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ABSTRACT

Large Vision-Language Models (LVLMs) achieve impressive multimodal reason-
ing but remain prone to hallucinations, generating content inconsistent with vi-
sual evidence. Existing mitigation methods often rely on auxiliary modules or
coarse decoding-time adjustments, overlooking the fine-grained dynamics that
distinguish truthful (real) tokens from hallucinatory ones. In this paper, we in-
troduce AGE (Attention-aware Truth-Guided Enhancement), a training-free
framework that performs fine-grained, layer-wise interventions guided by atten-
tion patterns of real tokens. Our analysis reveals that real and hallucinated to-
kens follow distinct stage-specific attention behaviors, and hallucinations emerge
when models fail to reproduce these behaviors. AGE addresses this by introduc-
ing two lightweight interventions: (i) Imitating the image attention, derived from
discrepancies between real and hallucinated tokens, and (ii) Imitating the text at-
tention when semantic grounding is required. Extensive experiments on widely
used benchmarks, including COCO Image Captioning, POPE, and MME, demon-
strate that AGE consistently mitigates hallucinations across diverse LVLMs such
as LLaVA, MiniGPT-4, and mPLUG-Owl2, without additional training or loss of
fluency. Our results highlight that imitating truth-grounded attention dynamics is
a simple yet powerful principle to improve the reliability of LVLMs.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) (Chen et al., 2023; Li et al., 2023a; Liu et al., 2023b; Zhu
et al., 2023; Ye et al., 2023) have demonstrated remarkable capabilities across a wide range of mul-
timodal tasks, including image caption (Hu et al., 2023b), visual question answer (Liu et al., 2024c),
and instruction following grounded in visual content (Hong et al., 2024; Liu et al., 2024a). Despite
their impressive capabilities, LVLMs often suffer from a critical flaw: hallucination, the generation
of content that is not supported or contradicted by the visual input. This issue poses a substantial
threat to their reliability and limits deployment in high-stakes scenarios such as autonomous sys-
tems (Chen et al., 2024c; Mai et al., 2023) and healthcare diagnostics (Hu et al., 2023a; Wang et al.,
2024a). Understanding the causes of hallucinations in LVLMs and devising effective strategies for
their mitigation are essential steps toward enhancing the reliability of these models.

Given the complexity of LVLM architectures and their reliance on multimodal fusion reasoning,
eliminating hallucinations remains highly challenging. Recent studies have explored two major di-
rections: introducing external auxiliary modules (Zhou et al., 2023; Yin et al., 2024) and intervening
during decoding (Huang et al., 2024; Leng et al., 2024; Yang et al., 2025). Among these, decoding-
time approaches such as OPERA (Huang et al., 2024) and VCD (Leng et al., 2024) have drawn
particular attention due to their model-agnostic nature and ease of deployment. These methods
typically mitigate hallucinations by reweighting visual attention or counteracting biased text priors
during generation. However, most of them (Huang et al., 2024; Chen et al., 2024a; Park et al., 2025;
Leng et al., 2024; Zou et al., 2025) operate in a coarse-grained manner, applying uniform enhance-
ments across layers or modalities. Such oversimplification fails to capture the nuanced dynamics of
multimodal reasoning, resulting in reduced robustness and less effective hallucination mitigation.

To move beyond coarse-grained interventions, we adopt a finer-grained analysis, where we examine
hallucinated responses by decomposing them into “truthful tokens” (real tokens image-grounded)
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Figure 1: An illustration of our core motivation. Left: The attention behaviors for real and halluci-
nated tokens exhibit clear, stage-dependent disparities. Right: A conceptual example demonstrating
the consequences of these disparities. Weakening the dominant modality at a given stage (e.g., text
attention for counting, image attention for final grounding) leads to specific hallucinated outputs.

and “hallucinatory tokens” (unsupported) to analyze their attention behaviors layer by layer. As
visualized in Fig. 1 (more details in Fig. 2), this investigation reveals systematic, stage-dependent
discrepancies across both modalities: the attention patterns for real tokens, in both visual and textual
domains, differ significantly from those of hallucinatory tokens, and this pattern of divergence is
both model- and stage-specific. For instance, when the model fails to sufficiently attend to text in
the middle stage as a real response would, it may default to a salient visual object (e.g., “Elephant”)
instead of the correct count. Conversely, insufficient visual attention in the late stage can lead to over-
reliance on incomplete textual priors (e.g., generating “Two” instead of “Three”). These findings
suggest that hallucinations are caused by a failure to reproduce the token-level, stage-sensitive
attention dynamics characteristic of real responses. This insight motivates our core hypothesis:
hallucinations can be mitigated by guiding the model to imitate the internal attention behaviors of
real tokens through adaptive, stage-specific interventions.

Motivated by this insight, we introduce AGE (Attention-aware Truth-Guided Enhancement), a
training-free, decoding-time framework that mitigates hallucinations by imitating the stage-specific
attention dynamics of real tokens. Rather than applying uniform adjustments, AGE implements
targeted interventions aligned with the distinct attention characteristics of each model, focusing
on the stages where discrepancies are most pronounced. Concretely, it employs two lightweight
interventions that require: (i) Imitating the Image Attention, derived from the attention disparity
between real and hallucinatory tokens, to restore visual grounding in late reasoning layers; and (ii)
Imitating the Text Attention where analysis reveals a stronger reliance on text, as observed in the
middle stage of LLaVA. By imitating attention behaviors in real tokens, AGE enables more accurate,
fluent, and trustworthy multimodal generation. We summarize our primary contributions as follows:

1. We conduct a novel token-level, layer-wise analysis of attention within hallucinated re-
sponses, identifying the cause of hallucinations as a failure to reproduce stage-specific
attention behaviors of real tokens.

2. We design and propose AGE, a framework whose lightweight interventions effectively
translate our analytical insights into a practical, decoding-time solution.

3. We provide extensive experimental validation showing that AGE significantly and consis-
tently reduces hallucinations across multiple LVLMs and benchmarks, without sacrificing
fluency or completeness.

2 RELATED WORK

Large Vision-Language Models. The remarkable success of large language models (LLMs) (Tou-
vron et al., 2023a;b) has spurred increasing interest in extending their capabilities to the multimodal
domain. With the open release of influential LLM backbones such as LLaMA (Touvron et al., 2023a)
and Vicuna (Chiang et al., 2023), large vision–language models (LVLMs) (Bai et al., 2023; Chen
et al., 2024b; Liu et al., 2024a; 2023b; Zhu et al., 2023) have rapidly emerged as powerful systems
capable of comprehensively processing and generating content across multiple modalities, includ-
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ing text, images, and even audio. Building on these foundations, models such as LLaVA (Liu et al.,
2023b), mPLUG-Owl2 (Ye et al., 2023), and MiniGPT-4 (Zhu et al., 2023) further advance inter-
activity by supporting joint image–text prompts, enabling richer and more context-aware responses.
Most LVLMs employ a two-stage training paradigm: an initial vision–language feature alignment
phase followed by instruction tuning, which equips them to interpret and follow multimodal queries
effectively. However, despite these advancements, hallucination, where generated content diverges
from or contradicts the visual evidence, remains a persistent and widespread limitation across cur-
rent LVLMs.

Mitigating Hallucinations in LVLMs. Hallucination, content that is irrelevant, inaccurate, or
inconsistent with the visual input (Bai et al., 2024), has been linked to limitations in visual en-
coding (Tong et al., 2024; Liu et al., 2024b; Shi et al., 2024), overreliance on parametric knowl-
edge (Zhou et al., 2023; Leng et al., 2024), and noisy supervision (Liu et al., 2023a; Yu et al., 2024).
Mitigation strategies include training-based improvements via cleaner or reweighted datasets (Yue
et al., 2024; Jiang et al., 2024) and decoding-time adjustments such as VCD (Leng et al., 2024),
which contrasts output distributions derived from original and distorted visual in puts, or atten-
tion calibration OPERA (Huang et al., 2024), which penalizes over-trust and refines token selection
based on previous outputs. However, most of these approaches require costly retraining, depend
on post-generation filtering, or apply coarse global attention changes. In contrast, our method di-
rectly calibrates attention behaviors during inference by imitating real response patterns, offering a
fine-grained intervention across reasoning stages without modifying model training or architecture.

3 UNCOVERING HALLUCINATION-REAL RESPONSE DISCREPANCY

3.1 PRELIMINARY

Large Vision-Language Models (LVLMs) process an image V and a textual instruction to generate
a response Y = {y1, . . . , yK}. The image is encoded into visual tokens {v1, . . . , vn}, and the
instruction into text tokens {t1, . . . , tm}. These models generate text autoregressively using an L-
layer Transformer decoder. At each decoding step k and layer l, the model computes an attention
weight vector a(l,k) ∈ Rn+m+k. This vector is composed of a visual component a(l,k)vision ∈ Rn

over the visual tokens and a textual component a(l,k)text ∈ Rm+k over the textual (instruction and
previously generated) tokens. These attention weights are then used to update the hidden state
h
(l)
k ∈ Rd from the corresponding value matrices (V(l)

vision ∈ Rn×d and V
(l,k)
text ∈ R(m+k)×d) via a

residual connection:

h
(l+1)
k = h

(l)
k + AttentionSubLayer

(
a
(l,k)
vision,V

(l)
vision,a

(l,k)
text ,V

(l,k)
text

)
. (1)

The probability of the next token is predicted from the final layer’s hidden state, h(L)
k :

p(yk|y<k) = Softmax(f(h(L)
k )), (2)

where f(·) is an affine layer. Hallucination may occur when the generated text Y is inconsistent
with or contradicts the image V .

3.2 METHODOLOGY FOR ANALYZING ATTENTION DISCREPANCY

While prior work often attributes hallucination to a general lack of visual grounding or textual prior
interference, we hypothesize that the underlying cause is a more nuanced, dynamic behavior in atten-
tion. Specifically, we conduct a fine-grained analysis of the internal attention dynamics of LVLMs to
uncover stage-dependent patterns that can inform a more targeted intervention. Our analysis focuses
on three representative LVLMs: LLaVA-1.5-7B (Liu et al., 2023b), MiniGPT-4 (Zhu et al., 2023),
and mPLUG-Owl2 (Ye et al., 2023). For these models, we curated a set of {Vi}Ni=1 with N = 100
challenging images from the COCO training set, specifically selected for their known propensity to
elicit hallucinated responses {Yi}Ni=1. Our core idea is to investigate if a model exhibits different
attention behaviors when generating real versus hallucinated content within the same response.

For each generated response Y (i) that contained inaccuracies, we distinguish real and hallucinated
tokens by comparing the predicted objects with the ground-truth annotations. A token was labeled as
“real” only if it corresponded to an object explicitly present in the ground-truth labels, and otherwise
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marked as hallucinated. The resulting sets are: (1) Real Tokens I
(i)
real: Tokens corresponding to

objects verifiably present in the image; and (2) Hallucinated Tokens I
(i)
hall: Tokens corresponding

to objects confabulated by the model and not present in the image. To quantify the difference in
attention behavior between these two token sets, we first define the Average Attention Sum, s̄, a
per-sample metric for a specific modality and token type. For instance, the average visual attention
sum for real and hallucinated tokens in sample i at layer l can be expressed as:

s̄
(l,i)
(real,vision) =

1

|I(i)hall|

∑
k∈I

(i)
real

sum
(
a
(l,k)
vision

)
, s̄

(l,i)
(hall,vision) =

1

|I(i)hall|

∑
k∈I

(i)
hall

sum
(
a
(l,k)
vision

)
, (3)

where sum(·) is the sum of all elements in a vector. The corresponding terms for the textual modality
are defined analogously. After computing these per-sample scores, we aggregate them across all N
images to derive our final layer-wise difference metrics:

Difflimage=
1

N

N∑
i=1

(
s̄
(l,i)
(real,vision) − s̄

(l,i)
(hall,vision)

)
, Diffltext =

1

N

N∑
i=1

(
s̄
(l,i)
(real,text) − s̄

(l,i)
(hall,text)

)
. (4)

Consequently, a positive value in Difflimage signifies that real tokens, on average, allocate greater
attention to the visual modality than hallucinated tokens at layer l. This finding forms the basis of
our intervention: guiding the model to align with the attention patterns of truthful tokens.

(a) LLaVA-1.5 (b) MiniGPT-4 (c) mPLUG-Owl2

Figure 2: A layer-wise characterization of attention disparities between real and hallucinated re-
sponses, which vary across LLaVA-1.5, MiniGPT-4, and mPLUG-Owl2.

3.3 ANALYSIS OF ATTENTION BEHAVIORS

As shown in Fig. 2, our analysis of real and hallucinated token sets reveals distinct, model-specific
attention behaviors. To facilitate this analysis, we partition each model’s architecture into three
stages based on the observed dynamics: Early (Layers 0-16), Middle (Layers 16-26), and Late
(Layers 26-31). The attention dynamics are notably model-specific. LLaVA-1.5, for instance, re-
veals a complex non-monotonic relationship where real responses show stronger visual attention
in the early and late stages but rely more heavily on textual context in the middle stage. In con-
trast, MiniGPT-4 and mPLUG-Owl2 present a more consistent dynamic, with visual attention for
real responses decisively dominating across nearly all stages. Despite these differences, a critical
commonality emerges: Across all tested models, the final reasoning stage (Layers 26-31) exhibits a
stable and pronounced positive gap where real responses attend more to visual tokens than halluci-
nated ones. This provides a universal and impactful opportunity for intervention. See Appendix A.8
for more results about different size N .

This crucial finding demonstrates that hallucination is not caused by a simple, uniform lack of visual
attention, but is instead tied to a failure to replicate nuanced, model-specific, and stage-specific
attention dynamics. Consequently, naive, one-size-fits-all interventions that globally enhance visual
attention are insufficient and may even be counterproductive. Our analysis, therefore, points to a
more effective strategy: we hypothesize that hallucinations can be mitigated by guiding a model to
imitate the attention behavior of real responses. This requires interventions that are not only targeted
to specific reasoning stages but are also adaptive to the unique attention patterns of each individual
model. Motivated by this core insight, we introduce a novel framework in the following section,
designed to implement this principle through targeted attention interventions faithfully.
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Figure 3: AGE first samples hallucinatory responses and distinguishes real from hallucinated tokens.
The visual attention gap between them yields the target vector δ. During inference, AGE applies
δ and/or textual self-multiplicative enhancement, guiding LVLMs to align with real responses and
mitigate hallucinations.

4 OUR PROPOSED METHOD

This work introduces AGE (Attention-aware Truth-Guided Enhancenment). AGE is a training-free,
decoding-time framework that corrects these attention disparities by guiding the model to imitate
the attention patterns of real responses.

4.1 IMITATING THE ATTENTION BEHAVIOR

Imitating the Image Attention. Our analysis in Section 3.3 revealed a critical, universal finding:
across all tested LVLMs, the late reasoning stages consistently exhibit a stable pattern where real
responses allocate significantly more attention to visual tokens. While a simple self-multiplicative
enhancement could increase visual focus, it is direction-agnostic and coarse. This work proposes a
directional calibration of visual attention.

As shown in Fig. 3, our strategy is to compute a single, robust directional vector, δ ∈ Rn, that
captures the essential shift from a hallucinatory to a real attention pattern. The dimension n corre-
sponds to the number of visual tokens produced by the image encoder, as introduced in Section 3.1.
To compute this vector, we first randomly select M samples from the COCO training set that are
known to elicit hallucinatory responses. The vector δ is designed to capture a general corrective
tendency in the model’s attention space, rather than overfitting to the specifics of the M samples.
For each sample i ∈ [1,M ], we follow the methodology from Section 3.2 and partition its generated
tokens into two distinct sets: real tokens (I(i)real) and hallucinatory tokens (I(i)hall). To quantify the atten-
tion patterns for these token sets, we define the Average Attention Vector as a ∈ Rn. This vector
represents the averaged attention distribution over the n visual tokens. It is calculated by averaging
the attention vectors from a specific layer for a given set of tokens. We choose to compute this from
the final decoder layer (L), as it contains the most semantically integrated representations just prior
to token generation. For a given sample i, the average image attention vector for its hallucinated
tokens and real tokens are formally defined as:

ai(hall,vision) =
1

|I(i)hall|

∑
k∈I

(i)
hall

a
(L,k)
vision , ai(real,vision) =

1

|I(i)real|

∑
k∈I

(i)
real

a
(L,k)
vision . (5)

The target directional vector δ is then calculated as the weighted average of the difference be-
tween these real and hallucinatory vectors across the M samples (see Appendix A.3 for the adaptive
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weighting scheme):

δ =
1

M

M∑
i=1

wi · (ai(real,vision) − ai(hall,vision)). (6)

During inference, we inject this universal adjustment vector into the visual attention of layers within
the pre-defined late stage:

âlvision = alvision + λv × δ. (7)
where λv is a scaling factor. This encourages the model to reproduce the universal image attention
behavior characteristic of truthful responses.

Imitating the Text Attention. As our analysis also highlighted, attention dynamics can be highly
model-specific. For models like MiniGPT-4 and mPLUG-Owl2, where visual attention dominates
throughout, no textual intervention is necessary. However, for LLaVA-1.5, the middle stage shows
that real responses rely substantially more on textual context. To address this model-specific need,
we reinforce text attention in the designated middle stage of LLaVA. Since text attention vectors
dynamically change in dimension, pre-computing a fixed directional vector is infeasible. Therefore,
we adopt a self-multiplicative enhancement as an effective proxy to amplify the model’s focus on its
generated context:

âltext = altext + λt × altext, (8)
where λt is a scaling factor. This targeted adjustment ensures our framework adapts to the unique
reasoning patterns of each LVLM.

While this method does not specify a corrective direction, it effectively amplifies the model’s focus
on its generated context, thereby imitating the attention behavior uncovered in our analysis. Unlike
prior work, our approach modulates multimodal attention in a stage-specific manner to faithfully
reproduce the attention behavior of real responses.

4.2 CALIBRATED AUTOREGRESSIVE GENERATION

The stage-specific adjustments described previously are integrated into the standard autoregressive
generation process. At each decoding step k and for each decoder layer l, the model applies the
corresponding intervention conditionally based on the layer’s designated stage. Specificall, for all
LVLMs, we choose l from Late Stage and shift the visual attention using the directional vector δ
as defined in Eq. 7; for LLaVA, we additional enhance the textual attention via self-multiplication
in Eq. 8 by choosing l from Middle Stage. Attention in layers outside these defined stages remains
unchanged. The model then computes the subsequent hidden state h

(l+1)
k using these potentially

calibrated attention scores, â(l,k)vision and â
(l,k)
text , to form the context vector. This is conceptually repre-

sented by:
h
(l+1)
k = h

(l)
k + AttentionSubLayer(â(l,k)vision,V

(l)
vision, â

(l,k)
text ,V

(l,k)
text ). (9)

By coordinating these interventions in different LVLMs, AGE calibrates attention behavior through-
out the reasoning process guided by the direction of real responses. This design not only suppresses
hallucinations but also ensures faithful alignment with visual evidence, providing a principled and
interpretable pathway toward more trustworthy multimodal generation. The algorithm of AGE is
summarized in the Appendix A.2.

5 EXPERIMENTS

Baselines. We evaluate our approach on three representative LVLMs: LLaVA-1.5 (Liu et al., 2023b),
mPLUG-Owl2 (Ye et al., 2023), and MiniGPT-4 (Zhu et al., 2023). To examine the impact of model
scale, we additionally experiment with the 13B variants of LLaVA-1.5. We use the default greedy
decoding strategy and compare AGE against recently SOTA methods: DoLA (Chuang et al., 2023),
OPERA (Huang et al., 2024), VCD (Leng et al., 2024), Woodepecker (Yin et al., 2024), LURE (Zhou
et al., 2023), ICD (Wang et al., 2024b), and VISTA (Li et al., 2025).

Evaluation Metrics. We assess our method using a suite of standard hallucination benchmarks,
in line with prior studies (Huang et al., 2024; Leng et al., 2024). (1) First, for image caption-
ing, we employ the Caption Hallucination Assessment with Image Relevance (CHAIR) (Rohrbach
et al., 2018). This involves generating descriptions for 500 COCO validation images and comparing

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Hallucination rates (%) are reported using CHAIRS (CS), CHAIRI (CI ), and BLEU (%)
on COCO image captioning tasks, where lower CHAIR and higher BLEU are better. The max new
token is set to 64. The best results are highlighted in bold while the second-best results are marked
with underline. † represents the results reported from Chen et al. (2024d). ‡ represents the results
reported from the corresponding original paper.

Method MiniGPT-4-7B LLaVA-1.5-7B mPLUG-Owl2-7B Avg.
CS ↓ CI ↓ BLEU↑ CS ↓ CI ↓ BLEU↑ CS ↓ CI ↓ BLEU↑ CS ↓ CI ↓ BLEU↑

Greedy † 30.87 12.33 14.33 20.80 6.77 15.93 23.20 8.33 15.37 24.95 9.14 15.21
Beam Search † 29.56 11.36 14.94 18.67 6.30 16.17 21.67 7.63 15.77 23.30 8.43 15.62
DoLA (Chuang et al., 2023) † 30.87 11.70 14.93 21.00 6.70 15.93 24.60 8.73 15.40 25.49 9.04 15.42
OPERA (Huang et al., 2024) † 30.00 11.67 14.87 21.13 6.73 16.27 22.13 7.57 15.53 24.42 8.65 15.56
VCD (Leng et al., 2024) † 30.27 12.60 14.33 23.33 7.90 14.67 27.27 9.73 14.40 26.95 10.07 14.46
Woodepecker (Yin et al., 2024) † 28.87 10.20 15.30 23.85 7.50 17.05 26.33 8.43 16.43 26.35 8.71 16.26
LURE (Zhou et al., 2023) † 27.88 10.20 15.03 19.48 6.50 15.97 21.27 7.67 15.65 22.87 8.12 15.55
VISTA (Li et al., 2025) ‡ 19.80 6.00 - 20.40 6.90 - - - - 20.10 6.45 -
Ours 15.62 6.00 15.79 16.43 5.58 16.48 19.40 7.47 16.21 17.15 6.35 16.16

them against ground-truth objects to measure hallucination at both the sentence (CHAIRS) and in-
stance (CHAIRI ) levels. To ensure responses remain faithful to the visual content, we also report an
instance-level BLEU score (Papineni et al., 2002). (2) Second, we evaluate perceptual hallucinations
using the POPE benchmark (Li et al., 2023b), which probes a model’s ability to identify the presence
or absence of visual concepts through 3,000 binary questions. We report Accuracy and F1 scores
across its Random, Popular, and Adversarial settings. (3) Finally, we use the MME benchmark (Fu
et al., 2023), focusing on four hallucination-related subtasks: Existence, Count, Position, and Color.
Following the protocol of Yin et al. (2024), we report the overall accuracy as the evaluation metric.
Please see more details in Appendix A.4.

Hyperparameter setting. In our experiments, interventions are applied at the 20th layer for the
Middle stage and at the 30th and 31st layers for the Late stage. The scaling factors are set to
λv = 100 for visual attention and λt = 3 for textual attention. The number of M (samples to
generate δ) is set to 10. Please refer to the Appendix A.7 for more details.

5.1 MAIN RESULTS

Results on COCO Image Captioning. To evaluate the effectiveness of our method on the caption-
ing task, we adopt the CHAIR metric on COCO. Specifically, we conduct experiments on three rep-
resentative models: LLaVA-1.5-7B (Liu et al., 2023b), MiniGPT-4 (Zhu et al., 2023), and mPLUG-
Owl2 (Ye et al., 2023). As shown in Table 1, our method outperforms the latest state-of-the-art
(SOTA) method by a margin of 2.85% and 0.10% on CHAIRS and CHAIRI , respectively, demon-
strating that our AGE substantially mitigates hallucinations during multimodal reasoning. Impor-
tantly, our approach maintains comparable BLEU scores to the baseline models, even a 0.95% im-
provement, indicating that the mitigation in hallucination is not achieved at the expense of response
quality. It is worth noting that both LURE (Zhou et al., 2023) and Woodpecker (Yin et al., 2024) rely
on additional training data or auxiliary models to mitigate hallucinations. In contrast, AGE achieves
superior performance using a minimal set of only 10 images. This highlights that the improvements
of our approach do not stem from external data augmentation, but rather from faithfully replicating
the nuanced, stage-specific attention dynamics observed in real responses by imitating their attention
behaviors. Please refer to the Appendix A.6 for more results about different sizes of models.

Results on POPE. We further validate our method on the POPE benchmark. Following the proto-
col of Leng et al. (2024), we conduct experiments on MiniGPT-4 (Zhu et al., 2023). As shown in
Table 2, AGE consistently achieves state-of-the-art performance across all evaluation settings, sur-
passing the baseline by an average margin of 17.09% in Accuracy while maintaining a comparable
F1 score. It is worth noting that, although OPERA (Huang et al., 2024) also intervenes on attention,
it primarily penalizes certain textual attention patterns. In contrast, AGE emphasizes the dominant
shifts between visual and textual attention across reasoning stages. This distinction leads to substan-
tial performance gains: AGE outperforms OPERA by average margins of 20.09% in Accuracy and
1.25% in F1, underscoring that interventions guided by real responses and targeted to real attention
behaviors yield more effective hallucination mitigation.

Results on MME. Fig. 4 reports results on the MME benchmark, where we follow the evaluation
setup of Leng et al. (2024) and focus specifically on the hallucination subset. All experiments are
conducted on LLaVA-1.5-7B (Liu et al., 2023b). Compared with VCD Leng et al. (2024), which
mitigates hallucinations primarily by suppressing text bias, our AGE achieves superior performance
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at both the object and attribute levels. This suggests that merely reducing textual priors is insuffi-
cient; effective hallucination mitigation requires faithfully aligning text and visual attention with the
dynamics observed in real responses across different reasoning stages.

Table 2: Evaluation with POPE in random, popular,
and adversarial settings. We report the accuracy(%)
and F1 score(%). The best results are highlighted in
bold. † represents the results from Chen et al. (2024d).

Methods Random Popular Adversarial Avg.
Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑

Greedy ‡ 61.00 71.53 55.33 68.69 54.00 67.76 56.77 69.32
Beam Search ‡ 58.00 69.86 50.33 66.21 52.00 66.97 53.44 67.68
OPERA (Huang et al., 2024) ‡ 57.66 69.97 51.00 66.82 52.67 67.58 53.77 68.12
VCD (Leng et al., 2024) ‡ 60.33 65.71 57.33 65.21 53.67 62.13 57.11 64.35
Ours 77.32 71.58 74.03 68.73 70.23 67.81 73.86 69.37

Table 3: Ablation study of AGE on
CHAIRS (CS) , CHAIRI (CI ), and BLEU.
SMA: self-multiplicative amplification of at-
tention; AGET : text attention intervention;
AGEI : image attention intervention. Max
new tokens is 128. Best results are in bold.

SMA AGET AGEI CS ↓ CI ↓ BLEU ↑
53.4 14.2 10.5

✓ 43.1 13.1 10.1
✓ 50.4 14.9 10.4

✓ 35.4 10.9 10.4
✓ ✓ 31.8 10.0 10.5

5.2 FURTHER ANALYSIS

Contribution of Each Intervention. We conduct ablation experiments on the COCO dataset with
LLaVA-1.5. By incrementally enabling individual intervention and reporting CHAIR and BLEU
scores, we examine how each intervention affects model performance. To further test robustness
under different output settings, we increase the max new token to 128, double the 64-token set-
ting in Table 1, thereby validating the method’s effectiveness across varying generation lengths.
As shown in Table 3, SMA refers to visual attention intervention via self-multiplicative augmenta-
tion, a straightforward strategy that directly amplifies the original attention values. AGET denotes
text attention intervention through direct amplification of attention values, and AGEI represents
our directional vector–based visual attention intervention. Relative to the baseline, SMA improves
CHAIRS by 10.3%, showing that even simple amplification of real attention behaviors can bring
notable gains. More importantly, our proposed AGEI achieves a further boost, raising CHAIRS

from 10.3% to 18.0%, which highlights that precise, vector-guided interventions are substantially
more effective than coarse, direction-agnostic scaling. In addition, applying AGET alone yields a
3.0% improvement, indicating that imitating text attention patterns guided by real responses is like-
wise effective. Finally, combining AGEI and AGET yields the best overall performance, indicating
that the two approaches offer complementary benefits. These results validate not only the effective-
ness of each intervention in isolation but also the synergistic improvements achieved when applied
together. Please refer to the Appendix A.5 for more results about the different intervention layers.
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Figure 4: Evaluation on MME benchmark across
the ‘Existence’, ‘Count’, ‘Position’, ‘Color’, and
‘Avg.’ settings. Best results are in bold.

Figure 5: Impact of varying the sample size M
for generating δ on model performance, evaluated
with CHAIR (%) and BLEU (%).

Ablation Study on Sample Size M . In Sec. 4.1, we generate the target directional vector δ from
M sampled instances. Here, we analyze how different values of M affect CHAIR and BLEU on
LLaVA-1.5 with COCO, as shown in Fig. 5. Regardless of the value of M (from 5 to 200), AGE con-
sistently outperforms the baseline on both CHAIR and BLEU, indicating that the target directional
vector δ can be reliably estimated with only a small number of samples, without requiring large-
scale aggregation. This confirms that the performance gains of AGE do not stem from introducing
additional samples. Moreover, as M increases, CHAIR scores show a slight increase, suggesting
that excessive samples introduce noise and reduce the accuracy of δ. Balancing performance and
computational efficiency, we set M = 10 in our experiments.
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<s>A chat between a curious user and an 

artificial intelligence assistant. The 

assistant gives helpful, detailed, and polite 

answers to the user’s questions. USER: 

<Image> Please describe this image 

indetail. ASSISTANT:The image features 

a bowl filled with a delicious and nutritious 

meal consisting of beans, broccoli, and 

possibly other vegetables. The bowl is 

placed on a dining table, and the beans 

are scattered throughout the dish, with 

some beans being closer to the top

<s>A chat between a curious user and an 

artificial intelligence assistant. The 

assistant gives helpful, detailed, and polite 

answers to the user’s questions. USER: 

<Image> Please describe this image 

indetail. ASSISTANT: The image features 

a bowl filled with a variety of food, 

including beans, broccoli, and possibly 

other vegetables. The broccoli is the most 

prominent vegetable in the bowl, with 

several pieces scattered throughout the 

dish. The beans are also visible, adding to 

the colorful and

Baseline Model Ours AGE Model

Figure 6: Visualization of responses and cross-modality attention difference for the baseline model
LLaVA-1.5 versus our AGE. Red and blue text/line highlights hallucinated and real tokens generated
by the baseline, respectively. while green text/line marks the calibrated tokens produced by AGE.

Table 4: Comparison of CHAIR (%),
and BLEU (%) with different variants of
AGE. AGED: δ generated from the cor-
responding intervention layer. AGEM :
Intervention in all Middle stage layers.
AGEL: Intervention in all Late stage
layers. The best results are highlighted
in bold while the second-best results are
marked with underline.

Method CS ↓ CI ↓ BLEU↑
Baseline 20.80 6.77 15.93
AGED 19.40 5.86 16.69
AGEM 28.40 8.64 16.46
AGEL 19.20 6.22 16.73
AGE 16.43 5.58 16.48

Variants of AGE. To further investigate AGE, we de-
sign several variants based on LLaVA-1.5, as shown in
Tab. 4. Specifically, AGED denotes using δ generated
from the corresponding intervention layer, AGEM applies
interventions to all Middle-stage layers, and AGEL inter-
venes in all Late-stage layers. AGED outperforms the
baseline, confirming that computing δ within the corre-
sponding layer is effective. However, its performance
is still weaker than that of AGE obtained from the final
output layer, suggesting that the attention state closer to
the output carries richer visual grounding information. In
contrast, AGEM underperforms the baseline, indicating
that coarse, uniformly enhancing textual attention across
all Middle layers degrades model quality. We attribute
this to the fact that attention disparities between real and
hallucinated responses evolve dynamically across layers;

thus, indiscriminate interventions can distort attention patterns instead of aligning them. A similar
trend is observed with AGEL: although applying interventions to all Late-stage layers yields slight
improvements over the baseline, it remains inferior to the selective interventions of AGE. Overall,
these findings underscore that targeted, fine-grained interventions, not blanket modifications, are key
to effective hallucination mitigation.

Visualization of Responses. To more intuitively demonstrate the effectiveness of our AGE, we con-
duct visualization experiments on LLaVA-1.5 with the query “Please describe this image in detail.”
As shown in Fig. 6, the baseline model hallucinates objects (red), such as “a dining table” which
is absent from the image. In contrast, responses generated with AGE are more faithful and precise
(green), e.g., correctly noting that “broccoli occupies most of the bowl.” These results indicate that
AGE, by imitating truth-grounded attention behaviors, substantially enhances both the factual ac-
curacy and descriptive richness of generated captions. Furthermore, we visualize the cross-modal
attention difference (s̄(l)(real/hall,vision)− s̄

(l)
(real/hall,text)) across layers for real (blue) and hallucinated (red)

tokens, and compare them with responses produced after applying AGE (green). The visualiza-
tion reveals clear disparities between real and hallucinated tokens in baseline LLaVA, whereas AGE
narrows this gap, aligning generated responses more closely with real, hallucination-free attention
patterns. This alignment not only validates our analysis in Sec. 3.3 but also demonstrates that imitat-
ing real-response attention enables more faithful multimodal reasoning and significantly improves
response quality. Additional visualizations for MiniGPT and mPLUG-Owl are provided in the Ap-
pendix A.9.

6 CONCLUSION

In this paper, we introduce AGE, a novel attention intervention approach designed to mitigate hal-
lucination by imitating the attention behavior of real responses. In this way, we can capture the
fine-grained dynamics of multimodal reasoning and improving response quality with less hallucana-
tions. Extensive experiments across three benchmarks and three LVLMs validate the effectiveness
of our approach. We hope this work provides new insight into the internal dynamics of multimodal
reasoning, offering a principled path toward building more reliable LVLMs.
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A APPENDIX

A.1 THE USE OF LLM

In this work, we utilize Large Language Models to perform grammatical verification.

A.2 ALGORITHM

Algorithm 1 Workflow about our AGE method for hallucination mitigation

Require: Intervention Image Attention Layer Set Limage, Intervention Text Attention Layer Set
Ltext, Hallucination samples M

1: Construct a hallucinated tokens set I(i)hall

2: Construct a real tokens set I(i)real

3: Compute hallucinated average image attention vector ai(hall,vision) =
1

|I(i)
hall |

∑
k∈I

(i)
hall

a
(L,k)
vision

4: Compute real average image attention vector ai(real,vision) =
1

|I(i)
real |

∑
k∈I

(i)
real

a
(L,k)
vision

5: Compute the sample weight wi =

{
(Ci

I/τ)
p, if Ci

I < τ,

exp (−q × (Ci
I − τ)), if Ci

I ≥ τ,

6: Generate target directional vector δ = 1
M

∑M
i=1 wi · (ai(real,vision) − ai(hall,vision))

7: for each decoding step k do
8: for each decoding layer l do
9: if layer l in Limage then

10: Imitating Image Attention âlvision = alvision + λv × δ
11: end if
12: if layer l in Ltext then
13: Imitating Text Attention âltext = altext + λt × altext
14: end if
15: Compute next-layer hidden state h

(l+1)
k = h

(l)
k +

AttentionSubLayer(â(l,k)vision,V
(l)
vision, â

(l,k)
text ,V

(l,k)
text )

16: end for
17: end for

A.3 ADAPTIVE WEIGHT STRATEGY

In sec. 4.1, we calculate the target directional vector δ with M samples. However, assigning equal
weights overlooks that different samples, due to their varying proportions of hallucinated content,
contribute unequally to the corrective signal. To address this, we introduce an Adaptive Weight
Strategy using sample-specific weights wi based on the CHAIR instance-level score (Ci

I ). The
key intuition is that samples with a balanced ratio of real-to-hallucinated tokens (Ci

I ≈ τ ) contain
richer comparative signals, making them more informative for constructing the difference vector.
Conversely, samples heavily dominated by hallucinations (Ci

I ≫ τ ) can inject misleading bias into
δ, and should therefore be penalized. A piecewise weighting function is adopted to reflect this
asymmetric importance: one branch smoothly increases the weight as Ci

I approaches τ from below,
while the other rapidly decreases it when Ci

I exceeds the threshold, ensuring that excessively noisy
samples do not dominate the correction: We define wi as:

wi =

{
(Ci

I/τ)
p, if Ci

I < τ,

exp (−q × (Ci
I − τ)), if Ci

I ≥ τ,

where τ denotes the balance threshold. The exponent p governs the amplification rate for balanced
samples, and q controls the suppression strength for hallucination-dominated ones. In our imple-
mentation, p = 1 and q = 30, determined empirically on a small held-out validation set.
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Table 5: Comparison of CHAIR and BLEU with different image attention intervention layers. The
best results are in bold.

Layer CS ↓ CI ↓ BLEU↑
1,2 0.00 0.00 1.03
5,6 0.20 1.03 2.96
27, 28 18.00 6.10 16.60
30, 31 16.43 5.58 16.48

Table 6: Comparison of CHAIR and BLEU with different text attention intervention layers. The
best results are in bold.

Layer CS ↓ CI ↓ BLEU↑
19 20.00 6.53 16.21
20 16.43 5.58 16.48
21 20.00 7.10 16.74
22 18.80 6.05 16.87

A.4 EVALUATION METRICS

The CHAIRS and CHAIRI scores are computed by comparing the model-generated answers with
the ground truth object annotations as :

CHAIRI =
∥{hallucinated objects}∥

∥{all mentationde objects}∥
, CHAIRS =

∥{captions with hallucinated objects}∥
∥{all captions}∥

.

(10)

In addition, following the standard BLEU definition (Papineni et al., 2002), we incorporate an
instance-level BLEU score to evaluate whether the generated descriptions faithfully capture the nec-
essary visual content from the image as:

BLEU = BP × exp(
N∑

n=1

wnlogpn) (11)

where pn is the precision of n-grams between the generated and reference captions, wn is the weight
assigned to n-grams (typically wn = 1

n ), and BP denotes the brevity penalty to penalize overly
short predictions. We report the average BLEU score, computed as the mean of BLEU-1 through
BLEU-4.

A.5 INTERVENTION ON DIFFERENT LAYERS

In our experimental setup, interventions on Late-stage image attention are applied to layers 30 and
31, while Middle-stage interventions target layer 20. This naturally raises the question: what hap-
pens if interventions are applied to other layers? To investigate, we conduct further exploration.

As shown in Tab. 5, intervening in Early-stage layers (e.g., 1, 2, 5, and 6) produces extremely low CS

and CI values—nearly zero—suggesting strong hallucination suppression. However, this comes at
the cost of a sharp drop in BLEU, as the model fails to generate meaningful text and instead outputs
repetitive or corrupted tokens (e.g., long strings of “nobody” or garbled symbols like “&&#”). We
attribute this to the role of early layers, which primarily capture low-level features of images and
text. Although differences in attention exist between real and hallucinated responses at these shallow
layers, they do not reflect the high-level semantic inconsistencies that drive hallucinations. As a
result, interventions here disrupt the extraction of essential features, leading the model to deviate
during later inference. Therefore, we avoid applying interventions in shallow layers.

In the Late stage, we compared interventions applied to layers 27–28 with those applied to layers
30–31. When targeting layers 27 and 28, CS and CI decreased by 2% and 0.67%, respectively,
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Table 7: Comparison of CHAIR and BLEU with LLaVA-1.5-13B as baseline. The best results are
in bold.

Method CS ↓ CI ↓ BLEU↑
LLaVA-1.5-13B 48.60 12.38 10.57
AGE-13B 45.40 12.55 10.75

while BLEU improved by 0.67%, indicating that hallucinations are partially mitigated. However,
the overall performance remained inferior to interventions at layers 30 and 31. We attribute this to
the proximity of layers 30 and 31 to the output: the closer the intervention is to the decoding output
layer, the more directly it influences the model’s final predictions. Consequently, intervening at
layers 30 and 31 yields the most substantial benefit, and we adopt them as the Late-stage intervention
layers.

For the Middle stage, we experiment with layers 19, 20, 21, and 22, as shown in Tab. 6. All tested
layers reduce hallucinations to varying degrees, and even at layer 22, BLEU reached as high as
16.87. This consistency arises because Middle-stage layers emphasize textual attention, and rein-
forcing it—regardless of the exact layer—improves performance. The relatively stable gains across
different layers demonstrate the robustness of our approach: interventions need not be tied to a single
fixed layer but rather to a stage interval, within which similar benefits can be achieved. In practice,
we select the best-performing candidate (e.g., layer 20) as our Middle-stage intervention layer.

Taken together, these findings highlight that interventions in shallow layers are detrimental, Middle-
stage layers yield broadly consistent improvements by reinforcing textual attention, and Late-stage
layers closest to the output provide the strongest influence on hallucination mitigation. Accord-
ingly, we adopt layer 20 for Middle-stage intervention and layers 30–31 for Late-stage intervention,
striking a balance between stability and effectiveness.

A.6 INTERVENTION ON LARGE-SCALE LVLM

To evaluate the scalability of our approach, we conducted experiments on LLaVA-1.5-13B (Liu
et al., 2023b). As shown in Tab. 7, AGE effectively reduces hallucinations in larger models, yielding
a 3.2% decrease in CS and a 0.18% in BLEU, while CI shows only a marginal rise of 0.17%. These
results highlight that hallucinations caused by attention misalignment persist across model scales,
and demonstrate the cross-scale generalization and robustness of AGE in mitigating such errors.

Figure 7: Comparison of CHAIR and BLEU with different values of λt (left) and λv (right).

A.7 HYPERPARAMETER

To assess the sensitivity of AGE to hyperparameter choices, we use LLaVA-1.5-7B as the baseline
and vary λt from 1 to 5 and λv from 80 to 120, reporting the corresponding CHAIR and BLEU
scores. As shown in Fig. 7, performance consistently surpasses the baseline across all settings,
suggesting that once the correct intervention mode is applied, hyperparameter variations have limited
impact on overall gains. We therefore set λt = 3 and λv = 100 as the default configuration in our
experiments.
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(a) Num: 10 (b) Num: 100 (c) Num: 1000

Figure 8: LLaVA-1.5 layer-wise characterization of attention disparities between real and halluci-
nated responses with different numbers of samples N .

Query: Please describe this image in detail.

LLaVA-1.5:   <s>A chat between a curious user and an artificial intelligence 

assistant. The assistant gives helpful, detailed, and polite answers to the user’s 

questions. USER: <Image> Please describe this image indetail. ASSISTANT: 

The image features a large, ornate clock mounted on a wall, with a reflection of 

the clock visible in a mirror. The clock is positioned near a bench, which is 

located on the left side of the scene. The reflection of the clock in the mirror 

creates an interesting visual effect, making the clock appear

AGE:   <s>A chat between a curious user and an artificial intelligence assistant. 

The assistant gives helpful, detailed, and polite answers to the user’s questions. 

USER: <Image> Please describe this image indetail. ASSISTANT: The image 

features a large, old-fashioned clock mounted on a wall. The clock is positioned 

in the middle of the wall, and it appears to be a prominent feature in the room. 

The clock is surrounded by a few other decorative elements, including a small 

clock on the right side of the wall

Figure 9: Generated image description examples.

A.8 ANALYSIS OF MORE SAMPLES

In Sec. 3.3, we examined attention disparities by sampling N = 100 responses and concluded
that hallucinations do not stem from a uniform lack of visual attention, but rather from the failure
to reproduce nuanced, model-specific, and stage-dependent attention dynamics. A natural question
arises: does this conclusion hold under different sample sizes? To test this, we compare the attention
behaviors of real and hallucinated tokens in LLaVA-1.5 with N = 10, 100, and 1000 samples.
As shown in Fig. 8, while the detailed attention curves fluctuate with sample size, the dominant
modality at each reasoning stage remains consistent. This robustness further confirms the reliability
and generalizability of our statistical findings.

A.9 MORE VISUALIZATIONS

As shown in Fig. 9–12, we provide additional visual comparisons between the baseline models and
our AGE on the image captioning task.

A.10 VISUALIZATIONS OF DISTINGUISHING BETWEEN HALLUCINATION AND REAL OBJECTS

We illustrate the full procedure for distinguishing hallucinated objects from real ones in Tab. 8.
Specifically, we first extract objects from the LVLM’s output and from the ground-truth labels.
Then, leveraging COCO’s synonym vocabulary, we match the two sets to identify overlaps, thereby
separating hallucinated from real objects.
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Query: Please describe this image in detail.

LLaVA-1.5:   <s>A chat between a curious user and an artificial intelligence assistant. The assistant gives 

helpful, detailed, and polite answers to the user’s questions. USER: <Image> Please describe this image 

indetail. ASSISTANT: The image features a snowy landscape with a snowboard lying on the ground, partially 

covered by a green tarp. The snowboard is positioned in the center of the scene, and the tarp is spread out 

around it.\n\nIn the background, there are two people standing, possibly enjoying the snow,

AGE:   <s>A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, 

detailed, and polite answers to the user’s questions. USER: <Image> Please describe this image indetail. 

ASSISTANT: The image features a snowy scene with a snowboard lying on the snow. The snowboard is 

positioned horizontally, occupying a significant portion of the snowy surface. A tent can be seen in the 

background, providing shelter from the snowy weather.\n nobody is visible in the scene,

Figure 10: Generated image description examples.

Query: Please describe this image in detail.

MiniGPT-4:   This image shows a view of a river with several boats 

docked at the shore. The river is surrounded by buildings and trees, and 

the sky is clear and blue. The boats are moored at the dock, and there are 

people walking along the shore. The water is calm and still, and the boats 

are tied

AGE:   The image shows a view of a city from a bridge. The city is located 

on the banks of a river and has a number of boats in the water. The 

buildings in the city are made of white and gray concrete and are tall and 

narrow. The sky is a light gray and there are clouds in it. The",

Figure 11: Generated image description examples.

Query: Please describe this image in detail.

mPLUG-Owl2:   The image depicts a city street with a train traveling 

down the tracks, passing through a city with tall buildings. The train is 

positioned in the middle of the scene, occupying a significant portion of 

the image.\nThere are several people visible on the street, some closer to 

the train and others further

AGE:   The image depicts a city street with a train traveling down the 

tracks, passing by tall buildings. The train is positioned in the middle of 

the scene, occupying a significant portion of the image. The buildings 

surrounding the train are of various heights, creating a dense urban 

atmosphere.\n\nThere are

Figure 12: Generated image description examples.
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Table 8: An example to demonstrate how to distinguish between hallucinatory objects and real
objects.

Instruction Please describe this image in detail

LLaVA Output The image features two boats floating on a body of water, possibly the
ocean. One boat is larger and positioned towards the left side of the
scene, while the other boat is smaller and located closer to the center.
The smaller boat appears to be a speedboat, while the larger boat is a
yacht. There are three people visible in the scene, with one person
standing on the larger yacht and two others on the smaller speedboat.
The people seem to be enjoying their time on the water, possibly
engaging in recreational activities or simply enjoying the view.

Generated Objects boats, speedboat, yacht, people, person

Ground Truth
Caption

an old photo os a small boat near a bigger boat in a large body of
water; Two boats being spied on from a distance; One large and one
small boat floating in the ocean; One boat sailing next to one canoe in
a body of water; two white boats next to each other in the water;

Ground Truth
Objects

boat

Hallucination
Objects

people, person

Real Objects boats, speedboat, yacht
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