
Agent-to-Sim: Learning Interactive Behavior from
Casual Videos

Anonymous Author(s)
Affiliation
Address
email

Abstract

Agent behavior simulation empowers robotics, gaming, movies, and VR appli-1

cations, but building such simulators often requires laborious effort of manually2

crafting the agent’s decision process and motion patterns. Recent advances in3

visual tracking and motion capture have enabled learning agent behavior from4

real-world data, but these methods are limited to a few scenarios due to the de-5

pendence on specialized sensors (e.g., synchronized multi-camera systems). In a6

step towards scalable and realistic behavior simulators, we present Agent-to-Sim7

(ATS), a framework for learning simulatable 3D agents in a 3D environment from8

casually-captured monocular videos. To deal with partial views, our framework9

fuses observations in a canonical space for both the agent and the scene, resulting10

in a dense 4D spatiotemporal reconstruction. We then learn an interactive behavior11

generator by querying paired data of agents’ perception and actions from the 4D12

reconstruction. ATS enables real-to-sim transfer of agents in their familiar envi-13

ronments given longitudinal video recordings captured with a smartphone over a14

month. We show results on pets (e.g., cat, dog, bunny) and a person, and analyse15

how the observer’s motion and 3D scene affect an agent’s behavior.16

1 Introduction17

Plausible paths

Past Tajectory
Consider the scene of the cat in the living room: where will the cat go18

and how will it move? Since we have seen cats interact with the en-19

vironment and other people many times, we know that cats like to go20

to the couch, often move slowly, and follow humans around, but run21

away if people come too close. Such a predictive model of a phys-22

ical agent is what enables plausible behavior simulation, which is23

essential for embodied intelligence, immersive virtual environments24

and robot planning in safety-critical scenarios [9, 31, 41, 45, 54].25

The key challenge with behavior simulation is how to generate plausible and interactive behavior26

(with respect to the scene and other agents). On one hand, prior works [2, 6, 46] utilize trajectory27

computed by path-planning algorithms or hand-designed logic from game simulators [13, 58]. While28

these approaches benefit from high-quality trajectory data paired with perfect object and scene29

geometries, it is laborious to manually craft simulators that suit the needs of each type of application,30

and the data distribution is fundamentally different from the real world, leading to unnatural motion31

and interactions. On the other hand, vision-based motion capture enables learning plausible behavior32

directly from data for certain scenarios, such as autonomous driving [9], human body motion [21, 36],33

and interaction with objects/scenes [14, 24]. However, due to the dependence on specialized sensor34

(synchronized multi-camera systems, IMUs, pre-scanned objects), such systems does not scale well35

to the full spectrum of natural behavior one may care about, such as behavior of animals, casual36

events, and long-term activities.37
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Figure 1: Learning agent behavior from longitudinal casual video recordings. We answer the
following question: can we simulate the behavior of an agent, by learning from casually-captured
videos of the same agent recorded across a long period of time (e.g., a month)? A) We first reconstruct
videos in 4D (3D & time), which includes the scene, the trajectory of the agent, and the trajectory of
the observer (i.e., camera held by observer). Such individual 4D reconstruction are registered across
time, resulting in a complete 4D reconstructions. B) Then we learn a representation of the agent that
allows for interactive behavior simulation. The behavior model explicitly reasons about goals, paths,
and full body movements conditioned on the agent’s ego-perception and past trajectory. Such agent
representation allows us to simulate novel scenarios through conditioning. For example, conditioned
different observer trajectories, the cat agent choose to walk to the carpet, stays still while quivering
his tail, or hide under the tray stand. Please see videos and results of other agents in the supplement.

Recent advances in differentiable rendering [10, 12, 23, 38, 42, 52, 59, 65] and monocular MoCap [28,38

43, 69, 70] provide a pathway to obtain high-quality models of scenes and agents from monocular39

videos alone. Despite the potential of covering diverse data of agent behavior that match the real-40

world distributions, none of the existing works brings a solution of reconstructing dense 3D structures41

of both the agent and scene, which is crucial for learning agent behavior grounded in real world42

environments. To address this, we present ATS (Agent-to-Sim), a framework for learning simulatable43

agent from casual videos captured over a long time horizon (e.g. 1 month), as shown in Fig. 1.44

The crucial technical challenge is the presence of partial visibility – in each video captured from45

an observer’s viewpoint, only parts of the agent and the environment are visible. How do we infer46

the states of agent and the environment that are not visible? To build a dense 4D spatiotemporal47

reconstruction, our key insight is to leverage the observations from multiple videos by fusing them48

in a canonical 3D space. We introduce a novel coarse-to-fine registration approach that re-purposes49

“foundational” visual features [40] as a neural localizer, which “registers” the camera with respect50

to a canonical structure. This enables capturing interactive behavior data in a casual setup (e.g.,51

with a smartphone), and provides paired training data of perception and action of an agent that is52

grounded in a natural environment (Fig. 2). To learn an interactive behavior model, we condition the53

action of an agent on their ego-perception, and leverage diffusion models [18, 53] to account for the54

multimodal nature of goals and planned trajectories. The resulting framework, ATS, can simulate55

interactive behaviors like those described at the start: agents like pets that leap onto furniture, dart56

quickly across the room, timidly approach nearby users, and run away if approached too quickly. Our57

contributions are summerized as follows:58

1. Agent-to-Sim (ATS) Framework. We introduce a real-to-sim framework, ATS, to learn59

simulators of interactive agent behavior from casually-captured videos. ATS learns plausible60

agent behavior that matches the real-world, and is scalable to diverse scenarios, such as61

animal behavior and casual events.62

2. Environment-Interactive Behavior Simulation. ATS learns behavior that is interactive63

to the environment, including both the observer and 3D scene. We show the first result64

of generating plausible behavior of animals that are reactive to observer’s motion, and are65

aware of the 3D scene.66
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Table 1: Related works in behavior data capture. ATS is the only method that builds a complete
4D reconstruction of both the agents and the environment. Different from prior work that focus on
specific domains, ATS can be applied to capture interactive behavior of both animals and humans
from casual RGBD videos (e.g. captured by a smartphone).
Method Agent Model Scene Model Capture Setup Domain

UCY [30] & ETH [44] Point N.A. Manual Anno. Pedestrian
nuScenes [9] Point Dense 3D Map Manual Anno. Pedestrian, Vehicle
SAMP [14] Parametric Body Furniture & Objects Multi-Camera Human
AMASS [36] Parametric Body N.A. Multi-Camera Human
ActionMap [47] Action Class Sparse 3D Map Egocentric Camera Human
ATS (Ours) Non-parametric Dense 3D Map Casual RGBD Animal, Human

3. Complete 4D Registration & Reconstruction. We present a method to register and67

reconstruct a temporally-evolving 3D scene, whiling accounts for changes in scene layout68

and appearance.69

2 Related Works70

Behavior Prediction and Generation. Behavior prediction has a long history, starting from simple71

physics-based models such as social forces [17] to more sophisticated “planning-based” models that72

cast prediction as reward optimization [26, 76], where the reward is learned via inverse reinforcement73

learning [75]. With the advent of large-scale pedestrian and vehicle motion data collected in the74

navigation and autonomous driving domains [1, 34, 37, 48, 50], generative prediction models such as75

diffusion models have been able to express behavior multi-modality while being easily controlled via76

additional signals such as cost functions [20] or logical formulae [74]. However, to capture plausible77

behavior of agents, these approaches are extremely dependant on high-quality agent trajectory data78

collected “in the wild” with the associated scene context (e.g., 3D map of the scene) [9]. Such data are79

often manually annotated at a bounding box level (Tab. 1), which limits the scale and the level of detail80

they can capture. Beyond autonomous driving setup, existing works for human motion prediction and81

generation [46, 57, 62] have been primarily using simulated data [6] or motion capture data collected82

with multiple synchronized cameras [14, 24, 36]. Such data provide high-quality full body motion83

of human using parametric body models [32], but the interactions with the environment are often84

restricted to a set of pre-defined furnitures and objects [15, 29, 73]. Furthermore, the use of simulated85

data and motion capture data inherently limits the realism of these behavior generators, since real86

agents will behave very differently in their familiar environment. To bridge the gap, we develop87

4D reconstruction method to obtain high-quality trajectories of agents in their natural environment,88

with a simple setup that can be achieved with a smartphone. Close to our setup, ActionMap [47]89

associate daily actions performed by a human agent with an reconstructed 3D environment given90

egocentric videos. However, they focus on actions performed by hand and do not reconstruct the full91

body motion of the agent.92

4D Reconstruction from Monocular Videos. Reconstructing agents and the environment from93

monocular videos is challenging due to its under-constrained nature. Given a monocular video,94

there are multiple different interpretations of the underlying 3D geometry, motion, appearance,95

and lighting [56]. As such, reconstructing agents often require category-specific 3D prior (e.g., 3D96

humans) [11, 27, 32]. Along this line of work, researchers reconstruct 3D humans aligned to the world97

coordinate with the help of SLAM and visual odometry [28, 69, 70]. Sitcoms3D [43] reconstructs98

both the scene and human parameters, while relying on shot changes to determine the scale of the99

scene. However, the use of parametric body models limits the degrees of freedom they can capture,100

and makes it difficult to reconstruct agents from arbitrary categories which do not have a pre-built101

body model, for example, animals. Another line of work avoids using category-specific 3D priors and102

optimizes the shape and deformation parameters of the agent given richer visual signals (e.g., optical103

flow and object silhouette) [61, 64, 65], which is shown to work well for a broad range of category104

including human, animals, and vehicles. TotalRecon [52] further incorporates the background scene105

into the model-free reconstruction pipeline, such that the agent’s motion can be decoupled from the106

camera motion and aligned to the scene space. However, none of the existing methods can reconstruct107

both the agent and the scene in high-quality. In practice, individual videos may not contain sufficient108
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views, leading to inaccurate and incomplete reconstructions. Our method registers both the agent and109

the environment from multiple videos into a shared space, which leverages large-scale data collection110

to build a high-quality agent and scene model.111

3 Approach112

We describe a method to learn interactive behavior models given longitudinal video recordings of an113

agent in the same environment. We first build a spatiotemporal 4D reconstruction, including the agent,114

the scene, and the observer (Sec. 3.1), which is solved by an optimization involving multi-video115

registration (Sec. 3.2). We then train an interactive behavior model of the agent that is interactive116

with the surrounding environment, including the scene and the motion of the observer (Sec. 3.3).117

3.1 4D Representation: Agent, Scene, and Observer118

Given multiple monocular videos, our goal is to build a dense spatiotemporal 4D reconstruction of119

the underlying world, including a deformable agent, a background scene, and a moving observer.120

The task is ill-posed due to partial visibility – from an observer’s viewpoint, the agent and the121

environment are only partially visible. To deal with this problem, one principle approach is geometric122

registration, where structures not visible from one view can be inferred from the other views they123

appear [51]. We build upon this idea to reconstruct a complete spatiotemporal model of an agent and124

their familiar environment by registering videos captured at different time.125

Problem Setup. Specifically, given images from M videos represented by color and feature descrip-126

tors [40], {Ii,ψi}i={1,...,M}, our goal is to find a 4D spatiotemporal representation that explains the127

video, while pixels with the same semantics can be mapped to consistent canonical 3D locations. Our128

representation factorizes the 4D structure into a static component and a time-varying component.129

Static Representation. T = {σ, c,ψ}. We represent the static component as agent fields and scene130

fields. Both define densities, colors, and semantic features in a canonical space,131

(σs, cs,ψs) = MLPscene(X,βi), (1)
132

(σa, ca,ψa) = MLPagent(X), (2)

where X corresponds to a 3D point. To account for structures that change across videos, we modify133

the scene fields to take a per-video latent code βi as input, which allows fitting video-specific details.134

Time-varying Representation. D = {ξ,G,W}. The time-varying component includes a moving135

observer, represented by the camera pose ξt ∈ SE(3), and the motion of an agent, represented by a136

set of rigid bodies, {Gb
t}{b=1,...,25}, referred to as “bones”. Given a time t, the canonical space of137

the agent can be mapped to the camera space by blend-skinning deformation [35, 65],138

Xt = GaX =

(
B∑
b=1

WbGb
t

)
X, (3)

which computes the motion of a point by blending the bone transformations (we do so in the dual139

quaternion space [22, 66] to ensure Ga is a valid rigid transformation). The skinning weights W are140

defined as the probability of a point assigned to each bone.141

Rendering. To turn the 4D representation into images, we sample rays in the camera space, map142

them separately to the canonical space of the scene and the agent with D, and query values (e.g.,143

density, color, feature) from corresponding fields of the scene and the agent. The values are then144

combined before ray integration [39, 52]. Consequently, the rendered pixel values are compared145

against the observations to update the world representation {T,D}.146

Decoupling Agent Motion from Observer. {Gb
t}{b=1,...,25} defines the motion of an agent with147

respect to the observer. Given the observer, we compute the motion of the agent in the scene space as,148

Gb→s
t = ξ−1

t Gb
t , (4)

where the results of extracted trajectories of the agent is shown in Fig. 2149
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Figure 2: Results of 4D reconstruction. Top: reference images and renderings of the reconstructions.
The color on the background represents correspondence. The colored blobs on the agent body
represent B = 25 body parts of the agent (e.g., head is represented by the yellow blob). Bottom:
Bird’s eye view of the reconstructed scene and agent trajectories, registered to the same scene
coordinate. Each colored line represents a unique video sequence where boxes and spheres indicate
the starting and the end location. Please see videos and results on other agents in the supplement.

3.2 Optimization: Multi-Video Registration150

To deal with bad local optima caused by camera poses (Fig. 4), we design a coarse-to-fine registration151

approach that globally aligns the cameras to a shared canonical space with a feed-forward network,152

and then jointly optimizes the 3D structures while adjusting the cameras locally.153

Initialization: Neural Localization. Due to the evolving nature of scenes across a long period154

of time [55], there exist both global layout changes (e.g., furniture get rearranged) and appearance155

changes (e.g., table cloth gets replaced), making it challenging to find accurate geometric corre-156

spondences [4, 5, 49]. With the observation that “foundational” visual features have good 3D and157

viewpoint awareness [3], we adapt them for camera localization. We learn a scene-specific neural158
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localizer that directly regresses the camera pose of an image with respect to a canonical structure,159

ξ = fθ(ψ), (5)

where fθ is a ResNet-18 [16] and ψ is the DINOv2 [40] feature of the input image. We find it to160

be more robust than geometric correspondence, while being more computationally efficient than161

performing pairwise matches [49]. To learn the neural localizer, we first capture a walk-through video162

and build a dense map of the scene. Then we use it to train the neural localizer by randomly sampling163

camera poses G∗ = (R∗, t∗) and rendering images on the fly,164

argmin
θ

∑
j

(
∥ log(RT

0 (θ)R
∗)∥+ ∥t0(θ)− t∗∥22

)
, (6)

where we use geodesic distance [19] for camera rotation and L2 error for camera translation. For the165

agent, we follow BANMo [65] to initialize the root pose {Gb}b=0 with a pre-trained pose network.166

Objective: Feature-metric Alignemnt. Given a coarse initialization of the observer (scene camera)167

and the agent’s root pose, we use both photometric and featuremetric losses to optimize {T,D},168

min
T,D

∑
t

(
∥It −RI(t;T,D)∥22 + ∥ψt −Rψ(t;T,D)∥22

)
+ Lreg(T,D), (7)

where R(·) is the rendering function described in Sec 3.1. In contrast to prior works, using feature-169

metric errors makes the optimization robust to change of lighting, appearance, and helps find accurate170

alignment over multiple videos (Fig. 4). The regularization term includes eikonal loss, silhouette loss,171

flow loss and depth loss similar to prior works [52, 65].172

Scene Annealing. To encourage the reconstructed scene across videos to share a similar structure, we173

randomly swap the code β of two videos during optimization, and gradually decrease the probability174

of swaps from P = 1.0 → 0.05 over the course of optimization. This regularizes the model to175

effectively share information across all videos, and keeps video-specific details (Fig. 4).176

3.3 Interactive Behavior Generation177

Now that we build a complete 4D reconstruction from multiple videos, we can extract a scene structure178

T, and M trajectories of the agent {Gt}t={T1,...,TM} as well as the observer {ξt}t={T1,...,TM}179

grounded in the environment. We aim to learn an agent that is interactive with the world.180

Hierarchical Behavior Representation. We model the behavior of an agent by bone transformations181

in the scene space G ∈ R6B×T∗
over a fixed time horizon T ∗ = 5.6s, . We design a hierarchical182

model as shown in Fig. 3. The body motion G is conditioned on path P ∈ R3×T∗
, which is further183

conditioned on goal Z ∈ R3. Such decomposition allows agents to react by predicting goals with low184

latency185

Goal Generation. We represent a multi-modal distribution of goals Z ∈ R3 by its score function186

s(Z, σ) ∈ R3 [18, 53]. The score function is implemented as a coordinate MLP [38],187

s(Z;σ) = MLPθZ(Z, σ), (8)

trained by predicting the amount of noise ϵ added to the clean goal, given the corrupted goal Z+ ϵ:188

argmin
θZ

EZEσ∼q(σ)Eϵ∼N (0,σ2I) ∥MLPθZ(Z + ϵ;σ)− ϵ∥22 . (9)

Compared to methods directly learning the multi-modal distribution [8, 25], diffusion models are189

easy to train and can be used to generate diverse and high-quality samples [18, 53].190

Path Generation with Control. To guide path generation with goals, we represent its score as191

s(P;σ) = ControlUNetθP(P,Z, σ), (10)

where the Control UNet contains two standard UNets with the same architecture [72], one performing192

unconditional generation taking (P, σ) as input, another injecting goal conditions densely into the193

neural network blocks of the first one taking (Z, σ) as inputs. Compared to concatenating the goal194

condition to the noise latent, this encourages close alignment between the goal and the path [62]. We195

apply the same architecture to control pose generation with paths,196

s(G;σ) = ControlUNetθG(G,P, σ). (11)
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Figure 3: Pipeline for behavior generation. We first encode egocentric information into a perception
code ω and then generate full body motion in a hierarchical fashion. We start by generating goals Z
with low latency, and then generate a path P and body motion G conditioned on the previous node.
Each node is represented by the gradient of its log distribution, trained with the denoising objectives
(Eq. 9). Given G, the dense deformation of an agent can be computed via blend skinning (Eq. 3).

Compared to concatenation, we observe better alignment between the path and the full body pose197

using the Control Unet.198

.199

Ego-Perception Encoding. To generate plausible interactive behaviors, we encode the world200

egocentrically perceived by the agent, and use it to condition the behavior generation. We use the201

reconstructed environment T and the observer ξ as a proxy of the world, and transform them to the202

egocentric coordinate of the agent,203

ξs→a = G−1
b=0ξ, Ts→a = G−1

b=0T (12)

Transforming the world to the egocentric coordinates avoids over-fitting to specific locations of the204

scene (Tab. 2). To encode ego-perception of the scene, we querying feature values from ψs with a 3D205

grid around the agent and extract a latent scene representation,206

ωs = ResNet3Dθψ (ψs). (13)

where ResNet3Dθϕ is a 3D ConvNet with residual connections, and ωs ∈ R64 represents the scene207

perceived by the agent. We encode the observer’s motion in the past T ′ = 0.8s seconds with208

ωo = MLPθo(ξ
s→a), (14)

where ωo ∈ R64 represents the observer perceived by the agent. Accounting for the external factors209

from the “world” enables interactive behavior generation, where the motion of an agent follows the210

environment constraints and is influenced by the trajectory of the observer (Fig. 5).211

History Encoding. We additionally encode the past motion of the agent in T ′ seconds,212

ωp = MLPθp(G
s→a
b=0 ). (15)

By conditioning on the past motion, we can generate long sequences by chaining individual ones.213

4 Experiments214

Dataset. We collect the a dataset that emphasizes the casual interactions of an agent with their215

familiar environment and the observer. It contains iPhone-captured RGBD video collections of 4216

types of agents, including 26 videos of a cat, 3 videos of a dog, 2 videos of a bunny, and 2 videos of a217

human. The time span of the video capture ranges from 1 day to a month, and each video contains 30218

seconds to 2 minutes of content. The dataset is curated to contain diverse motion of agents, including219

walking, lying down, eating, as well as diverse interaction patterns with the environment, including220

following the camera, sitting on a coach, etc. Please refer to the supplement for more details.221

4.1 4D Reconstruction of Agent & Scene222

Implementation Details. We extract frames from the videos at 10 FPS, and use off-the-shelf models223

to produce augmented image measurements, including object segmentation [68], optical flow [63],224
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Our Method TotalRecon (Multi-video) W/o NL W/o FBA W/o Annealing

Figure 4: Comparison on multi-video scene reconstruction. We show a top-down visualization
of the reconstructed scene using the bunny dataset. Compared to TotalRecon that does not register
multiple videos, ATS produces higher-quality scene reconstruction. Neural localizer and featuremetric
losses are shown important for camera registration. Scene annealing is important for reconstructing
high-quality scenes from limited views in a video.

DINOv2 features [40]. We use AdamW to first optimize the environment with featuremetric loss for225

30k iterations, and then jointly optimize the environment and agent for another 30k iterations with a226

combination of optical flow, silouette, and featuremetric losses. Optimization takes roughly 24 hours.227

8 A100 GPUs used to optimize 26 videos (for the cat data), and 1 A100 GPU is used in a 2-3 video228

setup (for dog, bunny, and human data).229

Results. We run 4D reconstruction on all video sequences and report the results qualitatively. A visual230

comparison on scene registration is shown in Fig. 2. Without the ability to register multiple videos,231

TotalRecon produces protruded and misaligned structures (as pointed by the red arrow). In contrast,232

our method reconstructs a single coherent scene. With featuremetric alignment (FBA) alone but233

without a good camera initialization from neural localization (NL), our method produces inaccurate234

reconstruction due to global misalignment in cameras poses. Removing FBA while keeping NL,235

the method fails to accurately localize the cameras and produces noisy scene structures. Finally,236

removing scene annealing procures lower quality scene structures due to lack of training views. A237

visual comparison with TotalRecon (Single Video) is shown in Fig. 8, where we show that multiple238

videos helps reconstructing a higher-quality agent, and a more complete scene.239

4.2 Interactive Behavior Prediction240

Dataset. We use the cat dataset for quantitative evaluation, where the data are split into a training set241

of 22 videos and a validation set of 4 videos. The validation set is representative of three dominant242

motion patterns of the agent: (1) trying to engage with the observer, (2) exploring the space and (3)243

performing activities while not paying attention to the observer.244

Implementation Details. To train the behavior model, we slice the reconstructed trajectory in245

the training set into overlapping window of 6.4s, resulting in 12k data samples. We use AdamW246

to optimize the parameters of the scores functions {θZ, θP, θG} and the ego-perception encoders247

{θψ, θo, θp} for 120k steps with batch size 1024. Training takes 10 hours on a single A100 GPU.248

Metrics. The behavior of an agent can be evaluated along multiple axes, and we focus on goal, path,249

and body motion prediction. For goal prediction, we use a combination of displacement error (DE)250

and minimum displacement error (minDE) [7]. The evaluation asks the model to produce K=64251

samples. DE computes the avarage distance of the samples to the ground-truth, and minDE finds the252

one closest to the ground-truth to compute the distance. For path and body motion prediction, we253

use average displacement error (ADE) and minimum average displacement error (minADE), which254

are similar to goal prediction, but additionally averages the distance over path and joint locations255

before taking the min. When evaluating path prediction and body motion prediction, the output is256

conditioned on the ground-truth goal and path respectively.257

Comparisons. We re-purpose related methods and adapt them to our new setup of interactive258

behavior prediction of animal agents. The quantitative results are shown in Tab. 2. To predict the goal259

of an agent, classic methods build statistical models of how likely an agent visits a spatial location of260

the scene, referred to as location prior [26, 76]. Given the extracted 3D trajectories of an agent in the261

egocentric coordinate, we build a 3D preference map over 3D locations as a histogram, which can262

be turned into probabilities and used to sample goals. Since this method does not take into account263
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Table 2: Evaluation of interactive behavior prediction. We separately evaluate goal, path, and full
body motion prediction. Metrics are displacement errors (DE) in meters and the lower the better.
FaF [33] is re-purposed and re-trained with our data.

Method Goal: minDE Goal: DE Path: minADE Path: ADE Body: minADE Body: ADE

Location prior [76] 0.575 2.134 N.A. N.A. N.A. N.A.
FaF [33] N.A. 1.200 N.A. 0.057 N.A. 0.265
ATS (Ours) 0.395 1.299 0.006 0.007 0.226 0.234

w/o observer ωo 0.525 1.586 0.006 0.007 0.225 0.234
w/o scene ωs 0.702 1.058 0.006 0.007 0.225 0.234
w/o egocentric 0.639 1.424 0.025 0.034 0.212 0.222

{User, Past, Environment} {Past, Environment} {Environment} Unconditional

Infeasible region 
(e.g., gap; 

underground)

User trajectory

Past trajectory

Sampled goals

Frontal view

Bird’s eye view

Figure 5: Analysis of conditioning signals. We show results of removing one conditioning signal
at a time. Removing observer conditioning and past trajectory conditioning makes the sampled
goals more spread out (e.g., regions both in front of the agent and behind the agent); removing the
environment conditioning introduces infeasible goals that penetrate the ground and the walls.

of the scene and the observer, it fails to accurately predict the goal. We then re-purpose FaF [33]264

(Fast-and-Furious), a data-driven approach for motion forecasting to our task. FaF takes the same265

input as ATS but regresses the goal, path, and body poses. It produces worse results than ATS for266

all metrics since directly regressing the target treats the underlying distribution as a unit-variance267

Gaussian and fails to account for the multi-modal nature of agent behaviors.268

Analysing Interactions. We analyse the agent’s interactions with the environment and the observer269

by removing the conditioning signals and study their influence on behavior prediction. In Fig. 5, we270

show that by gradually removing conditional signals, the generated goal samples become more spread271

out. In Tab. 2, we drop one of the conditioning signals at a time. Dropping the observer conditioning272

increases the error in goal prediction, indicating observer’s trajectory is helpful goal prediction.273

Dropping the environment conditioning produces worse results on goal prediction (minDE: 0.395 vs274

0.702) as well. Surprisingly, it does not affect path prediction. We posit that the scenarios in the test275

set are too simple. Conditioned on ground-turth goals, it performs well even without environment276

conditioning. Finally learning behavior generation in the world coordinates performs worse for all277

metrics since it over-fits to specific locations in the scene.278

5 Conclusion279

We have presented a framework for learning interactive behavior of agents grounded in natural280

environments. To achieve this, we turn multiple casually-captured video recordings into complete 4D281

reconstructions including the agent, the environment, and the observer. Such data collected over a282

long time period allows us to learn a behavior model of the agent that is reactive to the observer and283

respects the environment constraints. We validate our design choices on casual video collections, and284

show better results than prior work for 4D reconstruction and interactive behavior prediction.285
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A Additional Implementation Details483

Model Architecture. The score function of the goal is implemented as 6-layer MLP with hidden484

size 128. The the score functions of the paths and body motions are implemented as 1D UNets485

taken from MDM [57]. The sampling frequency is set to be 0.1s, resulting a sequence length of 56.486

The environment encoder is implemented as a 6-layer 3D ConvNet with kernel size 3 and channel487

dimension 128. The observer encoder and history encoder are implemented as a 3-layer MLP with488

hidden size 128.489

We use a linear noise schedule at training time and 50 denoising steps. At test time, each goal490

denoising step takes 2ms and each path/body denoising step takes 9ms on a GeForce RTX 3090 GPU.491

Data Collection. We collect RGBD videos using an iPhone, similar to TotalRecon [52]. To train492

the neural localizer, we use Polycam to take the walkthrough video and extract a textured mesh. For493

behavior capture, we use Record3D App to record videos and extract color images and depth images.494

B Additional Results495

Histogram of Agent / Observer Visitation. We show final camera and agent registration to the496

canonical scene in Fig. 6. The registered 3D trajectories provides statistics of agent’s and user’s497

preference over the environment.498

Agent trajectories

Agent preference (visitation) User preference (visitation)

User trajectories

Low                         High Low                         High

Color: shot id

Figure 6: Given the 3D trajectories of the agent and the user accumulated over time (top), one could
compute their preference represented by 3D heatmaps (bottom). Note the high agent preference over
table and sofa.

Varying Observer’s Motion. We find that various interactive behaviors can be generated by499

conditioning the model on different observer motion. The results are shown in Fig. 7.500

Comparison to TotalRecon. In the main paper, we compare to TotalRecon on scene reconstruction501

by providing it multiple videos. Here, we include additional comparison in their the original single502

video setup. We find that TotalRecon fails to build a good agent model, or a complete scene model503

given limited observations, while our method can leverage multiple videos as inputs to build a better504

agent and scene model. The results are shown in Fig. 8.505

15



User trajectory

Goals

Planned Paths

Past trajectory

Goals

Goals

Goals

Planned Paths

Planned Paths

Planned Paths

User trajectory

User trajectory
User trajectory

Early                   Late

Figure 7: Interactive behavior simulation with user conditioning. By changing the trajectory of the
user, one could influence the behavior of the agent. Given different control inputs, the agent may
follow the user or run away from the user.

TotalRecon

Reference image

Distortion
Incomplete

No distortion
Complete

Complete shape Good alignment Missing limbs Misaligned limbs

Ours

Figure 8: Qualitative comparison with TotalRecon [52] on 4D reconstruction. Top: reconstruction
of the agent at at specific frame. Total-recon produces shapes with missing limbs and bone trans-
formations that are misaligned with the shape, while our method produces complete shapes and
good alignment. Bottom: reconstruction of the environment. TotalRecon produces distorted and
incomplete geometry (due to lack of observations from a single video), while our method produces
an accurate and complete environment reconstruction.
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C Limitations and Future Works506

High-level Behavior. The current ATS model is trained with time-horizon of T ∗ = 6.4 seconds.507

We observe that the model only learns mid-level behaviors of an agent (e.g., trying to move to a508

destination; staying at a location; walking around). We hope incorporating a memory module and509

training with longer time horizon will enable learning higher-level behaviors of an agent.510

Scaling-up. As indicated by the experimental results, the goals sampled from ATS may fail to cover511

the actual goal when evaluated on the (unseen) test data. This raises safety concerns when using512

ATS for the prediction task (e.g., predicting the behavior of pedestrains in autonomous driving). One513

potential solution of improving the generalization ability is to collect more diverse behavior data514

from in the wild videos, or leverage “large” video priors trained on internet-scale videos.515

Multiple Agents. We show results of learning behavior models of a single agent, but our method for516

4D reconstruction and interactive goal-driven behavior modeling is not limited to a single agent. We517

leave learning multi-agent behavior simulation from videos as future work.518

Physical Interactions. Our method reconstructs and generates the kinematics of an agent, which519

may produce physically-implausible results (e.g., penetration with the ground and foot sliding). One520

promising way to deal with this problem is to add physics constraints to the reconstruction and motion521

generation [67, 71].522

Environment Reconstruction. To build a complete reconstruction of the environment, we register523

multiple videos to a shared canonical space. However, the transient structures (e.g., cushion that524

can be moved over time) may not be reconstructed well due to lack of observations. One potential525

solution of reconstructing these transient structures is to combine generative image priors with the526

reconstruction pipeline [60].527

D Social Impact528

Our method is able to learn interactive behavior from videos, which could help build simulators for529

autonomous driving, gaming, and movie applications. It is also capable of building personalized530

behavior models from casually collected video data, which can benefit users who do not have access531

to a motion capture studio. On the negative side, the behavior generation model could be used as532

“deepfake” and poses threats to user’s privacy and social security.533
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NeurIPS Paper Checklist534

The checklist is designed to encourage best practices for responsible machine learning research,535

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove536

the checklist: The papers not including the checklist will be desk rejected. The checklist should537

follow the references and follow the (optional) supplemental material. The checklist does NOT count538

towards the page limit.539

Please read the checklist guidelines carefully for information on how to answer these questions. For540

each question in the checklist:541

• You should answer [Yes] , [No] , or [NA] .542

• [NA] means either that the question is Not Applicable for that particular paper or the543

relevant information is Not Available.544

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).545

The checklist answers are an integral part of your paper submission. They are visible to the546

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it547

(after eventual revisions) with the final version of your paper, and its final version will be published548

with the paper.549

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.550

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a551

proper justification is given (e.g., "error bars are not reported because it would be too computationally552

expensive" or "we were unable to find the license for the dataset we used"). In general, answering553

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we554

acknowledge that the true answer is often more nuanced, so please just use your best judgment and555

write a justification to elaborate. All supporting evidence can appear either in the main paper or the556

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification557

please point to the section(s) where related material for the question can be found.558

IMPORTANT, please:559

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",560

• Keep the checklist subsection headings, questions/answers and guidelines below.561

• Do not modify the questions and only use the provided macros for your answers.562

1. Claims563

Question: Do the main claims made in the abstract and introduction accurately reflect the564

paper’s contributions and scope?565

Answer: [Yes]566

Justification: The main claims made in the abstract and introduction accurately reflect the567

paper’s contributions and scope.568

Guidelines:569

• The answer NA means that the abstract and introduction do not include the claims570

made in the paper.571

• The abstract and/or introduction should clearly state the claims made, including the572

contributions made in the paper and important assumptions and limitations. A No or573

NA answer to this question will not be perceived well by the reviewers.574

• The claims made should match theoretical and experimental results, and reflect how575

much the results can be expected to generalize to other settings.576

• It is fine to include aspirational goals as motivation as long as it is clear that these goals577

are not attained by the paper.578

2. Limitations579

Question: Does the paper discuss the limitations of the work performed by the authors?580

Answer: [Yes]581
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Justification: The paper discusses the limitations of the work performed by the authors.582

Guidelines:583

• The answer NA means that the paper has no limitation while the answer No means that584

the paper has limitations, but those are not discussed in the paper.585

• The authors are encouraged to create a separate "Limitations" section in their paper.586

• The paper should point out any strong assumptions and how robust the results are to587

violations of these assumptions (e.g., independence assumptions, noiseless settings,588

model well-specification, asymptotic approximations only holding locally). The authors589

should reflect on how these assumptions might be violated in practice and what the590

implications would be.591

• The authors should reflect on the scope of the claims made, e.g., if the approach was592

only tested on a few datasets or with a few runs. In general, empirical results often593

depend on implicit assumptions, which should be articulated.594

• The authors should reflect on the factors that influence the performance of the approach.595

For example, a facial recognition algorithm may perform poorly when image resolution596

is low or images are taken in low lighting. Or a speech-to-text system might not be597

used reliably to provide closed captions for online lectures because it fails to handle598

technical jargon.599

• The authors should discuss the computational efficiency of the proposed algorithms600

and how they scale with dataset size.601

• If applicable, the authors should discuss possible limitations of their approach to602

address problems of privacy and fairness.603

• While the authors might fear that complete honesty about limitations might be used by604

reviewers as grounds for rejection, a worse outcome might be that reviewers discover605

limitations that aren’t acknowledged in the paper. The authors should use their best606

judgment and recognize that individual actions in favor of transparency play an impor-607

tant role in developing norms that preserve the integrity of the community. Reviewers608

will be specifically instructed to not penalize honesty concerning limitations.609

3. Theory Assumptions and Proofs610

Question: For each theoretical result, does the paper provide the full set of assumptions and611

a complete (and correct) proof?612

Answer: [NA]613

Justification: The paper does not include theoretical results.614

Guidelines:615

• The answer NA means that the paper does not include theoretical results.616

• All the theorems, formulas, and proofs in the paper should be numbered and cross-617

referenced.618

• All assumptions should be clearly stated or referenced in the statement of any theorems.619

• The proofs can either appear in the main paper or the supplemental material, but if620

they appear in the supplemental material, the authors are encouraged to provide a short621

proof sketch to provide intuition.622

• Inversely, any informal proof provided in the core of the paper should be complemented623

by formal proofs provided in appendix or supplemental material.624

• Theorems and Lemmas that the proof relies upon should be properly referenced.625

4. Experimental Result Reproducibility626

Question: Does the paper fully disclose all the information needed to reproduce the main ex-627

perimental results of the paper to the extent that it affects the main claims and/or conclusions628

of the paper (regardless of whether the code and data are provided or not)?629

Answer: [Yes]630

Justification: The authors tried their best to disclose the information needed to reproduce631

the experiments.632

Guidelines:633
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• The answer NA means that the paper does not include experiments.634

• If the paper includes experiments, a No answer to this question will not be perceived635

well by the reviewers: Making the paper reproducible is important, regardless of636

whether the code and data are provided or not.637

• If the contribution is a dataset and/or model, the authors should describe the steps taken638

to make their results reproducible or verifiable.639

• Depending on the contribution, reproducibility can be accomplished in various ways.640

For example, if the contribution is a novel architecture, describing the architecture fully641

might suffice, or if the contribution is a specific model and empirical evaluation, it may642

be necessary to either make it possible for others to replicate the model with the same643

dataset, or provide access to the model. In general. releasing code and data is often644

one good way to accomplish this, but reproducibility can also be provided via detailed645

instructions for how to replicate the results, access to a hosted model (e.g., in the case646

of a large language model), releasing of a model checkpoint, or other means that are647

appropriate to the research performed.648

• While NeurIPS does not require releasing code, the conference does require all submis-649

sions to provide some reasonable avenue for reproducibility, which may depend on the650

nature of the contribution. For example651

(a) If the contribution is primarily a new algorithm, the paper should make it clear how652

to reproduce that algorithm.653

(b) If the contribution is primarily a new model architecture, the paper should describe654

the architecture clearly and fully.655

(c) If the contribution is a new model (e.g., a large language model), then there should656

either be a way to access this model for reproducing the results or a way to reproduce657

the model (e.g., with an open-source dataset or instructions for how to construct658

the dataset).659

(d) We recognize that reproducibility may be tricky in some cases, in which case660

authors are welcome to describe the particular way they provide for reproducibility.661

In the case of closed-source models, it may be that access to the model is limited in662

some way (e.g., to registered users), but it should be possible for other researchers663

to have some path to reproducing or verifying the results.664

5. Open access to data and code665

Question: Does the paper provide open access to the data and code, with sufficient instruc-666

tions to faithfully reproduce the main experimental results, as described in supplemental667

material?668

Answer: [No]669

Justification: The code will be released once we put it in a better shape.670

Guidelines:671

• The answer NA means that paper does not include experiments requiring code.672

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/673

public/guides/CodeSubmissionPolicy) for more details.674

• While we encourage the release of code and data, we understand that this might not be675

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not676

including code, unless this is central to the contribution (e.g., for a new open-source677

benchmark).678

• The instructions should contain the exact command and environment needed to run to679

reproduce the results. See the NeurIPS code and data submission guidelines (https:680

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.681

• The authors should provide instructions on data access and preparation, including how682

to access the raw data, preprocessed data, intermediate data, and generated data, etc.683

• The authors should provide scripts to reproduce all experimental results for the new684

proposed method and baselines. If only a subset of experiments are reproducible, they685

should state which ones are omitted from the script and why.686

• At submission time, to preserve anonymity, the authors should release anonymized687

versions (if applicable).688
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• Providing as much information as possible in supplemental material (appended to the689

paper) is recommended, but including URLs to data and code is permitted.690

6. Experimental Setting/Details691

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-692

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the693

results?694

Answer: [Yes]695

Justification: The authors tried their best to specify all the training and test details.696

Guidelines:697

• The answer NA means that the paper does not include experiments.698

• The experimental setting should be presented in the core of the paper to a level of detail699

that is necessary to appreciate the results and make sense of them.700

• The full details can be provided either with the code, in appendix, or as supplemental701

material.702

7. Experiment Statistical Significance703

Question: Does the paper report error bars suitably and correctly defined or other appropriate704

information about the statistical significance of the experiments?705

Answer: [No]706

Justification: The results currently do not have error bars, but we will try adding them later.707

Based on empirical evidence of running the experiments, we think it will not affect the708

conclusion.709

Guidelines:710

• The answer NA means that the paper does not include experiments.711

• The authors should answer "Yes" if the results are accompanied by error bars, confi-712

dence intervals, or statistical significance tests, at least for the experiments that support713

the main claims of the paper.714

• The factors of variability that the error bars are capturing should be clearly stated (for715

example, train/test split, initialization, random drawing of some parameter, or overall716

run with given experimental conditions).717

• The method for calculating the error bars should be explained (closed form formula,718

call to a library function, bootstrap, etc.)719

• The assumptions made should be given (e.g., Normally distributed errors).720

• It should be clear whether the error bar is the standard deviation or the standard error721

of the mean.722

• It is OK to report 1-sigma error bars, but one should state it. The authors should723

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis724

of Normality of errors is not verified.725

• For asymmetric distributions, the authors should be careful not to show in tables or726

figures symmetric error bars that would yield results that are out of range (e.g. negative727

error rates).728

• If error bars are reported in tables or plots, The authors should explain in the text how729

they were calculated and reference the corresponding figures or tables in the text.730

8. Experiments Compute Resources731

Question: For each experiment, does the paper provide sufficient information on the com-732

puter resources (type of compute workers, memory, time of execution) needed to reproduce733

the experiments?734

Answer: [Yes]735

Justification: The paper provides information about computer resources.736

Guidelines:737

• The answer NA means that the paper does not include experiments.738
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,739

or cloud provider, including relevant memory and storage.740

• The paper should provide the amount of compute required for each of the individual741

experimental runs as well as estimate the total compute.742

• The paper should disclose whether the full research project required more compute743

than the experiments reported in the paper (e.g., preliminary or failed experiments that744

didn’t make it into the paper).745

9. Code Of Ethics746

Question: Does the research conducted in the paper conform, in every respect, with the747

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?748

Answer: [Yes]749

Justification: The authors have reviewed the code of ethics and think the paper follows the750

guideline.751

Guidelines:752

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.753

• If the authors answer No, they should explain the special circumstances that require a754

deviation from the Code of Ethics.755

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-756

eration due to laws or regulations in their jurisdiction).757

10. Broader Impacts758

Question: Does the paper discuss both potential positive societal impacts and negative759

societal impacts of the work performed?760

Answer: [Yes]761

Justification: The paper discussed potential positive and negative impact.762

Guidelines:763

• The answer NA means that there is no societal impact of the work performed.764

• If the authors answer NA or No, they should explain why their work has no societal765

impact or why the paper does not address societal impact.766

• Examples of negative societal impacts include potential malicious or unintended uses767

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations768

(e.g., deployment of technologies that could make decisions that unfairly impact specific769

groups), privacy considerations, and security considerations.770

• The conference expects that many papers will be foundational research and not tied771

to particular applications, let alone deployments. However, if there is a direct path to772

any negative applications, the authors should point it out. For example, it is legitimate773

to point out that an improvement in the quality of generative models could be used to774

generate deepfakes for disinformation. On the other hand, it is not needed to point out775

that a generic algorithm for optimizing neural networks could enable people to train776

models that generate Deepfakes faster.777

• The authors should consider possible harms that could arise when the technology is778

being used as intended and functioning correctly, harms that could arise when the779

technology is being used as intended but gives incorrect results, and harms following780

from (intentional or unintentional) misuse of the technology.781

• If there are negative societal impacts, the authors could also discuss possible mitigation782

strategies (e.g., gated release of models, providing defenses in addition to attacks,783

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from784

feedback over time, improving the efficiency and accessibility of ML).785

11. Safeguards786

Question: Does the paper describe safeguards that have been put in place for responsible787

release of data or models that have a high risk for misuse (e.g., pretrained language models,788

image generators, or scraped datasets)?789

Answer: [NA]790
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Justification: The paper poses no such risks.791

Guidelines:792

• The answer NA means that the paper poses no such risks.793

• Released models that have a high risk for misuse or dual-use should be released with794

necessary safeguards to allow for controlled use of the model, for example by requiring795

that users adhere to usage guidelines or restrictions to access the model or implementing796

safety filters.797

• Datasets that have been scraped from the Internet could pose safety risks. The authors798

should describe how they avoided releasing unsafe images.799

• We recognize that providing effective safeguards is challenging, and many papers do800

not require this, but we encourage authors to take this into account and make a best801

faith effort.802

12. Licenses for existing assets803

Question: Are the creators or original owners of assets (e.g., code, data, models), used in804

the paper, properly credited and are the license and terms of use explicitly mentioned and805

properly respected?806

Answer: [NA]807

Justification: Thee paper does not use existing assets.808

Guidelines:809

• The answer NA means that the paper does not use existing assets.810

• The authors should cite the original paper that produced the code package or dataset.811

• The authors should state which version of the asset is used and, if possible, include a812

URL.813

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.814

• For scraped data from a particular source (e.g., website), the copyright and terms of815

service of that source should be provided.816

• If assets are released, the license, copyright information, and terms of use in the817

package should be provided. For popular datasets, paperswithcode.com/datasets818

has curated licenses for some datasets. Their licensing guide can help determine the819

license of a dataset.820

• For existing datasets that are re-packaged, both the original license and the license of821

the derived asset (if it has changed) should be provided.822

• If this information is not available online, the authors are encouraged to reach out to823

the asset’s creators.824

13. New Assets825

Question: Are new assets introduced in the paper well documented and is the documentation826

provided alongside the assets?827

Answer: [Yes]828

Justification: The paper discussed the new assets.829

Guidelines:830

• The answer NA means that the paper does not release new assets.831

• Researchers should communicate the details of the dataset/code/model as part of their832

submissions via structured templates. This includes details about training, license,833

limitations, etc.834

• The paper should discuss whether and how consent was obtained from people whose835

asset is used.836

• At submission time, remember to anonymize your assets (if applicable). You can either837

create an anonymized URL or include an anonymized zip file.838

14. Crowdsourcing and Research with Human Subjects839

Question: For crowdsourcing experiments and research with human subjects, does the paper840

include the full text of instructions given to participants and screenshots, if applicable, as841

well as details about compensation (if any)?842
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Answer: [NA]843

Justification: The paper does not deal with crowdsourcing or external human subjects.844

Guidelines:845

• The answer NA means that the paper does not involve crowdsourcing nor research with846

human subjects.847

• Including this information in the supplemental material is fine, but if the main contribu-848

tion of the paper involves human subjects, then as much detail as possible should be849

included in the main paper.850

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,851

or other labor should be paid at least the minimum wage in the country of the data852

collector.853

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human854

Subjects855

Question: Does the paper describe potential risks incurred by study participants, whether856

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)857

approvals (or an equivalent approval/review based on the requirements of your country or858

institution) were obtained?859

Answer: [NA]860

Justification: The paper does not deal with crowdsourcing or external human subjects.861

Guidelines:862

• The answer NA means that the paper does not involve crowdsourcing nor research with863

human subjects.864

• Depending on the country in which research is conducted, IRB approval (or equivalent)865

may be required for any human subjects research. If you obtained IRB approval, you866

should clearly state this in the paper.867

• We recognize that the procedures for this may vary significantly between institutions868

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the869

guidelines for their institution.870

• For initial submissions, do not include any information that would break anonymity (if871

applicable), such as the institution conducting the review.872
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