while
structured semantic and pure semantic methods can push orders of magnitudes further. The edge threshold t controls the amount of detail
in the edge map, and the character count d limits the semantic content.

structured semantic compression with a fixed number of
characters d = 250 for all methods. Since the edge maps
dominate the compressed file size, the number of characters
is not too important, and the quality of the ControlNet
outputs saturates quickly with description length so larger

descriptions are not useful.
For pure texture compression, this figure shows that the

object loses quality very quickly for relatively small com-
pression rates. Since most objects are dominated by the
mesh size, texture compression can be fairly insignificant,

6



but the exact compression rate depends on the original res-
olution and mesh-texture memory balance of the object.
Combined with the mesh decimation, objects begin to reach
more useful compression rates. Yet, they typically still can-
not exceed 15×, depending on the original vertex and trian-
gle count, without low-polygon artifacts and mesh gaps.

This highlights the usefulness of semantic compression,
especially with some structural support. In the figure, the
higher the edge threshold, the less detail remains in the edge
map, leading to higher compression and worse quality on
average, although ControlNet has significant variance in its
results for the same prompt (as shown in Appendix E). More
broadly, ControlNet has difficulty handling color (tree crea-
ture colors are inverted) and produces significant hallucina-
tions. For example, in Figure 8 tree creature arms are col-
ored red likely because they resemble cherries, despite no
mention of red in any of the descriptions. These are short-
term limitations of the current generation of models, not is-
sues with the method itself. Overall, structured semantic
compression can scale more easily beyond 10× compres-
sion compared to traditional compression, which succumbs
early to mesh and texture artifacts.

In Figure 8, the last three columns in each row repre-
sent pure semantic compression using the more powerful
DALLE3 model. For many objects, such as the wooden
statue, the results are sufficiently strong to be used as re-
placement in most contexts. Yet, other objects still fail
with current neural networks but likely will succeed with
stronger generative models.

4. Evaluation

For perceptual compression techniques like semantic com-
pression, accurate automated evaluation is difficult since
by definition their quality is bound to human perception
This problem is shared with modern large language mod-
els, which are notoriously difficult to evaluate in a fair
automated way. In these cases, human evaluation is of-
ten preferred through public leaderboards, like the Chatbot
Arena [3] and K-Sort Arena [12], in combination with au-
tomated task-specific evaluations. We follow this approach
and focus on human evaluation and augment it with two
automated methods: F-score, for structural similarity, and
CLIP for semantic similarity.

We evaluate these methods in Table 2 on the same ob-
jects in Figure 8. These objects were taken from Obja-
verse [5] and chosen because they contain enough internal
details to show differences between methods and because
they vary in complexity and file size, between 90KB for the
warrior and 40MB for the cup. Significantly more examples
are shown in Appendix F.

4.1. F-Score
The F-score measures the structural overlap between the
original and the decompressed object meshes. This score
first randomly sub-samples the meshes to produce two sets
of points: Sorig and Sdecomp. Then, it calculates the relative
overlap of these two sets following the expression:

|{p ∈ S1 : ∃q ∈ S2, ∥p− q∥ ≤ d}|
|S1|

where the distance threshold d is a parameter that indicates
whether two points are close enough to be a match. The
threshold d is set to 0.05 for all measurements in this sec-
tion. The precision P and recall R are calculated with this
formula, where for precision S1 = Sdecomp and S2 = Sorig,
and vice versa for recall. These two quantities are averaged
using the harmonic mean to form the F-score.

F =
2 · PR
P + R

For traditional methods, higher F-scores indicate better
compression since the original structure is preserved. Yet,
the usefulness of this score diminishes with semantic com-
pression since at these compression rates, the exact struc-
tural overlap is not important. For example, in Figure 6,
if the creature had more patches of leaves or hopped on its
other foot, its quality would be approximately the same to
most people. Therefore, this score is primarily useful for
structural semantic compression.

4.2. CLIP
In addition, we automatically evaluate the CLIP score [17]
between the frontal views of the original and decompressed
objects. Multiple models can be used with CLIP, and for
this section, we use the ViT-B/32 [6] base model for a bal-
ance of quality and performance. It generates the embed-
ding for both views and then computes the cosine similarity
between them to produce the final score. This score is com-
mon in evaluating generated 3D objects, yet it typically can
only measure similarity between coarse-grained semantics.
This makes it useful as a high level filter for semantic con-
tent, but like the F-score it does not properly track human
preferences and it can be sensitive to structural changes like
color and shape.

4.3. Human Evaluation
Given the limitations of the automated methods, we rely on
averaged human evaluations to be the gold standard qual-
ity metric for the decompressed objects. Since there are
few methods to compare, a simple mean rank score is cho-
sen to rank the compression quality of different methods
and hyper-parameters. For a given object, a list of de-
compressed objects is given, each computed by a different
method. Then, the participant ranks (zero-indexed) these in
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Statue Human Robot Tiger Tree Average

Method F↑ C↑ MR↓ × F↑ C↑ MR↓ × F↑ C↑ MR↓ × F↑ C↑ MR↓ × F↑ C↑ MR↓ × F↑ C↑ MR↓ ×

Texture 1.00 0.88 1.57 1e0 1.00 0.88 1.42 1e0 1.00 0.91 1.14 1e0 1.00 0.88 6.00 2e0 1.00 0.97 1.71 1e0 1.00 0.90 1.92 2e0
Dec.+Text. 0.72 0.74 6.71 2e1 0.93 0.84 4.85 2e1 0.95 0.91 1.57 1e1 0.91 0.82 5.85 2e1 0.97 0.95 2.00 9e0 0.89 0.85 3.75 2e1

Struct.-100 0.82 0.93 1.71 3e3 0.91 0.90 1.14 5e2 0.85 0.74 2.28 7e2 0.84 0.89 3.57 1e3 0.92 0.89 3.42 5e2 0.85 0.88 2.51 2e3
Struct.-250 0.83 0.89 3.00 5e3 0.86 0.85 2.71 3e2 0.84 0.91 2.42 8e2 0.81 0.86 4.57 1e3 0.93 0.90 3.00 6e2 0.85 0.89 3.18 2e3
Struct.-500 0.87 0.91 2.57 1e4 0.84 0.87 4.71 3e2 0.84 0.86 5.14 8e2 0.89 0.89 5.00 1e3 0.87 0.90 4.71 6e2 0.85 0.89 4.24 3e3
Struct.-750 0.84 0.84 3.14 1e4 0.82 0.79 6.42 4e2 0.81 0.83 6.42 8e2 0.89 0.88 5.00 1e3 0.85 0.89 3.28 7e2 0.83 0.86 5.12 3e3

Sem.-250 0.54 0.75 5.85 2e4 0.53 0.69 3.28 4e3 0.71 0.78 5.14 5e4 0.76 0.86 0.28 9e3 0.62 0.85 5.57 8e3 0.61 0.80 4.49 3e4
Sem.-100 0.32 0.76 5.42 1e5 0.57 0.70 4.71 9e3 0.63 0.83 5.14 2e5 0.64 0.85 2.85 2e4 0.52 0.89 5.71 2e4 0.52 0.81 4.99 8e4
Sem.-50 0.42 0.68 6.00 1e6 0.23 0.75 6.71 2e4 0.42 0.82 6.71 3e5 0.58 0.86 2.85 4e4 0.55 0.83 6.57 3e4 0.44 0.81 5.77 3e5

Table 2. Compression Evaluation: The F-score (F) measures the structural correlation with the original object, the CLIP score (C)
measures the semantic distance with the original, the mean ranking (MR) is the average human ranking, and × is the compression ratio.
The final average column averages each score across the seven objects in Figure 8. Bold values have the best scores in their section.

order from best to worst subjective quality, following the
general prompt: ”In a virtual world, which of the com-
pressed objects would you prefer?” This prompt is broad
to allow the participant to naturally balance accuracy to the
original, aesthetics, and other characteristics. These ranks
are then averaged across participants to produce the final
score.

4.4. Discussion
Table 2 lists the evaluation results across the same set of
objects chosen in Figure 8. It measures the F, CLIP, and
mean rank scores for the traditional, structured semantic,
and semantic methods. As expected, pure texture compres-
sion does not affect the F-score, and semantic compression
leads to large decreases since the object is often a different
shape. Also, the higher F values in the structural semantic
section show that the 2D structural control leads to consis-
tent 3D shapes.

Yet, in general, these results hint at the weakness of the F
and CLIP scores in evaluating semantic compression since
they do not strongly track the MR scores. Also, the MR
score shows average improvements with larger file sizes,
which matches the expected quality-compression tradeoff
from Figure 1. This means that the best performing se-
mantic methods have the largest number of characters, and
the best structured semantic methods usually have the most
structural detail. Altogether, semantic methods, with and
without structural detail, often beat traditional compression
when it is pushed to its limits.

5. Related Work
Recent work has defined the field of semantic compression,
first even through the use of direct human labor. Bhown
et al. used humans to directly interpret and describe im-
ages to another human who used image editing software to
reconstruct the original [1]. This work showed that human-
guided, semantic compression led to human-rated improve-

ments over existing techniques at large compression ratios,
yet it was clearly not scalable given the human in the loop.
Later, Dotzel et al. [7] expanded on this concept and auto-
mated it using the strong multi-modal capabilities of Ope-
nAI ChatGPT [15]. This demonstrated the promise of using
multi-modal large language models as substitutes for hu-
mans in the semantic compression pipeline and attempted
to map out the quality-performance curves for image com-
pression, attaining results up to 1000× smaller than JPEG
by allowing flexibility in structural information. In addi-
tion, Lei et al. [11] used conditional diffusion for image
compression by extracting the edge maps from images and
natural-language descriptions.

6. Conclusion

Semantic compression represents a paradigm shift com-
pared to structural compression, and recent advancements
within 3D generative models have enabled expanded its do-
main to include 3D objects. This work demonstrates the
feasibility of semantic compression for 3D objects, with
a pipeline built from public generative models, achieving
up to 105× compression rates while preserving percep-
tual quality on some objects. It also highlights the limita-
tions with current technology, and the future potential of
the next generation of generative models that learn even
stronger representations over 3D objects. Further combin-
ing structural and semantic compression leads to more prac-
tical compression around 100 − 1000× ratios with more
acceptable quality losses. These challenges align with the
needs of emerging platforms like the metaverse, where large
collections of objects and collaborative environments bene-
fit from the scalability and portability of semantic formats.
By addressing these limitations, future work can target these
emerging applications to improve the quality-compression
tradeoffs.
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A. Prompts
DESCRIBE = ”””Describe this object in as much detail as
possible so that it’s possible to recreate it based only on
your description. Focus only on the object itself and not
the background. Describe the shape of the object, its ori-
entation, its colors, patterns, features, feature sizes in a sin-
gle paragraph. Describe the main general single object and
NOT some parts as multiple objects.”””

SIMPLIFY = ”””Reduce this description into the most
important words. Only use lowercase letters. Restrict the
response to this number of characters: ”””

B. Edge Map Compression
By tuning this threshold, the edge map can focus only on
significant contours and ignore the smaller detail in the im-
age, which makes its overall structure relatively sparse.

In more detail, the returned edge map I is a dense matrix
in the form: {0, 1}D×D, the number of non-zeros is N , and
the sparsity of the matrix can be represented with S . With
sufficiently high S, sparse formats can reduce the size of
the edge map compared to the dense format. However, with
lower S, the overhead from sparse format will be too large
and lead to larger file sizes.

I ∈ {0, 1}D×D

N =

D∑
i=1

D∑
j=1

Ri,j

S = 1− N

D2

First, the sparse coordinate format (COO) fits this case
due the arbitrary shapes within edge maps of arbitrary im-
ages. Other sparse formats assume additional structure such
as denser rows, columns, or diagonals, which will not exist
in natural images. To examine whether a dense or sparse
format should be used, we first calculate the break-even
point.

For the COO format, we need log2(D) bits per coordi-
nate, and therefore with B representing the total number of
bits needed:

Bdense = D2

Bcoord = N × 2× log2(D)

For coordinate format to be more space-efficient than
dense format:

Bcoord < Bdense

Solve for N :

N <
D2

2× log2(D)

Density =
N

D2
<

1

2× log2(D)

The sparsity S is then:

S = 1− Density > 1− 1

2× log2(D)

S > 1− 1

2× log2(D)

This formula provides the exact break-even point in
terms of D for determining when coordinate format is more
efficient than dense format.

For 2048 × 2048 images, which we use as part of the
compression pipeline, the sparsity needs to be higher than
95% for improvements for the sparse format.

C. Examples
Figure 9 gives more examples across objects taken from Ob-
javerse [4, 5] and from the online SketchFab repository. It
shows the tradeoffs across traditional, structured semantic
and pure semantic compression. Traditional compression
very quickly loses its structure in its texture and mesh typ-
ically before hitting 10× compression, although this varies
significantly based on the original file size and balance be-
tween texture and mesh sizes.

The Kirby example (row 3), for example, is a very small
file originally, around 90KB, and has little headroom for
compression. With just texture and mesh compression it al-
ready becomes warped with obvious polygons before 5×
compression. Structured semantic compression naturally
can maintain this structure better with a high-definition edge
map around 100× compression, where traditional methods
cannot reach. Then, pure semantic compression can push
even further into 1000× but it quickly becomes unrecog-
nizable as Kirby as more and more features are lost, e.g.,
the size and color of the eyes and the existence of arms.
Likewise, the shoe example (row 1) shows the gradual loss
of feature information with pure semantic compression. It
starts with the Nike swoop, then turns into a generic two-
tone suede, and then finally a simpler pure green shoe.

Across examples the d = 250 pure semantic category
shows its power, matching the human ranking results in Ta-
ble 2. Since these results are driven by the more powerful
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proprietary DALLE model, it hints at what better trained
models with spatial conditioning can accomplish. In most
examples, even though the shape is different, this method
produces a strong matching the main features of the orig-
inal, e.g., show colors and swoop, skeleton with detailed
shield, and pink creature with large eyes. In the bear-human
example (last row), it gives a very strong recreation of pose,
musculature, and hybrid animal, even though it is clearly
still different and not copied.

D. Decimate
The decimate method is a common method for reducing
the number of polygons within a 3D mesh by iteratively
collapsing edges, vertices, or triangles. This work uses
the pyfqmr library, which wraps an implementation of the
quadratic edge collapse algorithm*.

This method only handles mesh decimation a nd ignores
the texture information, which assumes the original topol-
ogy. Therefore, we update the uv-mapping between the tex-
ture and the mesh to allow remapping the textures after dec-
imation. This is further combined with texture JPEG com-
pression to enable higher compression ratios.

E. ControlNet
ControlNet [21] is a popular work that builds on top of the
open-source Stable Diffusion [18] to condition on spatial
information. It reuses the trained layers from Stable Diffu-
sion and adds additional zero convolutions for conditioning
control. It uses multiple controls including edge, depth, seg-
mentation, and human pose information, and in this work
we only rely on the variant fine-tuned for edge maps.

F. Additional Evaluation
Table 3 shows the evaluation for the remaining objects in
Figure 8. These results show a similar trend to those in
Table 2, showing the effect of structural conditioning on the
F score and strength of larger structured results determined
by the human ranking.

*https://github.com/sp4cerat/Fast-Quadric-Mesh-
Simplification

Warrior Cup

Method F C HR × F C HR ×

Texture 1.00 0.86 0.57 1.9e0 1.00 0.94 1.00 1.1e0
Dec. + Text. 0.89 0.72 1.85 4.5e0 0.88 0.95 3.42 4.5e1

Structural-100 0.81 0.90 2.42 7.1e1 0.78 0.92 3.00 5.6e3
Structural-250 0.83 0.94 4.14 7.3e1 0.83 0.84 2.42 7.1e3
Structural-500 0.79 0.92 3.85 8.1e1 0.83 0.85 3.71 7.4e3
Structural-750 0.78 0.92 4.85 8.3e1 0.81 0.86 6.71 7.6e3

Semantic-250 0.39 0.83 5.71 4.3e2 0.69 0.86 5.57 1.2e5
Semantic-100 0.42 0.86 5.71 1.3e3 0.52 0.79 5.42 2.5e5
Semantic-50 0.48 0.85 6.85 2.5e3 0.41 0.86 4.71 5.4e5

Table 3. Compression Evaluation: F represents the F score and
measures the structural correlation with the original object, C is the
CLIP score that measures the semantic distance with the original,
and HR is the human ranking that was averaged over ten partici-
pants.
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Figure 9. Extra Compression Examples: Traditional compression is limited to within 15× for most objects while maintaining quality,
while structured semantic and pure semantic methods can push orders of magnitudes further. The edge threshold t controls the amount of
detail in the edge map, and the character count d limits the semantic content.
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