SAD: Segment Any RGBD
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Figure 1: Segmentation results of depth map by SAM. In contrast to RGB images, segmentation
results derived from depth maps inherently encompass a richer set of geometric information.

Abstract

The Segment Anything Model (SAM) has demonstrated its effectiveness in seg-
menting any part of 2D RGB images. A lot of SAM-based applications have shown
amazing performance. However, SAM exhibits a stronger emphasis on texture
information while paying less attention to geometry information when segmenting
RGB images. To address this limitation, we propose the Segment Any RGBD
(SAD) model, which is specifically designed to extract geometry information di-
rectly from images. Inspired by the natural ability of humans to identify objects
through the visualization of depth maps, SAD utilizes SAM to segment the ren-
dered depth map, thus providing cues with enhanced geometry information and
mitigating the issue of over-segmentation. Compared to other SAM-based projects,
we are the first to use SAM to segment non-RGB images. We further include the
open-vocabulary semantic segmentation in our framework to provide the semantic
labels of each segment.
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Figure 2: The overview of the proposed SAD. The original depth map is projected to the RGB space
by a colormap function, so that it could be segmented by the Segment Anything Model. We also
use open-vocabulary semantic segmentation to provide the semantic labels for each pixel. Then we
conduct the voting process to determine the final semantic label of each SAM mask.

1 Introduction

Recently, a prominent model for image segmentation called the Segment Anything model (SAM) has
been introduced [1]]. SAM serves as a robust foundation model for effectively segmenting 2D images
in various scenarios. However, during the segmentation of 2D RGB images, it has been observed
that SAM primarily relies on texture information, such as color, leading to over-segmentation results.
Consequently, the challenge lies in finding a way to obtain segmentation results that incorporate more
geometric information through the utilization of SAM.

To address this issue, we draw inspiration from the remarkable ability of humans to identify objects
by visualizing depth maps. We first map a depth map (R”*") to the RGB space (R *W*3) by a
colormap function and then feed the rendered depth image into SAM. Compared to RGB images, the
rendered depth image ignores the texture information and focuses on the geometry information, as
shown in Fig. [T} Notably, it is worth mentioning that while previous SAM-based projects [2] like
SSA [3], Anything-3D [4]], and SAM 3D [J3]] primarily employ RGB images as inputs, we are the first
to utilize SAM for directly segmenting rendered depth images.

2 Related Work

Recently, designing a general class of foundation models, which are trained on broad data that
can be adapted to various downstream tasks, is causing a revolution within the community. The
Segment Anything Model (SAM) [1]] has achieved remarkable strides in pushing the boundaries of
segmentation, profoundly advancing the development of foundational models for computer vision.
SAM is a developed large Vision Transformer (ViT [6])-based model trained over 1 billion masks on
11 million images that enables powerful zero-shot generalization on diverse styles of 2D images. A
large number of extended works have been proposed to explore the limits of SAM’s capabilities and
its application to diverse tasks, including image editing [[7], style transfer [8]], real-world detection
and segmentation [9, [10} [T} [12], segmentation in complex scenes [14] 15} [16]], medical image
analysis 18] [21]], video object tracking [23]], data annotations [23]], video text
spotting [24], 3D segmentation and reconstruction [26, 27, 28], image captioning [29], text-based
segmentation [30], audio-visual localization and segmentation [31]]. Several concurrent works, such
as SegGPT [32], SEEM [33], X-Decoder [34], and OpenSeeD [33], have also delved into the potential
of vision foundation models for tackling various visual tasks.
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Figure 3: Segmentation results with the RGB image input and the rendered depth image inputs.
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Table 1: Quantltatlve Results on Sailvos3D. FS and ZS denote Fully-supervised and Zero-shot,
respectively. PC means point cloud.

3 Method

3.1 Preliminaries

Segment Anything Model (SAM). The Segment Anything model (SAM) [[1]] is a recently developed
large Vision Transformer (ViT)-based model. SAM has been trained on an extensive visual corpus
known as SA-1B. The training process on this large-scale dataset has endowed SAM with the
remarkable ability to perform zero-shot segmentation on diverse styles of 2D images. All SAM-
related methods consider the RGB images as the inputs, while we are the first to use SAM to segment
depth maps.

Open-Vocabulary Semantic Segmentation (OVSeg). Given the class candidates in the text format,
Open-Vocabulary Semantic Segmentation (OVSeg) [37] can segment an image into semantic regions
even if the categories are not seen during training. We use OVSeg as the off-the-shelf model to
provide the semantic labels for each pixel.

3.2 Segment Any RGBD

In this paper, we propose Segment Any RGBD (SAD) that leverages both SAM and OV Seg to achieve
semantic segmentation results utilizing the geometry information derived from depth maps. The
overview of SAD is shown in Fig.[2] The process can be divided into the following parts:

Rendering depth maps. We notice that depth maps tend to emphasize geometry information over
texture information when compared to RGB images, as visually depicted in Fig.[T} Capitalizing on
this characteristic, our approach involves initially utilizing a colormap function [38]] to render the
depth maps to the RGB space. We try different colormaps such as Viridis, Gray, Plasma, Cividis, and
Purples, as shown in Fig.[T} Consequently, the rendered depth maps are employed as inputs for SAM.

Segmentation with SAM. Following the rendering process, we apply SAM to the rendered depth
images to generate initial SAM masks. It is worth noting that these initial SAM masks are class-
agnostic and still over-segmented, as illustrated in the Fig.[I] We find that the depth images rendered by
different colormaps have different SAM outputs, indicating that SAM has different color preferences.
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Figure 4: Qualitative results on the Sailvos3D dataset.
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Table 2: Quantltatlve Results on ScanNetV2. FS and ZS denote Fully supervised and Zero-shot,
respectively. PC means point cloud.

Semantic segmentation with OVSeg. By employing RGB images as input and leveraging text
prompts, OV Seg exhibits the ability to generate coarse masks that encompass significant semantic
information. These coarse semantic segmentation masks serve a dual role: firstly, they assist in
guiding the clustering process of the over-segmented parts within the SAM masks, and secondly, they
provide crucial category insights that contribute to refining the fine-grained SAM results.

Semantic voting. For each pixel in the SAM mask, we first find its corresponding predicted class
from the OVSeg mask. Subsequently, we assign the class of each segment based on the majority class
of pixels contained within it. Following this, we can proceed to cluster adjacent segments that belong
to the same class.

3D Projection. Finally, the semantic segmentation results can be projected to 3D-world based on the
depth map for stereoscopic visualizations. This projection enables a comprehensive understanding
and visual representation of the segmented results in their spatial context.

4 Comparison with RGB Image Input

We compare the proposed rendered depth image input with the RGB image input. RGB images pre-
dominantly capture texture information, while depth images primarily contain geometry information.
As a result, RGB images tend to be more vibrant and colorful compared to the rendered depth images.
Consequently, SAM produces a larger number of masks for RGB inputs compared to depth inputs, as
illustrated in Fig.[3] The utilization of rendered depth images mitigates the issue of over-segmentation
in SAM. For instance, when examining the table, the RGB images segment it into four distinct parts,
with one part being misclassified as a chair in the semantic results (indicated by yellow circles in
Fig[3), while it is accurately classified in the depth image. It is also important to note that when
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Figure 5: Qualitative results on the ScannetV2 dataset.

two objects are in close proximity, they may be segmented as a single object in the depth image, as
depicted by the chair in the red circle of Fig. 3] In such cases, the texture information present in RGB
images becomes crucial for accurately identifying and distinguishing the objects.

5 Quantitative Results

We conduct the experiments on Sailvos3D [41] and ScanNet [42] datasets. The corresponding
quantitative results are shown in Table[I]and Table 2] respectively. It is reasonable to see that the
overall performance of RGB inputs is slightly better than the depth inputs since the SAM is mainly
trained on RGB images. However, the mloU of SAD using the depth input is still acceptable, and
some classes in Sailvos3D even have higher IoU than the RGB inputs, such as bird, bottle, and
cup. Most importantly, we show that SAM has the potential to segment other modality data like
depth maps rather than just segment RGB images. The overall IoU of SAD is not as good as other
fully-supervised methods, which is reasonable since SAD is a zero-shot method and does not train
the models at all. So there is still much room to improve based on our work.

6 Qualitative Results

We present qualitative results on Sailvos3D [41]] and ScanNet [42], which are depicted in Fig. [
and Fig.[5] The figures clearly demonstrate the enhanced performance of our method in generating
geometric semantic segmentation results when utilizing depth map inputs. It is clear that the SAM
results of depth maps have fewer segments than the RGB inputs, indicating that the over-segment
problem of SAM is alleviated to some extent. Besides, the segmentation results of depth maps are
highly influenced by the quality of the depth maps. For instance, the depth maps of Scannet might
miss some depth values, as shown in the black areas in Fig. 5] which may cause the segment results
not accurate.



7 Conclusion

In summary, we introduce the Segment Any RGBD (SAD) model, which combines SAM and OV Seg
for semantic segmentation using depth maps. SAD leverages the geometry information of depth
maps by rendering them with colormap projection and feeding them into SAM. Initial SAM masks
are generated, which are refined using OVSeg’s coarse semantic segmentation masks. The clustering
process is then applied to group adjacent segments of the same class, improving the segmentation
results’ coherence. Finally, the semantic segmentation results are projected into the 3D world based
on the depth map, enabling comprehensive stereoscopic visualization. Overall, SAD enhances
semantic segmentation by incorporating depth maps and leveraging both SAM and OV Seg, resulting
in more accurate and context-aware results. Compared to other SAM-based projects, we are the first
to try SAM on other modality images that cannot be fed into the SAM directly because of the shape
inconsistency. This work opens up new possibilities for SAM on other modality images and provides
valuable insights into real-world applications.
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