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ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as a powerful and efficient 3D rep-
resentation for novel view synthesis. This paper extends 3DGS capabilities to
inpainting, where masked objects in a scene are replaced with new contents that
blend seamlessly with the surroundings. Unlike 2D image inpainting, 3D Gaussian
inpainting (3DGI) is challenging in effectively leveraging complementary visual
and semantic cues from multiple input views, as occluded areas in one view may be
visible in others. To address this, we propose a method that measures the visibility
uncertainties of 3D points across different input views and uses them to guide 3DGI
in utilizing complementary visual cues. We also employ the uncertainties to learn a
semantic concept of the scene without the masked object and use a diffusion model
to fill masked objects in the input images based on the learned concept. Finally,
we build a novel 3DGI framework, VISTA, by integrating VISibility-uncerTainty-
guided 3DGI with scene conceptuAl learning. VISTA generates high-quality 3DGS
models capable of synthesizing artifact-free and naturally inpainted novel views.
Furthermore, our approach extends to handling dynamic distractors arising from
temporal object changes, enhancing its versatility in diverse scene reconstruction
scenarios. We demonstrate the superior performance of our method over state-of-
the-art techniques using two challenging datasets: the SPIn-NeRF dataset, featuring
10 diverse static 3D inpainting scenes, and an underwater 3D inpainting dataset
derived from UTB180, which includes fast-moving fish as inpainting targets.

1 INTRODUCTION

3D representation effectively models a scene and has the ability to synthesize new views of the scene
(Barron et al., 2021; Mildenhall et al., 2021; Wang et al., 2021; Kerbl et al., 2023). 3D Gaussian
splatting (3DGS) methods have been demonstrated as efficient and effective ways to represent the
scene from a set of images taken from different viewpoints (Kerbl et al., 2023; Tang et al., 2023; Wu
et al., 2024). Further, enabling editability of 3D scene representations is a cornerstone of technologies
like augmented reality and virtual reality Tewari et al. (2022). 3D Gaussian inpainting task is one of
the key editing techniques, aiming to replace specified objects with new contents that blend seamlessly
with the surroundings. This capability allows us to: (1) Remove objects from static scenes: given
multi-view images, we can create a 3D representation that generates novel views with specific objects
removed and believably filled in (Figure 1 (Upper)). (2) Clean up dynamic scenes: for scenes with
moving elements like fish in the water (see Figure 1 (Bottom)), we can build a 3D representation that
excludes these transient objects, enabling clear, consistent novel view synthesis.

However, such an important task is non-trivial and the key challenge is how to leverage the comple-
mentary visual and semantic cues from multiple input views. Intuitively, for a synthesized view, the
ideal approach is to replace the targeted erasure region with the occluded content, which naturally
completes the inpainting. The key information for this process lies within the other view images,
where the obscured areas may be visible from different angles. However, how to utilize multi-view
information effectively is still an open question. State-of-the-art works first remove the targeted
erasure region-related Gaussians and fill the regions via 2D image inpainting method (Ye et al., 2024;
Wang et al., 2024), which, however, neglects the complementary cues from other views. The latest
work (Liu et al., 2024) leverages depth maps of different views to involve the cross-view complemen-
tary cues implicitly. However, depth maps cannot fully represent complementary cues, such as the
texture pattern from adjacent perspectives, and the depth project can hardly get high-quality depth
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Input Multi-view images with masks InFusion (Z. Liu et al. 2024) GaussianGroup (M. Ye et al. 2024) VISTA (Our Method)

Figure 1: Two examples demonstrating the application of two state-of-the-art methods, namely InFusion (Liu
et al., 2024) and GaussianGroup (Ye et al., 2024), alongside our proposed method for 3D Gaussian inpainting
to fill masked static and dynamic objects, respectively. The red boxes highlight the advantages of our method
and are enlarged on the right side of each image for better visibility. The white boxes and arrows indicate
complementary visual cues between two different viewpoints

maps when moving objects across different views. As the two cases shown in Figure 1, InFusion
synthesizes new views with obvious artifacts.

In this work, we propose VISibility-uncerTainty-guided 3DGI via scene conceptuAl Learning
(VISTA), a novel framework for 3D Gaussian inpainting that leverages complementary visual and
semantic cues. Our approach begins by measuring the visibility of 3D points across different views
to generate visibility uncertainty maps for each input image. These maps indicate which pixels
are most valuable for the inpainting task, based on the principle that pixels visible and consistent
from multiple views contribute more significantly. We then integrate these visibility uncertainty
maps into the 3D Gaussian splatting (3DGS) process. This enables the resulting Gaussian model
to synthesize new views where masked regions are seamlessly filled with visual information from
complementary perspectives. To address scenarios where large masked regions lack complementary
visual cues from other views, we propose learning the concept of the scene without the masked objects.
This conceptual learning is guided by the prior inpainting mask and the visibility uncertainty maps
derived from the input multi-view images. The learned concept is then utilized to refine the input
images, effectively filling the masked objects through a pre-trained Diffusion model. Furthermore,
we implement an iterative process alternating between visibility-uncertainty-guided 3DGI and scene
conceptual learning, progressively refining the 3D representation. As illustrated in Figure 1 (Upper),
our method successfully reconstructs high-quality 3D representations of static scenes, naturally filling
masked object regions with contextually appropriate content. Additionally, VISTA demonstrates
its versatility by effectively removing distractors in dynamic scenes (see Figure 1 (Bottom) for
examples).

We demonstrate the superior performance of our method over state-of-the-art techniques using two
challenging datasets: the SPIn-NeRF dataset, featuring 10 diverse static 3D in-painting scenes, and
an underwater 3D inpainting dataset derived from UTB180, which includes fast-moving fish as
inpainting targets. In summary, the contributions of our work are as follows:

1. We propose VISibility-uncerTAinty-guided 3D Gaussian inpainting (VISTA-GI) that explic-
itly leverages multi-view information through visibility uncertainty, achieving 3D Gaussian
inpainting for more coherent and accurate scene completions.

2. We propose VISibility-uncerTAinty-guided scene conceptual learning (VISTA-CL) and
leverage it for diffusion-based inpainting. VISTA-CL fills masked regions in input images
using learned scene concepts, addressing the inpainting task at its core. This approach
enhances the fundamental understanding of the scene, leading to more accurate and contex-
tually appropriate inpainting results.

3. We introduce VISTA (VISibility-uncerTainty-guided 3D gaussian inpainTing via scene
conceptuAl learning), a novel framework that iteratively combines VISTA-GI and VISTA-
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CL. This approach simultaneously leverages complementary visual and semantic cues,
enhancing 3D Gaussian inpainting with geometric and conceptual information.

4. We extend VISTA to handle dynamic distractor removal in 3D Gaussian splatting, signif-
icantly improving its performance on scenes with temporal variations and outperforming
state-of-the-art methods.

2 RELATED WORK

2.1 NERF AND 3D GAUSSIAN SPLATTING

The challenge of reconstructing a scene from 2D images to obtain suitable new viewpoints is a
complex and worthy topic of exploration in computer vision and computer graphics (Lombardi et al.,
2019; Kutulakos & Seitz, 2000). Recently, NeRF (Mildenhall et al., 2021) and 3DGS (Kerbl et al.,
2023) have emerged as two distinct approaches to 3D reconstruction, continuously improving the
quality of the reconstructions.

Neural Radiance Fields (NeRF) is an implicit representation method for 3D reconstruction. It utilizes
deep learning techniques to extract the geometric shapes and texture information of objects from
images taken from multiple viewpoints, and it uses this information to generate a continuous 3D
radiance field, allowing for highly realistic 3D models to be presented from any angle and distance
(Barron et al., 2021). However, their excessively high training and rendering costs (Barron et al., 2022;
2023) often result in poor performance in practical applications. To resolve these issues, 3D Gaussian
splitting (3DGS) is promoted as an explicit representation method that achieves state-of-the-art
real-time rendering of high-quality images (Lu et al., 2024). 3DGS explicitly models the space as
multiple Gaussian blobs, each with specific 3D positions, opacity, anisotropic covariance, and color
features. Through training, it achieves an explicit representation of the three-dimensional space,
enabling real-time synthesis of high-quality viewpoint images.

2.2 2D INPAINTING AND 3D INPAINTING

2D inpainting is an elemental task in image generation. The task aims to use the pre-generated mask
to create appropriate content for the masked area. Traditional patch-based methods Ružić & Pižurica
(2014) and later GAN-based (Goodfellow et al., 2014) methods Yu et al. (2018) could somewhat
inpaint regular and small mask areas, but they fail in complex scenes or when there are significant
content omissions. Recently, diffusion models Ho et al. (2020); Sohl-Dickstein et al. (2015); Song
et al. (2020) have become the most powerful technology in inpainting (Lugmayr et al., 2022; Suvorov
et al., 2022; Li et al., 2022) for their ability to generate new, semantically plausible content.

Meanwhile, 3D inpainting to edit the scene reconstructed by NeRF or 3DGS is still a challenging
task because of the complexity of spatial representation. NeRF-based inpainting Liu et al. (2022);
Mirzaei et al. (2023); Weder et al. (2023) succeed in inpainting the static objects in the implicit
representation. However, their performance is limited because of NeRF’s obstacles. 3DGS-based
inpainting methods such as Gaussian Grouping (Ye et al., 2024), InFusion (Liu et al., 2024), and
GaussianEditor (Wang et al., 2024) focus on inpainting an existing static Gaussian Splatting scene, but
neglecting the dynamic distractors that may appear before obtaining the static scene. GScream (Wang
et al., 2025) focuses on removing objects by introducing monocular depth estimation and employing
cross-attention to enhance texture. It remains a method focused on static objects. SpotLessSplats
(Sabour et al., 2024) notices the dynamic distractors and repairs these areas using the pre-predicted
masks, but it fails to repair occluded and completely unseen areas.

3 PRELIMINARIES: 3D GAUSSIAN SPLATTING AND INPAINTING

3.1 3D GAUSSIAN SPLATTING

Given a set of images I = {Ii}Ni=1 captured from various viewpoints and timestamps, 3D Gaussian
splatting (3DGS) aims to learn a collection of anisotropic Gaussian splats G = {gj}Mj=1 from these
multi-view images. Each splat gj is characterized by a Gaussian function with mean µj , a positive
semi-definite covariance matrix

∑
j , an opacity αj , and view-dependent color coefficients cj . Once

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the parameters of the 3D Gaussian splats G are determined, novel view synthesis can be achieved
through alpha-blending: Îp = Render(G,p). We can use I to supervise the optimization of G

argmin
G

λ1

N∑
i=1

∥(Ii − Îpi)∥1 + λ2

N∑
i=1

D-SSIM(Ii, Î
pi), (1)

where pi denotes the camera perspective of the image Ii, Îpi = Render(G,pi), and λ1 + λ2 = 1.
For novel view synthesis, given a camera perspective p, the process involves the following steps:
projecting each 3D Gaussian onto a 2D image plane, sorting the Gaussians by depth along the view
direction, and blending the Gaussians from front to back for each pixel. A key advantage of 3DGS
(Kerbl et al., 2023) is its ability to synthesize a new view in a single pass, whereas NeRF requires
pixel-by-pixel rendering. This efficiency makes 3DGS particularly well-suited for time-sensitive 3D
representation applications, offering a significant performance boost over NeRF.

3.2 3D GAUSSIAN INPAINTING

Given a set of captured images I = {Ii}Ni=1 and corresponding binary mask maps M = {Mi}Ni=1
delineating objects for removal (See Figure 1), 3D Gaussian Inpainting (3DGI) constructs a new
3D Gaussian splatting (3DGS) representation. This representation eliminates specified objects and
replaces them with content that integrates with the environment. The resulting 3DGS representation
can synthesize arbitrary views where the specified objects are imperceptibly absent, maintaining
visual coherence across viewpoints while effectively ’erasing’ targeted objects. We can use the
segment anything model (SAM) (Kirillov et al., 2023) with few manual annotations to generate mask
maps, aligning with methods like (Ye et al., 2024) for precise object delineation.

SOTA methods and limitations. An intuitive approach to 3D Gaussian Inpainting (3DGI) involves
deriving a 3D mask for the specified objects based on the provided 2D masks. The process of
new view synthesis then follows a two-step procedure: first, generating the specified view and its
corresponding mask, and then applying existing 2D image inpainting techniques to achieve the desired
3DGI effect. This methodology has been adopted in recent works by Wang et al. (2024) and Ye et al.
(2024). However, this approach does not leverage the complementary information available across
multiple viewpoints during the inpainting process. A key example is the failure to utilize information
from regions that may be occluded in one view but visible in another. Consequently, this method
struggles to maintain consistency with the surrounding environment, particularly when dealing with
large masked regions. This limitation underscores the need for more sophisticated techniques to
effectively integrate and synthesize information from multiple perspectives to achieve more coherent
and realistic 3D inpainting results. Beyond this solution, the latest work Liu et al. (2024) utilizes the
cross-view complementary cues through depth perception. It formulates the 3D Gaussian inpainting
as two tasks, i.e., 2D image inpainting and depth inpainting, and the complementary cues in multiple
views are implicitly utilized via depth projection. However, depth maps cannot fully represent
complementary cues, such as the texture pattern from adjacent perspectives, and the depth project
can hardly get high-quality depth maps when moving objects across different views. As case 2 shown
in Figure 1, InFusion synthesizes new views with obvious artifacts.

4 METHODOLOGY

This section details the proposed framework called VISibility-uncerTainty-guided 3D Gaussian
inpainting via scene concepTional learning (VISTA). The core principle is to identify the visibility
of 3D points across different views and utilize this information to guide the use of complementary
visual and semantic cues for 3D Gaussian inpainting.

To elucidate this concept, we introduce the visibility-uncertainty-guided 3D Gaussian inpainting
(VISTA-GI) in Section 4.1, where we define the visibility uncertainty of 3D points and employ it
to guide the use of complementary visual cues for 3DGI. In Section 4.2, we propose leveraging the
visibility uncertainty to learn the semantic concept of the scene without specified objects. We then
perform concept-driven Diffusion inpainting to process the input images, harnessing complementary
semantic cues. To fully utilize complementary visual and semantic cues, we propose in Section 4.3
an iterative combination of VISTA-GI and VISTA-CL. Finally, in Section 4.4, we extend our VISTA
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Initial 3D 
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Uncertainty Map 
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Concept Learning 
in Eq. (5)

Concept Inpainting
in Eq. (6)

VISTA-GI VISTA-CL
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Figure 2: Framework of VISTA comprising two modules: VISTA-GI (described in Section 4.1) and VISTA-CL
(detailed in Section 4.2). Results from three views are displayed for key variables in the framework. Note that G,
G̃1, G̃2, and G̃3 are 3DGS representations, and the displayed examples are rendered from these representations.
The last column shows generated images derived from the learned scene concept. In the uncertainty map, we
use ✫ to highlight areas of high uncertainty, which denote points (e.g., dynamic fishes) visible from only a few
views. Yellow arrows demonstrate the progressive improvement in inpainting quality achieved by our method.

framework to address the challenge of dynamic distractors in captured images. This extension
excludes transient objects, resulting in clearer and more consistent novel view synthesis.

4.1 VISTA-GI: VISIBILITY-UNCERTAINTY-GUIDED 3D GAUSSIAN INPAINTING

Initial 3D Gaussian Splatting. Given the input images I = {Ii}Ni=1, we employ the original 3DGS
method in Section 3.1 and Equation (1) to construct a 3D representation G. This representation can
then be utilized to render novel views. However, as illustrated in Figure 2, this initial representation
fails to exclude dynamic objects (such as fish) and exhibits noticeable artifacts, including blurring.

Visibility uncertainty of 3D Points. We define a set of adjacent camera perspectives/views denoted
as P = {pv}Vv=1, where V is the number of adjacent views. For a 3D point X in the scene, we can
project it to different camera perspectives in P via the built 3DGS G and get their colors under V
views, i.e., {xv}Vv=1. Then, we calculate the variations of colors of the point under different views

ux = var({xv}Vv=1), (2)
where var(·) is the variation function. We denote the result ux as the visibility uncertainty of the 3D
point X. Intuitively, ux represents the visibility and consistency of the point across the V views. For
example, if the point X can be seen at all views, the colors under different views are consistent and
ux is small. If the point can be only seen by a few views or its color deviates between different views,
the visibility uncertainty tends to be significantly high.

Reoptimized 3D Gaussian inpainting. With the 3D point’s visibility uncertainty, we aim to calculate
the visibility uncertainty map of the input image and measure the visibility of each pixel at other
views. Specifically, for an image Ii in I, we first calculate its depth map Di based on the G. Then,
we project each pixel of Ii to a 3D point and calculate its visibility uncertainty via Equation (2) under
V adjacent views. Then, we obtain a pixel-wise visibility uncertainty map, which is normalized by
dividing each pixel’s uncertainty value by the standard deviation computed across all uncertainty
values. The resulting normalized map is denoted as Ui. For the N input images, we have N visibility
uncertainty maps U = {Ui}Ni=1. Then, we use them to update the original mask maps M and
uncertainty maps U by

M′
i = Ui ⊙ (1−Mi) + ϑ ·Mi, (3)
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where the first term weights the unmasked regions via the visibility uncertainty map: the points other
views cannot see should be assigned low weights during optimization. The ϑ controls the constraint
degrees of the original masks. Then, we obtain the finer mask maps {M′

i}Ni=1 and re-optimize the 3D
representation by adding the guidance of mask maps to the objective function in Equation (1):

argmin
G

λ1

N∑
i=1

∥(1−M′
i)⊙ (Ii − Îpi)∥1 + λ2

N∑
i=1

D-SSIM(Ii, Î
pi , 1−M′

i), (4)

where we have Îpi = Render(G,pi) and λ1 + λ2 = 1. Intuitively, the objective function is to
ignore the mask and high-uncertainty regions during the optimization. As a result, we get an updated
counterpart G̃. Similar strategies have been also adopted in recent works (Sabour et al., 2024; 2023).

Intuitively, with the visibility uncertainty maps, we can exclude the pixels that other views cannot see
to build the 3D representation, which explicitly leverages the complementary visual cues. As the U
shown in Figure 2 (Bottom) , the pixels with high uncertainty denote the corresponding points (e.g.,
dynamic fishes) visible from only a few views. This is reasonable since the dynamic fishes are at
different locations across different views. We also display the updated 3D representation G̃1, showing
that the dynamic objects and some artifacts are removed.

4.2 VISTA-CL: VISIBILITY-UNCERTAINTY-GUIDED SCENE CONCEPTUAL LEARNING

VISTA-GI can reconstruct masked objects when complementary visual information is available from
alternative viewpoints. However, for masked regions lacking such cues, we need a more sophisticated
approach to comprehend the scene holistically and generate plausible new content to fill these gaps.
To achieve this, we propose to learn a conceptual representation s of the scene through textual
inversion (Gal et al., 2022; Zhu et al., 2024), which can be formulated as

s = ConceptLearn(I,U ,M), (5)

The learned concept s is a token and encapsulates the scene’s essence without the masked objects.
We then leverage s to process the input images, eliminating the masked objects

Ĩi = ConceptInpaint(s, Ii,U ,M),∀Ii ∈ I, (6)

Scene conceptual learning. We formulate the scene conceptual learning, i.e., as the personalization
text-to-image problem (Ruiz et al., 2023) based on textual inversion (Gal et al., 2022), and we add
the guidance of the visibility uncertainty maps in Section 3.2. Specifically, we have a pre-trained
text-2-image diffusion model containing an image autoencoder with ϕ and ϕ−1 as encoder and
decoder, a text encoder φ, and a conditional diffusion model ϵθ at latent space. Then, we learn the
scene concept s by optimizing the following objective function

s =argmin
s∗

EIi∈I,z=ϕ(I),y,ϵ∈N (0,1),t(∥(1−M′
i)⊙ (ϵθ(zt, t,Υ(φ(y), s∗))− ϵ)∥22), (7)

where y is a fixed text (i.e., ‘a photo of S∗’) and the function Υ(Γ(y), s∗) is to replace the token
of ‘S∗’ within Γ(y) with s∗. The tensor M′

i is calculated via Equation (3) based on the visibility
uncertainty map and the given mask map. Intuitively, we use the Equation (7) to force the learned
concept to mainly contain the unmasked scene regions. To validate the learned concept, we can feed
‘a photo of S∗’ to the T2I diffusion model to generate images about the learned concept. As shown in
Figure 2, the images in the lower right are created directly by the T2I diffusion model and illustrate a
concept similar to the original scene without any dynamic objects.

Scene conceptual-guided inpainting. We use the learned concept s to inpaint all input images
through the pre-trained T2I diffusion model. Given one image I from I , we can extract its latent code
by z = ϕ(I). Then, we perform the forward diffusion process by iteratively adding Gaussian noise to
the z over T timesteps, obtaining a sequence of noisy latent codes, i.e., z0, z1, . . . , zT , where z0 = z.
At the tth step, the latent is obtained by

q(zt|z0) =
√
αtz0 +

√
1− αtϵt, ϵt ∼ N (0, I), (8)

where αt =
∏t

τ=1(1−βτ ). N (0, I) represents the standard Gaussian distribution. As we set the time
step as T , the complete forward process can be expressed as zT ∼ q(z1:T |z0) =

∏T
t=1 q(zt|zt−1).
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Source InFusion

SPIn NerfGaussian Splatting Ours

SpotLessSplats

Figure 3: Example of dynamic inpainting on the Underwater 3D Inpainting Dataset.

At the reverse denoising process, we follow the strategy of RePaint (Lugmayr et al., 2022) but embed
the guidance of visibility uncertainty maps and the learned concept s. Intuitively, at the time step
t > 1 during denoising, we only denoise the masked regions conditioned on the scene concept s
while maintaining the unmasked regions with the same content in Equation (8), that is, we have

z̃t−1 = (1−m′)⊙ zt−1 +m′ ⊙ ẑt−1, (9)

where zt−1 ∼ q(zt|z0) and m′ is the downsampled M′ ∈ {M′
i}Ni=1 calculated by Equation (3) and

has the exact resolution as the latent code zt−1. ẑt−1 is denoised from the z̃t with the guidance of
the learned concept s, that is,

ẑt−1 =
1√
αt

(z̃t −
βt√
1− ᾱt

ϵθ(z̃t, t, s)) + σtξ, s.t., ξ ∼ N (0, I), (10)

If t = 1, z̃0 = (1−m′)⊙z+m′ · ẑ0. Then, we can get the inpainted image via decoder Ĩ = ϕ−1(z̃0).
We can use the above ConceptInpaint to process each image within I and get a new image set Ĩ.

4.3 VISTA: COMBINING VISTA-GI AND VISTA-CL

Given the input images I and their corresponding mask maps M, VISTA-GI generates visibility
uncertainty maps U as the visual cues and refines the 3DGS representation G̃. VISTA-CL takes I, U ,
and M as inputs and produces processed input images Ĩ as the semantic cues. Intuitively, we can
combine the raw images I and Ĩ , feed them back into VISTA-GI, where Ĩ serve as better views. This
allows for an iterative process between VISTA-GI and VISTA-CL. We denote the k-th iteration’s 3D
representation from VISTA-GI as G̃k and the processed images from VISTA-CL as Ĩk.

In practice, three iterations are typically sufficient to achieve smooth convergence of the training
metrics. The hyperparameter ϑ is initialized by 0 and increases by 0.1 with each iteration. We show
an example in Figure 2. The synthetic views G̃1, G̃2, and G̃3 gradually contain fewer distractors,
and the results of the final iteration G̃3 demonstrate clean and clear views, which means better 3D
inpainting under the guidance of the visual and semantic cues.

4.4 VISTA FOR DYNAMIC DISTRACTOR REMOVAL

VISTA could be easily extended to remove dynamic distractors across multi-view images I by
identifying the dynamic regions in I and obtaining the mask maps M. In our implementation,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

we use the tracking method and MASA (Li et al., 2024) to automatically get the mask maps for
dynamic objects in the scene. MASA is an open-vocabulary video detection and segmentation
model introducing coarse pixel-level information to our method. This plays a similar role as DEVA
(Cheng et al., 2023) used in Gaussian Grouping (Ye et al., 2024). However, the masks used in
Gaussian Grouping are limited to static objects, while we mask static and dynamic objects that need
to be inpainted. For dynamic objects, the uncertainty map can complement the coarse mask that
excludes those dynamic distractors from the reconstruction. As shown in Figure 2, the synthetic
view G obtained without masks fairly removes those fish moving greatly but ignores those objects
without significant movement. The semantic information in the coarse masks M identifies these
distractors, which the uncertainty map U cannot detect, and then these distractors can be eliminated
by VISTA-CL. As a result, VISTA can remove both static and dynamic distractors in the scene by
combining these two mask maps in Equation (3).

5 EXPERIMENTS

5.1 DATASETS AND METRICS

To evaluate our method, we conduct experiments on the SPIn-NeRF Dataset for 3D inpainting in
general scenes and the Underwater 3D Inpainting Dataset for scene repairing in challenging scenes.
More details can be found in Appendix A.

Method UCIQE ↑ URanker ↑ CLIP Score ↑
SPIn-NeRF 0.49 1.59 0.70
InFusion 0.50 1.52 0.71
SpotLess 0.50 1.59 0.70

Ours 0.51 1.64 0.72

Table 1: Quantitative results of dynamic inpainting on
the Underwater 3D Inpainting Dataset.

Underwater 3D inpainting dataset. This
dataset is derived from the underwater object
tracking dataset UTB180 (Alawode et al., 2022),
from which we selected multiple videos for
resampling, ultimately forming 10 underwater
scene datasets. We resample the video in certain
FPS to fulfill the motion requirements of initial
reconstruction. Each scene contains dozens of
images from various viewpoints, and the initial Structure from Motion point cloud and camera intrin-
sics are obtained via COLMAP (Schonberger & Frahm, 2016). Each viewpoint image undergoes
object detection using the open-source method MASA (Li et al., 2024) to obtain rough object masks.

SPIn-NeRF dataset. The SPIn-NeRF dataset was proposed in Mirzaei et al. (2023). It contains 10
general 3D inpainting scenes, divided into 3 indoor and 7 outdoor scenes. Each scene includes 100
images from various viewpoints, along with corresponding masks. In these datasets, the ratio of
the training set to the testing set is 6 to 4. We compare our method with other approaches using the
provided camera intrinsics and initialized SfM point cloud.

Method LPIPS ↓ Fid ↓ PSNR ↑ SSIM ↑
Masked Gaussians 0.594 278.32 10.77 0.29
SPIn-NeRF 0.465 156.64 15.80 0.46
Gaussians Grouping 0.454 123.48 14.86 0.27
InFusion 0.567 118.26 15.59 0.53

Ours 0.418 113.58 16.48 0.59

Table 2: Quantitative results of static inpainting on the
SPIn-NeRF Dataset.

Metrics. Following SPIn-NeRF, we evaluate the
experimental results in two quantitative terms:
one for static scenes with ground truth using
PSNR, SSIM, LPIPS, and Fid for Reference-
based IQA (Image Quality Assessment), and
the other for dynamic scenes without ground
truth using UCIQE (Yang & Sowmya, 2015),
URanker (Guo et al., 2023) and CLIP Score
(Hessel et al., 2021) for the underwater Non-Reference IQA. Following the typical comparison
methods mentioned in SPIn-NeRF (Mirzaei et al., 2023) and RefFusion (Mirzaei et al., 2024), LPIPS,
and Fid are calculated around the masked region by considering the bounding box of the mask.
UCIOE is a generally used underwater metric that utilizes a linear combination of chroma, saturation,
and contrast for quantitative assessment, quantifying uneven color casts, blurriness, and low contrast.
URanker is a transformer-based metric to assess the quality of underwater images. Meanwhile, the
CLIP Score measures the relation between image and text. As a result, we serve ‘An underwater
scene without fish’ as the caption to evaluate the effects of fish removal.

5.2 EXPERIMENTAL RESULTS

We compare our method with several state-of-the-art open-source 3D inpainting methods, such as
Infusion (Liu et al., 2024), SPIn-NeRF (Mirzaei et al., 2023), Gaussian Grouping (Ye et al., 2024),

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Source Gaussian Grouping InFusion Ours
Figure 4: Example visualization of static inpainting on the SPIn-NeRF Dataset.

and SpotLessSplats (Sabour et al., 2024). SpotLessSplats is only designed for scenarios with dynamic
distractors, while others are the latest static inpainting methods. Infusion is retrained using its
publicized code (Liu et al., 2024).

PSNR Model Size

Iterations
15
16
17
18
19
20
21
22
23
24

480

510

540

570

600

630

660

1 2 3 4

1 token 5 tokens 10 tokens

Figure 5: Relationship between model performance (PSNR)
and model size (MB) with different token numbers. The
dashed and solid lines represent the model size and perfor-
mance variations respectively. The model performance (solid
lines) under different token numbers almost overlaps.

Results on underwater 3D inpainting
dataset. We compare our method with base-
line methods on the underwater dataset. Fig-
ure 3 illustrates the performance of various
inpainting methods on our dataset, especially
for dynamic objects. Some perspectives can
compensate for some areas that need repair,
while others require direct inpainting from
the algorithm. This scene represents a sce-
nario that can effectively reflect real-world
inpainting task datasets. The figure shows
that our method presents the most stable and
consistent inpainting scene without artifacts
and blurriness. SpotLessSplats removes part
of these Gaussians representing the moving
fish but fails to repair the missing area hiding behind the fish. The results of Infusion are obtained
from a single inpainted reference image, which distorts the images in other viewpoints, although the
views rendered near the reference image are relatively clear. Additionally, the results of SPIn-NeRF
show 3D consistency, but some synthetic images exhibit artifacts and blurriness in certain viewpoints.
Table 1 shows the quantitative metrics of the image quality after inpainting. For the UCIQE and
URanker, our method outstrips other methods by utilizing the uncertainty map to reduce the weight
of blurry areas caused by underwater floating objects during reconstruction. Besides, the CLIP Score
of our method outperforms other methods for better removal of the target objects.

Results on SPIn-NeRF dataset. Figure 4 depicts an example scene from the SPIn-NeRF Dataset
masking a stationary box that requires inpainting. The results of Gaussian Grouping are fairly realistic
at the 2D image level, but there are significant inconsistencies between perspectives, such as distortion
at the edges of stairs. The results of InFusion appear more realistic from one certain perspective.
Still, its approach of optimizing one single view compromises the performance of other perspectives,
leading to unpredictable artifacts in those views. Our method benefits from an iterative progressive
optimization approach, ensuring consistency across perspectives through multiple inpainting and
reconstruction, resulting in more stable outcomes.

Method UCIQE ↑ URanker ↑ CLIP Score ↑
Ours w/o VISTA-GI 0.48 1.52 0.70
Ours w/o VISTA-CL 0.50 1.59 0.69

Ours 0.51 1.64 0.72

Table 3: Quantitative ablation study of VISTA-GI and
VISTA-CL on the Underwater 3D Inpainting Dataset.

Ablation study on VISTA-GI and VISTA-CL.
We conducted ablation experiments on the un-
derwater 3D inpainting dataset by removing the
VISTA-GI and VISTA-CL from our final ver-
sion, respectively. The specific results are shown
in Table 3. Our experiments demonstrate two
key findings. First, attempting reconstruction using only a 2D generative model without VISTA-GI
leads to significantly degraded image quality metrics. This validates that VISTA-GI’s uncertainty
guidance effectively mitigates multi-view inconsistencies during 3D reconstruction, resulting in
higher-quality outputs. Second, while omitting VISTA-CL maintains image quality comparable to
existing methods like SplotLess and SPIn-NeRF, the lack of concept-guided learning significantly
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reduces CLIP-Score metrics. This indicates that without conceptual constraints, the inpainting process
produces results that are visually plausible but semantically inconsistent with the scene context.

5.3 DISCUSSIONS

This section will combine experimental results to discuss the reasons behind some hyperparameter
settings in Section 4, further demonstrating our approach. More details can be found in Appendix A.

w/o raw imagesw/ raw images

Figure 6: Reconstruction results with and without raw images. Involving
the raw images in our method will improve the inpainting performance.

Effects of token numbers to de-
pict one scene. The quantity of
tokens needed to describe a scene
is important since each count cor-
responds to a specific color. The
Figure 5 shows how the inpaint-
ing results change as the descrip-
tive tokens change. Too many to-
kens to depict the scene do not
increase the model performance
and may even increase the model size. The effect of textual inversion is to focus on learning the
rough semantic features of the scene rather than the detailed object features, thereby not necessarily
requiring very detailed tokens. We also observe that the training PSNR becomes smooth after three
iterations, inspiring us to set three iterations. More iterations cause a larger model size, which means
excessive Gaussians to fit the noise introduced by the diffusion model.

Reasons for combining raw images I and Ĩ rather than substituting raw images I with Ĩ
in Section 4.4 As shown in Figure 6, the reconstruction without raw images could not render the
seaweed without ambiguity. The accumulated error from two iterations, caused by 3DGS’s inability
to fit the scene fully and the uncertainty introduced by the generated model, deteriorates the image
quality. Raw images act as an "anchor" for our method, ensuring that the rendered images align
closely with the input images and do not deviate significantly.

Method LPIPS ↓ PSNR ↑ Time Cost

InFusion 0.23 19.34 16m 34s
SPIn-NeRF 0.15 23.33 7h 32m 18s
SpotLess 0.14 24.75 30m 26s

Ours 0.10 26.38 33m 34s

Table 4: Quantitative results and time costs on
the synthesis data in Figure 8.

Time cost analysis and comparison. To quantitatively
evaluate performance and computational efficiency, we
compare our method against baseline approaches (In-
Fusion, SPIn-NeRF, and SpotLess) on the synthetic
scene shown in Figure 8. This scene provides ground
truth data, enabling evaluation through reference-based
metrics for both rendering quality and computational
efficiency during optimization. As shown in Table 4,
while our method incurs additional computational overhead compared to vanilla 3DGS due to the
integration of iterations and diffusion models, it achieves superior rendering quality while maintain-
ing comparable efficiency to state-of-the-art 3DGS methods (e.g., SpotLess (Sabour et al., 2024)).
Furthermore, our approach demonstrates significantly better reconstruction quality while being
approximately 10× faster than leading NeRF-based methods such as SPIn-NeRF.

6 CONCLUSION

In this work, we presented VISTA, a novel framework for 3D Gaussian inpainting that effectively
leverages complementary visual and semantic cues from multiple input views. By introducing
visibility uncertainty maps and combining visibility-uncertainty-guided 3D Gaussian inpainting
(VISTA-GI) with scene conceptual learning (VISTA-CL), our method addresses key challenges
in 3D scene editing for static and dynamic scenes. Experimental results on the SPIn-NeRF and
UTB180-derived datasets demonstrate VISTA’s superior performance over state-of-the-art techniques
in generating high-quality 3D representations with seamlessly filled masked regions and effectively
removing distractors. The versatility of our approach extends to handling complex inpainting scenarios
and dynamic distractor removal, making it a powerful tool for various applications in augmented
and virtual reality. By simultaneously leveraging geometric and conceptual information, VISTA
represents a significant advancement in 3D Gaussian inpainting, bringing us closer to achieving
seamless and realistic 3D scene editing and paving the way for more immersive virtual experiences.
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Tijana Ružić and Aleksandra Pižurica. Context-aware patch-based image inpainting using markov
random field modeling. IEEE transactions on image processing, 24(1):444–456, 2014.

Sara Sabour, Suhani Vora, Daniel Duckworth, Ivan Krasin, David J Fleet, and Andrea Tagliasacchi.
Robustnerf: Ignoring distractors with robust losses. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20626–20636, 2023.

Sara Sabour, Lily Goli, George Kopanas, Mark Matthews, Dmitry Lagun, Leonidas Guibas, Alec
Jacobson, David J. Fleet, and Andrea Tagliasacchi. SpotLessSplats: Ignoring distractors in 3d
gaussian splatting. arXiv:2406.20055, 2024.

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 4104–4113, 2016.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky. Resolution-
robust large mask inpainting with fourier convolutions. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pp. 2149–2159, 2022.

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, Wang Yifan,
Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi, et al. Ad-
vances in neural rendering. In Computer Graphics Forum, volume 41, pp. 703–735. Wiley Online
Library, 2022.

Junjie Wang, Jiemin Fang, Xiaopeng Zhang, Lingxi Xie, and Qi Tian. Gaussianeditor: Editing
3d gaussians delicately with text instructions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 20902–20911, 2024.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
Learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv
preprint arXiv:2106.10689, 2021.

Yuxin Wang, Qianyi Wu, Guofeng Zhang, and Dan Xu. Learning 3d geometry and feature consistent
gaussian splatting for object removal. In European Conference on Computer Vision, pp. 1–17.
Springer, 2025.

Silvan Weder, Guillermo Garcia-Hernando, Aron Monszpart, Marc Pollefeys, Gabriel J Brostow,
Michael Firman, and Sara Vicente. Removing objects from neural radiance fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16528–16538,
2023.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20310–
20320, June 2024.

Miao Yang and Arcot Sowmya. An underwater color image quality evaluation metric. IEEE
Transactions on Image Processing, 24(12):6062–6071, 2015.

Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit
anything in 3d scenes. In European Conference on Computer Vision, 2024.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Generative image
inpainting with contextual attention. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5505–5514, 2018.

Jiayi Zhu, Qing Guo, Felix Juefei-Xu, Yihao Huang, Yang Liu, and Geguang Pu. Cosalpure: Learning
concept from group images for robust co-saliency detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3669–3678, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

Experiment Setup Our 3D reconstruction and 2D inpainting method is implemented on a single
RTX 4090. We use the default parameters of 3DGS for reconstruction, generating a reconstructed
render every 10,000 iterations. Additionally, we employed the commonly used stable-diffusion-
v1-5 (Rombach et al., 2022) as the base inpainting model, training it for 3,000 iterations (taking
approximately 1.5 hours) using textual inversion for scene representation. Our diffusion model
inference consists of a 50-step denoising process, initialized with a noise strength of 1.0 that is
progressively reduced by a factor of 0.2 at each iteration.

Visibility uncertainty map Mask

Source image Reconstruct w/o mask Reconstruct with mask

Optical Flow

Figure 7: Impact of prior (mask) on inpainting results. Our method will improve inpainting performance by
incorporating the mask information. To analyze the results, we also display the optical flow of the source image
and the visibility uncertainty map.

A.1 IMPACT OF PRIOR (MASK) ON INPAINTING

Adding the prior (mask) information in our method will significantly improve the inpainting results,
especially for those static objects. This is easy to understand because dynamic objects create
inconsistencies during the reconstruction process, which our algorithm can detect. In contrast, static
object inpainting necessitates the semantic information the detection model identifies.

For instance, in the top-left corner of Figure 7, the fish is retained while the others are removed. This
is primarily because the fish remains stationary across different views (as evident in the optical flow
map of Figure 7, where the top-left fish exhibits low flow values at its center). Consequently, it has a
lower value in the visibility uncertainty map (see the corresponding map in Figure 7). Without using
a mask to label this area for repair manually, the fish’s geometric characteristics resemble those of a
stationary object, such as a rock, making it indistinguishable from our uncertainty detection system.

In contrast, moving fish create significant geometric inconsistencies across viewpoints, enabling our
uncertainty detection to flag them as anomalies. This leads to their removal through the inpainting
process. To address these challenging scenarios, we introduced mask annotations for fish detection,
providing semantic guidance for our inpainting method. As shown in the last column of Figure 7,
incorporating the mask ensures the successful removal of the top-left fish.

VISTA in limited scenarios Our uncertainty maps are built by observing a set of adjacent perspec-
tives/views, thus fully utilizing complementary visual cues. However, in some extreme conditions,
we don’t have enough valid adjacent perspectives/views to get the visual cues. To investigate the
performance of our method under such extreme conditions, we manually synthesized an extreme
scenario where the camera rapidly changes poses, resulting in very few available adjacent viewpoints.
In this case, the VISTA-GI can hardly detect the inconsistency between different views, requiring
VISTA-CL to produce better results.

As shown in Figure 8 (a), thanks to the 2D diffusion model, our method utilizes its results to effectively
inpaint the scene in such extreme conditions. Meanwhile, as shown in Figure 8 (b), The InFusion
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Figure 8: (a) The figure of an artificial synthesis scene in extreme cases. The original views of three adjacent
cameras and the inpainting results of our method are demonstrated for comparison. (b) The results of InFusion
and SPIn-NeRF in extreme cases. Their results are obtained by the camera from ‘T = 2’ in (a).

result is unrealistic due to neglecting consistency in inpainting. SPIn-NeRF shows a reasonable result
but with blurry and indistinguishable inpainting areas. Compared to other methods, our approach
benefits from Scene Conceptual Learning, resulting in clearer and more reasonable repairs in the
target areas, and the textures and content maintain consistency with the original scene.

A.2 VISUALIZATION OF OUR METHOD

In this part, we visualize more results to demonstrate the effectiveness of our method and the potential
failure scenarios that may arise.
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Figure 9: Case of real-world pedestrian removal from the nerf-on-the-go dataset.

Real-world case. The underwater dataset we used is derived from real-world diving videos, and due
to the effects of the underwater medium and floating debris, these scenes are challenging scenarios
in the real world. We also tested our dataset on a scene related to pedestrian removal from the
nerf-on-the-go dataset. This scene, called Tree, contains 212 images, with the main distractors from
moving pedestrians. As shown in Figure 9, our method achieved high-quality results on this dataset.
Due to the abundance of viewpoints in the dataset, there is a lot of supplementary information between
perspectives, allowing our method to effectively utilize other viewpoints to repair the blurring caused
by moving distractors.

Fail case from our dataset. We provide failure cases of our algorithm in Figure 10. Due to errors in
the prior mask, some fish were not detected by the object detection model. Furthermore, since the fish
did not move significantly during the shooting process, these areas did not produce inconsistencies
across multiple viewpoints during reconstruction, making it difficult for the VISTA-GI component
to identify these areas through uncertainty. This also validates our algorithm design approach:
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Mask RenderSource image
Figure 10: Failure case from our underwater 3D inpainting dataset.

VISTA-CL introduces semantic information through masks, while VISTA-GI incorporates geometric
information through uncertainty, complementing each other to remove distractors. However, in this
failed case, issues arose in both aspects, resulting in poor reconstruction quality of the final scene.
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Figure 11: Visualization of the uncertainty map and depth of static scenes.

Uncertainty and depth maps of static scenes. As shown in Figure 11, we further visualize the
uncertainty and depth maps of the static scenes. The deeper the color, the closer the depth. It can
be observed that our method identifies areas in the rendered image that are inconsistent with other
viewpoints and generates reasonable contents.

A.3 IMPACTS OF HYPER-PARAMETERS

In this part, we study the influence of the hyper-parameter ϑ in Eq. (3), the initial noise & iterations
of diffusion inference, and the threshold of uncertainty map.

Impact of noise reduction ratios in diffusion inference. During diffusion model inference, we
investigate how different noise reduction strategies affect reconstruction quality. Starting from an
initial noise strength of 1.0, we systematically decrease the noise at each iteration by a fixed ratio. We
evaluate four different reduction ratios {0.1, 0.2, 0.3, 0.4} and analyze their impact on reconstruction
quality across iterations using our dataset. As shown in Figure 12 (a), while all ratios lead to improved
PSNR values over iterations, the reduction ratio of 0.2 achieves optimal convergence in the fewest
iterations. Based on this empirical analysis, we adopt 0.2 as the noise reduction ratio in our method.

Impacts of ϑ in Eq. (3). We use ϑ to control the prior constraint of the original masks. We
investigate how different ϑ increasing strategies affect reconstruction quality. The hyperparameter ϑ
is initialized by 0 and increases by 0.1 with each iteration in our paper. We evaluate five different
increase ratios {0.1, 0.2, 0.3, 0.4, 0.5} and analyze their impact on reconstruction quality across
iterations using our dataset. As shown in Figure 12 (b), all ratios lead to improved PSNR values
over iterations. In the first two iterations, a higher increase ratio improves the reconstruction
performance. However, an increase ratio above 0.1 indicates that the algorithm becomes overly
confident in the inpainting areas too early, resulting in insufficient interaction of geometric and
semantic information between the VISTA-GI and VISTA-CL modules, which subsequently leads to a
decline in reconstruction performance in later iterations.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

PSNR

Iterations

12

14

16

18

20

22

24

1 2 4 6 8 10

0.1 0.2 0.3 0.4 PSNR

Iterations
1 2 3 4 5

16
17
18
19
20
21
22
23

0.1 0.2 0.3 0.4 0.5

(a) (b) 

Figure 12: (a) Relationship between 3DGS rendering quality (PSNR) and noise reduction ratio of diffusion
inference. (b) Relationship between 3DGS rendering quality (PSNR) and increasing ratio of ϑ in Eq. (3).

Resolution LPIPS ↓ PSNR ↑ SSIM ↑
64×64 0.51 16.27 0.68

128×128 0.42 18.89 0.69
256×256 0.26 21.33 0.71
512×512 0.11 26.04 0.84

1299×974 0.10 26.38 0.86

Table 5: Quantitative ablation results of different resolutions.

A.4 IMPACTS OF DIFFERENT IMAGE RESOLUTION

In our experiment setup, we use the stable diffusion v1.5 as the inpainting model and train and test
the model following its default setup: if the input image has a resolution higher than 512×512, we
crop the image to a new size that is both the closest to the original image size and a multiple of 8; if
the input image is smaller than 512×512, we rescale the image to 512×512. To analyze the influence
of the strategy on different original resolutions, given an original scene with input images having a
size of 1299×974, we downsample these images to four resolutions: 64×64, 128×128, 256×256,
and 512×512. Then, for each resolution, we can build a 3D model and evaluate the rendering quality.
As shown in Table 5, we observe that: (1) reducing the resolution to 512×512 does not significantly
impact any of the metrics, demonstrating our method’s robustness to substantial resolution changes.
(2) further decreasing the resolution leads to gradual degradation in reference-based metrics, while
non-reference metrics remain relatively stable.

A.5 QUANTITATIVE ANALYSIS OF LARGE VIEWPOINT DIFFERENCES

Ablation study of large viewpoint differences. To evaluate the impact of variants of viewpoint
difference, we first capture 34 images from continuously distributed viewpoints around a scene to
create a ground truth (GT) 3DGS model. We then systematically reduce the number of viewpoints by
sampling them at different intervals {2, 3, 4, 5, 6, 7}, where larger intervals represent larger viewpoint
differences. For each sampling interval, we construct a new 3DGS model and assess its quality by
comparing its rendered images against those from the GT model using standard metrics: LPIPS, SSIM,
and PSNR. This methodology allows us to analyze how viewpoint difference affects reconstruction
quality quantitatively.

Sampling interval LPIPS ↓ PSNR ↑ SSIM ↑
2 0.09 26.25 0.89
3 0.14 23.42 0.83
4 0.16 22.42 0.80
5 0.27 18.09 0.65
6 0.25 18.71 0.69
7 0.41 15.66 0.57

Table 6: Quantitative results of large viewpoint differences.

Considering that the reduction in available viewpoints for the training leads to decreased 3DGS
reconstruction quality, our method still achieves good results even with significant viewpoint variation.
This validates that our approach can detect inconsistencies between viewpoints and repair those areas
despite the large viewpoint differences. However, in extreme cases, the absence of key viewpoints
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results in a loss of critical complementary information between viewpoints, leading to a significant
decline in the reconstruction metrics of the scene.

Comparisons of different methods in extreme case. To validate our advantages in the extreme
case with large viewpoint differences, we conducted a quantitative evaluation of various methods for
the extreme case mentioned in Figure 8, and the results are as the following table. It can be seen that
our method still outperforms existing methods in removing dynamic distractors under such extreme
conditions.

Method LPIPS ↓ PSNR ↑ SSIM ↑
InFusion 0.23 19.34 0.78
SPIn-NeRF 0.15 23.33 0.82
SpotLess 0.14 24.75 0.84

Ours 0.10 26.38 0.86

Table 7: Quantitative comparison of different methods in extreme case.
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