
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IN-CONTEXT NEURAL PDE: LEARNING TO ADAPT A
NEURAL SOLVER TO DIFFERENT PHYSICS

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the problem of predicting the next state of a dynamical system gov-
erned by unknown temporal partial differential equations (PDEs) using limited
time-lapse data. While transformers offer a natural solution to this task through
in-context learning, the inductive bias of temporal PDEs suggests a more tailored
and effective approach. Specifically, when the underlying temporal PDE is fully
known, classical numerical solvers can evolve the state with only a few parame-
ters. Building on this observation, we introduce a large transformer-based hyper-
network that processes successive states to generate parameters for a much smaller
neural ODE-like solver, which then predicts the next state through time integra-
tion. This framework, termed as in-context neural PDE, decouples parameter
estimation from state prediction, offering closer alignment with classical numeri-
cal methods for improved interpretability while preserving the in-context learning
capabilities of transformers. Numerical experiments on diverse physical datasets
demonstrate that our method outperforms standard transformer-based models, re-
ducing sample complexity and improving generalization, making it an efficient
and scalable approach for spatiotemporal prediction in complex physical systems.

1 INTRODUCTION

Modeling dynamical systems from data is a highly active area of research with the potential to sig-
nificantly reduce both computational costs (Kidger, 2021) and the need for ad-hoc engineering to
predict future states (Farlow, 2012). In this paper, we consider dynamical systems described by par-
tial differential equations (PDEs). The conventional data-driven approach typically involves “learn-
ing” a fixed dynamic model from a large number of trajectories obtained from various initializations,
which is often referred to as neural operator learning (Kovachki et al., 2023; Boullé & Townsend,
2023). However, in many practical scenarios, the exact governing physical laws are unknown and
may vary across different trajectories, making those methods unsuitable and necessitating a more
flexible data-driven approach. To address this limitation, we investigate the problem of predicting
the next state of a system from a few successive time-lapse observations, where the underlying dy-
namics are unknown and can vary between different trajectories. This problem is more complex as
it implicitly requires both estimating the underlying physics of the dynamical system (inverse prob-
lem) and integrating it in time (forward problem). In contrast, these two tasks are typically tackled
independently in existing literature (Blechschmidt & Ernst, 2021).

One promising way to handle scenarios with unknown or varying dynamics is through models that
can effectively capture context—a sequence of preceding states—to infer the temporal patterns gov-
erning the system. Transformers, known for their strong sequential learning capabilities (Vaswani
et al., 2017), excel in this area through a mechanism called In-Context Learning (ICL) (Brown
et al., 2020), allowing them to adapt flexibly to different dynamics using prior state information.
This adaptability has enabled transformers to achieve remarkable performance in natural language
processing, where context plays a crucial role (Dubey et al., 2024). Recent works (McCabe et al.,
2024; Yang & Osher, 2024; Yang et al., 2023; Liu et al., 2023) have also shown that transformers,
when trained on diverse PDE dynamics and initial conditions, can predict future states across differ-
ent contexts, positioning them as powerful tools for data-driven modeling of dynamical systems in
physical domains.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, applying transformers to physical systems still remains challenging, as they often require
vast amounts of data to avoid overfitting and can struggle with predicting out-of-distribution tra-
jectories, leading to instabilities over multi-step rollouts (McCabe et al., 2023; 2024). In contrast,
classical numerical methods excel when the governing dynamics are known, evolving the system
accurately with minimal parameters and without any data training. These methods also often pre-
serve important structural properties of physics, such as continuous-time evolution and translation
equivariance (Mallat, 1999), which transformers do not naturally inherit. This lack of structure
preservation contributes to the limitations of transformers in physical applications, particularly in
terms of high sample complexity and instability.

In this work, we propose a novel framework named in-context neural PDE (IC-NPDE) that com-
bines the best of both worlds: an estimate of the parameters through context is incorporated into a
neural ODE-like solver (Chen et al., 2018). Specifically, a large hypernetwork processes successive
states of a trajectory to generate parameters for a much smaller neural PDE solver, which then pre-
dicts the next state through time integration. In this manner, we decouple the parameter estimation of
the dynamical context from state prediction, unlike previous transformer-based methods that tackle
both tasks jointly. Our decoupling approach can be viewed as a meta-learning algorithm (Thrun &
Pratt, 1998; Finn et al., 2017), a class of algorithms designed to self-adapt to specific tasks. In our
setting, predicting the next state from limited time-series data is treated as a task that depends on
(1) initial conditions, (2) physical parameters, and (3) even different underlying physical laws. The
neural network used in the ODE-like solver respects the underlying continuous-time nature of the
physics and preserves spatial translation equivariance through the use of Convolutional Neural Net-
works (CNNs). The parameters are fully learnable, offering greater flexibility in estimating spatial
derivatives (Bar-Sinai et al., 2019). Furthermore, our integrated network uses far fewer parameters
compared to a transformer, creating an information bottleneck (Tishby et al., 2000). This bottle-
neck forces the system to focus on the most essential aspects of the dynamics, preventing overfitting
and improving generalization, particularly for out-of-distribution states. By concentrating the rep-
resentation in a smaller parameter space, the model gains robustness and efficiency, making it more
suitable for predicting complex physical systems.

Contributions. Our key contributions are as follows: (a) To our knowledge, this is the first work to
combine an ICL approach with differentiable PDE solvers for spatiotemporal prediction. (b) We pro-
pose a framework that introduces a tailored inductive bias for physical systems, providing improved
interpretability by aligning more closely with classical numerical methods. (c) Our method demon-
strates superior learning performance across multiple physical systems using standard datasets in
the literature and (d) achieves better numerical accuracy on multi-step rollouts compared to state-
of-the-art ICL models, with improved generalization. Upon publication, we will open-source our
implementation.

2 RELATED WORKS

Classical and neural solvers. While classical PDE solvers remain the state-of-the-art for achiev-
ing high precision, neural network-based surrogate solvers (Lu et al., 2019; Li et al., 2020; Kovachki
et al., 2023) have opened up new possibilities for inferring approximate solutions quickly for certain
PDEs. However, these solvers need to be trained on samples derived from the same PDE. Some vari-
ants, such as (Karniadakis et al., 2021; Kochkov et al., 2021), allow the incorporation of corrective
terms to approximate trajectory dynamics, but they still lack adaptability to the context, which is a
key feature of our method. Symbolic regression (Lemos et al., 2023) separates trajectory parameter
inference from the integration task but struggles to scale to high-dimensional data and handle large
search spaces effectively. In contrast, our method directly approximates the differential operators
using a cascade of small convolutional layers, enabling efficient learning in high-dimensional data.

Meta-learning strategies applied to dynamical systems. As an inspiration for our work, Metz
et al. (2022) pretrains an optimizer on a large collection of datasets and models, which can be viewed
as meta-learning a specific discretized dynamical system in order to surpass stochastic gradient
descent. In a different setting, Gusak et al. (2021); Guo et al. (2022) propose strategies to learn the
best ODE solver from a family of solvers, which could be combined with our approach. Meanwhile,
Bar-Sinai et al. (2019) focuses on meta-learning differentiable filters for PDEs, aligning with one

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

aspect of our methodology. In a different setting, de Avila Belbute-Peres et al. (2021) learns to map
PDE parameters to the corresponding physics-informed neural netowrk’s parameters (Karniadakis
et al., 2021); however, this lacks capability for ICL. The most closely related works to ours, to
the best of our knowledge, are McCabe et al. (2024); Yang et al. (2023); Liu et al. (2023); Yang
& Osher (2024), which utilize transformers for in-context learning of neural operators for PDEs.
However, as discussed in the introduction, these methods lack inductive bias for physics and tend
to require a large amount of data to generalize. Xian et al. (2021); Wang et al. (2022) use an
encoder/decoder strategy to embed dynamics in a latent space for predicting the next state; while
related, these approaches are conceptually closer to McCabe et al. (2024).

3 METHODOLOGY

3.1 PRELIMINARIES

Problem setting and notations. Let t denote time and x ∈ Rn be the spatial variable. We consider
a class of PDEs of spatial order k for function u : R× Rn → Rm of the form

∂tut(x) = g
(
ut(x) , ∂x1

ut(x) , ∂x2
ut(x) , . . . , ∂

2
x1x1

ut(x) , ∂
2
x1x2

ut(x) . . .
)
, (1)

where different g corresponds to different physics (different equations and/or parameters) governing
the system. Here, n is the spatial dimension, typically ranging from 1 to 3 in physical systems, and
m is the number of physical variables described by the PDE. For notational simplicity, we assume
the PDE is time-homogeneous (i.e., g does not depend on t) though our methods can be straight-
forwardly extended to the time-inhomogeneous case. For PDEs with higher-order time derivatives,
specifically of order r, we can redefine the function of interest as ū = (u, ∂tu, . . . , ∂

r
t u), which al-

lows us to rewrite the PDE in the form of Eq. 1. Given a spatiotemporal trajectory with unknown g,
our goal is to predict the state ut+1 using the preceding T successive states ut−T+1, . . . , ut, where
T is referred to as the context length. In practice, the observed ut is discretized over grid points (as-
sumed fixed and uniformly-distributed in this paper) rather than being a continuous spatial function.
For simplicity, we use continuous notation throughout.

Finite difference and neural PDEs. Finite difference method is a classical approach for numeri-
cally solving an explicitly given PDE by discretizing spatial derivatives on a grid. This connection
forms a basis for leveraging CNNs to approximate PDE solutions. To illustrate this relationship,
consider the standard 2D diffusion equation:

∂tut(x) = β∆ut(x), x ∈ [0, 1]2 , (2)

subject to periodic boundary conditions, where β > 0 is the diffusion coefficient. Let the state ut
be discretized over a uniform grid with spacing ∆x, denoted by ut,i,j for 0 ≤ i, j ≤ N . Using a
standard centered finite difference scheme, the right-hand side of Eq. 2 can be approximated as:

∂tut,i,j ≈ β
ut,i+1,j + ut,i−1,j + ut,i,j+1 + ut,i,j−1 − 4ut,i,j

(∆x)2
= ut,i,j ⋆ θ ,

where θ = β/(∆x)2[0, 1, 0; 1,−4, 1; 0, 1, 0] is a small 3 × 3 convolution filter, and ⋆ denotes the
convolution operation with periodic padding. Defining f̃θ(u) := u ⋆ θ, we have

ut+1 ≈ ut +

∫ t+1

t

f̃θ(us) ds ,

which indicates that when the physics is explicitly known (Eq. 2), we only need a single convo-
lution layer with a few parameters to evolve the solution ut accurately. Extending this concept to
machine learning, Bar-Sinai et al. (2019) proposed replacing these fixed convolutional coefficients
with learnable parameters, resulting in improved accuracy on certain grid sizes. For more com-
plex PDEs involving nonlinear dynamics, additional layers with nonlinear activation functions are
necessary to capture the underlying effects. This connection between finite difference methods and
CNNs highlights that relatively small CNN architectures, compared to transformer-based models,
can effectively represent temporal PDEs while preserving spatial translation equivariance. This per-
spective has been explored in previous work (Ruthotto & Haber, 2020) and recently applied to design
neural architectures for solving PDEs when the governing physics is known (Liu et al., 2024).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

.

. . .

Figure 1: Illustration of our method. Unlike a standard ICL approach based on a transformer such
as AViT, which predicts the next frame ut+1 directly from the context (ut−T+1, . . . , ut), our in-
context neural PDE (IC-NPDE) framework first uses a hypernetwork to predict the parameters θ for
a smaller neural PDE solver. This solver integrates a CNN fθ in time to predict the next state.

We note that the above connection holds primarily for continuous-time or small discrete-time steps.
For larger time steps, the exact solution to Eq. 2 still retains a convolutional structure: ut+∆t(x) =∫
R2 ut(x−y)G(∆t, y) dy whereG(∆t, y) = (4πβ∆t)−1 exp(−∥y∥2/(4β∆t)). However, for large
∆t (specifically when β∆t ≫ 1), the convolution kernel G(∆t, y) decays slowly, resulting in a
significantly larger effective receptive field. Consequently, using a CNN f̃θ to directly approximate
the solution in the form of ut+∆t(x) = f̃θ(ut), as proposed in (Wang et al., 2022), would require a
much larger network with more parameters, making the optimization more challenging.

Transformers for PDEs. Recent works (McCabe et al., 2024; Yang & Osher, 2024; Yang et al.,
2023; Liu et al., 2023) have proposed to use ICL predictors based on transformers to directly estimate
the next state from a few successive iterates, in other words

ût+1 = Fθ(ut−T+1, ..., ut) , (3)

where typically Fθ is an over-parameterized transformer or diffusion model. These models can
work without knowing the physics a priori, in contrast to the common neural PDE solvers. However
such models are more prone to over-fitting as they do not incorporate good inductive biases, such as
explicit differential operators, contrary to Eq. 3.

3.2 METHOD: IN-CONTEXT NEURAL PDE

Our framework. In this work, we propose a framework that combines the best of both worlds
from ICL and classical numerical schemes (see Fig. 1): the parameters θ ∈ Rd1 of a small convo-
lutional neural network fθ—referred to as the integrated network—are generated from an ad-hoc
model ψα, referred to as a hypernetwork (Ha et al., 2016), which uses the context to estimate these
parameters, leading to the formal equations:ût+1 = ut +

∫ t+1

t

fθ(us) ds ,

θ = ψα

(
ut−T+1, ..., ut

)
,

(4)

where α ∈ Rd2 . This formulation significantly structures the predictor, which now has a convolu-
tional structure aligned with Eq. 1: the spatial derivatives are necessarily approximated using the
convolutional kernels of fθ.

By leveraging auto-differentiation and the strategy of Chen et al. (2018), the above two equations
can be learned jointly in an end-to-end manner by solving the optimization problem

min
α

1

|D|
∑
ℓ∈D

Loss(uℓt+1, û
ℓ
t+1) ,

where each ℓ in the dataset D is a data point in the form of (uℓt−T+1, ..., u
ℓ
t, u

ℓ
t+1). In this paper, we

choose the loss function as the normalized root mean square error (NRMSE); see Appendix C for
the detailed definition.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

After the weights α are trained, for predicting specific dynamics from a given trajectory as the
downstream task, the entire inference process can be viewed as a meta-learning or an ICL procedure,
as no hyper-network retraining is involved.

Hypernetwork design. Multiple choices of hypernetwork could be used, but we decided to ex-
ploit transformers due to their favorable auto-regressive properties (Lin et al., 2022). In fact, we
emphasize that any type of meta learning approaches, like directly optimizing θ via gradient de-
scent, could be considered yet it might not be computationally favorable. Here, we have d1 ≪ d2, in
order to limit overfitting and any memorization phenomenon by forcing the transformer to estimate
the parameters of the trajectory rather than the next state.

Numerical integration. The integral from t to t + 1 in Eq. 4 is discretized using a fourth-order
Runge-Kutta method (Kassam & Trefethen, 2005). Gradient backpropagation is performed using
an adjoint sensitivity method which scales linearly in the number of integration steps and has low
memory cost (Chen et al., 2018). The solver uses 30 integration steps, but ablation studies show that
this number is quite conservative, as explained in Tab. 4. One could either reduce this number or use
the same number but to predict further into the future. For example, for slowly varying fluids, one
may want to predict up to t + 2 in a single forward pass with 15 integration steps for each interval
[t, t+ 1], [t+ 1, t+ 2]. We leave this possibility for future work.

4 NUMERICAL EXPERIMENTS

4.1 GENERIC ARCHITECTURES

Integrated network architecture. The integrated network fθ is a CNN starting with a k × k
convolution, acting as a local differential operator, followed by six 1 × 1 convolutions that apply a
pointwise function. In detail, Let Cin and Chidden represent input and hidden channels, respectively,
with Cout = Cin. The first convolution has weights of shape (Chidden/2, Cin, k, k) and includes a skip
connection via concatenation. This is followed by a (Chidden, Cin+Chidden/2, 1, 1) convolution. Next,
two blocks are applied, each consisting of two convolutions with weights (2Chidden, Chidden, 1, 1)
and (Chidden, 2Chidden, 1, 1), followed by a skip connection. The final layer uses weights of shape
(Cout, Chidden, 1, 1). Each 1 × 1 convolution is followed by group normalization (8 groups) and a
GeLU activation. For datasets with non-periodic boundary conditions, we use zero-padding for the
spatial convolution and we add manually a mask of the boundaries as input to fθ.

Hypernetwork architecture. In all our experiments we assume ψ in Eq. 4 is a transformer. It
as a CNN encoder and a MLP decoder outputting the parameters. Its encoder consists of three
convolution layers of kernel sizes of 4, 2, 2 respectively, with GeLU activation, ending up with a
patch size of 16. The hidden dimension (token space) is 384. After the encoder, we cascade 12
time-space attention blocks, each containing a time attention, and axial attentions along each space
dimension (McCabe et al., 2024). Each attention block contains 6 heads and uses relative positional
encodings. The output of the attentions is averaged over both time and space, leaving only the
channel dimension. Finally, we branch a MLP with two hidden layers that progressively increases
the channel dimension to recover the expected parameter shape of θ.

Multiple physics training. When jointly trained on multiple datasets, most of the weights in the
hypernetwork are shared across datasets, except for the first 1 × 1 convolution, which is learned
separately for each dataset to accommodate varying channel numbers from input, and the final MLP
weights, which are also learned independently per dataset to produce the parameters θ. Regarding
the CNN fθ, Chidden remains the same across different dataset, but the number of input and output
channels in the first and last convolution layers varies depending on the number of channels in the
data. Also, the kernel size of the first (and only) spatial filtering in fθ, is set to k = 5 for all the
datasets, except for compressible Navier-Stokes where increasing the kernel size to 11 was necessary
to obtain good performances. This is certainly due to the fact that the trajectory in this dataset makes
much bigger movement from one step to the other.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Specifics of the datasets considered in this paper.

Dimension Dataset Name Resolution
(pixels)

Sequence
Length

Boundary
Conditions

1D Burgers 1024 200 periodic
2D Shallow water 128× 128 100 open
2D Diffusion-reaction 128× 128 100 Neumann
2D Navier-Stokes (incomp.) 128× 128 1000 Dirichlet
2D Navier-Stokes (comp.) 128× 128 21 periodic
2D Shearflow (incomp.) 128× 256 200 periodic
2D Euler (comp.) 128× 128 200 periodic

4.2 LARGE SCALE EXPERIMENTS, PERFORMANCES AND SAMPLE EFFICIENCY

Datasets description. In order to explore a variety of physics, we consider seven datasets. One
dataset consists of 1D signals, while the other six contain 2D signals. Each dataset includes simula-
tions of a specific PDE, with potentially varying coefficients, and trajectories evolved from different
initial conditions. Detailed descriptions of the datasets are provided in Tab. 1. Burgers, shallow wa-
ter, diffusion reaction, Navier-Stokes (incompressible and compressible) datasets are sourced from
PDEBench (Takamoto et al., 2022). The two additional datasets include a 2D periodic incompress-
ible shearflow, generated using the Dedalus software (Burns et al., 2020), and a dataset based
on Euler equations—a special case of compressible Navier-Stokes equations—produced using the
CLAWPack software (Mandli et al., 2016; Clawpack Development Team, 2021). To allow for com-
putation of the models on all the datasets, we subsampled each data to a resolution of 128 × 128
pixels, except for the Burgers equations data that is 1024 long and the shearflow data that is of
resolution 128 × 256. Details on the equations, initial conditions, boundary conditions, and data
generation can be found in Appendix A.

With the architectures described in Sec. 4.1, we train our IC-NPDE model on multiple datasets and
compare it with the Axial Vision Transformer (AViT) (McCabe et al., 2024), which is designed
for ICL of multiple physics. Both models are trained on the first five datasets from PDEBench,
consistent with those used in (McCabe et al., 2024). We refer the reader to Appendix C for training
details.

Table 2: Next steps prediction performances for models trained jointly on multiple datasets.

Test Dataset Model NRMSE
t+ 1 t+ 4 t+ 8 t+ 16 t+ 32

Burgers AViT 0.013 0.048 0.11 0.19 0.40
IC-NPDE (ours) 0.0036 0.022 0.082 0.11 0.37

Shallow-water AViT 0.0016 0.0097 0.032 0.033 0.098
IC-NPDE (ours) 0.00017 0.0087 0.032 0.039 0.089

Diffusion-reaction AViT 0.012 0.12 0.35 0.47 0.76
IC-NPDE (ours) 0.00060 0.11 0.34 0.46 0.76

Navier-Stokes (incomp.) AViT 0.024 0.054 0.10 0.24 0.57
IC-NPDE (ours) 0.0042 0.021 0.054 0.088 0.19

Tab. 2 shows the NRMSE over different datasets the two models are trained on (Navier-Stokes
(comp.) is excluded from multi-step testing due to its short sequence length). As shown, our model
outperforms AViT on next state prediction for all the datasets presented. Furthermore, the accuracy
of the rolled-out trajectories are also improved in most of the cases, see Fig. 4 for typical examples.
Note that this is achieved with more than three times less learnable parameters than a transformer –
158M compared to 55M in our method – which emphasizes the benefits of incorporating the good
inductive bias through a neural PDE in our model.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300

epoch

10−1

100

101

102

training NRMSE
AViT

IC-NPDE (ours)

0 50 100 150 200 250 300

epoch

10−3

10−2

10−1

validation NRMSE
AViT

IC-NPDE (ours)

Figure 2: Learning curves on the diffusion-reaction dataset. IC-NPDE already achieves a 10−2

validation accuracy after one epoch, while a transformer needs around 50 epochs to reach such
accuracy. This is an illustration of the better inductive bias implemented in our framework.

This is confirmed by the learning curves showed in
Fig. 2. Our model trained on the diffusion-reaction
dataset, achieves a good accuracy of ≈ 1% early in
the training, after only one epoch, whereas the base-
line AViT, which applies a transformer directly to pre-
dict the next state, requires 50 epochs to reach the same
level. This improved sample efficiency, observed on all
the datasets we tested our model on, is also indicative
of the benefits of incorporating the good inductive bias
in our framework.

As a concrete example of the issues encountered by a
transformer-based architecture, which does not encode
translation-equivariance, let us consider shifting all the
states in a context, as well as the following state, by
a vector v of increasing norm ∥v∥. Fig. 3 shows that
the transformer architecture quickly struggles to pre-
dict the next state, although it is competitive when no
translation is applied, ∥v∥ = 0.

0 5 10 15 20 25 30

shift norm‖v‖

0.016

0.024

0.032

0.040

NRMSE t + 1

AViT

IC-NPDE (ours)

Figure 3: Performance on the shearflow
dataset when context and target are
shifted by v ∈ R2. While the trans-
former performs well at v = 0, it de-
clines more than IC-NPDE under shifts
due to the lack of an inductive bias for
translation-equivariance.

4.3 INFORMATION BOTTLENECK AND GENERALIZATION PROPERTIES

Our in-context neural PDE model employs a relatively small number of parameters θ (see Eq. 4) to
predict the next state through the integration of fθ, compared to the typical input sizes. We study the
impact of this information bottleneck.

Parameter space visualization. When trained on multiple datasets, the parameters θ returned by
our hypernetwork depend on both the initial conditions and the PDE governing the given context.
We show that our framework is capable of reducing the variability introduced by the initial condi-
tion, allowing it to focus primarily on the PDE dynamics. First, let us separate θ = [θspatial, θpointwise]
into the parameters of the first spatial convolution, and the parameters of the pointwise function that
applies to the filtered states. Recall that the filtered states u ⋆ θspatial are analogous to discretizations
of the local differential operators such as the gradient and Laplacian in standard numerical solver.
The pointwise function parameterized by θpointwise, which recombines the filtered states, is driven by
the PDE and should contain information about the PDE’s coefficients or the PDE itself. We perform
dimensionality reduction via Umap (McInnes et al., 2018) over the 32 768 parameters θpointwise for
128 contexts from compressible Navier-Stokes dataset, with two different shear viscosity η = 0.01
and η = 0.1. Fig. 5 visualizes the parameter space through these weights θpointwise across different
stages of the training, showing that our model progressively identifies two distinct clusters, corre-
sponding to the two physical parameter values. Thus, the hypernetwork clusters contexts that are
originated from the same PDE (with same coefficient), despite different initial conditions, which is
the key for generalizing to initial conditions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0

0.2
T

R
U

T
H

t t + 1 t + 4 t + 8 t + 16 t + 32

0.0

0.2

A
V

iT

0.0

0.2

IC
-N

P
D

E
T

R
U

T
H

t t + 1 t + 4 t + 8 t + 16 t + 32

A
V

iT
IC

-N
P

D
E

Figure 4: Examples of rollout trajectories from Burgers and shallow-water datasets for models
trained jointly on multiple datasets. IC-NPDE leads to more consistent and neat results compared to
AViT. See Appendix D for more examples.

Umap axis 1

U
m

ap
ax

is
2

epoch 0

Umap axis 1

epoch 10

Umap axis 1

epoch 290

values of η

η = 0.01

η = 0.1

Figure 5: Visualization of the parameter space using UMAP on compressible Navier-Stokes data.
Each point represents a set of parameters θ predicted by the hypernetwork ψ for a given context.
The hypernetwork tends to predict similar θ values when the context is derived from PDEs with the
same parameters η, but different initial conditions. This demonstrates the generalization capability
of our approach to varying initial conditions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

TRUTH U-Net FNO AR-diff AViT IC-NPDE (ours)

Figure 6: Example of prediction of step t + 16 for different models on the Euler dataset. The first
three models (U-net, FNO, AR-diffusion) are trained from scratch while the AViT and our IC-NPDE
model are finetuned. See Tab. 3 for averaged results.

Fine-tuning on unseen physics. We further assess the generalization properties of our IC-NPDE
model to an unseen PDE with unseen initial conditions. Specifically, we fine-tune our model and
AViT, both initially trained on the previous five datasets, on the Euler dataset. This unseen dataset is
governed by compressible Navier-Stokes equations with a single set of parameters and contains ini-
tial conditions not encountered during pretraining. Since this dataset is governed by a fixed PDE, we
also compare against networks such as U-Net (Ronneberger et al., 2015), Fourier Neural Operators
(FNO)(Li et al., 2020), and autoregressive-diffusion models(Kohl et al., 2024), which are designed
to learn a fixed operator from data. As shown in Tab. 3 and Fig. 6, our model achieves the best
performance when fine-tuned on this new dataset, demonstrating its ability to generalize to a new
PDE and novel initial conditions better than the transformer (due to stronger inductive biases) and
other neural operator methods (due to the knowledge gained from multiple physics pretraining).

Table 3: Performances of pretrained models, AViT and IC-NPDE (ours), fine-tuned on the unseen
Euler equations dataset with a single, fixed, set of coefficients (γ = 1.4) after 50 epochs. For com-
parison, we show the performances of 3 other models: Unet, FNO, and auto-regressive diffusion.

Model NRMSE
t+ 1 t+ 4 t+ 8 t+ 16 t+ 32

Unet 0.073 0.21 0.34 0.53 0.72
FNO 0.11 0.22 0.31 0.43 0.62
AR-diffusion 0.13 0.27 0.38 0.48 0.53
AViT 0.067 0.13 0.30 0.40 0.84
IC-NPDE (ours) 0.057 0.12 0.28 0.37 0.82

4.4 ABLATION EXPERIMENTS

Number of integration steps. The number of steps to discretize the integral in Eq. 4 affects lin-
early the computational cost of our model. We trained a model on the Euler-quadrant dataset with
0, 2, 6, 14, 30, 62 integration steps, 30 being the number of steps used in the rest of the paper. The
validation loss after 50 epochs is shown on Tab. 4. On the one hand, the precision of the models is
relatively stables w.r.t. the number of integration steps as long as it is not smaller than 6, suggesting
the potential to reduce this number depending on the application, which could lead to computational
savings. On the other hand, the case nsteps = 0 is closely related to the meta-learning approach
proposed in (Wang et al., 2022) based on a discrete-time formulation, and its poorer performance
highlights the benefit of the continuous-time formulation adopted in IC-NPDE.

Table 4: Effect of the number of intermediate discretization steps in the integration of the operator
fθ from t to t+ 1, on the Euler dataset. nsteps = 0 indicates that the operator is applied only once to
obtain ut+1 from ut.

nsteps 0 2 6 14 30 62

NRMSE t+ 1 0.080 0.068 0.045 0.045 0.045 0.045

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Single dataset training. Training on multiple datasets simultaneously exposes the model to varia-
tions in the class of PDE, its coefficients, and initial conditions. We also evaluate models trained on
individual datasets, which confronts our model to contexts with only the last two sources of variabil-
ity. As shown in Tab. 5, our model remains competitive across most datasets. Comparing Tabs. 5 and
2, our model performs even better when trained on multiple datasets. It demonstrates that our hyper-
network, going beyond standard transformers, excels on data with significant variability, indicating
improved generalization properties, crucial for multi-physics pretraining.

Table 5: Next-steps prediction performance for models trained separately on individual datasets.

Dataset Model NRMSE
t+ 1 t+ 4 t+ 8 t+ 16 t+ 32

Burgers AViT 0.0065 0.033 0.10 0.14 0.19
IC-NPDE (ours) 0.0020 0.020 0.077 0.14 0.30

Diffusion-reaction AViT 0.0020 0.061 0.19 0.28 0.56
IC-NPDE (ours) 0.00039 0.060 0.16 0.37 0.73

Navier-Stokes (incomp.) AViT 0.0042 0.015 0.041 0.090 0.29
IC-NPDE (ours) 0.0040 0.018 0.045 0.075 0.28

Shearflow (incomp.) AViT 0.010 0.11 0.55 0.29 1.1
IC-NPDE (ours) 0.012 0.10 0.40 0.35 1.3

Euler (comp.) AViT 0.046 0.075 0.20 0.34 0.76
IC-NPDE (ours) 0.034 0.075 0.17 0.29 0.66

5 CONCLUSION

In this paper, we introduced in-context neural PDE (IC-NPDE), a general and efficient framework
for in-context learning of dynamical systems governed by unknown temporal PDEs. Our approach
integrates neural PDE solvers, which leverage continuous-time dynamics and spatial translation
equivariance, with transformer-based hypernetworks that adapt to varying contexts to generate the
solver parameters. Compared to standard in-context learning methods based purely on transformers,
IC-NPDE achieves superior generalization and fine-tuning performance.

The integrated model in our framework, implemented using CNNs, is primarily inspired by finite
difference schemes on a uniform mesh. However, many challenging problems in physics involve
non-uniform meshes or arbitrary geometries. In such cases, adopting finite volume or finite ele-
ment schemes could be achieved using graph neural networks instead, as demonstrated in recent
works (Pfaff et al., 2020; Zhou et al., 2022; Brandstetter et al., 2022; Zhou et al., 2023). There are
also some other promising directions for expanding the capabilities of IC-NPDE. First, The neural
ODE-like structure enables flexible inclusion of future time step labels (e.g., t + 2) in training ob-
jective, allowing adaptation to varying data evolution speeds. Additionally, while our method has
been validated on time-independent dynamics, extending it to time-dependent systems requires in-
corporating temporal inputs into the hypernetworks, which is left for future exploration. Moreover,
the integrated network in our framework, implemented using CNNs, is primarily inspired by finite
difference schemes. Exploring other numerical methods, such as spectral methods, could lead to
architectures similar to FNOs.

REFERENCES

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven dis-
cretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

Jan Blechschmidt and Oliver G Ernst. Three ways to solve partial differential equations with neural
networks—a review. GAMM-Mitteilungen, 44(2):e202100006, 2021.

Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. arXiv preprint
arXiv:2312.14688, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural PDE solvers.
arXiv preprint arXiv:2202.03376, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pp. 1877–1901, 2020.

Keaton J Burns, Geoffrey M Vasil, Jeffrey S Oishi, Daniel Lecoanet, and Benjamin P Brown.
Dedalus: A flexible framework for numerical simulations with spectral methods. Physical Re-
view Research, 2(2):023068, 2020.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Clawpack Development Team. Clawpack software. http://www.clawpack.org, 2021.

Filipe de Avila Belbute-Peres, Yi-fan Chen, and Fei Sha. HyperPINN: Learning parameterized
differential equations with physics-informed hypernetworks. The symbiosis of deep learning and
differential equations, 690, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Stanley J Farlow. Partial differential equations for scientists and engineers. Courier Corporation,
2012.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Yue Guo, Felix Dietrich, Tom Bertalan, Danimir T Doncevic, Manuel Dahmen, Ioannis G
Kevrekidis, and Qianxiao Li. Personalized algorithm generation: A case study in learning ODE
integrators. SIAM Journal on Scientific Computing, 44(4):A1911–A1933, 2022.

Julia Gusak, Alexandr Katrutsa, Talgat Daulbaev, Andrzej Cichocki, and Ivan Oseledets. Meta-
solver for neural ordinary differential equations. arXiv preprint arXiv:2103.08561, 2021.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. phiflow: A differentiable PDE solving
framework for deep learning via physical simulations. In NeurIPS workshop, volume 2, 2020.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Aly-Khan Kassam and Lloyd N. Trefethen. Fourth-Order Time-Stepping for Stiff PDEs. SIAM J.
Sci. Comput., 26(4):1214–1233, 2005. doi: 10.1137/S1064827502410633.

David I Ketcheson, Kyle Mandli, Aron J Ahmadia, Amal Alghamdi, Manuel Quezada De Luna,
Matteo Parsani, Matthew G Knepley, and Matthew Emmett. Pyclaw: Accessible, extensible,
scalable tools for wave propagation problems. SIAM Journal on Scientific Computing, 34(4):
C210–C231, 2012.

Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Georg Kohl, Liwei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation. In ICML 2024 AI for Science Workshop, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to PDEs. Journal of Machine Learning Research, 24(89):1–97, 2023.

Pablo Lemos, Niall Jeffrey, Miles Cranmer, Shirley Ho, and Peter Battaglia. Rediscovering orbital
mechanics with machine learning. Machine Learning: Science and Technology, 4(4):045002,
2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI open, 3:
111–132, 2022.

Jerry Weihong Liu, N Benjamin Erichson, Kush Bhatia, Michael W Mahoney, and Christopher Re.
Does in-context operator learning generalize to domain-shifted settings? In The Symbiosis of
Deep Learning and Differential Equations III, 2023.

Xin-Yang Liu, Min Zhu, Lu Lu, Hao Sun, and Jian-Xun Wang. Multi-resolution partial differential
equations preserved learning framework for spatiotemporal dynamics. Communications Physics,
7(1):31, 2024.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Stephane Mallat. A wavelet tour of signal processing. Academic Press, 1999.

Kyle T Mandli, Aron J Ahmadia, Marsha Berger, Donna Calhoun, David L George, Yiannis Had-
jimichael, David I Ketcheson, Grady I Lemoine, and Randall J LeVeque. Clawpack: building an
open source ecosystem for solving hyperbolic PDEs. PeerJ Computer Science, 2:e68, 2016.

Michael McCabe, Peter Harrington, Shashank Subramanian, and Jed Brown. Towards stability of
autoregressive neural operators. arXiv preprint arXiv:2306.10619, 2023.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cran-
mer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse,
et al. Multiple physics pretraining for physical surrogate models. Advances in Neural Information
Processing Systems, pp. to appear, 2024.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, 62(3):352–364, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to
learn, pp. 3–17. Springer, 1998.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Eleuterio F Toro, Michael Spruce, and William Speares. Restoration of the contact surface in the
hll-riemann solver. Shock waves, 4:25–34, 1994.

Bram Van Leer. Towards the ultimate conservative difference scheme. v. a second-order sequel to
godunov’s method. Journal of computational Physics, 32(1):101–136, 1979.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Rui Wang, Robin Walters, and Rose Yu. Meta-learning dynamics forecasting using task inference.
Advances in Neural Information Processing Systems, 35:21640–21653, 2022.

Zhou Xian, Shamit Lal, Hsiao-Yu Tung, Emmanouil Antonios Platanios, and Katerina Fragkiadaki.
Hyperdynamics: Meta-learning object and agent dynamics with hypernetworks. arXiv preprint
arXiv:2103.09439, 2021.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Liu Yang and Stanley J Osher. PDE generalization of in-context operator networks: A study on 1d
scalar nonlinear conservation laws. arXiv preprint arXiv:2401.07364, 2024.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning with data
prompts for differential equation problems. Proceedings of the National Academy of Sciences,
120(39):e2310142120, 2023.

Xu-Hui Zhou, Jiequn Han, and Heng Xiao. Frame-independent vector-cloud neural network for
nonlocal constitutive modeling on arbitrary grids. Computer Methods in Applied Mechanics and
Engineering, 388:114211, 2022.

Xu-Hui Zhou, Jiequn Han, Muhammad I Zafar, Christopher J Roy, and Heng Xiao. Neural operator-
based super-fidelity: A warm-start approach for accelerating steady-state simulations. arXiv
preprint arXiv:2312.11842, 2023.

A DATASET DESCRIPTION

We provide the description of the datasets considered in this paper, along with their underlying
PDEs. All the corresponding data is either publicly available (Takamoto et al., 2022) or is generated
using public code following instructions below (Burns et al., 2020; Clawpack Development Team,
2021).

A.1 BURGERS EQUATIONS

The Burgers equations model the evolution of a 1D viscous fluid. They combine a nonlinear advec-
tion term with a linear diffusion term

∂tut + ut∂xut =
ν

π
∂2xxut

where ν is the diffusion coefficient.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The boundary conditions are set to periodic. The dataset is part of PDEBench (Takamoto et al.,
2022) and was generated using a temporally and spatially 2nd-order upwind difference scheme for
the advection term, and a central difference scheme for the diffusion term. Refer to Figs. 4,9 for
examples of trajectories.

A.2 SHALLOW WATER EQUATIONS

Shallow-water equations, derived from Navier-Stokes equations present a suitable framework for
modelling free-surface flow problems. They take the form of a system of hyperbolic PDEs

∂th+ ∂xh+ ∂yhv = 0 ,

∂thu+ ∂x(u
2h+

1

2
grh

2) + ∂yuvh = −grh∂xb ,

∂thv + ∂y(v
2h+

1

2
grh

2) + ∂xuvh = −grh∂yb ,

where h is the water depth, u, v are the velocities in horizontal and vertical direction, b is the
bathymetry field, and gr describes the gravitational acceleration.

The initial state is a circular bump in the center of the domain. The dataset is part of
PDEBench (Takamoto et al., 2022) and was generated using a finite volume solver (Ketcheson et al.,
2012). Refer to Fig. 4 for an example trajectory.

A.3 DIFFUSION REACTION EQUATIONS

A 2D diffusion-reaction equation models how a substance spreads and reacts over time, capturing
the combined effects of diffusion and chemical or biological reactions in two dimensions

∂tu = Du∂
2
xxu+Du∂yyu+Ru ,

∂tv = Dv∂
2
xxv +Dv∂yyu+Rv ,

where Du, Dv are the diffusion coefficients for the activator u and inhibitor v and Ru, Rv are the
respective reaction functions, which takes the formRu(u, v) = u−u3−k−v andRv(u, v) = u−v
where k is a constant. The initial states are random Gaussian white noises. The problem involves
no-flow Neumann boundary condition, that is Du∂xu = 0, Dv∂xv = 0, Du∂yu = 0, Dv∂yv = 0
on the edges of the square domain. The dataset is part of PDEBench (Takamoto et al., 2022) and
was generated using a finite volume method as spatial discretization and fourth-order Runge-Kutta
method as time discretization. Refer to Figs. 8,9 for examples of trajectories.

A.4 INCOMPRESSIBLE NAVIER-STOKES

This dataset considers a simplification of Navier-Stokes equation that writes

∇ · v = 0 , ρ(∂tv + v · ∇v) = −∇p+ η∆v + u
where v is the velocity vector field, ρ is the density and u is a forcing term and ν is a constant
viscosity.

Initial states and forcing term u are each drawn from isotropic random fields with a certain power-
law power-spectrum. The boundary conditions are Dirichlet, imposing the velocity field to be zero
at the edges of the square domain. The dataset is part of PDEBench (Takamoto et al., 2022) and was
generated using a differentiable PDE solver (Holl et al., 2020). Refer to Figs. 8,10 for examples of
trajectories.

A.5 SHEARFLOW

This phenomenon concerns two layers of fluid moving in parallel to each other in opposite directions,
which leads to various instabilities and turbulence. It is governed by the following incompressible
Navier-Stokes equation

∂u

∂t
− ν∆u+∇p = −u · ∇u .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where ∆ = ∇ ·∇ is the spatial Laplacian, with the additional constraints
∫
p = 0 (pressure gauge).

In order to better visualize the shear, we consider a passive tracer field s governed by the advection-
diffusion equation

∂s

∂t
−D∆s = −u · ∇s .

We also track the vorticity ω = ∇ × u = ∂uz

∂x − ∂ux

∂z which measures the local spinning motion
of the fluid. The shear is created by initializing the velocity u at different layers of fluid moving in
opposite horizontal directions. The fluid equations are parameterized by different viscosity ν and
tracer diffusivity D.

The data was generated using an open-source spectral solver (Burns et al., 2020) with a script that
is publicly available. Refer to Fig. 10 for an example trajectory.

A.6 EULER EQUATIONS (COMPRESSIBLE)

Euler equations are a simplification of Navier-Stokes in the absence of viscosity

∂tU + ∂xF (U) + ∂yG(U) = 0 ,

with

U =

 ρ
ρu
ρv
e

 , F =

 ρu
ρu2 + p
ρuv

u(e+ p)

 , G =

 ρv
ρuv

ρv2 + p
v(e+ p)


where ρ is the density, u, v are the horizontal and vertical velocities, p is the pressure and e is the
energy defined by

e =
p

γ − 1
+

1

2
ρ(u2 + v2) .

The initial state is a piecewise constant signal composed of quadrants, which then evolves in multi-
scale shocks.

The data has periodic boundary conditions and was generated using CLAWPack (Clawpack Devel-
opment Team, 2021; Mandli et al., 2016), which is an open-source software for solving hyperbolic
conservation laws, with a script that is publicly available. Refer to Fig. 10 for an example trajectory.

A.7 COMPRESSIBLE NAVIER-STOKES

The compressible Navier-Stokes describe the motion of a fluid flow

∂tρ+∇ · (ρv) = 0

ρ(∂tv + v · ∇v) = −∇p+ η∆v + (ζ + η/3)∇(∇ · v) ,

∂t(ϵ+
1

2
ρv2) +∇ · ((ϵ+ p+

1

2
ρv2)v − v · σ′) = 0

where ρ is the density, v is the velocity vector field, p the pressure, ϵ = p/(Γ − 1) is the internal
energy, Γ = 5/3, σ′ is the viscous stress tensor, and η, ζ are the shear and bulk viscosity. The
boundary conditions are periodic.

The dataset is part of PDEBench (Takamoto et al., 2022) and was generated using 2nd-order HLLC
scheme (Toro et al., 1994) with the MUSCL method (Van Leer, 1979) for the inviscid part, and the
central difference scheme for the viscous part. This dataset contains trajectories with only 5 steps
into the future and was used solely for training.

B BENCHMARK MODELS HYPERPARAMETERS

In this paper we compared our in-context neural PDE model with 4 baselines, a U-net (Ronneberger
et al., 2015), a Fourier neural operator (Li et al., 2020) implemented using neuralop (Kovachki
et al., 2023), an auto-regressive diffusion model (Kohl et al., 2024), and a AViT (McCabe et al.,
2024) which is a transformer (Vaswani et al., 2017). We expose here the hyperparameters of these
models used in the paper.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

U-Net. We considered a standard U-Net (Ronneberger et al., 2015) with 4 down-(and up) sampling
blocks, spatial filters of size 3 and initial dimension of 48. The resulting model has 17M learnable
parameters.

FNO. We considered a standard Fourier neural operator (Li et al., 2020) with 4 Fourier blocks,
spectral filters of size 16 (number of Fourier modes), and 128 hidden dimensions. The resulting
model has 19M learnable parameters.

AR-diffusion. We considered an auto-regressive diffusion model (Kohl et al., 2024) based on a U-
Net denoiser having 3 down-(and up) sampling blocks, with spatial filters of size 7 and 128 hidden
dimensions. At inference, the generative process employs 100 diffusion steps. The resulting model
has 7M learnable parameters.

AViT. We considered an axial vision transformer (McCabe et al., 2024) with patch size of 16, 12
attention layers, 12 attention heads per layer, 768 hidden dimensions. The resulting model has 158M
learnable parameters.

C TRAINING DETAILS

Hyperparameters. For joint training on multiple datasets, we considered the same hyperparame-
ters than McCabe et al. (2024), with batch size of 8, gradient accumulation every 5 batches, epoch
size of 2000 batches. For single model trainings, we considered batch size of 32 with no gradient
accumulation. In certain cases where the optimization was unstable, in particular, when we tried
using only 2 intermediate number of steps (see Tab. 6), we used gradient clipping, clipping the total
norm of the gradients to a default norm of 1.0. The data is split into train, validation, and test sets
with an 80%, 10%, and 10% division, respectively.

Optimization. All trainings were performed using the adaptive Nesterov optimizer (Xie et al.,
2024) and a cosine schedule for the learning rate. Using AdamW optimizer with varying learning
rate did not improve overall performance in the cases we tested. Both the single-dataset and multi-
dataset experiments are run for a fixed number of 300 epochs. This means that during single-dataset
training, the model sees 7 times more data from that dataset compared to a model trained on 7
datasets simultaneously, where each dataset is sampled less frequently. We used a weight decay of
0.001 and drop path of 0.1.

Loss. A normalized root mean square error is used for both monitoring the training of the model
and assessing the performances in this paper. For two tensors u (target) and ût+1 (prediction) with
C channels

Loss(u, û) =
1

C

C∑
c=1

∥uc − ûc∥2
∥uc∥2 + ϵ

where the ℓ2 norm ∥ · ∥2 is averaged along space and ϵ is a small number added to prevent numerical
instabilities. For a batch of data, this loss is simply averaged.

Software. The model trainings were conducted using python v3.11.7 and the PyTorch library
v2.4.1 (Paszke et al., 2019).

Hardware. All model trainings were conducted using Distributed Data Parallel across 4 or 8
Nvidia H100-80Gb GPUs.

D MORE EXPERIMENTAL RESULTS

Additional rollout examples. For models trained on multiple datasets jointly, on top of Fig. 4,
additional rollouts are shown in Fig. 8. Refer to Tab. 2 for averaged metrics. For models trained
on each dataset separately, Figs. 9,10, provide examples of rollouts. Refer to Tab. 5 for averaged
metrics.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300

epoch

102

training NRMSE
AViT

IC-NPDE (ours)

0 50 100 150 200 250 300

epoch

10−1

4× 10−2

6× 10−2

validation NRMSE
AViT

IC-NPDE (ours)

Figure 7: Training curve of AViT and IC-NPDE on Euler (compressible) 2D dataset.

T
R

U
T

H

t t + 1 t + 4 t + 8 t + 16 t + 32

A
V

iT
IC

-N
P

D
E

T
R

U
T

H

t t + 1 t + 4 t + 8 t + 16 t + 32

A
V

iT
IC

-N
P

D
E

Figure 8: Examples of rollout trajectories from diffusion-reaction and incompressible Navier-Stokes
datasets for models trained jointly on multiple datasets.

Model size. In our framework (see Eq. 4), both the hypernetwork size can be increased, to improve
the estimation of the parameters θ, and the operator size fθ, to provide more complex operators. The
size d2 of the hypernetwork ψα depends on the following hyperparameters, the number of attention
layers, the number of attention heads in each layer, and the hidden dimension, which are set to 12,
6, 384, respectively, in the paper. We considered two other sets of hyperparameters 4, 3, 192 and
12, 12, 768. The size d1 of the operator fθ depends on the hidden dimension Chidden, which is set
to 64 in the paper. We considered Chidden = 32 and Chidden = 128. Tab. 6 shows the sizes for these
hyperparameter choices, as well as the associated accuracy on the Euler dataset after 50 epochs.
As we can see, the main performance improvements can be achieved by increasing the class of
integrated network. However, training a larger hypernetwork on a single dataset appears to be more
challenging. Note that according to the naive scaling specified in the third row of Tab. 6, the final
MLP in the hypernetwork becomes quite large, as it takes an input with 768 channels and needs to
output 40k channels, which is the dimension of θ. A more refined strategy should be employed to
scale the hypernetwork ψ.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.805

0.810
T

R
U

T
H

t t + 1 t + 4 t + 8 t + 16 t + 32

0.805

0.810

A
V

iT

0.805

0.810

IC
-N

P
D

E
T

R
U

T
H

t t + 1 t + 4 t + 8 t + 16 t + 32

A
V

iT
IC

-N
P

D
E

Figure 9: Examples of rollout trajectory from Burgers 1D and diffusion-reaction datasets, for models
trained on each of these datasets separately.

Table 6: Influence of the model size on the accuracy, on the Euler dataset. Each table corresponds
respectively to variations over α and θ. Gray rows indicate the default values chosen in the paper.

hyperparameters num. weights α NRMSEnum. layers num. heads dim
4 3 192 11m 0.046

12 6 384 55m 0.046
12 12 768 189m 0.048

hyperparameter Chidden num. parameters θ NRMSE
32 11k 0.054
64 40k 0.046

128 149k 0.043

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

T
R

U
T

H

t t + 1 t + 4 t + 8 t + 16 t + 32

A
V

iT
IC

-N
P

D
E

T
R

U
T

H

t t + 1 t + 4 t + 8 t + 16 t + 32

A
V

iT
IC

-N
P

D
E

T
R

U
T

H

t t + 1 t + 4 t + 8 t + 16 t + 32

A
V

iT
IC

-N
P

D
E

Figure 10: Examples of rollout trajectory from Navier-Stockes (incompressible), shearflow (incom-
pressible) and Euler (compressible) datasets, for models trained on each of these dataset separately.

19

	Introduction
	Related works
	Methodology
	Preliminaries
	Method: in-context neural PDE

	Numerical experiments
	Generic architectures
	Large scale experiments, performances and sample efficiency
	Information bottleneck and generalization properties
	Ablation experiments

	Conclusion
	Dataset description
	Burgers equations
	Shallow water equations
	Diffusion reaction equations
	Incompressible Navier-Stokes
	Shearflow
	Euler equations (compressible)
	Compressible Navier-Stokes

	Benchmark models hyperparameters
	Training details
	More experimental results

