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ABSTRACT

Large pretrained language models have shown surprising in-context learning
(ICL) ability. With a few demonstration input-label pairs, they can predict labels
for unseen inputs without parameter updates. Despite the great success in perfor-
mance, its working mechanism still remains an open question. In this paper, we
explain language models as meta-optimizers and understand ICL as implicit fine-
tuning. Theoretically, we figure out that Transformer attention has a dual form of
gradient descent. On top of it, we understand ICL as follows: GPT first produces
meta-gradients according to the demonstration examples, and then these meta-
gradients are applied to the original GPT to build an ICL model. We compare the
behaviors of ICL and explicit finetuning on real tasks to provide empirical evi-
dence that supports our understanding. Experimental results show that in-context
learning behaves similarly to explicit finetuning from multiple perspectives.

1 INTRODUCTION
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Figure 1: Through forward computa-
tion, GPT produces meta-gradients for ICL,
which shares a dual view with fine-tuning
that updates model parameters with back-
propagated gradients.

In this paper, we explain in-context learning (ICL)
as a process of meta-optimization and analyze con-
nections between GPT-based in-context learning and
finetuning. Concentrating on the attention mod-
ules, we figure out that the Transformer attention
has a dual form of gradient descent. On top of
it, we propose a novel perspective to explain ICL:
(1) GPT serves as a meta-optimizer; (2) it produces
meta-gradients according to the demonstration ex-
amples through forward computation; (3) the meta-
gradients are applied to the original language model
through attention to build an ICL model. Figure 1
shows that in-context learning and explicit finetun-
ing share a dual view of gradient descent, where
ICL produces meta-gradients while finetuning com-
putes back-propagated gradients. Therefore, we un-
derstand in-context learning as implicit finetuning.

In order to provide empirical evidence to support
our understanding, we conduct comprehensive ex-
periments based on real tasks. On six classification
tasks, we compare the model predictions, attention
outputs, attention weights to query tokens, and atten-
tion weights to training tokens between in-context
learning and finetuning. Experimental results vali-
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date that the behavior of in-context learning is similar to explicit finetuning from multiple perspec-
tives. These results are strong evidence to prove the reasonability of our understanding of in-context
learning as implicit finetuning.

2 UNDERSTANDING IN-CONTEXT LEARNING AS IMPLICIT FINETUNING

Inspired by Irie et al. (2022); Aizerman et al. (1964), we first qualitatively analyze the Transformer
attention under a relaxed linear attention form to figure out a dual form between it and gradient
descent. Then, we compare in-context learning with explicit finetuning to analyze connections be-
tween these two optimization forms. Based on these theoretical findings, we propose to understand
in-context learning as implicit finetuning.

2.1 UNDERSTANDING TRANSFORMER ATTENTION AS META-OPTIMIZATION

Let x ∈ Rd be the input representation of a query token t, and q = WQx ∈ Rd′
be the attention

query vector. In the ICL setting, the attention result of a head is formulated as

FICL(q) = Attn(V,K,q) = WV [X ′;X] softmax

(
(WK [X ′;X])

T
q√

d

)
, (1)

where WQ,WK ,WV ∈ Rd′×d are the projection matrices for computing the attention queries, keys,
and values, respectively;

√
d denotes the scaling factor; X denotes the input representations of query

tokens before t; X ′ denotes the input representations of the demonstration tokens; and [X ′;X]
denotes the matrix concatenation. For ease of qualitative analysis, we approximate the standard
attention to relaxed linear attention by removing the softmax operation and the scaling factor:

FICL(q) ≈ WV [X ′;X]
(
WK [X ′;X]

)T
q = WV X (WKX)T q+WV X ′ (WKX ′)T q = F̃ICL(q). (2)

We define WZSL = WV X (WKX)
T as the initialized parameters to be updated since WZSLq is

the attention result in the zero-shot learning (ZSL) setting, where no demonstrations are given.
Following the reverse direction of Equation (13) in Appendix A.2, we derive a dual form of the
Transformer attention:

F̃ICL(q) = WZSLq+WV X ′ (WKX ′)T q = WZSLq+ LinearAttn
(
WV X ′,WKX ′,q

)
= WZSLq+

∑
i

WV x′
i

((
WKx′

i

)T
q
)
= WZSLq+

∑
i

(
(WV x′

i)⊗
(
WKx′

i

))
q

= WZSLq+∆WICLq = (WZSL +∆WICL)q.

(3)

As shown in the above equations, the attention to the demonstration tokens is equivalent to parameter
updates ∆WICL that take effect on WZSL. In addition, by analogy with E in Equation (13), we regard
WV X

′ as meta-gradients, which are used to compute the update matrix ∆WICL.

In summary, we explain in-context learning as a process of meta-optimization: (1) a pretrained GPT
model serves as a meta-optimizer; (2) it produces meta-gradients according to the demonstration
examples through forward computation; (3) through attention, the meta-gradients are applied to the
original language model to build an ICL model.

2.2 COMPARING ICL WITH FINETUNING

Based on the above understanding of in-context learning, we further compare the meta-optimization
of in-context learning with the explicit optimization of finetuning to analyze connections between
them. Considering that ICL directly takes effect on only the attention keys and values, we design a
specific finetuning setting as the compared baseline, which also updates only the parameters for the
key and value projection. Also in the relaxed linear attention form, the attention result of a finetuned
head is formulated as

F̃FT(q) = (WV +∆WV )XXT (WK +∆WK)Tq = (WZSL +∆WFT)q, (4)

where ∆WK and ∆WV denote the parameter updates to WK and WV , respectively, which are
acquired by back-propagation from task-specific training objectives; and ∆WFT is the updates to
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Model SST2 SST5 MR Subj AGNews CB Average

GPT 1.3B 91.84 66.67 97.08 87.17 83.08 87.50 85.56
GPT 2.7B 96.83 71.60 95.83 87.63 84.44 100.00 89.39

Table 1: Rec2FTP on six datasets. ICL can cover most of correct predictions of finetuning.

WZSL introduced by finetuning. For a more fair comparison with in-context learning, we further
restrict the finetuning setting as follows: (1) we specify the training examples as the demonstration
examples for in-context learning; (2) we train each example for only one step in the same order as
demonstrated for in-context learning; (3) we format each training example with the same template
used for ICL and use the causal language modeling objective for finetuning.

Comparing in-context learning and this finetuning setting, we find that ICL has many properties in
common with finetuning. We organize these common properties into the following four aspects.

Both Perform Gradient Descent Comparing Equation (3) and Equation (4), we find that both in-
context learning and finetuning introduce updates (∆WICL v.s. ∆WFT) to WZSL, which drive from
implicit and explicit gradient descent, respectively. The main difference is that ICL produces meta-
gradients by forward computation while finetuning acquires real gradients by back-propagation.

Same Training Information The meta-gradients of ICL are produced according to the demonstra-
tion examples. The gradients of finetuning are also derived from the same training examples. That
is to say, in-context learning and finetuning share the same source of training information.

Same Causal Order of Training Examples In-context learning and our finetuning setting share
the same causal order of training examples. ICL uses decoder-only Transformers so the subsequent
tokens in the demonstrations will not affect the preceding ones. For our finetuning setting, we use
the same order of training examples and train only one epoch, so we can also guarantee that the
subsequent examples have no effect on the preceding ones.

Both Aim at Attention Compared with zero-shot learning, the direct effect of in-context learning
and our finetuning are both restricted to the computation of attention keys and values. For ICL,
the model parameters are unchanged and it encodes demonstration information into additional keys
and values to change the attention behavior. For finetuning, due to our restriction, the training
information can be introduced to only the projection matrices for attention keys and values as well.

Considering these common properties, we understand ICL as implicit finetuning. Next, we compare
ICL and finetuning empirically to provide quantitative evidence for our understanding.

3 EXPERIMENTS

We analyze two off-the-shelf pretrained GPT models with 1.3 billion and 2.7 billion model parame-
ters, respectively, which are released by fairseq. In the rest of this paper, we call them GPT 1.3B and
GPT 2.7B for short. All experiments are conducted on NVIDIA V100 GPUs with 32 GB memory.
Details of the experimental settings, evaluation datasets, and validation accuracy in the zero-shot
learning (ZSL), finetuning, and in-context learning (ICL) settings on these datasets in Appendix B

3.1 ICL COVERS MOST OF CORRECT PREDICTIONS OF FINETUNING

We compute a recall to finetuning prediction (Rec2FTP) to measure ICL can cover how much
behavior of finetuning from the perspective of the model prediction. We first count NFT>ZSL, the
number of query examples that finetuning can predict correctly but ZSL cannot. Then, among these
examples, we count N(FT>ZSL)∧(ICL>ZSL), the number that ICL can also predict correctly. Finally,
we compute the Rec2FTP score as N(FT>ZSL)∧(ICL>ZSL)

NFT>ZSL
. A higher Rec2FTP score suggests that ICL

covers more correct behavior of finetuning from the perspective of the model prediction.

We show the Rec2FTP scores in Table 1. As shown in the table, on average, ICL can correctly predict
more than 85% of the examples that finetuning can correct from ZSL. These results indicate that
from the perspective of model prediction, ICL can cover most of the correct behavior of finetuning.
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Model Metric SST2 SST5 MR Subj AGNews CB Average

GPT 1.3B SimAOU (Random ∆) 0.002 0.003 0.001 0.002 0.002 0.003 0.002
SimAOU (∆FT) 0.110 0.080 0.222 0.191 0.281 0.234 0.186

GPT 2.7B SimAOU (Random ∆) 0.000 -0.002 0.000 0.001 -0.002 0.000 -0.001
SimAOU (∆FT) 0.195 0.323 0.157 0.212 0.333 0.130 0.225

Table 2: SimAOU on six datasets. From the perspective of representation, ICL tends to change
attention output representations in the same direction as finetuning changes.

Model Metric SST2 SST5 MR Subj AGNews CB Average

GPT 1.3B SimAM (Before Finetuning) 0.555 0.391 0.398 0.378 0.152 0.152 0.338
SimAM (After Finetuning) 0.585 0.404 0.498 0.490 0.496 0.177 0.442

GPT 2.7B SimAM (Before Finetuning) 0.687 0.380 0.314 0.346 0.172 0.228 0.355
SimAM (After Finetuning) 0.687 0.492 0.347 0.374 0.485 0.217 0.434

Table 3: SimAM on six datasets. From the perspective of attention behavior, ICL is more inclined
to generate similar attention weights to those after finetuning.

3.2 ICL CHANGES ATTENTION OUTPUTS IN THE SAME DIRECTION AS FINETUNING

From the perspective of representation, we compute a similarity of the attention output updates
(SimAOU) to measure the similarity between the updates that ICL and finetuning make. For a
query example, let h(l)

X denote the normalized output representation of the last token at the l-th
attention layer in setting X. The updates of ICL and finetuning compared with ZSL are h(l)

ICL − h
(l)
ZSL

and h
(l)
FT − h

(l)
ZSL, respectively. We compute the cosine between these two updates to get SimAOU

(∆FT) at the l-th layer. A higher SimAOU (∆FT) means ICL is more inclined to update attention
outputs in the same direction as finetuning. For comparison, we also compute a SimAOU (Random
∆) that measures the similarity between ICL updates and randomly generated updates.

We present the SimAOU scores averaged across examples and layers in Table 2. From the table, we
find that SimAOU (Random ∆) is always around zero, while SimAOU (∆FT) remains much more
positive. These results indicate that ICL updates are much more similar to finetuning updates than
to random updates. From the perspective of representation, we prove that ICL tends to change the
attention outputs in the same direction as finetuning.

3.3 ICL IS INCLINED TO GENERATE SIMILAR ATTENTION WEIGHTS TO FINETUNING

From the perspective of attention behavior, we compute a similarity of the attention map (SimAM)
to measure the similarity of the attention map to query tokens for ICL and finetuning. For a query
example, let m(l,h)

X denote the attention weights before softmax of the last token at the h-th attention
head in the l-th attention layer in setting X. For ICL, we omit the attention to the demonstration
tokens and only monitor the attention weights to the query tokens. First, before finetuning, we
compute the cosine between m

(l,h)
ICL and m

(l,h)
ZSL and then average the similarity across attention heads

to get SimAM (Before Finetuning) at each layer. Similarly, after finetuning, we compute the cosine
between m

(l,h)
ICL and m

(l,h)
FT to get SimAM (After Finetuning). A higher SimAM (After Finetuning)

over SimAM (Before Finetuning) indicates that the attention behavior of ICL is more similar to a
finetuned model than a non-finetuned one.

Table 3 demonstrates the SimAM scores averaged across examples and layers. We observe that
compared with attention weights before finetuning, ICL is more inclined to generate similar attention
weights to attention weights after finetuning. Again, from the perspective of attention behavior, we
prove that ICL behaves similarly to fine-tuning.
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Model Metric SST2 SST5 MR Subj AGNews CB Average

GPT 1.3B Kendall (ICL, Random) 0.000 -0.001 0.000 0.001 -0.001 0.000 0.000
Kendall (ICL, FT) 0.192 0.151 0.173 0.181 0.190 0.274 0.193

GPT 2.7B Kendall (ICL, Random) -0.001 0.000 0.000 0.000 0.000 -0.001 0.000
Kendall (ICL, FT) 0.213 0.177 0.264 0.203 0.201 0.225 0.214

Table 4: Kendall rank correlation coefficients for two GPT models on six datasets. Compared
with random attention weights, ICL attention weights to training tokens are much more similar to
finetuning attention weights.

3.4 ICL AND FINETUNING TEND TO PAY SIMILAR ATTENTION TO TRAINING TOKENS

Since we understand ICL as a process of meta-optimization, we also compare the attention to train-
ing tokens for ICL and finetuning with the Kendall rank correlation coefficient (Kendall, 1948).
For a query example, let m(l)

ICL denote the ICL attention weights to the demonstration tokens of the
last query token in the l-th attention layer, which is summed across attention heads. For finetuning,
we first record all the attention queries Q′(l,h) ∈ Rd′×N of the training tokens, and then use the
inner product between them and the attention query q(l,h) ∈ Rd′

of the last token in the query ex-

ample as the finetuning attention weights to the training tokens: m(l)
FT =

∑
h Q

′(l,h)Tq(l,h), which
is also summed across attention heads. The Kendall coefficient between m

(l)
ICL and m

(l)
FT is computed

as Kendall (ICL, FT) = Pc−Pd

N(N−1)/2 , where N denotes the number of training tokens, Pc denotes
the number of concordant pairs, and Pd denotes the number of discordant pairs. A higher Kendall
coefficient means that the orders of attention weights to training tokens of ICL and finetuning are
more similar. For comparison, we also compute the Kendall coefficient between m

(l)
ICL and randomly

generated attention weights m(l)
Random, which we call Kendall (ICL, Random).

Table 4 shows the Kendall correlation coefficients averaged across examples and layers for two GPT
models on six datasets. We find that Kendall (ICL, Random) is always near zero, while Kendall (ICL,
FT) always maintains a distinctly positive value. These results suggest that ICL and finetuning tend
to pay similar attention to training tokens.

In addition, in Appendix C, inspired by our dual form, we design a momentum-based attention that
achieves consistent performance improvements over vanilla attention, which further supports our
understanding of Transformer attention from another perspective.

4 CONCLUSION

In this paper, we aim to explain the working mechanism of GPT-based ICL. Theoretically, we fig-
ure out a dual form between Transformer attention and gradient descent, and propose to understand
ICL as a process of meta-optimization. Further, we analyze connections between ICL and explicit
finetuning and show the reasonability to regard ICL as implicit finetuning. Empirically, we com-
prehensively compare ICL and finetuning based on six real NLP tasks. The results prove that ICL
behaves similarly to explicit finetuning from multiple perspectives. Further, inspired by our un-
derstanding of meta-optimization, we design a momentum-based attention that achieves consistent
performance improvements over vanilla attention. We believe our understanding will have more
potential to enlighten ICL applications and model design in the future.
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Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. The dual form of neural networks revisited:
Connecting test time predictions to training patterns via spotlights of attention. In International
Conference on Machine Learning, ICML 2022, volume 162 of Proceedings of Machine Learn-
ing Research, pp. 9639–9659. PMLR, 2022. URL https://proceedings.mlr.press/
v162/irie22a.html.

Maurice George Kendall. Rank correlation methods. 1948.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of the 42nd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL-04), pp. 271–278, Barcelona, Spain, July 2004. doi:
10.3115/1218955.1218990. URL https://aclanthology.org/P04-1035.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Kevin Knight, Hwee Tou Ng, and Kemal Oflazer (eds.), ACL
2005, 43rd Annual Meeting of the Association for Computational Linguistics, Proceedings of
the Conference, pp. 115–124. The Association for Computer Linguistics, 2005. doi: 10.3115/
1219840.1219855. URL https://aclanthology.org/P05-1015/.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964. URL https://vsokolov.
org/courses/750/files/polyak64.pdf.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. In The Tenth International Conference on Learning Repre-
sentations, ICLR 2022. OpenReview.net, 2022. URL https://openreview.net/forum?
id=R8sQPpGCv0.

6

https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/1803.05457
https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/download/601/456/
https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/download/601/456/
http://jssm.uludag.edu.tr/~orbak/L11-OnEWMA.pdf
https://proceedings.mlr.press/v162/irie22a.html
https://proceedings.mlr.press/v162/irie22a.html
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://aclanthology.org/P04-1035
https://aclanthology.org/P05-1015/
https://vsokolov.org/courses/750/files/polyak64.pdf
https://vsokolov.org/courses/750/files/polyak64.pdf
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0


Published at the Workshop on Understanding Foundation Models at ICLR 2023

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/D13-1170.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of ini-
tialization and momentum in deep learning. In Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, volume 28 of JMLR Workshop and Conference Proceed-
ings, pp. 1139–1147. JMLR.org, 2013. URL http://proceedings.mlr.press/v28/
sutskever13.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural In-
formation Processing Systems, pp. 5998–6008. Curran Associates, Inc., 2017. URL http:
//papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional net-
works for text classification. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee,
Masashi Sugiyama, and Roman Garnett (eds.), Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Information Processing Systems 2015, pp.
649–657, 2015. URL https://proceedings.neurips.cc/paper/2015/hash/
250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html.

7

https://www.aclweb.org/anthology/D13-1170
http://proceedings.mlr.press/v28/sutskever13.html
http://proceedings.mlr.press/v28/sutskever13.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html


Published at the Workshop on Understanding Foundation Models at ICLR 2023

APPENDIX

A BACKGROUND

A.1 IN-CONTEXT LEARNING WITH GPT

In this paper, we focus on ICL for classification tasks using GPT (Brown et al., 2020). A GPT
model is stacked with L identical Transformer (Vaswani et al., 2017) decoder layers where each
layer consists of an attention module and a feed-forward network. For a classification task, given a
query input text x and a candidate answer set Y = {y1, y2, . . . , ym}, we need to predict a label ŷ
conditional on n demonstration examples C = {(x′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
n, y

′
n)}, where (x′

i, y
′
i) is

an input-label pair different from the query one. Formally, given a GPT model M, we first compute
the probability of each answer yj :

PM(yj | C, x). (5)
Since the label space is restricted for classification, we predict the final answer ŷ by selecting the
answer with the highest probability from the candidate answer set Y :

ŷ = argmax
yj

PM(yj | C, x). (6)

In practice, we usually use a pre-defined template to format the demonstrations and prepend them
before the query input. Let T (·) be the function that formats an example, e.g.:

T (x, y) = Sentence: x. Sentiment: y. (7)
The contextual model input I is organized like

T (x′
1, y

′
1) T (x′

2, y
′
2) ... T (x′

n, y
′
n) T (x, ). (8)

Feeding this contextual input into M, the probability of an answer yj is computed as
lj = M(I) · eyj , (9)

PM(yj | C, x) = softmax(lj), (10)
where M(I) denotes the output hidden state at the last token position; eyj denotes the output word
embedding of yj ; and lj is the logit corresponding to the j-th answer.

A.2 DUAL FORM BETWEEN ATTENTION AND LINEAR LAYERS OPTIMIZED BY GRADIENT
DESCENT

The idea in this paper to explain language models as meta-optimizers is inspired by Aizerman et al.
(1964); Irie et al. (2022). They present that linear layers optimized by gradient descent have a dual
form of linear attention. Let W0,∆W ∈ Rdout×din be the initialized parameter matrix and the update
matrix, respectively, and x ∈ Rdin be the input representation. A linear layer optimized by gradient
descent can be formulated as

F(x) = (W0 +∆W )x. (11)
In the back-propagation algorithm, ∆W is computed by accumulating the outer products of historic
input representations x′T

i ∈ Rdin and the error signals ei ∈ Rdout of their corresponding outputs:

∆W =
∑
i

ei ⊗ x′
i, (12)

where ei is derived from the historic output gradients by multiplying −γ, the negative learning rate.
Combing Equation (11) and Equation (12), we can derive the dual form of linear layers optimized
by gradient descent:

F(x) = (W0 +∆W )x

=W0x+∆Wx

=W0x+
∑
i

(
ei ⊗ x′

i

)
x

=W0x+
∑
i

ei

(
x′T
i x
)

=W0x+ LinearAttn
(
E,X ′,x

)
,

(13)

where LinearAttn(V,K,q) denotes the linear attention operation, in which we regard the historic
output error signals E as values, the historic inputs X ′ as keys, and the current input x as the query.
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B EXPERIMENTAL SETTINGS

We analyze two off-the-shelf pretrained GPT models with 1.3 billion and 2.7 billion model parame-
ters, respectively, which are released by fairseq.1 All experiments are conducted on NVIDIA V100
GPUs with 32 GB memory.

For each task, we use the same template to format examples for zero-shot learning (ZSL), finetun-
ing (FT), and in-context learning (ICL). Details of the templates used for each task are provided in
Table 5. The answer prediction processes for ZSL and finetuning are the same as ICL, except that
they do not have demonstration examples.

Dataset Template Candidate Answer Set
SST2 Sentence: {Sentence} { Negative, Positive }

Label: {Label}
SST5 Sentence: {Sentence} { terrible, bad, neutral, good, great }

Label: {Label}
MR Review: {Sentence} { Negative, Positive }

Sentiment: {Label}
Subj Input: {Sentence} { objective, subjective }

Type: {Label}
AGNews Classify the news articles into the cat-

egories of World, Sports, Business,
and Technology.

{ World, Sports, Business, Technol-
ogy }

News: {Sentence}
Type: {Label}

CB {Premise} { True, False, Neither }
Question: {Hypothesis} True, False,
or Neither?
Answer: {Label}

Table 5: Formatting templates and candidate answer sets for six classification datasets.

For in-context learning, we fix the max number of demonstration examples to 32 and tune the ran-
dom seed for each task to find a set of demonstration examples that achieves the best validation
performance. For explicit finetuning, we use the same demonstration examples for in-context learn-
ing as the training examples and use SGD as the optimizer. For a fair comparison, we finetune the
model for only one epoch and the training examples are provided in the same order as demonstrated
for in-context learning. We tune the learning rate for finetuning and select the one that achieves the
best validation performance. Details of the search range and selected value for the random seeds
and learning rates are shown in Appendix B.1.

For reference, we present the statistics of six evaluation datasets and validation accuracy in the ZSL,
finetuning, and ICL settings on these datasets in Appendix B.2.

B.1 HYPER-PARAMETERS FOR IN-CONTEXT LEARNING AND FINETUNING

We perform grid search to find the best random seed for ICL and the best learning rate for finetuning.
The search range for all the datasets is the same. For random seeds, we search in {1, 2, 3, 4, 5, 6, 7}.
For learning rates, the search base values are {1, 2, 3, 4, 5, 6, 7, 8, 9} and we scale them to 0.1, 0.01,
0.001, and 0.0001 times, i.e., we have 9× 4 = 36 values to search. As an exception, for GPT 1.3B
finetuned on SST5, we perform a more fine-grained search and finally set its learning rate to 0.00016
since the finetuned model cannot outperform the zero-shot learning with the above 36 learning rates.

In Table 6, we present the details of the selected random seeds and learning rates for two GPT
models on six classification datasets.

1https://github.com/facebookresearch/fairseq
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Hyper-Parameter Dataset GPT 1.3B GPT 2.7B

Random Seed

SST2 2 7
SST5 5 5
MR 5 1
Subj 4 4
AGNews 3 3
CB 3 3

Learning Rate

SST2 0.0005 0.007
SST5 0.00016 0.04
MR 0.003 0.001
Subj 0.003 0.002
AGNews 0.2 0.2
CB 0.08 0.01

Table 6: Selected random seeds and learning rates for two GPT models on six classification datasets.

B.2 EVALUATION DATASETS AND VALIDATION ACCURACY

We compare in-context learning and finetuning based on six datasets spanning three sorts of clas-
sification tasks. SST2 (Socher et al., 2013), SST5 (Socher et al., 2013), MR (Pang & Lee, 2005)
and Subj (Pang & Lee, 2004) are four datasets for sentiment classification; AGNews (Zhang et al.,
2015) is a topic classification dataset; and CB (De Marneffe et al., 2019) is used for natural lan-
guage inference. Statistics of the number of validation examples and label types are summarized in
Table 7.

For reference, we present the validation accuracy in the ZSL, finetuning, and ICL settings on six
classification datasets in Table 7. Compared with ZSL, ICL and finetuning both achieve considerable
improvements, which means the optimizations they make are both helpful to these downstream tasks.

SST2 SST5 MR Subj AGNews CB
# Validation Examples 872 1101 1066 2000 7600 56
# Label Types 2 5 2 2 4 3

ZSL Accuracy (GPT 1.3B) 70.5 39.3 65.9 72.6 46.3 37.5
FT Accuracy (GPT 1.3B) 73.9 39.5 73.0 77.8 65.3 55.4
ICL Accuracy (GPT 1.3B) 92.7 45.0 89.0 90.0 79.2 57.1

ZSL Accuracy (GPT 2.7B) 71.4 35.9 60.9 75.2 39.8 42.9
FT Accuracy (GPT 2.7B) 76.9 39.1 80.0 86.1 65.7 57.1
ICL Accuracy (GPT 2.7B) 95.0 46.5 91.3 90.3 80.3 55.4

Table 7: Statistics of six classification datasets (rows 1-2) and validation accuracy in the zero-shot
learning (ZSL), finetuning (FT), and in-context learning (ICL) settings on these datasets (rows 3-8).

C MOMENTUM-BASED ATTENTION INSPIRED BY DUAL FORM OF
TRANSFORMER ATTENTION

We have figured out the dual form between Transformer attention and gradient descent. As il-
lustrated in Figure 2, inspired by this dual view, we investigate whether we can utilize momen-
tum (Polyak, 1964; Sutskever et al., 2013), a widely used technique for optimization algorithms, to
improve Transformer attention.

Gradient descent with momentum averages gradients among timestamps:

Θt = Θt−1 − γ

t−1∑
i=1

ηt−i∇fΘi , (14)
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Momentum-Based
Attention

Gradient Descent

Gradient Descent 
with Momentum

Attention
(Dual Form)

(Analogy)

Figure 2: Inspired by the dual form between attention and gradient descent, we introduce the mo-
mentum mechanism into Transformer attention by analogy with gradient descent with momentum.

where γ is the learning rate and η is a scalar between 0 and 1. As stated in Section 2.1, the atten-
tion values serve as meta-gradients. By analogy with gradient descent with momentum, we try to
use Exponential Moving Average (EMA; Hunter 1986) to average the attention values to build the
momentum-based attention:

MoAttn(V,K,qt) = Attn(V,K,qt) + EMA(V ) = V softmax(
KTqt√

d
) +

t−1∑
i=1

ηt−ivi, (15)

where vi is the i-th attention value vector. The momentum of attention value vectors explic-
itly strengthens the recency bias of attention, which has been shown helpful for language mod-
eling (Press et al., 2022). Therefore, we assume that introducing momentum into attention will
contribute to faster convergence and better performance.

Experiments on Language Modeling First, we evaluate the effect of momentum-based attention
on language modeling. We train two GPT models with 350M parameters from scratch, where one is
the vanilla Transformer, and another applies momentum to attention. Hyper-parameters for training
these two models are provided in Table 8. We evaluate the perplexity of these two models on
the training set and three validation sets with input lengths of 256, 512, and 1024, respectively.
The results are shown in Table 9. On all of the validation sets, applying momentum to attention
introduces a consistent perplexity improvement compared with the vanilla Transformer.

Hyper-parameter Value
Embedding & Hidden Dimension 1024
FFN Inner Hidden Dimension 4096
Number of Attention Heads 16
Number of Transformer Layers 24
Number of Parameters 350M

Sequence Length 1024
Batch Size 512K Tokens

Optimizer Adam
Adam Betas (0.9, 0.98)
Adam Epsilon 1e-6
Maximum Learning Rate 3e-4
Learning Rate Scheduler Polynomial Decay
Total Training Steps 500K
Warm-up Steps 20K
Gradient Clip Norm 2.0

Table 8: Hyper-parameters for training two language models from scratch.

Experiments on In-Context Learning We also evaluate the in-context learning ability of the above
language models to verify the effectiveness of momentum-based attention on downstream tasks. We
consider six datasets for sentiment analysis (SST5 (Socher et al., 2013), IMDB (Maas et al., 2011),
and MR (Pang & Lee, 2005)), natural language inference (CB (De Marneffe et al., 2019)), and
multi-choice selection (ARC-E (Clark et al., 2018) and PIQA (Bisk et al., 2020)). For all of these
datasets, we use up to 32 examples as demonstrations. As shown in Table 10, compared with vanilla
Transformer, using momentum-based attention achieves consistently higher accuracy on all of these
datasets.
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Model Train1024 Valid256 Valid512 Valid1024

Transformer 17.61 19.50 16.87 15.14
TransformerMoAttn 17.55 19.37 16.73 15.02

Table 9: Perplexity on the training set and validation sets with different input lengths for language
modeling. Momentum-based attention achieves a consistent perplexity improvement compared with
the vanilla Transformer.

Model SST5 IMDB MR CB ARC-E PIQA Average
Transformer 25.3 64.0 61.2 43.9 48.2 68.7 51.9

TransformerMoAttn 27.4 70.3 64.8 46.8 50.0 69.0 54.7

Table 10: Accuracy on six in-context learning datasets. Introducing momentum into attention
improves the accuracy of the vanilla Transformer by 2.8 on average.

The performance improvements on both language modeling and in-context learning prove our de-
duction that introducing momentum will improve Transformer attention. From another perspective,
these results further support our understanding of Transformer attention as meta-optimization.
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