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ABSTRACT

We address the problem of predicting the next state of a dynamical system gov-
erned by unknown temporal partial differential equations (PDEs) using limited
time-lapse data. While transformers offer a natural solution to this task through
in-context learning, the inductive bias of temporal PDEs suggests a more tailored
and effective approach. Specifically, when the underlying temporal PDE is fully
known, classical numerical solvers can evolve the state with only a few parame-
ters. Building on this observation, we introduce a large transformer-based hyper-
network that processes successive states to generate parameters for a much smaller
neural ODE-like solver, which then predicts the next state through time integra-
tion. This framework, termed as in-context neural PDE, decouples parameter
estimation from state prediction, offering closer alignment with classical numeri-
cal methods for improved interpretability while preserving the in-context learning
capabilities of transformers. Numerical experiments on diverse physical datasets
demonstrate that our method outperforms standard transformer-based models, re-
ducing sample complexity and improving generalization, making it an efficient
and scalable approach for spatiotemporal prediction in complex physical systems.

1 INTRODUCTION

Modeling dynamical systems from data is a highly active area of research with the potential to sig-
nificantly reduce both computational costs (Kidger, 2021) and the need for ad-hoc engineering to
predict future states (Farlow, 2012). In this paper, we consider dynamical systems described by par-
tial differential equations (PDEs). The conventional data-driven approach typically involves “learn-
ing” a fixed dynamic model from a large number of trajectories obtained from various initializations,
which is often referred to as neural operator learning (Kovachki et al., 2023; Boullé & Townsend,
2023). However, in many practical scenarios, the exact governing physical laws are unknown and
may vary across different trajectories, making those methods unsuitable and necessitating a more
flexible data-driven approach. To address this limitation, we investigate the problem of predicting
the next state of a system from a few successive time-lapse observations, where the underlying dy-
namics are unknown and can vary between different trajectories. This problem is more complex as
it implicitly requires both estimating the underlying physics of the dynamical system (inverse prob-
lem) and integrating it in time (forward problem). In contrast, these two tasks are typically tackled
independently in existing literature (Blechschmidt & Ernst, 2021).

One promising way to handle scenarios with unknown or varying dynamics is through models that
can effectively capture context—a sequence of preceding states—to infer the temporal patterns gov-
erning the system. Transformers, known for their strong sequential learning capabilities (Vaswani
et al., 2017), excel in this area through a mechanism called In-Context Learning (ICL) (Brown
et al., 2020), allowing them to adapt flexibly to different dynamics using prior state information.
This adaptability has enabled transformers to achieve remarkable performance in natural language
processing, where context plays a crucial role (Dubey et al., 2024). Recent works (McCabe et al.,
2024; Yang & Osher, 2024; Yang et al., 2023; Liu et al., 2023) have also shown that transformers,
when trained on diverse PDE dynamics and initial conditions, can predict future states across differ-
ent contexts, positioning them as powerful tools for data-driven modeling of dynamical systems in
physical domains.
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However, applying transformers to physical systems still remains challenging, as they often require
vast amounts of data to avoid overfitting and can struggle with predicting out-of-distribution tra-
jectories, leading to instabilities over multi-step rollouts (McCabe et al., 2023; 2024). In contrast,
classical numerical methods excel when the governing dynamics are known, evolving the system
accurately with minimal parameters and without any data training. These methods also often pre-
serve important structural properties of physics, such as continuous-time evolution and translation
equivariance (Mallat, 1999), which transformers do not naturally inherit. This lack of structure
preservation contributes to the limitations of transformers in physical applications, particularly in
terms of high sample complexity and instability.

In this work, we propose a novel framework named in-context neural PDE (IC-NPDE) that com-
bines the best of both worlds: an estimate of the parameters through context is incorporated into a
neural ODE-like solver (Chen et al., 2018). Specifically, a large hypernetwork processes successive
states of a trajectory to generate parameters for a much smaller neural PDE solver, which then pre-
dicts the next state through time integration. In this manner, we decouple the parameter estimation of
the dynamical context from state prediction, unlike previous transformer-based methods that tackle
both tasks jointly. Our decoupling approach can be viewed as a meta-learning algorithm (Thrun &
Pratt, 1998; Finn et al., 2017), a class of algorithms designed to self-adapt to specific tasks. In our
setting, predicting the next state from limited time-series data is treated as a task that depends on
(1) initial conditions, (2) physical parameters, and (3) even different underlying physical laws. The
neural network used in the ODE-like solver respects the underlying continuous-time nature of the
physics and preserves spatial translation equivariance through the use of Convolutional Neural Net-
works (CNNs). The parameters are fully learnable, offering greater flexibility in estimating spatial
derivatives (Bar-Sinai et al., 2019). Furthermore, our integrated network uses far fewer parameters
compared to a transformer, creating an information bottleneck (Tishby et al., 2000). This bottle-
neck forces the system to focus on the most essential aspects of the dynamics, preventing overfitting
and improving generalization, particularly for out-of-distribution states. By concentrating the rep-
resentation in a smaller parameter space, the model gains robustness and efficiency, making it more
suitable for predicting complex physical systems.

Contributions. Our key contributions are as follows: (a) To our knowledge, this is the first work to
combine an ICL approach with differentiable PDE solvers for spatiotemporal prediction. (b) We pro-
pose a framework that introduces a tailored inductive bias for physical systems, providing improved
interpretability by aligning more closely with classical numerical methods. (c) Our method demon-
strates superior learning performance across multiple physical systems using standard datasets in
the literature and (d) achieves better numerical accuracy on multi-step rollouts compared to state-
of-the-art ICL models, with improved generalization. Upon publication, we will open-source our
implementation.

2 RELATED WORKS

Classical and neural solvers. While classical PDE solvers remain the state-of-the-art for achiev-
ing high precision, neural network-based surrogate solvers (Lu et al., 2019; Li et al., 2020; Kovachki
et al., 2023) have opened up new possibilities for inferring approximate solutions quickly for certain
PDEs. However, these solvers need to be trained on samples derived from the same PDE. Some vari-
ants, such as (Karniadakis et al., 2021; Kochkov et al., 2021), allow the incorporation of corrective
terms to approximate trajectory dynamics, but they still lack adaptability to the context, which is a
key feature of our method. Symbolic regression (Lemos et al., 2023) separates trajectory parameter
inference from the integration task but struggles to scale to high-dimensional data and handle large
search spaces effectively. In contrast, our method directly approximates the differential operators
using a cascade of small convolutional layers, enabling efficient learning in high-dimensional data.

Meta-learning strategies applied to dynamical systems. As an inspiration for our work, Metz
et al. (2022) pretrains an optimizer on a large collection of datasets and models, which can be viewed
as meta-learning a specific discretized dynamical system in order to surpass stochastic gradient
descent. In a different setting, Gusak et al. (2021); Guo et al. (2022) propose strategies to learn the
best ODE solver from a family of solvers, which could be combined with our approach. Meanwhile,
Bar-Sinai et al. (2019) focuses on meta-learning differentiable filters for PDEs, aligning with one
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aspect of our methodology. In a different setting, de Avila Belbute-Peres et al. (2021) learns to map
PDE parameters to the corresponding physics-informed neural netowrk’s parameters (Karniadakis
et al., 2021); however, this lacks capability for ICL. The most closely related works to ours, to
the best of our knowledge, are McCabe et al. (2024); Yang et al. (2023); Liu et al. (2023); Yang
& Osher (2024), which utilize transformers for in-context learning of neural operators for PDEs.
However, as discussed in the introduction, these methods lack inductive bias for physics and tend
to require a large amount of data to generalize. Xian et al. (2021); Wang et al. (2022) use an
encoder/decoder strategy to embed dynamics in a latent space for predicting the next state; while
related, these approaches are conceptually closer to McCabe et al. (2024).

3 METHODOLOGY

3.1 PRELIMINARIES

Problem setting and notations. Let t denote time and x ∈ Rn be the spatial variable. We consider
a class of PDEs of spatial order k for function u : R× Rn → Rm of the form

∂tut(x) = g
(
ut(x) , ∂x1

ut(x) , ∂x2
ut(x) , . . . , ∂

2
x1x1

ut(x) , ∂
2
x1x2

ut(x) . . .
)
, (1)

where different g corresponds to different physics (different equations and/or parameters) governing
the system. Here, n is the spatial dimension, typically ranging from 1 to 3 in physical systems, and
m is the number of physical variables described by the PDE. For notational simplicity, we assume
the PDE is time-homogeneous (i.e., g does not depend on t) though our methods can be straight-
forwardly extended to the time-inhomogeneous case. For PDEs with higher-order time derivatives,
specifically of order r, we can redefine the function of interest as ū = (u, ∂tu, . . . , ∂

r
t u), which al-

lows us to rewrite the PDE in the form of Eq. 1. Given a spatiotemporal trajectory with unknown g,
our goal is to predict the state ut+1 using the preceding T successive states ut−T+1, . . . , ut, where
T is referred to as the context length. In practice, the observed ut is discretized over grid points (as-
sumed fixed and uniformly-distributed in this paper) rather than being a continuous spatial function.
For simplicity, we use continuous notation throughout.

Finite difference and neural PDEs. Finite difference method is a classical approach for numeri-
cally solving an explicitly given PDE by discretizing spatial derivatives on a grid. This connection
forms a basis for leveraging CNNs to approximate PDE solutions. To illustrate this relationship,
consider the standard 2D diffusion equation:

∂tut(x) = β∆ut(x), x ∈ [0, 1]2 , (2)

subject to periodic boundary conditions, where β > 0 is the diffusion coefficient. Let the state ut
be discretized over a uniform grid with spacing ∆x, denoted by ut,i,j for 0 ≤ i, j ≤ N . Using a
standard centered finite difference scheme, the right-hand side of Eq. 2 can be approximated as:

∂tut,i,j ≈ β
ut,i+1,j + ut,i−1,j + ut,i,j+1 + ut,i,j−1 − 4ut,i,j

(∆x)2
= ut,i,j ⋆ θ ,

where θ = β/(∆x)2[0, 1, 0; 1,−4, 1; 0, 1, 0] is a small 3 × 3 convolution filter, and ⋆ denotes the
convolution operation with periodic padding. Defining f̃θ(u) := u ⋆ θ, we have

ut+1 ≈ ut +

∫ t+1

t

f̃θ(us) ds ,

which indicates that when the physics is explicitly known (Eq. 2), we only need a single convo-
lution layer with a few parameters to evolve the solution ut accurately. Extending this concept to
machine learning, Bar-Sinai et al. (2019) proposed replacing these fixed convolutional coefficients
with learnable parameters, resulting in improved accuracy on certain grid sizes. For more com-
plex PDEs involving nonlinear dynamics, additional layers with nonlinear activation functions are
necessary to capture the underlying effects. This connection between finite difference methods and
CNNs highlights that relatively small CNN architectures, compared to transformer-based models,
can effectively represent temporal PDEs while preserving spatial translation equivariance. This per-
spective has been explored in previous work (Ruthotto & Haber, 2020) and recently applied to design
neural architectures for solving PDEs when the governing physics is known (Liu et al., 2024).
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.  .  . .  .  . 

.  .  . 

Figure 1: Illustration of our method. Unlike a standard ICL approach based on a transformer such
as AViT, which predicts the next frame ut+1 directly from the context (ut−T+1, . . . , ut), our in-
context neural PDE (IC-NPDE) framework first uses a hypernetwork to predict the parameters θ for
a smaller neural PDE solver. This solver integrates a CNN fθ in time to predict the next state.

We note that the above connection holds primarily for continuous-time or small discrete-time steps.
For larger time steps, the exact solution to Eq. 2 still retains a convolutional structure: ut+∆t(x) =∫
R2 ut(x−y)G(∆t, y) dy whereG(∆t, y) = (4πβ∆t)−1 exp(−∥y∥2/(4β∆t)). However, for large
∆t (specifically when β∆t ≫ 1), the convolution kernel G(∆t, y) decays slowly, resulting in a
significantly larger effective receptive field. Consequently, using a CNN f̃θ to directly approximate
the solution in the form of ut+∆t(x) = f̃θ(ut), as proposed in (Wang et al., 2022), would require a
much larger network with more parameters, making the optimization more challenging.

Transformers for PDEs. Recent works (McCabe et al., 2024; Yang & Osher, 2024; Yang et al.,
2023; Liu et al., 2023) have proposed to use ICL predictors based on transformers to directly estimate
the next state from a few successive iterates, in other words

ût+1 = Fθ(ut−T+1, ..., ut) , (3)

where typically Fθ is an over-parameterized transformer or diffusion model. These models can
work without knowing the physics a priori, in contrast to the common neural PDE solvers. However
such models are more prone to over-fitting as they do not incorporate good inductive biases, such as
explicit differential operators, contrary to Eq. 3.

3.2 METHOD: IN-CONTEXT NEURAL PDE

Our framework. In this work, we propose a framework that combines the best of both worlds
from ICL and classical numerical schemes (see Fig. 1): the parameters θ ∈ Rd1 of a small convo-
lutional neural network fθ—referred to as the integrated network—are generated from an ad-hoc
model ψα, referred to as a hypernetwork (Ha et al., 2016), which uses the context to estimate these
parameters, leading to the formal equations:ût+1 = ut +

∫ t+1

t

fθ(us) ds ,

θ = ψα

(
ut−T+1, ..., ut

)
,

(4)

where α ∈ Rd2 . This formulation significantly structures the predictor, which now has a convolu-
tional structure aligned with Eq. 1: the spatial derivatives are necessarily approximated using the
convolutional kernels of fθ.

By leveraging auto-differentiation and the strategy of Chen et al. (2018), the above two equations
can be learned jointly in an end-to-end manner by solving the optimization problem

min
α

1

|D|
∑
ℓ∈D

Loss(uℓt+1, û
ℓ
t+1) ,

where each ℓ in the dataset D is a data point in the form of (uℓt−T+1, ..., u
ℓ
t, u

ℓ
t+1). In this paper, we

choose the loss function as the normalized root mean square error (NRMSE); see Appendix C for
the detailed definition.
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After the weights α are trained, for predicting specific dynamics from a given trajectory as the
downstream task, the entire inference process can be viewed as a meta-learning or an ICL procedure,
as no hyper-network retraining is involved.

Hypernetwork design. Multiple choices of hypernetwork could be used, but we decided to ex-
ploit transformers due to their favorable auto-regressive properties (Lin et al., 2022). In fact, we
emphasize that any type of meta learning approaches, like directly optimizing θ via gradient de-
scent, could be considered yet it might not be computationally favorable. Here, we have d1 ≪ d2, in
order to limit overfitting and any memorization phenomenon by forcing the transformer to estimate
the parameters of the trajectory rather than the next state.

Numerical integration. The integral from t to t + 1 in Eq. 4 is discretized using a fourth-order
Runge-Kutta method (Kassam & Trefethen, 2005). Gradient backpropagation is performed using
an adjoint sensitivity method which scales linearly in the number of integration steps and has low
memory cost (Chen et al., 2018). The solver uses 30 integration steps, but ablation studies show that
this number is quite conservative, as explained in Tab. 4. One could either reduce this number or use
the same number but to predict further into the future. For example, for slowly varying fluids, one
may want to predict up to t + 2 in a single forward pass with 15 integration steps for each interval
[t, t+ 1], [t+ 1, t+ 2]. We leave this possibility for future work.

4 NUMERICAL EXPERIMENTS

4.1 GENERIC ARCHITECTURES

Integrated network architecture. The integrated network fθ is a CNN starting with a k × k
convolution, acting as a local differential operator, followed by six 1 × 1 convolutions that apply a
pointwise function. In detail, Let Cin and Chidden represent input and hidden channels, respectively,
with Cout = Cin. The first convolution has weights of shape (Chidden/2, Cin, k, k) and includes a skip
connection via concatenation. This is followed by a (Chidden, Cin+Chidden/2, 1, 1) convolution. Next,
two blocks are applied, each consisting of two convolutions with weights (2Chidden, Chidden, 1, 1)
and (Chidden, 2Chidden, 1, 1), followed by a skip connection. The final layer uses weights of shape
(Cout, Chidden, 1, 1). Each 1 × 1 convolution is followed by group normalization (8 groups) and a
GeLU activation. For datasets with non-periodic boundary conditions, we use zero-padding for the
spatial convolution and we add manually a mask of the boundaries as input to fθ.

Hypernetwork architecture. In all our experiments we assume ψ in Eq. 4 is a transformer. It
as a CNN encoder and a MLP decoder outputting the parameters. Its encoder consists of three
convolution layers of kernel sizes of 4, 2, 2 respectively, with GeLU activation, ending up with a
patch size of 16. The hidden dimension (token space) is 384. After the encoder, we cascade 12
time-space attention blocks, each containing a time attention, and axial attentions along each space
dimension (McCabe et al., 2024). Each attention block contains 6 heads and uses relative positional
encodings. The output of the attentions is averaged over both time and space, leaving only the
channel dimension. Finally, we branch a MLP with two hidden layers that progressively increases
the channel dimension to recover the expected parameter shape of θ.

Multiple physics training. When jointly trained on multiple datasets, most of the weights in the
hypernetwork are shared across datasets, except for the first 1 × 1 convolution, which is learned
separately for each dataset to accommodate varying channel numbers from input, and the final MLP
weights, which are also learned independently per dataset to produce the parameters θ. Regarding
the CNN fθ, Chidden remains the same across different dataset, but the number of input and output
channels in the first and last convolution layers varies depending on the number of channels in the
data. Also, the kernel size of the first (and only) spatial filtering in fθ, is set to k = 5 for all the
datasets, except for compressible Navier-Stokes where increasing the kernel size to 11 was necessary
to obtain good performances. This is certainly due to the fact that the trajectory in this dataset makes
much bigger movement from one step to the other.
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Table 1: Specifics of the datasets considered in this paper.

Dimension Dataset Name Resolution
(pixels)

Sequence
Length

Boundary
Conditions

1D Burgers 1024 200 periodic
2D Shallow water 128× 128 100 open
2D Diffusion-reaction 128× 128 100 Neumann
2D Navier-Stokes (incomp.) 128× 128 1000 Dirichlet
2D Navier-Stokes (comp.) 128× 128 21 periodic
2D Shearflow (incomp.) 128× 256 200 periodic
2D Euler (comp.) 128× 128 200 periodic

4.2 LARGE SCALE EXPERIMENTS, PERFORMANCES AND SAMPLE EFFICIENCY

Datasets description. In order to explore a variety of physics, we consider seven datasets. One
dataset consists of 1D signals, while the other six contain 2D signals. Each dataset includes simula-
tions of a specific PDE, with potentially varying coefficients, and trajectories evolved from different
initial conditions. Detailed descriptions of the datasets are provided in Tab. 1. Burgers, shallow wa-
ter, diffusion reaction, Navier-Stokes (incompressible and compressible) datasets are sourced from
PDEBench (Takamoto et al., 2022). The two additional datasets include a 2D periodic incompress-
ible shearflow, generated using the Dedalus software (Burns et al., 2020), and a dataset based
on Euler equations—a special case of compressible Navier-Stokes equations—produced using the
CLAWPack software (Mandli et al., 2016; Clawpack Development Team, 2021). To allow for com-
putation of the models on all the datasets, we subsampled each data to a resolution of 128 × 128
pixels, except for the Burgers equations data that is 1024 long and the shearflow data that is of
resolution 128 × 256. Details on the equations, initial conditions, boundary conditions, and data
generation can be found in Appendix A.

With the architectures described in Sec. 4.1, we train our IC-NPDE model on multiple datasets and
compare it with the Axial Vision Transformer (AViT) (McCabe et al., 2024), which is designed
for ICL of multiple physics. Both models are trained on the first five datasets from PDEBench,
consistent with those used in (McCabe et al., 2024). We refer the reader to Appendix C for training
details.

Table 2: Next steps prediction performances for models trained jointly on multiple datasets.

Test Dataset Model NRMSE
t+ 1 t+ 4 t+ 8 t+ 16 t+ 32

Burgers AViT 0.013 0.048 0.11 0.19 0.40
IC-NPDE (ours) 0.0036 0.022 0.082 0.11 0.37

Shallow-water AViT 0.0016 0.0097 0.032 0.033 0.098
IC-NPDE (ours) 0.00017 0.0087 0.032 0.039 0.089

Diffusion-reaction AViT 0.012 0.12 0.35 0.47 0.76
IC-NPDE (ours) 0.00060 0.11 0.34 0.46 0.76

Navier-Stokes (incomp.) AViT 0.024 0.054 0.10 0.24 0.57
IC-NPDE (ours) 0.0042 0.021 0.054 0.088 0.19

Tab. 2 shows the NRMSE over different datasets the two models are trained on (Navier-Stokes
(comp.) is excluded from multi-step testing due to its short sequence length). As shown, our model
outperforms AViT on next state prediction for all the datasets presented. Furthermore, the accuracy
of the rolled-out trajectories are also improved in most of the cases, see Fig. 4 for typical examples.
Note that this is achieved with more than three times less learnable parameters than a transformer –
158M compared to 55M in our method – which emphasizes the benefits of incorporating the good
inductive bias through a neural PDE in our model.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300

epoch

10−1

100

101

102

training NRMSE
AViT

IC-NPDE (ours)

0 50 100 150 200 250 300

epoch

10−3

10−2

10−1

validation NRMSE
AViT

IC-NPDE (ours)

Figure 2: Learning curves on the diffusion-reaction dataset. IC-NPDE already achieves a 10−2

validation accuracy after one epoch, while a transformer needs around 50 epochs to reach such
accuracy. This is an illustration of the better inductive bias implemented in our framework.

This is confirmed by the learning curves showed in
Fig. 2. Our model trained on the diffusion-reaction
dataset, achieves a good accuracy of ≈ 1% early in
the training, after only one epoch, whereas the base-
line AViT, which applies a transformer directly to pre-
dict the next state, requires 50 epochs to reach the same
level. This improved sample efficiency, observed on all
the datasets we tested our model on, is also indicative
of the benefits of incorporating the good inductive bias
in our framework.

As a concrete example of the issues encountered by a
transformer-based architecture, which does not encode
translation-equivariance, let us consider shifting all the
states in a context, as well as the following state, by
a vector v of increasing norm ∥v∥. Fig. 3 shows that
the transformer architecture quickly struggles to pre-
dict the next state, although it is competitive when no
translation is applied, ∥v∥ = 0.

0 5 10 15 20 25 30

shift norm‖v‖

0.016

0.024

0.032

0.040

NRMSE t + 1

AViT

IC-NPDE (ours)

Figure 3: Performance on the shearflow
dataset when context and target are
shifted by v ∈ R2. While the trans-
former performs well at v = 0, it de-
clines more than IC-NPDE under shifts
due to the lack of an inductive bias for
translation-equivariance.

4.3 INFORMATION BOTTLENECK AND GENERALIZATION PROPERTIES

Our in-context neural PDE model employs a relatively small number of parameters θ (see Eq. 4) to
predict the next state through the integration of fθ, compared to the typical input sizes. We study the
impact of this information bottleneck.

Parameter space visualization. When trained on multiple datasets, the parameters θ returned by
our hypernetwork depend on both the initial conditions and the PDE governing the given context.
We show that our framework is capable of reducing the variability introduced by the initial condi-
tion, allowing it to focus primarily on the PDE dynamics. First, let us separate θ = [θspatial, θpointwise]
into the parameters of the first spatial convolution, and the parameters of the pointwise function that
applies to the filtered states. Recall that the filtered states u ⋆ θspatial are analogous to discretizations
of the local differential operators such as the gradient and Laplacian in standard numerical solver.
The pointwise function parameterized by θpointwise, which recombines the filtered states, is driven by
the PDE and should contain information about the PDE’s coefficients or the PDE itself. We perform
dimensionality reduction via Umap (McInnes et al., 2018) over the 32 768 parameters θpointwise for
128 contexts from compressible Navier-Stokes dataset, with two different shear viscosity η = 0.01
and η = 0.1. Fig. 5 visualizes the parameter space through these weights θpointwise across different
stages of the training, showing that our model progressively identifies two distinct clusters, corre-
sponding to the two physical parameter values. Thus, the hypernetwork clusters contexts that are
originated from the same PDE (with same coefficient), despite different initial conditions, which is
the key for generalizing to initial conditions.
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Figure 4: Examples of rollout trajectories from Burgers and shallow-water datasets for models
trained jointly on multiple datasets. IC-NPDE leads to more consistent and neat results compared to
AViT. See Appendix D for more examples.
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Figure 5: Visualization of the parameter space using UMAP on compressible Navier-Stokes data.
Each point represents a set of parameters θ predicted by the hypernetwork ψ for a given context.
The hypernetwork tends to predict similar θ values when the context is derived from PDEs with the
same parameters η, but different initial conditions. This demonstrates the generalization capability
of our approach to varying initial conditions.
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TRUTH U-Net FNO AR-diff AViT IC-NPDE (ours)

Figure 6: Example of prediction of step t + 16 for different models on the Euler dataset. The first
three models (U-net, FNO, AR-diffusion) are trained from scratch while the AViT and our IC-NPDE
model are finetuned. See Tab. 3 for averaged results.

Fine-tuning on unseen physics. We further assess the generalization properties of our IC-NPDE
model to an unseen PDE with unseen initial conditions. Specifically, we fine-tune our model and
AViT, both initially trained on the previous five datasets, on the Euler dataset. This unseen dataset is
governed by compressible Navier-Stokes equations with a single set of parameters and contains ini-
tial conditions not encountered during pretraining. Since this dataset is governed by a fixed PDE, we
also compare against networks such as U-Net (Ronneberger et al., 2015), Fourier Neural Operators
(FNO)(Li et al., 2020), and autoregressive-diffusion models(Kohl et al., 2024), which are designed
to learn a fixed operator from data. As shown in Tab. 3 and Fig. 6, our model achieves the best
performance when fine-tuned on this new dataset, demonstrating its ability to generalize to a new
PDE and novel initial conditions better than the transformer (due to stronger inductive biases) and
other neural operator methods (due to the knowledge gained from multiple physics pretraining).

Table 3: Performances of pretrained models, AViT and IC-NPDE (ours), fine-tuned on the unseen
Euler equations dataset with a single, fixed, set of coefficients (γ = 1.4) after 50 epochs. For com-
parison, we show the performances of 3 other models: Unet, FNO, and auto-regressive diffusion.

Model NRMSE
t+ 1 t+ 4 t+ 8 t+ 16 t+ 32

Unet 0.073 0.21 0.34 0.53 0.72
FNO 0.11 0.22 0.31 0.43 0.62
AR-diffusion 0.13 0.27 0.38 0.48 0.53
AViT 0.067 0.13 0.30 0.40 0.84
IC-NPDE (ours) 0.057 0.12 0.28 0.37 0.82

4.4 ABLATION EXPERIMENTS

Number of integration steps. The number of steps to discretize the integral in Eq. 4 affects lin-
early the computational cost of our model. We trained a model on the Euler-quadrant dataset with
0, 2, 6, 14, 30, 62 integration steps, 30 being the number of steps used in the rest of the paper. The
validation loss after 50 epochs is shown on Tab. 4. On the one hand, the precision of the models is
relatively stables w.r.t. the number of integration steps as long as it is not smaller than 6, suggesting
the potential to reduce this number depending on the application, which could lead to computational
savings. On the other hand, the case nsteps = 0 is closely related to the meta-learning approach
proposed in (Wang et al., 2022) based on a discrete-time formulation, and its poorer performance
highlights the benefit of the continuous-time formulation adopted in IC-NPDE.

Table 4: Effect of the number of intermediate discretization steps in the integration of the operator
fθ from t to t+ 1, on the Euler dataset. nsteps = 0 indicates that the operator is applied only once to
obtain ut+1 from ut.

nsteps 0 2 6 14 30 62

NRMSE t+ 1 0.080 0.068 0.045 0.045 0.045 0.045
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Single dataset training. Training on multiple datasets simultaneously exposes the model to varia-
tions in the class of PDE, its coefficients, and initial conditions. We also evaluate models trained on
individual datasets, which confronts our model to contexts with only the last two sources of variabil-
ity. As shown in Tab. 5, our model remains competitive across most datasets. Comparing Tabs. 5 and
2, our model performs even better when trained on multiple datasets. It demonstrates that our hyper-
network, going beyond standard transformers, excels on data with significant variability, indicating
improved generalization properties, crucial for multi-physics pretraining.

Table 5: Next-steps prediction performance for models trained separately on individual datasets.

Dataset Model NRMSE
t+ 1 t+ 4 t+ 8 t+ 16 t+ 32

Burgers AViT 0.0065 0.033 0.10 0.14 0.19
IC-NPDE (ours) 0.0020 0.020 0.077 0.14 0.30

Diffusion-reaction AViT 0.0020 0.061 0.19 0.28 0.56
IC-NPDE (ours) 0.00039 0.060 0.16 0.37 0.73

Navier-Stokes (incomp.) AViT 0.0042 0.015 0.041 0.090 0.29
IC-NPDE (ours) 0.0040 0.018 0.045 0.075 0.28

Shearflow (incomp.) AViT 0.010 0.11 0.55 0.29 1.1
IC-NPDE (ours) 0.012 0.10 0.40 0.35 1.3

Euler (comp.) AViT 0.046 0.075 0.20 0.34 0.76
IC-NPDE (ours) 0.034 0.075 0.17 0.29 0.66

5 CONCLUSION

In this paper, we introduced in-context neural PDE (IC-NPDE), a general and efficient framework
for in-context learning of dynamical systems governed by unknown temporal PDEs. Our approach
integrates neural PDE solvers, which leverage continuous-time dynamics and spatial translation
equivariance, with transformer-based hypernetworks that adapt to varying contexts to generate the
solver parameters. Compared to standard in-context learning methods based purely on transformers,
IC-NPDE achieves superior generalization and fine-tuning performance.

The integrated model in our framework, implemented using CNNs, is primarily inspired by finite
difference schemes on a uniform mesh. However, many challenging problems in physics involve
non-uniform meshes or arbitrary geometries. In such cases, adopting finite volume or finite ele-
ment schemes could be achieved using graph neural networks instead, as demonstrated in recent
works (Pfaff et al., 2020; Zhou et al., 2022; Brandstetter et al., 2022; Zhou et al., 2023). There are
also some other promising directions for expanding the capabilities of IC-NPDE. First, The neural
ODE-like structure enables flexible inclusion of future time step labels (e.g., t + 2) in training ob-
jective, allowing adaptation to varying data evolution speeds. Additionally, while our method has
been validated on time-independent dynamics, extending it to time-dependent systems requires in-
corporating temporal inputs into the hypernetworks, which is left for future exploration. Moreover,
the integrated network in our framework, implemented using CNNs, is primarily inspired by finite
difference schemes. Exploring other numerical methods, such as spectral methods, could lead to
architectures similar to FNOs.
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A DATASET DESCRIPTION

We provide the description of the datasets considered in this paper, along with their underlying
PDEs. All the corresponding data is either publicly available (Takamoto et al., 2022) or is generated
using public code following instructions below (Burns et al., 2020; Clawpack Development Team,
2021).

A.1 BURGERS EQUATIONS

The Burgers equations model the evolution of a 1D viscous fluid. They combine a nonlinear advec-
tion term with a linear diffusion term

∂tut + ut∂xut =
ν

π
∂2xxut

where ν is the diffusion coefficient.
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The boundary conditions are set to periodic. The dataset is part of PDEBench (Takamoto et al.,
2022) and was generated using a temporally and spatially 2nd-order upwind difference scheme for
the advection term, and a central difference scheme for the diffusion term. Refer to Figs. 4,9 for
examples of trajectories.

A.2 SHALLOW WATER EQUATIONS

Shallow-water equations, derived from Navier-Stokes equations present a suitable framework for
modelling free-surface flow problems. They take the form of a system of hyperbolic PDEs

∂th+ ∂xh+ ∂yhv = 0 ,

∂thu+ ∂x(u
2h+

1

2
grh

2) + ∂yuvh = −grh∂xb ,

∂thv + ∂y(v
2h+

1

2
grh

2) + ∂xuvh = −grh∂yb ,

where h is the water depth, u, v are the velocities in horizontal and vertical direction, b is the
bathymetry field, and gr describes the gravitational acceleration.

The initial state is a circular bump in the center of the domain. The dataset is part of
PDEBench (Takamoto et al., 2022) and was generated using a finite volume solver (Ketcheson et al.,
2012). Refer to Fig. 4 for an example trajectory.

A.3 DIFFUSION REACTION EQUATIONS

A 2D diffusion-reaction equation models how a substance spreads and reacts over time, capturing
the combined effects of diffusion and chemical or biological reactions in two dimensions

∂tu = Du∂
2
xxu+Du∂yyu+Ru ,

∂tv = Dv∂
2
xxv +Dv∂yyu+Rv ,

where Du, Dv are the diffusion coefficients for the activator u and inhibitor v and Ru, Rv are the
respective reaction functions, which takes the formRu(u, v) = u−u3−k−v andRv(u, v) = u−v
where k is a constant. The initial states are random Gaussian white noises. The problem involves
no-flow Neumann boundary condition, that is Du∂xu = 0, Dv∂xv = 0, Du∂yu = 0, Dv∂yv = 0
on the edges of the square domain. The dataset is part of PDEBench (Takamoto et al., 2022) and
was generated using a finite volume method as spatial discretization and fourth-order Runge-Kutta
method as time discretization. Refer to Figs. 8,9 for examples of trajectories.

A.4 INCOMPRESSIBLE NAVIER-STOKES

This dataset considers a simplification of Navier-Stokes equation that writes

∇ · v = 0 , ρ(∂tv + v · ∇v) = −∇p+ η∆v + u
where v is the velocity vector field, ρ is the density and u is a forcing term and ν is a constant
viscosity.

Initial states and forcing term u are each drawn from isotropic random fields with a certain power-
law power-spectrum. The boundary conditions are Dirichlet, imposing the velocity field to be zero
at the edges of the square domain. The dataset is part of PDEBench (Takamoto et al., 2022) and was
generated using a differentiable PDE solver (Holl et al., 2020). Refer to Figs. 8,10 for examples of
trajectories.

A.5 SHEARFLOW

This phenomenon concerns two layers of fluid moving in parallel to each other in opposite directions,
which leads to various instabilities and turbulence. It is governed by the following incompressible
Navier-Stokes equation

∂u

∂t
− ν∆u+∇p = −u · ∇u .
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where ∆ = ∇ ·∇ is the spatial Laplacian, with the additional constraints
∫
p = 0 (pressure gauge).

In order to better visualize the shear, we consider a passive tracer field s governed by the advection-
diffusion equation

∂s

∂t
−D∆s = −u · ∇s .

We also track the vorticity ω = ∇ × u = ∂uz

∂x − ∂ux

∂z which measures the local spinning motion
of the fluid. The shear is created by initializing the velocity u at different layers of fluid moving in
opposite horizontal directions. The fluid equations are parameterized by different viscosity ν and
tracer diffusivity D.

The data was generated using an open-source spectral solver (Burns et al., 2020) with a script that
is publicly available. Refer to Fig. 10 for an example trajectory.

A.6 EULER EQUATIONS (COMPRESSIBLE)

Euler equations are a simplification of Navier-Stokes in the absence of viscosity

∂tU + ∂xF (U) + ∂yG(U) = 0 ,

with

U =

 ρ
ρu
ρv
e

 , F =

 ρu
ρu2 + p
ρuv

u(e+ p)

 , G =

 ρv
ρuv

ρv2 + p
v(e+ p)


where ρ is the density, u, v are the horizontal and vertical velocities, p is the pressure and e is the
energy defined by

e =
p

γ − 1
+

1

2
ρ(u2 + v2) .

The initial state is a piecewise constant signal composed of quadrants, which then evolves in multi-
scale shocks.

The data has periodic boundary conditions and was generated using CLAWPack (Clawpack Devel-
opment Team, 2021; Mandli et al., 2016), which is an open-source software for solving hyperbolic
conservation laws, with a script that is publicly available. Refer to Fig. 10 for an example trajectory.

A.7 COMPRESSIBLE NAVIER-STOKES

The compressible Navier-Stokes describe the motion of a fluid flow

∂tρ+∇ · (ρv) = 0

ρ(∂tv + v · ∇v) = −∇p+ η∆v + (ζ + η/3)∇(∇ · v) ,

∂t(ϵ+
1

2
ρv2) +∇ · ((ϵ+ p+

1

2
ρv2)v − v · σ′) = 0

where ρ is the density, v is the velocity vector field, p the pressure, ϵ = p/(Γ − 1) is the internal
energy, Γ = 5/3, σ′ is the viscous stress tensor, and η, ζ are the shear and bulk viscosity. The
boundary conditions are periodic.

The dataset is part of PDEBench (Takamoto et al., 2022) and was generated using 2nd-order HLLC
scheme (Toro et al., 1994) with the MUSCL method (Van Leer, 1979) for the inviscid part, and the
central difference scheme for the viscous part. This dataset contains trajectories with only 5 steps
into the future and was used solely for training.

B BENCHMARK MODELS HYPERPARAMETERS

In this paper we compared our in-context neural PDE model with 4 baselines, a U-net (Ronneberger
et al., 2015), a Fourier neural operator (Li et al., 2020) implemented using neuralop (Kovachki
et al., 2023), an auto-regressive diffusion model (Kohl et al., 2024), and a AViT (McCabe et al.,
2024) which is a transformer (Vaswani et al., 2017). We expose here the hyperparameters of these
models used in the paper.
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U-Net. We considered a standard U-Net (Ronneberger et al., 2015) with 4 down-(and up) sampling
blocks, spatial filters of size 3 and initial dimension of 48. The resulting model has 17M learnable
parameters.

FNO. We considered a standard Fourier neural operator (Li et al., 2020) with 4 Fourier blocks,
spectral filters of size 16 (number of Fourier modes), and 128 hidden dimensions. The resulting
model has 19M learnable parameters.

AR-diffusion. We considered an auto-regressive diffusion model (Kohl et al., 2024) based on a U-
Net denoiser having 3 down-(and up) sampling blocks, with spatial filters of size 7 and 128 hidden
dimensions. At inference, the generative process employs 100 diffusion steps. The resulting model
has 7M learnable parameters.

AViT. We considered an axial vision transformer (McCabe et al., 2024) with patch size of 16, 12
attention layers, 12 attention heads per layer, 768 hidden dimensions. The resulting model has 158M
learnable parameters.

C TRAINING DETAILS

Hyperparameters. For joint training on multiple datasets, we considered the same hyperparame-
ters than McCabe et al. (2024), with batch size of 8, gradient accumulation every 5 batches, epoch
size of 2000 batches. For single model trainings, we considered batch size of 32 with no gradient
accumulation. In certain cases where the optimization was unstable, in particular, when we tried
using only 2 intermediate number of steps (see Tab. 6), we used gradient clipping, clipping the total
norm of the gradients to a default norm of 1.0. The data is split into train, validation, and test sets
with an 80%, 10%, and 10% division, respectively.

Optimization. All trainings were performed using the adaptive Nesterov optimizer (Xie et al.,
2024) and a cosine schedule for the learning rate. Using AdamW optimizer with varying learning
rate did not improve overall performance in the cases we tested. Both the single-dataset and multi-
dataset experiments are run for a fixed number of 300 epochs. This means that during single-dataset
training, the model sees 7 times more data from that dataset compared to a model trained on 7
datasets simultaneously, where each dataset is sampled less frequently. We used a weight decay of
0.001 and drop path of 0.1.

Loss. A normalized root mean square error is used for both monitoring the training of the model
and assessing the performances in this paper. For two tensors u (target) and ût+1 (prediction) with
C channels

Loss(u, û) =
1

C

C∑
c=1

∥uc − ûc∥2
∥uc∥2 + ϵ

where the ℓ2 norm ∥ · ∥2 is averaged along space and ϵ is a small number added to prevent numerical
instabilities. For a batch of data, this loss is simply averaged.

Software. The model trainings were conducted using python v3.11.7 and the PyTorch library
v2.4.1 (Paszke et al., 2019).

Hardware. All model trainings were conducted using Distributed Data Parallel across 4 or 8
Nvidia H100-80Gb GPUs.

D MORE EXPERIMENTAL RESULTS

Additional rollout examples. For models trained on multiple datasets jointly, on top of Fig. 4,
additional rollouts are shown in Fig. 8. Refer to Tab. 2 for averaged metrics. For models trained
on each dataset separately, Figs. 9,10, provide examples of rollouts. Refer to Tab. 5 for averaged
metrics.
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Figure 7: Training curve of AViT and IC-NPDE on Euler (compressible) 2D dataset.
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Figure 8: Examples of rollout trajectories from diffusion-reaction and incompressible Navier-Stokes
datasets for models trained jointly on multiple datasets.

Model size. In our framework (see Eq. 4), both the hypernetwork size can be increased, to improve
the estimation of the parameters θ, and the operator size fθ, to provide more complex operators. The
size d2 of the hypernetwork ψα depends on the following hyperparameters, the number of attention
layers, the number of attention heads in each layer, and the hidden dimension, which are set to 12,
6, 384, respectively, in the paper. We considered two other sets of hyperparameters 4, 3, 192 and
12, 12, 768. The size d1 of the operator fθ depends on the hidden dimension Chidden, which is set
to 64 in the paper. We considered Chidden = 32 and Chidden = 128. Tab. 6 shows the sizes for these
hyperparameter choices, as well as the associated accuracy on the Euler dataset after 50 epochs.
As we can see, the main performance improvements can be achieved by increasing the class of
integrated network. However, training a larger hypernetwork on a single dataset appears to be more
challenging. Note that according to the naive scaling specified in the third row of Tab. 6, the final
MLP in the hypernetwork becomes quite large, as it takes an input with 768 channels and needs to
output 40k channels, which is the dimension of θ. A more refined strategy should be employed to
scale the hypernetwork ψ.
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Figure 9: Examples of rollout trajectory from Burgers 1D and diffusion-reaction datasets, for models
trained on each of these datasets separately.

Table 6: Influence of the model size on the accuracy, on the Euler dataset. Each table corresponds
respectively to variations over α and θ. Gray rows indicate the default values chosen in the paper.

hyperparameters num. weights α NRMSEnum. layers num. heads dim
4 3 192 11m 0.046

12 6 384 55m 0.046
12 12 768 189m 0.048

hyperparameter Chidden num. parameters θ NRMSE
32 11k 0.054
64 40k 0.046

128 149k 0.043
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Figure 10: Examples of rollout trajectory from Navier-Stockes (incompressible), shearflow (incom-
pressible) and Euler (compressible) datasets, for models trained on each of these dataset separately.
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