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ABSTRACT

Batched Bayesian optimization (BO) can accelerate molecular design by effi-
ciently identifying top-performing compounds from a large chemical library. Ex-
isting acquisition strategies for batch design in BO aim to balance exploration
and exploitation. This often involves optimizing non-additive batch acquisition
functions, necessitating approximation via myopic construction and/or diversity
heuristics. In this work, we propose an acquisition strategy for discrete optimiza-
tion that is motivated by pure exploitation, PO (multipoint Probability of Opti-
mality). qPO maximizes the probability that the batch includes the true optimum,
which is expressible as the sum over individual acquisition scores and thereby
circumvents the combinatorial challenge of optimizing a batch acquisition func-
tion. We differentiate the proposed strategy from parallel Thompson sampling
and discuss how it implicitly captures diversity. Finally, we apply our method to
the model-guided exploration of large chemical libraries and provide empirical
evidence that it performs better than or on par with state-of-the-art methods in
batched Bayesian optimization.

1 INTRODUCTION

Predictive modeling can greatly accelerate molecular and materials discovery. Data-driven and
simulation-based models can aid in prioritizing experiments for the design of drugs (Liu et al.,[2024;
2023 Horne et al.,2024) and other materials (Schwalbe-Koda et al.|[2021}; |Gomez-Bombarelli et al.,
2016). In iterative design cycles guided by predictive models, the reliability of model predictions
can be gradually improved as the model is updated with newly collected data. This iterative, model-
guided approach has been applied to the discovery of drugs (Desai et al., |2013)), laser emitters
(Strieth-Kalthoff et al.l 2024), and dyes (Koscher et al.,2023; Bassman Oftelie et al., [2018]).

Bayesian optimization (BO) is arguably the most popular mathematical framework for iterative
model-based design (Frazier, |2018; (Garnett, [2023). BO optimizes an expensive black-box objec-
tive function (f or “oracle”) by iteratively training a surrogate model and using its predictions to
select designs for evaluation (Frazier, |2018). At each iteration, an acquisition function uses the
mean and/or uncertainty of surrogate model predictions to select which design(s) to evaluate. BO
has been applied to efficiently explore chemical libraries in numerous previous works (Cherkasov
et al.|[2006} Graff et al.,2021;|Yang et al., 2021; |Bellamy et al.,[2022; Wang-Henderson et al.,{2023]).

Computational (e.g., physics-based simulations) and experimental (e.g., bioactivity assays) oracles
in many chemistry applications are most efficiently evaluated in parallel. The total evaluation bud-
get is therefore spread across relatively few iterations with large batch sizes, requiring an acquisition
function to select a batch of experiments. The non-additivity of batch-level acquisition functions
complicates the selection of optimal batches in BO; when the value of selecting a candidate depends
on other selections, batch design becomes a combinatorial problem. Optimizing Bayes-optimal
batch acquisition functions is therefore often computationally intractable even for modest batch
sizes (Garnett, 2023, Section 11.3). Strategies that fail to consider this non-additivity, such as se-
lecting the top candidates based on a sequential policy, can produce homogeneous batches that lack
diversity. Prior works have primarily relied on (1) methods to increase diversity (Gonzalez et al.,
2016; |Kathuria et al., 2016; Nguyen et al., [2016} |Groves & Pyzer-Knapp, |2018)), (2) hallucinated
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observations to approximate intractable integrals (Ginsbourger et al.| 2010; [Desautels et al.,[2014),
(3) the randomness inherent to Thompson sampling (Thompson, |1933)) to extend it to the batch set-
ting (Hernandez-Lobato et al., 2017 Dai et al., [2022), or (4) some combination thereof (Ren & Li,
2024; Nava et al., [2022)).

In this paper, we propose qPO (multipoint Probability of Optimality), a batch construction strategy
that maximizes the likelihood that the optimum exists in the acquired batch. Inspired by parallel
Thompson sampling (Hernandez-Lobato et al., |2017; |Kandasamy et al.,|2018)), qPO centers around
the probability of optimality, accounts for correlations between inputs, and is naturally paralleliz-
able. However, qPO aims to forego randomness. While this distinction may seem to hinder explo-
ration, the consideration of a surrogate model’s joint distribution over all candidates allows qPO to
favor diversity. Uniquely, the defined batch-level acquisition function can be expressed as a sum of
individual candidate acquisition scores, circumventing the combinatorial challenge of maximizing a
batch-level acquisition function. We summarize the contributions of this work as follows:

1. We present a novel exploitative strategy for batch design in discrete Bayesian optimization
that maximizes the likelihood of including the true optimum in the batch.

2. We derive a batch-level acquisition function that is equal to the sum of individual acquisi-
tion scores and is thereby maximized by selecting the top candidates by acquisition score.

3. Through a simple analytical case study, we demonstrate the importance of considering
prediction covariance in exploitation, describe how covariance can capture diversity, and
differentiate our method from parallel Thompson sampling.

4. We demonstrate that our acquisition strategy identifies top-performers from chemical li-
braries as efficiently as state-of-the-art alternatives for batched BO in two realistic molecu-
lar discovery settings.

2 MAXIMIZING THE PROBABILITY OF INCLUDING THE OPTIMUM

2.1 PRELIMINARIES

We first assume that there exists an expensive black box oracle function f(-) that maps each can-
didate x; to a scalar objective value y;. Following Hernandez-Lobato et al.[(2017), we assume that
evaluations of f are noise-free. Our aim is to solve the following optimization problem:
z* = argmax f(x), (1)
rzeX
where X is a fixed discrete design space, e.g., of molecular structures from a virtual library com-
prised of N candidates {x;} fori = 1,..., N.

Bayesian optimization (BO) aims to solve this optimization using an iterative model-guided ap-
proach. In each iteration, we select b candidates for parallel evaluation with f. We denote the set of
acquired candidates X, .. In each iteration, f is evaluated for all z; in &}4, and a surrogate model

f that predicts f is (re)trained with newly acquired data. An acquisition function utilizes surrogate
model predictions on candidates x; for7 = 1, ..., N to select the next set of evaluations. The iterative
procedure ends when some stopping criterion is met: computational or experimental resources are
expended, a maximum number of iterations is reached, or a satisfactory value of f is achieved.

The imperfect surrogate model f provides a probabilistic prediction y of the objective function
value(s) for one or more candidates. This distribution over possible values of y for candidate x, de-
noted p(y|x), may be described by a machine learning model such as a Gaussian process or Bayesian
neural network. We may alternately have a surrogate model that does not form a continuous prob-
ability distribution but still enables sampling, e.g., through deep ensembling (Lakshminarayanan
et al., 2017) or Monte Carlo dropout (Gal & Ghahramani, [2016). Without loss of generality, we
consider the prediction to be an integral over possible model parameters 6:

p(ylz) = /0 Pyl 0)p(8)db, @

where p(6) does not truly have to represent a prior, but can represent a posterior distribution given
some training data. We consider all discrete candidates x; € X to be deterministic and fixed.
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Figure 1: Exploitative batch design by maximizing the likelihood of including the optimum, in
the context of a single Bayesian optimization iteration. First, a probabilistic surrogate model is
trained on acquired data. Second, samples are obtained from the joint posterior distribution over all
candidates. When direct posterior sampling is impossible or inefficient, a multivariate Gaussian may
be modeled from the true posterior to enable approximate posterior sampling. Third, we estimate
from these samples the probability that each candidate is the true optimum. Fourth, the batch is
populated with candidates most likely to be optimal; in doing so, the proposed strategy maximizes
the probability that the batch contains the true optimum. In addition to the sampling-based approach
visualized here, we describe alternative methods to approximate acquisition scores in Section @

2.2  DERIVING AN ACQUISITION FUNCTION FOR OPTIMAL BATCH DESIGN

Most acquisition strategies in BO aim to balance exploitation and exploration. Exploitation priori-
tizes selections that are most likely to achieve the highest oracle score, while exploration is intended
to prevent a search from getting “stuck” in local optima. Conceptually, exploration is expected to
contribute to a more reliable surrogate model and thereby benefit the optimization in the long run; a
classic failure mode of BO within continuous design spaces is the oversampling of a single mode of
the surrogate model posterior (Herndndez-Lobato et al.l2014). In contrast, exploitation selects the
best candidates at a given iteration without consideration of the impact on future iterations. We pur-
sue a batch acquisition strategy that is motivated by exploitation, optimizing expected performance
in the immediate iteration as if the optimization could be stopped at any timeJ'| Our acquisition
strategy is visualized within the context of one BO iteration in Figure[T}

We aim to maximize the likelihood that the true optimum z* exists in the acquired batch X;.,. An
optimal batch of size b solves the optimization:
X*

acq —

arg max Pr(z* € Xyeq)- 3)
XacgCX,|Xacq|=b

We focus on continuous surrogate models with low but non-zero observation noise (e.g., Gaussian
processes), such that the probability of two inputs having the exact same output is 0. Therefore,
we may assume that the events {f(z*) = f(2;)}s,cx are mutually exclusive. In our estimation of
Eq. 3l we will treat {f(z*) = f(x;)} as equivalent to {z* = x;}, leading to the presumed mutual

!"This is a realistic setting for molecular discovery campaigns. When the cost of evaluating f varies across
compounds in the design space, the number of iterations or oracle budget may be uncertain when the optimiza-
tion begins.
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exclusivity of the events {z* = z; }.,cx and the following result:

Pr(z* € Xueq) = Z Pr(z* = a;) 4)
T, €EXacq

= > P(f(=") = flx)) (5)
T;€Xacq

= Z P(f(xi) > f(xj) YV j#1). (6)
xiexacq

We elaborate on scenarios where a unique optimum cannot be assumed in Appendix[A.T] An appro-
priate strategy to optimize the objective in Eq. E]is to approximate Pr(z* = z;) for each candidate
x; and select the top b candidates based on the resulting approximations. We refer to this acquisi-
tion strategy as qPO (multipoint Probability of Optimality), which is deceptively simple to apply in
practice. Consider a candidate x; in a list of candidates x—designs that have not been previously ac-
quired. Using the corresponding predictions y modeled by the surrogate posterior, we may estimate
each Pr(z* = x;) as the following integral or expectation:

o = / Ly —maxty) P(¥]%) dy ™)
RN
= Ey~p(y|><) []lyi:maX(y)] ) ®)

where each «; represents an acquisition score for x;. A special outcome of this batch design strategy
is that qPO is naturally a sum over individual acquisition scores. Batch acquisition functions that are
extensions of sequential ones, such as multipoint expected improvement (qEI) (Ginsbourger et al.,
2010), typically require evaluation of the entire batch at once. Myopic construction of large batches
can only approximately optimize these batch-level acquisition functions, risking the selection of
suboptimal batches. In contrast, qPO can be optimized without the issue of non-additivity and
resulting approximations faced by many myopic batch construction strategies.

2.3 METHODS TO APPROXIMATE ACQUISITION SCORES NUMERICALLY

2.3.1 MONTE CARLO INTEGRATION TO APPROXIMATE ACQUISITION SCORES

The expectation in Eq.[8|may be approximated with M samples from the surrogate model posterior:

1 M
i % 25 D Lo oy )
m=1

where y(™) = [yyn), yém), e y%"’)] is the mth sample from the surrogate model posterior for N

candidates. In practice, these may be samples from the posterior of a Gaussian process, predictions
based on sampled parameters (™) from a Bayesian neural network, or predictions based on Monte
Carlo dropout. The result in shows that candidates with a high probability of optimality are
very likely to appear in the batch even with modest M, making a Monte Carlo estimate reasonable.
Algorithm [I|summarizes the implementation of qPO using Monte Carlo sampling.

Enabling efficient sampling by approximating the posterior as a multivariate Gaussian The
only requirement for this approximation of acquisition scores is that the posterior can be sampled.
However, efficient and widespread algorithms exist to sample from Gaussian distributions (Vono
et al.l 2022} |Aune et al., 2013). The computational cost of posterior sampling may be reduced
by sampling from a multivariate Gaussian that approximates the true posterior. This approximate
posterior may be obtained from an arbitrary number of approximate samples from the true posterior.
For example, one might obtain a multivariate Gaussian posterior based on the predictions of a neural
network ensemble; this could apply for an ensemble of any model architecture and for an arbitrary
number of models in the ensemble. Specifically, given a smaller number (< M) of samples, one can
construct an empirical mean and covariance matrix from which additional samples can be drawn.
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Algorithm 1 Bayesian optimization with qPO using Monte Carlo integration

Input: design space X, oracle function f, initial data Dy, batch size b, number of samples M,
number of iterations T’
fort =1to T do

Compute joint posterior p(y|x, ) over unacquired candidates x € X’

for m = 1to M do

y(™) ~ p(y|x, ) > Sample from joint posterior
end for
for i = 1to |x| do

o — % Zf\f:l ly(m):max (y(m) > Compute qPO acquisition scores
end for '
Xyoy < top-k({wi, ai}iz1,.. x|> D) > Select b candidates with greatest PO scores
Evaluate f(z;) for all z; € X, > Call the oracle
Dy D1 U{xs, Yibayenr > Update training data

end for o
Return: Acquired data D

Coping with low probability events If very few candidates are perceived by the model as having
a substantial probability of being optimal, Pr(z* = z;) may be estimated to be zero for many
candidates for finite M. Filling a batch of size b may emerge as a challenge if there are fewer than b
non-zero acquisition scores. A simple way to address this issue is to fill the remainder of the batch
using an alternative metric (e.g., greedy or upper confidence bound). Methods designed for rare
event estimation (de Boer et al., 2005; (Cérou et al., 2012;|Gibson & Kroesel [2022) may alternatively
be implemented to assign acquisition scores to candidates with small probabilities of optimality.

2.3.2 ADDITIONAL STRATEGIES FOR NUMERICAL APPROXIMATION OF QPO ACQUISITION
SCORES

Techniques beyond Monte Carlo integration may also enable the estimation of qPO. If the poste-
rior is a multivariate Gaussian, the acquisition score in Eq. [6]can be recast as an orthant probability
through a change of variables, providing an alternative approach to predicting Pr(z* = z;) that
does not rely on posterior sampling (Azimi et al., [2010; |Azimi, |2012). This orthant probability,
defined in[A.3] may be approximated analytically using a whitening transformation (Azimi, 2012).
Additionally,|Cunningham et al.|(2013)) propose an expectation propagation approach (Minkal [2001)
to directly approximate orthant probabilities, and |Gessner et al.| (2020) introduce an integrator for
truncated Gaussians that accurately estimates even small Gaussian probabilities. The orthant proba-
bilities may also be estimated using numerical integration, which involves Cholesky decomposition
followed by Monte-Carlo sampling (Genz,|1992)). Alternative methods to estimate high-dimensional
orthant probabilities (Miwa et al.| 2003} |Craig}, 2008} Ridgway, |2016)) may also be applied to the es-
timation of qPO acquisition scores. We consider the implementation of these methods future work.

3 RELATED WORK

3.1 BATCHED BAYESIAN OPTIMIZATION

A naive batch construction strategy is to select the top b compounds based on an acquisition function
designed for sequential BO. However, because the utility of a given selection depends on other
selections, the top-b approach does not guarantee an optimal batch in general (Garnett, [2023).

One general approach to batch design is to, as closely as possible, replicate the behavior of a sequen-
tial policy. |Azimi et al.| (2010) define an acquisition function that minimizes the discrepancy between
the batch policy and sequential policy behavior. Batches may alternatively be constructed iteratively
(myopically) by hallucinating the outcomes of previous selections in the batch. This enables the op-
timization of batch-level acquisition functions like multipoint expected improvement (Ginsbourger
et al., 2010) and batch upper confidence bound (Desautels et al., [2014)). However, this approach is
typically limited to cases where the surrogate model can efficiently be updated with hallucinated
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or pending data. Further, batches that are constructed myopically only approximately optimize the
batch-level acquisition function. In contrast, our approach does not rely on hallucination and can be
applied to any posterior which can be sampled or modeled as a multivariate Gaussian.

Methods to improve diversity have also been applied to prevent the selection of candidates that
would provide minimal marginal information gain. |Gonzalez et al.[|(2016)) use local penalization to
construct diverse batches. Determinantal point processes (DPPs) have also been used for batch diver-
sification in discrete optimization (Kathuria et al.l |2016); |[Nava et al.| (2022) demonstrate improved
theoretical convergence rates by incorporating DPPs into parallel Thompson sampling. Nguyen et al.
(2016) and |Groves & Pyzer-Knapp| (2018)) model the objective landscape as mixture of Gaussians
and acquire predicted local optima. Strategies based on diversity heuristics generally assume that
diverse batches support exploration, not necessarily exploitation. We describe in Section how
our method does capture diversity, even with exploitation as the primary motivation.

Sequential acquisition functions that randomly select candidates by sampling, like Thompson sam-
pling, can be extended to the batch case by increasing the number of random samples. Parallel
Thompson sampling involves sampling from the model posterior and acquiring the optimum point
from each sample (Hernandez-Lobato et al., 2017). TS-RSR uses a similar methodology, but selects
from each sample the point that minimizes a regret to uncertainty ratio (Ren & Li, [2024). Dai et al.
(2022) extend neural Thompson sampling (Zhang et al., 2020) to the batch setting; each of b ran-
domly initialized neural networks determines one selection in the batch. The randomness inherent
to Thompson sampling and related strategies is expected to contribute to the search’s exploration.
gPO, in contrast, is intended to make selections deterministically.

3.2 COMPARISON WITH ALTERNATIVE BATCH STRATEGIES

We continue with an illustrative example to highlight how the proposed approach captures diversity,
a key contribution to qPO’s robustness. Consider the following predictive distribution for y given x:

107 [101 100 0
y~N(l5],[1OO 101 OD (10)
0 0 0 1

The probabilities of x1, x5, and z3 being optimal are roughly 84%, 0%, and 16%, respectively. For
b = 2, our acquisition strategy would select 1 and x3, while a greedy strategy based only on the
posterior mean vector would select z; and z2. A diversity-aware acquisition strategy would select
x1 and x3 if we assume that the high covariance between z; and x- reflects design space similarity.
This assumption is particularly valid for molecular applications when the surrogate model is a Gaus-
sian process with a Tanimoto kernel. Because the Tanimoto kernel defines prior covariance based
on structural similarity, structurally similar compounds will have higher covariance. Our method
naturally captures this sense of diversity through model covariance without requiring clustering or
other definitions of diversity that are not inherent to the model itself.

When Monte Carlo integration is used to approximate qPO, our method resembles Thompson sam-
pling, particularly the parallel Thompson sampling (pTS) approach proposed by Hernandez-Lobato
et al.| (2017) and [Kandasamy et al.| (2018). Both methods choose a batch of b inputs by selecting
the maxima of posterior samples. Our approach differs from parallel Thompson sampling in two
notable ways. First, in the case of b = 1, Thompson sampling chooses candidates randomly with
probability proportional to Pr(x* = x;). qPO aims to choose candidates deterministically that max-
imize Pr(z* = x;). However, because a closed-form solution for PO acquisition scores does not
exist, the implementation of our acquisition strategy is not purely deterministic. Second, PO gen-
eralizes to the b > 2 case differently from pTS. As described in Algorithm 2 of |Hernandez-Lobato
et al.[(2017), if the optimum input for a particular sample is already in the batch, then the second
most optimal input is added (or the third if the second most optimal input is also in the batch, and
so forth). If the model makes highly correlated predictions, this will result in a batch filled with
candidates that have highly correlated predictions. In the analytical example shown above in Eq.
pTS will be more likely to select z; and x5 than x; and x3. In contrast, once our method has added
a first candidate to the batch, subsequent selections are chosen conditioned on existing selections
not being optimal.
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4 EXPERIMENTS

4.1 BASELINES AND EVALUATION METRICS

We apply qPO to two model-guided searches of chemical libraries and compare its performance
to alternative batch acquisition functions: pTS (Herndndez-Lobato et al) 2017}, [Kandasamy et al
[2018), Determinantal Point Process Thomspon Sampling (DPP-TS) (Nava et al., 2022), Thompson
Sampling with Regret to Sigma Ratio (TS-RSR) (Ren & Li, [2024), General-purpose Information-
Based Bayesian OptimisatioN (GIBBON) (Moss et al., 2021)), multipoint probability of improve-
ment (qPI), multipoint expected improvement (qEI), batch upper confidence bound (BUCB)
2017), upper confidence bound (UCB), and greedy (mean only). DPP-TS and TS-RSR
are extensions of pTS with improved theoretical guarantees. BUCB, gPI, and qEI are batch-level
extensions of sequential policies that employ myopic construction in finite discrete domains. GIB-
BON is an information-based batch acquisition function. We analyze the retrieval of the true top-k
acquired, the average oracle value of the acquired top-k, and cumulative regret, the former two being
common metrics for assessing model-guided virtual screening methods (Pyzer-Knapp|, 2018}, |Graff
let all 2021; Wang-Henderson et al.,2023). Run times are reported in[AZ3]

Both demonstrations use a Tanimoto Gaussian process surrogate model with a constant mean that
operates on 2048-length count Morgan fingerprints. gPO is implemented following Eq. 0] using
M = 10,000. Pairs of candidates {z;,z;} for which ; = ; are ranked by their predicted mean
(A.4.1). The cost of sampling from a multivariate Gaussian for IV candidates is O(N?®) due to the
Cholesky decomposition 2022). To alleviate the computational cost of sampling-based
methods—pTS, DPP-TS, TS-RSR, GIBBON, gPI, qEI, BUCB, and qPO—for large values of N, in
each iteration we reduce the set of N candidates to 10,000 using a greedy metric. We then apply the
respective strategy to select a batch from the smaller set of candidates. For qPO, this modifies the set
of candidates x considered in Algorithm 1. Because this may impact the exploration characteristics
of pTS and gEI, we include an additional baseline (“random10k”) that randomly selects compounds
from these top 10,000 candidates. [A.6] compares qPO performance when using this pre-filtering
strategy with pre-filtering based on UCB. Experimental details can be found in[A:4]

4.2 APPLICATION TO ANTIBIOTIC DISCOVERY

Our first demonstration applies Bayesian optimization to the retrospective identification of putative
antibiotics with activity against Staphylococcus aureus.|Wong et al.|(2024)) experimentally screened
39,312 compounds for growth inhibition of S. aureus. We search this dataset for compounds with
the lowest reported mean growth of S. aureus, indicating greatest antibiotic activity. For each run,
we randomly select an initial batch of 50 compounds and select 50 more in each of 10 iterations.

qPI ucB
@
)
)
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2
T 250
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0
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Figure 2: Batch diversity of a model-guided optimization loop for antibiotic discovery. Networks
depict selected batches in the first iteration after training on a randomly selected (seed of 7) initial
batch of 50 designs with growth inhibition values fromWong et al.| (2024). Nodes represent acquired
compounds; edges are drawn between pairs with Tanimoto similarity > 0.4. Nodes are positioned
using the Fruchterman-Reingold force-directed algorithm (Fruchterman & Reingold, [1991). His-
tograms portray the distribution of Tanimoto similarity scores for all pairs in the selected batch.
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Method  Iteration Top 10 Average () Top 100 Average (}) Fraction Top 0.5% (1) Fraction Top 1% (1) Cumulative Regret ({)

BUCB 5 0.15 £ 0.02 0.51 £ 0.07 0.05 + 0.01 0.06 = 0.01 0.58 £ 0.14
DPP-TS 5 0.15 £+ 0.00 0.71 + 0.01 0.02 £ 0.00 0.02 £ 0.00 0.53 +£0.14
GIBBON 5 0.18 £ 0.02 0.69 &+ 0.04 0.02 4+ 0.01 0.03 &+ 0.01 0.57 £ 0.16

Greedy 5 0.18 £ 0.06 0.45 + 0.07 0.05 + 0.01 0.06 + 0.01 1.01 £035
TS-RSR 5 0.18 £ 0.05 0.47 £ 0.08 0.05 + 0.01 0.06 £+ 0.01 0.75 £0.22

UCB 5 0.19 £+ 0.05 0.49 £+ 0.08 0.05 + 0.01 0.06 = 0.01 1.01 £ 0.34
pTS 5 0.17 £ 0.04 0.62 £ 0.06 0.04 £+ 0.01 0.05 + 0.01 0.55 +£0.12
qEI 5 0.19 £+ 0.04 0.62 + 0.07 0.03 &+ 0.01 0.04 £+ 0.01 0.74 £ 0.25
qPI 5 0.14 +0.03 0.43 + 0.07 0.06 + 0.01 0.08 + 0.01 0.72 £ 0.24
qPO 5 0.18 £ 0.06 0.46 £+ 0.06 0.06 £+ 0.01 0.07 £ 0.01 0.69 £+ 0.29
random10k 5 0.22 +0.02 0.80 = 0.01 0.01 £ 0.00 0.01 £ 0.00 0.63 £ 0.15

BUCB 10 0.12 £ 0.02 0.27 + 0.07 0.10 £ 0.02 0.13 +0.02 0.64 £+ 0.15
DPP-TS 10 0.13 £ 0.00 0.55 +0.02 0.04 & 0.00 0.04 £ 0.00 0.59 £ 0.14
GIBBON 10 0.13 £ 0.01 0.51 4+ 0.06 0.05 + 0.01 0.05 + 0.01 0.64 +0.17

Greedy 10 0.11 £ 0.00 0.21 £ 0.02 0.11 £ 0.01 0.14 £ 0.02 1.07 £ 0.35
TS-RSR 10 0.11 £ 0.00 0.20 + 0.03 0.12 £ 0.01 0.16 + 0.02 0.81 £0.22

UCB 10 0.11 £ 0.00 0.24 + 0.05 0.12 +0.02 0.15 +0.02 1.07 £ 0.34

pTS 10 0.11 £ 0.01 0.29 & 0.06 0.11 +0.02 0.13 +0.02 0.61 +£0.12
qEI 10 0.12 £ 0.01 0.32 + 0.06 0.08 + 0.01 0.11 + 0.02 0.80 £ 0.25
qPI 10 0.10 £ 0.00 0.17 £ 0.01 0.14 £ 0.01 0.17 £ 0.01 0.76 £ 0.24
qPO 10 0.11 £ 0.01 0.21 £ 0.05 0.14 £ 0.02 0.19 £ 0.03 0.73 £ 0.30
random10k 10 0.15 £ 0.00 0.68 £+ 0.01 0.02 £ 0.00 0.02 £ 0.00 0.71 £ 0.15

Table 1: Optimization performance for the iterative discovery of antibiotic compounds at an inter-
mediate and final iteration. The average oracle value of the top 10 and 100 acquired designs are
shown, where a lower value indicates greater antibiotic activity. We also report retrieval of the true
top 0.5% and 1%, representing 197 and 393 top-performing compounds, respectively, as well as
cumulative regret. All values denote averages + one standard error of the mean across ten runs.

Optimization performance of gPO and baselines is shown in Table [T} While no single strategy out-
performs all others in all metrics, qPO consistently performs on par with state-of-the-art baselines,
with qPI appearing to be the most competitive baseline in this experiment. The retrieval of the top
0.5% is plotted for all iterations in Figure BJA for PO and competitive baselines.

We also analyze batch diversity to assess whether qPO captures diversity in this empirical setting.
The diversity of acquired batches across select strategies is visualized in Figure 2] (details in[A.4.4).
qPO, pTS, and qPI appear to obtain the most diverse selections, with UCB selecting the least diverse
batch. While this visualization depicts acquired batches in a single iteration, these results indicate
that qPO can achieve diversity without imposing randomness, myopic construction, or diversity
heuristics.
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Figure 3: Retrieval profile for two model-guided searches of chemical libraries. (A) Retrieval of the
top 0.5% (197) designs for the iterative discovery of putative antibiotics (Section[4.2). (B) Retrieval
of the top 0.01% (14) designs for the iterative discovery of organic materials (Section #.3). For
visibility, top-performing methods based on Tables [I] and 2] were selected for visualization. qPO
performs on par with state-of-the-art methods for both case studies. qPI is competitive in both case
studies, while TS-RSR is competitive primarily in the second case study (B). Shaded regions denote
= one standard error of the mean across ten runs.
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4.3  APPLICATION TO THE DESIGN OF ORGANIC ELECTRONICS

We next demonstrate qPO on the pursuit of molecules from the QM9 dataset of 133K compounds
that maximize the DFT-calculated HOMO-LUMO gap (Ramakrishnan et al.|[2014; Ruddigkeit et al.,
2012). We begin each search with a randomized initial batch of 100 compounds and select 100
more at each of 20 subsequent iterations. Optimization performance according to top-k metrics and
cumulative regret is shown in Table 2] and top 0.01% retrieval of qPO and select baselines is plotted
for all iterations in Figure [3B. As in the previous study, PO performs on par with top-performing
baselines across metrics. We observe the greatest improvement to top-k optimization performance
when considering small values of & (Figure[3), aligning with qPO’s primary focus of identifying the
true global optimum.

Method  Iteration Top 10 Average (1) Top 100 Average (1) Fraction Top 0.01% (1) Fraction Top 1%(1) Cumulative Regret ({)

BUCB 10 0.45 +0.01 0.39 £ 0.00 0.80 £ 0.07 0.31 £0.01 1.83 £ 0.21
DPP-TS 10 0.42 4+ 0.01 0.38 4 0.00 0.41 +0.12 0.30 £ 0.00 222 £0.17
Greedy 10 0.40 £ 0.01 0.38 £ 0.00 0.09 + 0.09 0.36 £ 0.02 2324021
TS-RSR 10 0.45 £ 0.01 0.39 £ 0.00 0.71 £0.12 0.36 £ 0.01 2.03 £0.15
UCB 10 0.40 £ 0.01 0.38 £ 0.00 0.10 £ 0.09 0.37 £ 0.01 2324021
pTS 10 0.40 £ 0.01 0.38 £ 0.00 0.15 £ 0.10 0.23 £ 0.01 242 £0.19
qEI 10 0.43 +0.01 0.38 4 0.00 0.46 4+ 0.14 0.28 4+ 0.02 2.07 £0.20
qPI 10 0.44 £ 0.01 0.39 £ 0.00 0.60 £ 0.12 0.27 £0.01 2.13 £0.10
qPO 10 0.42 £+ 0.01 0.38 £ 0.00 0.40 £ 0.12 0.35 £ 0.01 223 £0.21
random10k 10 0.38 4 0.00 0.36 £ 0.00 0.01 £ 0.01 0.07 £ 0.00 2.62 £ 0.05
BUCB 20 0.47 £ 0.00 0.40 £ 0.00 1.00 £ 0.00 0.54 £+ 0.00 1.95 +0.26
DPP-TS 20 0.46 £ 0.00 0.40 £ 0.00 0.94 4+ 0.01 0.59 £+ 0.01 2.50 £0.24
Greedy 20 0.45 +0.01 0.39 £ 0.00 0.73 £ 0.11 0.65 £ 0.01 3.73 £0.39
TS-RSR 20 0.47 £ 0.00 0.40 £ 0.00 1.00 £ 0.00 0.63 £ 0.00 211 £0.19
UCB 20 0.46 £ 0.00 0.39 £ 0.00 0.93 £ 0.00 0.66 £ 0.01 3224032
pTS 20 0.46 4 0.00 0.39 £ 0.00 0.93 4+ 0.02 0.50 £ 0.01 3.14 £ 031
qEI 20 0.46 £ 0.00 0.40 £ 0.00 0.99 £+ 0.01 0.59 +0.01 2254026
qPI 20 0.46 £ 0.00 0.39 £ 0.00 0.95 4+ 0.03 0.43 £ 0.01 2.38 £0.20
qPO 20 0.47 £+ 0.00 0.40 £ 0.00 1.00 £ 0.00 0.63 £ 0.01 2.36 £0.24
random10k 20 0.39 £ 0.00 0.37 £ 0.00 0.04 £ 0.02 0.15 £ 0.00 479 £ 0.11

Table 2: Optimization performance on the exploration of the 133K QM9 dataset for compounds with
large HOMO-LUMO gaps at an intermediate and final iteration. We first report the average oracle
value of the top 10 and 100 acquired designs. Retrieval of the true top 0.01% and 1% represents
14 and 1,339 top-performing compounds, respectively. All values denote average metrics & one
standard error of the mean across ten runs.

5 CONCLUSION

We have proposed a batch acquisition function (qPO) for discrete Bayesian optimization, motivated
by exploitation, that maximizes the likelihood that the batch contains the true optimum. qPO is equal
to the sum over individual acquisition scores and therefore circumvents the combinatorial challenge
of optimizing a batch-level acquisition score. We explain how the treatment of model covariance im-
plicitly captures diversity and how it differentiates QPO from parallel Thompson sampling in subtle
but meaningful ways. Empirically, our method efficiently identifies an equivalent or higher percent-
age of top-performing candidates when compared to batched BO alternatives. The most notable
improvement to top-k metrics is observed for smaller values of k, consistent with the acquisition
strategy’s goal of acquiring the true global optimum.

The proposed batch acquisition strategy has some notable limitations. First, qPO cannot be com-
puted analytically (in an exact sense), necessitating a Monte Carlo estimate. Alternative methods for
estimating the probability of a candidate’s optimality, such as expectation propagation, may reduce
the computational cost of implementing qPO. Second, qPO may fail to select diverse batches in
the presence of high observation noise, which will reduce the relative impact of covariance on qPO
scoresﬂ Theoretical analysis of the exploration-exploitation trade-off in the finite iteration setting
may uncover potential failure modes of PO and further support the empirical results observed here.

2For example, if AI were added to the covariance matrix in Eq. (1, z2) would be the optimal batch for
sufficiently large \.
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REPRODUCIBILITY STATEMENT

All code required to generate the results shown in this work, including installation instructions, the
datasets explored in Section[d] and code to run BO with qPO, is attached as supplementary material.
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A APPENDIX

A.1 THE NON-UNIQUE OPTIMUM CASE

In some cases, the mutual exclusivity of events {¢* = x;}.,cx may not be assumed. In such
scenarios, we will not arrive at the result in Eq. 4{and must instead optimize the acquisition function
by constructing batches myopically (i.e., one-by-one):

#! = argmax Pr(z* = x)
rxeX
i*? = argmax Pr(z* = z|z* # %)
zeX\{&* 1}
3 —  argmax  Pr(z* = zlz* £ 0" £ 2 (11)
acEX\{.’ft*’l,ff*'z}
G50 — arg max Pr(z* = zfa* # 251 " £ 252, . 2" £ 25771

zeX\{&1, ... a%a—1}

The methods described in Section [2.3]are also applicable to optimizing this batch acquisition func-
tion.

Note that, even when the events {z* = x;},,cx are not guaranteed to be mutually exclusive, obser-

vation noise in the surrogate model may allow us to assume that the events {f(z*) = f(z:)}s,cx
are mutually exclusive. In this case, we can apply the acquisition strategy in Eq. [d] because all pre-
dictions of the events {z* = x; },,cx Will be mutually exclusive, and estimations of the conditional
probabilities in Eq.[TT|will in practice be equivalent to the corresponding unconditional probabilities.
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A.2 PROOF OF BOUND FOR EQ.[9]
If .
Pr(z* =a;) >1—0™ |
then the probability of never observing (z* = z;) in M i.i.d. Monte Carlo samples is less than § (in
equation [9).

Proof. The event of x; = x* is binary and therefore has a Bernoulli distribution. For a Bernoulli
distribution with expectation g, the probability of observing only negative events for M i.i.d. samples

is (1 — q)M and is decreasing with ¢. Re-arranging this gives the bound above. O

This result shows that, with modest M, inputs  which have a reasonable probability of being the
optimum are very unlikely to never be observed as the optimum in some sample. For example, any
candidate with at least a 0.7% chance of being the optimum has less than a 0.1% chance of never
appearing as the optimum with M = 10% Monte Carlo samples.

We can use Hoeffding’s inequality to get a more precise confidence interval:

Lemma 1. Let p = Pr(x; = x*) and let p be a Monte Carlo estimate for p with M independent
samples. Let € = 4/ %. Then the set C = (p — €,p + €) is a 1 — « confidence interval for every

p satisfying
PripeC)>1—-a.
Proof. From Hoeffding’s inequality we have
Pr(|p—p|) < 2exp (—2Mé?) .

Solving a = 2¢~2"¢" gives the desired result. O

Setting v = 0.1% to give a 99.9% confidence interval, if a particular candidate x; is never observed
to be the optimum in M = 103 samples (p = 0), then p € (—0.062,0.062) with 99.9% probability.
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A.3 RECASTING ACQUISITION SCORES AS ORTHANT PROBABILITIES

The acquisition score in Eq.[6]can be defined as an orthant probability through a change of variables.
This enables the estimation of Pr(z* = ;) without posterior sampling. However, efficient calcula-
tion of orthant probabilities is not possible for arbitrary probability distributions. Here, we choose
to require the posterior to be a multivariate Gaussian (or approximated as such). The likelihood of
candidate x; being optimal is equivalent to the probability that y; is greater than all y; j;:

Pr(a* = ;) =Pr(y; > y1,¥i > Y2, Yi > YN) (12)

Following the approach of |Azimi et al.| (2010), we denote the difference between y; and y; as

zi and the vector of differences for candidate 7 as z' € R"~'. Using the transformation matrix

A; € RIW=DXN a5 defined by|Azimi et al. (2010) and Azimi (2012), we may define:
Z~ N (AuX,AEXAT> (13)

where py and Xy parameterize the surrogate model posterior for candidates x. The expression
in Eq. [12]is equal to the orthant probability of z, i.e., the probability that all elements of z’ are
greater than 0. |Azimi et al.[(2010) apply a whitening transformation to the distribution defining z,
decorrelating all entries and enabling approximation of the orthant probability. Alternative methods
to estimate high-dimensional orthant probabilities (Genz, [1992; Miwa et al., 2003 |Craig, 2008;
Ridgwayl, 2016) may also be applied here.
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A.4 EXPERIMENTAL DETAILS

All code required to reproduce the results for this work is attached as supplementary material.

A.4.1 IMPLEMENTATION OF QPO ACQUISITION STRATEGY

We follow Eq.[Q|using M = 10,000. These samples from the surrogate model posterior are used to
estimate Pr(z* = x;) for each candidate x;. When the objective is minimized, we instead estimate:

M
X 1
Pr(a” = ;) ~ 7= D L inym)- (14)
m=1

Candidates are always sorted primarily based on their probabilities of optimality. Any candidates
that have identical Pr(x* = x;) are sorted by a greedy metric. For example, consider a maximization
scenario where the Pr(2* = z;) = Pr(2* = «z;), and fly) < f(y]) x; will be ranked above z;
due to its predicted mean. All compounds with Pr(z* = x;) > 0 will be ranked above compounds
with Pr(z* = x;) = 0. However, if there are too few candidates with Pr(z* = x;) > Oto fill a
batch, then the batch is filled using a greedy metric on remaining candidates with Pr(z* = z;) = 0.

A.4.2 BAYESIAN OPTIMIZATION

We apply our batch acquisition strategy to the model-guided exploration of two discrete chemical
libraries (Section ). The first case study explores a library of 39,312 compounds for putative an-
tibiotics that minimize the growth of Staphylococcus aureus (Wong et al.l [2024). We randomly
initialize our search with 50 compounds and their growth inhibition values and acquire batches of
50 compounds for 10 subsequent iterations. In the second case, we explore the QM9 dataset for
compounds that maximize the HOMO-LUMO gap (Ramakrishnan et al., 2014} Ruddigkeit et al.,
2012). Here, we use an initial batch size of 100 compounds and acquire 100 more for 20 subsequent
iterations. For both case studies, ten runs were performed for each acquisition method with distinct
random seeds that govern the initial batch.

Our surrogate model is a Gaussian process with a Tanimoto kernel (Tanimotol [1958)) and a constant
mean, a common surrogate model architecture for molecular BO (Tripp et al., [202 1} |Garcia-Ortegon
et al., 2022} |Gao et al.| 2022). Compounds are featurized as 2048-length count Morgan fingerprints
using rdkit (Landruml [2024). At each iteration, the Gaussian process hyperparameters—mean,
covariance scale, and likelihood noise—are optimized by maximizing the marginal log likelihood of
the model over all previously acquired training data.

A.4.3 ACQUISITION FUNCTIONS

Selecting batches with gEI, pTS, and qPO can be computationally expensive for large design spaces
due to the O(N?3) complexity of Cholesky decomposition for N candidates. To reduce the compu-
tational cost of these acquisition functions, we first filter the set of N candidates to the top 10,000
based on predicted mean and subsequently apply the appropriate acquisition function to select from
these 10,000 candidates. This step is not necessary for the implementation of these acquisition
functions but facilitates their use under computational resource limitations. A similar pre-filtering
method has been applied by Moss et al.[(2021)) in a molecular discovery setting to reduce computa-
tional cost.

Greedy Acquisition scores for each compound x; were defined as ¢ * y;, where ¢ = 1 if the
objective is optimized and ¢ = —1 if it is minimized. y; is the surrogate model mean prediction for
compound x;. The top-b compounds based on acquisition score were selected in each iteration.

Upper confidence bound (UCB) Acquisition scores for each compound x; were defined as ¢ *
y; + B * 0;, where ¢ = 1 if the objective is optimized and ¢ = —1 if it is minimized. We set § = 1
for all runs. y; is the surrogate model mean prediction for compound x;, and o; is the prediction
standard deviation. The top-b compounds based on acquisition score were selected in each iteration.
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Batch upper confidence bound (BUCB) We implement BUCB using the
qUpperConfidenceBound (Wilson et al., 2017 and optimize_acgf_discrete functions
in botorch (Balandat et al., |2020). optimize_acgf_discrete sequentially selects points
and appends their corresponding x values to the Gaussian process input for subsequent Monte Carlo
samples, making this a hallucinating approach. Following Wilson et al.| (2017), we set 8 = V3.

Parallel Thompson sampling (pTS) We follow the implementation of |Hernandez-Lobato et al.
(2017), summarized in Algorithm 2. For each of b posterior samples, the candidate z; which opti-
mizes the objective and is not already in the batch is selected.

Multipoint  expected  improvement (qEI) We  implement gEI  using  the
gLogExpectedImprovement (Ament et al., [2023) and optimize_acgf_discrete
functions in botorch (Balandat et al.l |2020). gLogExpectedImprovement evaluates qEI
using Monte Carlo sampling. optimize_acgf_discrete sequentially selects points and
appends their corresponding x values to the Gaussian process input for subsequent Monte Carlo
samples, making this a hallucinating approach.

Multipoint  probability of improvement (qPI) We implement qEI using the
gProbabilityOfImprovement and optimize_acqgf_discrete functions in botorch
(Balandat et al.l 2020). gProbabilityOfImprovement evaluates qPI using Monte Carlo
sampling. optimize_acgf_discrete sequentially selects points and appends their corre-
sponding x values to the Gaussian process input for subsequent Monte Carlo samples, making this
a hallucinating approach.

Determinantal point process Thompson sampling (DPP-TS) We follow the iterative batch con-
struction strategy in Algorithm 1 described by Nava et al.|(2022)). We define the kernel as the Tani-
moto similarity between 2048-length Morgan fingerprints. DPP-TS is an iterative batch construction
policy; we allow for 1,000 iterations of DPP-TS batch design in each BO iteration.

Thompson sampling with regret to sigma ratio (TS-RSR) We follow Algorithm 1 inRen & Li
(2024) for the implementation of TS-RSR. As in pTS, we obtain b posterior samples. The design
which optimizes the regret to sigma ratio in each sample is acquired.

General-purpose Information-Based Bayesian OptimisatioN (GIBBON) We imple-
ment GIBBON (Moss et al. [2021) using the gLowerBoundMaxValueEntropy and
optimize_acqgf_discrete functions in bot orch (Balandat et al.}[2020).

Additional baseline to reflect maximum exploration with filtering to top 10k As described
previously, we modify qEI pTS, and qPO by first filtering the candidates to a set of 10,000 based
on mean prediction and apply the respective acquisition strategy to the filtered set. This modifica-
tion imposes a slight exploitative bias and thus may impact the exploratory nature of qEI and pTS.
Therefore, we include an additional baseline that reflects the maximal amount of exploration possi-
ble with this filtering step. This baseline, “random10k”, randomly selects a batch from the 10,000
candidates that are highest ranked by mean prediction.

A.4.4 ANALYZING BATCH DIVERSITY

We visually analyze the diversity of batches selected by qPO, pTS, gEI, qPI, and UCB in Figure[2]
We perform this analysis for batches selected in Iteration 1 of the run initialized with the random seed
7. At this iteration, all strategies have acquired the same training data and select from the same set of
candidates. For each pair of selections in the batch, we calculate the Tanimoto similarity (Tanimoto),
1958)) between 2048-length count Morgan fingerprints, leading to the histograms in the bottom of
Figure[2] For network visualizations, each node represents a compound in the acquired batch. Edges
are drawn between any pair of selections which have a Tanimoto similarity greater than 0.4. With
each edge weight equal to the corresponding Tanimoto similarity, nodes are positioned with the
Fruchterman-Reingold force-directed algorithm (Fruchterman & Reingold, [1991)) as implemented
in networkx (Hagberg et al.l2008)) with a random seed of O (for reproducibility) and a k value of
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0.5 (to prevent highly overlapping nodes). This positioning algorithm visually clusters points that
represent structurally similar compounds, allowing for qualitative analysis of batch diversity.
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A.5 RUNTIME COMPARISON BETWEEN QPO AND ALTERNATIVE STRATEGIES

Method Wall time for QM9 experiment (s) Wall time for antibiotics experiment (s)

qPO 3774 £ 19 1883 +9
pTS 3715 £ 19 1855 £ 13
qEI 6016 =9 1974 £+ 3
Greedy 46 + 1 20+ 0
UCB 51 +8 26+ 8
TS-RSR 3687 + 18 1834 £+ 13
BUCB 4840 £+ 12 1401 £ 6
qPI 4850 + 12 1385+ 6
DPP-TS 5728 £ 43 2902 + 36
random10k 44 +2 20+2

Table 3: Wall times for qPO and baselines. Reported values denote the average wall time required
for one complete run + one standard error of the mean across ten runs. The runtime of qPO is
within the same order of magnitude as that of other batch-level acquisition strategies that rely on
sampling. As expected, strategies that do not require sampling—Greedy, UCB, and random10k-are
significantly faster. All experiments were performed on nodes containing 40 CPUs and 2 GPUs.
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A.6  ABLATION STUDY ON IMPACT OF PRE-FILTERING THRESHOLD ON QPO PERFORMANCE

As described in Section [] and [A:4.3] we apply a pre-filtering before utilizing qPO and other
sampling-based acquisition strategies to reduce the computational cost of these methods. For these
strategies, we first select the top 10,000 points based on predicted mean and then apply the respective
acquisition function. This may risk overlooking promising candidates; in particular, designs with
poor predicted mean values but high uncertainty may fail to be considered for acquisition. Here, we
compare performance of qPO using a greedy pre-filtering approach and one that instead uses upper
confidence bound (UCB) to pre-filter compounds. In both cases, we maintain a threshold of 10,000
designs, and we perform this comparison for the application to antibiotic discovery described in
Section f.2] We observe similar optimization performance for gPO when using greedy and UCB
metrics for pre-filtering according to the average of the top acquired compounds (Figure FA,B),
and slightly improved performance when using greedy according to retrieval of the top-performing
compounds (Figure fIC,D). These results indicate that our pre-filtering method does not overlook
promising designs with high uncertainty.
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Figure 4: Comparison of qPO’s optimization performance using greedy and upper confidence bound
pre-filtering methods. Reported results are for the model-guided exploration of an experimental
antibiotic activity dataset (Wong et al.l 2024), as described in Section @ In each iteration, the
candidate set is filtered to 10,000 compounds before applying qPO acquisition, using either a greedy
or upper confidence bound metric. (A,B) Average oracle value of top 10 and 50 acquired compounds,
where lower values indicate greater antibiotic activity. (C, D) Retrieval of the true top 0.5% and 1%
compounds in the explored library.
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