
Under review as submission to TMLR

SANIA∗: Polyak-type Optimization Framework Leads to Scale
Invariant Stochastic Algorithms

Anonymous authors
Paper under double-blind review

Abstract

Adaptive optimization methods are widely recognized as among the most popular approaches
for training Deep Neural Networks (DNNs). Techniques such as Adam, AdaGrad, and
AdaHessian utilize a preconditioner that modifies the search direction by incorporating
information about the curvature of the objective function. However, despite their adaptive
characteristics, these methods still require manual fine-tuning of the step-size. This, in
turn, impacts the time required to solve a particular problem. This paper presents an
optimization framework named SANIA to tackle these challenges. Beyond eliminating
the need for manual step-size hyperparameter settings, SANIA incorporates techniques to
address poorly scaled or ill-conditioned problems. We also explore several preconditioning
methods, including Hutchinson’s method, which approximates the Hessian diagonal of the loss
function. We conclude with an extensive empirical examination of the proposed techniques
across classification tasks, covering both convex and non-convex contexts.

1 Introduction

Machine Learning (ML), especially Deep Neural Networks (DNNs), has emerged as a transformative tool,
setting the stage for unprecedented advances across many disciplines, including computer vision Krizhevsky
et al. (2012); Simonyan & Zisserman (2014); He et al. (2016) and natural language processing Wolf et al.
(2020); Mikolov et al. (2013); Devlin et al. (2018); Radford et al. (2018), as well as science Xie & Grossman
(2018); Gómez-Bombarelli et al. (2018); Kaliyev et al. and engineering Bello et al. (2016); LeCun et al. (1990);
Eshkevari et al. (2021); Gulgec et al. (2020; 2017) to name a few.
The enormous potential of these models is enabled through the efficacy of the optimization methods that
train them. In the domain of ML the training task can be expressed as solving the following problem

min
w∈Rd

f(w) := 1
n

n∑
i=1

fi(w), (1)

where w ∈ Rd represents the weight parameter, and each fi : Rd → R is a sufficiently smooth function. To
provide a practical context, consider a dataset denoted as {(xi, yi)}n

i=1, where xi ∈ Rd is the data sample
and yi ∈ R represents the label corresponding to that sample. If fi(w) = 1

2 (xi
Tw − yi)2, this optimization

problem gives rise to the well-known least squares problem. Similarly, if fi(w) = log(1 + e−yixi
T w), we get

logistic regression problem.

Stochastic Gradient Descent. To address problem equation 1, one of the fundamental techniques employed
is Stochastic Gradient Descent (SGD) Robbins & Monro (1951); Polyak (1990); Polyak & Juditsky (1992);
Nemirovski et al. (2009); Bottou et al. (2018). This method iteratively updates the weight parameter w
according to the following scheme:

wt+1 = wt − γt∇fi(wt), (2)

∗SANIA is an abbreviation formed from letters of working title of this paper: ScAliNg Invariant Algorithm.

1

Under review as submission to TMLR

where γt is the step-size schedule and i ⊂ [n] := {1, 2, . . . , n} is chosen uniformly as random. Unfortunately,
the optimal step-size1 schedule often relies on problem-specific parameters, such as the Lipschitz-smoothness
constant and the level of stochastic gradient noise, which are frequently not accessible. Consequently, achieving
an optimal step-size typically demands a substantial amount of tuning, which can be quite costly in practical
applications. Numerous methodologies have been developed to tackle this issue. One of the first approaches
that reduces the number of parameters to tune is the AdaGrad method by Duchi et al. (2011); Li & Orabona
(2019); Ward et al. (2020). An additional challenge arises from the fact that using the same learning rate for
each feature j ∈ [d] might not yield the best performance. To address this, diagonal preconditioning techniques
have been employed in the SGD setting by methods such as AdaGrad by Duchi et al. (2011), RMSProp
by Tieleman et al. (2012), Adam by Kingma & Ba (2015), AMSGrad by Reddi et al. (2018), AdamW by
Loshchilov & Hutter (2019), AdaHessian by Yao et al. (2021), AdaDelta by Zeiler (2012), and OASIS by
Jahani et al. (2022). However, all of these methods still require a considerable degree of parameter tuning to
achieve optimal performance. Another approach is associated with parameter-free regret minimization for
online learning problems, as discussed in various papers Mcmahan & Streeter (2012); McMahan & Orabona
(2014); Orabona & Pál (2016); Orabona & Tommasi (2017); Orabona (2019); Carmon & Hinder (2022); Ivgi
et al. (2023); Defazio & Mishchenko (2023); Cutkosky et al. (2023); Mishchenko & Defazio (2023). Finally, in
our paper, we explore the Stochastic Polyak step-size approach as an adaptive parameter-free method.

Stochastic Polyak step-size (SPS) Methods. Polyak step-size method was first proposed by Polyak
(1969; 1987) for non-smooth problems. Recently, stochastic Polyak step-size was proposed by Oberman
& Prazeres (2019); Berrada et al. (2020); Loizou et al. (2021); Gower et al. (2021); Orvieto et al. (2022).
Subsequently, lots of variants of SPS have emerged, such as mSPS by D’Orazio et al. (2021) and AdaSLS by
Jiang & Stich (2023). To further relax the requirements for interpolation condition in SPS, many attempts
have been made by Gower et al. (2022); Orvieto et al. (2022); Garrigos et al. (2023); Schaipp et al. (2023). A
variant of second-order expansion for SPS was presented by Li et al. (2023). Next we describe the main idea
of Polyak step-size in more detail.

To derive the deterministic Polyak step-size, let us consider a convex function f(w) and the step equation 2.
We obtain the step-size from the following upper-bound on the distance from the current point wt+1 to the
minimum w∗:

∥wt+1 − w∗∥2 = ∥wt − w∗∥2 + ∥γt∇f(wt)∥2 − 2γt ⟨∇f(wt), wt − w∗⟩
≤ ∥wt − w∗∥2 + γ2

t ∥∇f(wt)∥2 − 2γt(f(wt)− f(w∗)).

Minimizing the right hand side by γt, we get: γt = f(wt)−f(w∗)
∥∇f(wt)∥2 . Similarly, in the stochastic case, the Stochastic

Polyak step-size (SPS) is defined as

wt+1 = wt −
fi(wt)− f∗

i

∥∇fi(wt)∥2∇fi(wt), (3)

where f∗
i is a minimal value of function fi(w). Another way to derive this formulation is by solving the

following optimization problem:

wt+1 = arg min
w∈Rd

∥w − wt∥2
2, s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ = f∗

i , (4)

where equation 3 is an explicit formulation of equation 4. In case where the value of f∗
i is known and set to 0

for all i (a common scenario in over-parameterized deep neural networks) we obtain this simplified expression
for equation 3: wt+1 = wt − fi(wt)

∥∇fi(wt)∥2∇fi(wt). This condition, referred to as the "interpolation condition", is
expressed as f∗

i = 0.

Preconditioning / Feature scaling. Preconditioning is a technique used to improve the convergence
rate of algorithms applied to data that may exhibit poor scaling or ill-conditioning. Algorithms leveraging
preconditioning typically follow a generic update rule, which can be expressed as

wt+1 = wt − γtB
−1
t mt, (5)

1In this work, we focus on the minimization of empirical loss equation 1. We refer to recent studies that discuss how the step
size can influence the generalization error Kaur et al. (2023); Wu & Su (2023); Ma & Fattahi (2022); Chen & Bruna (2023).

2

Under review as submission to TMLR

where Bt ∈ Rd×d is an invertible positive definite matrix, and mt is a gradient or its approximation. The origin
of such a step is Newton method by Newton (1687); Raphson (1697); Kantorovich (1948a;b; 1949) which uses
the exact Hessian to precondition the gradient of the objective function, i.e. Bt = ∇2f(wt) and mt = ∇fi(wt).
Newton method can be very effective for minimizing convex objectives. However, the prohibitive cost of
computing and inverting the Hessian matrix, together with issues around negative eigenvalues, makes this
approach impractical for machine learning tasks. To address this issue, one can use methods that never define
the Hessian of the objective function explicitly but rather use its approximation or solve the Newton system
using iterative algorithms (Martens et al., 2010).

Quasi-Newton methods (QN). Methods that construct an approximation of the (inverse) Hessian date
back to the 70s such as BFGS (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), L-BFGS
(Nocedal, 1980; Liu & Nocedal, 1989), and SR-1 (Conn et al., 1991; Khalfan et al., 1993). These optimization
methods take advantage of a cheap way to build (inverse) Hessian matrix estimation algorithms based
on past gradient information. One of the most prominent QN method is Symmetric Rank 1(SR-1) which
recursively approximates the Hessian as follows: Bt+1 = Bt + (yt−Btst)(yt−Btst)⊤

(yt−Btst)⊤st
, where st = wt+1 − wt and

yt = ∇fi(wt+1) − ∇fi(wt). Although, SR-1 update only makes a rank-1 change to the previous Hessian
approximation and evidently has a simple form, in practice it displays better convergence to the true Hessian
than other similar methods like BFGS (Nocedal & Wright, 2006, p.145). Another useful property of this
approximation is self-complementarity, which means that we can find the inverse Hessian approximation B−1

t

using the same vector pair st and yt: B−1
t+1 = B−1

t + (st−B−1
t yt)(st−B−1

t yt)⊤

(st−B−1
t yt)⊤yt

. Note, that this approximation
method does not necessarily generate a positive definite matrix.

Contributions. Before delving into the details, we outline the primary contributions of this work:

• We present the General Framework for Preconditioned and Second-order Polyak methods. This
framework covers classical optimization methods, provides valuable insights into Polyak step-size
methods, and enables the development of novel Polyak step-size methods.

• We propose the first Stochastic Cubic Newton method with Polyak step-size.

• We introduce the new scale invariant versions of AdaGrad and Adam, which make them invariant to
some basis transformations.

• We conduct comprehensive experiments encompassing a diverse range of scenarios, including both
convex and non-convex settings.

Organisation. In this paper, we have consolidated our findings and integrated them into a comprehensive
framework presented in Section 2. Additionally, Section 3 offers a detailed presentation of the results from
our experiments.

Notation and Assumptions. We introduce the notation used throughout the paper and state the underlying
assumptions that guide our analysis. We equip the primal space w ∈ E and the dual space g ∈ E∗ with the
conjugate norms ∥w∥ and ∥g∥∗, respectively. As a special case, for a positive definite matrix B ∈ Rd×d, we
introduce the conjugate Euclidean norms as follows: ∥w∥B = ⟨Bw,w⟩1/2 and ∥g∥B−1 =

〈
g,B−1g

〉1/2. As
an example, ∇f(w) ∈ E∗ and ∇2f(w)h ∈ E∗ for h ∈ E. We define the operator ⊙ as a component-wise
product between two vectors, also known as the Hadamard product. For the vector w, w2 and

√
w means

component-wise square and square root, respectively. We represent diag(w) as a diagonal matrix of a given
vector v and a vector diagonal(H) ∈ Rd as the diagonal of a matrix H ∈ Rd×d. For simplicity, we denote
gt = ∇fi(wt) and Ht = ∇2fi(wt) if it is not defined differently. Also, we denote an action of the linear
operator as B[h]2 = ⟨Bh, h⟩.

Interpolation Condition. The Interpolation Condition is an assumption often applied in optimization
and machine learning, particularly in the analysis of overparameterized models such as deep neural networks.
It assumes the existence of a set of model parameters w∗ such that the loss function f(w) achieves its
infimum across all data points. This condition is indicative of a scenario where the model has sufficient
flexibility to perfectly fit the training data, leading to zero loss for every data point. Such regimes are

3

Under review as submission to TMLR

commonly encountered in overparameterized deep neural networks Ma et al. (2018b); Zhang et al. (2021) or
non-parametric regression models Liang & Rakhlin (2020); Belkin et al. (2019), where the model’s capacity
exceeds the complexity of the data, ensuring exact interpolation of the training set. This is one of the
standard assumptions in analysis of methods with the Stochastic Polyak step-size e.g. Schaipp et al. (2023);
Loizou et al. (2021); Gower et al. (2022); Li et al. (2023); Orvieto et al. (2022). Unless otherwise stated, our
default assumption is that Assumption 1 holds true.

Assumption 1: Interpolation Condition

We assume that the interpolation condition holds for a set of non-negative functions {fi(w)}n
i=1

(fi(w) ≥ 0 ∀w ∈ E), when ∃w∗ ∈ E, s.t. f(w∗) = 0. Consequently, fi(w∗) = 0 for all i = 1, 2, ..., n.

2 SANIA – general framework

2.1 General framework

In this section, we propose a general framework equation 6 for preconditioning stochastic Polyak step-size
methods. This framework generalizes some well-known first-order, second-order, and Quasi-Newton methods
from Polyak step-size perspective. The main feature of the framework is that it highlights some insights
about SPS and provides an instrument to generalize existing methods as Polyak step-size methods. It makes
them adaptive and parameter-free in the SPS setting. The generality of this framework makes it difficult
to propose an explicit step. Therefore, we will focus on the most promising cases and provide their explicit
formulations to introduce new methods. In the following section we will demonstrate the problem settings
required to derive existing and proposed methods using SANIA equation 6. We note that if any particular
variable from the General Framework is not mentioned explicitly it is assumed to be fixed at zero.

Definition 1: SANIA: General Framework

Let Bt ≻ 0 and Dt be symmetric matrices, and τt be sequence of numbers that is given or can be
computed for any given t ≥ 0. We consider the following minimization problem:

wt+1, αt+1 = arg min
w∈Rd,α∈R

1
2∥w − wt∥2

Bt
+ τtα

s.t. fi(wt) + ⟨mt, w − wt⟩+ 1
2 ⟨Dt(w − wt), w − wt⟩ ≤ α.

(6)

Note that Bt is required be a positive definite matrix to ensure that ∥ · ∥Bt
is a Euclidean norm.

2.2 Existing methods

SGD. Let us first derive an update rule for the most frequently used variant of Stochastic Gradient Descent
(SGD) method using SANIA equation 6.
We set parameters as follows:

τt = γt, mt = ∇fi(wt), Dt = 0, Bt = I .

The explicit method equation 2 is the solution of the following implicit problem:

wt+1, αt+1 = arg min
w∈Rd,α∈R

1
2∥w − wt∥2

2 + γtα,

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ α.
(7)

The proof is presented in Appendix B.1. Note, that normally α is an upper bound for f∗
i . Hence, if f∗

i is
known, we can fix α = f∗

i . This leads us to the Stochastic Polyak step-size method.

4

Under review as submission to TMLR

Stochastic Polyak step-size (SPS). The update rule for Stochastic Gradient Descent with Polyak step-size
can be derived as follows:
We set parametersa as follows:

α = f∗
i , mt = ∇fi(wt), Dt = 0, Bt = I ,

and solve the following problem:

wt+1 = arg min
w∈Rd

1
2∥w − wt∥2

2, s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ f∗
i . (8)

aNote that in this formulation, we do not optimize over α , and therefore, the value for τ is not required. In the subsequent
text, we will omit specifying a value for this parameter wherever it is unnecessary.

We demonstrate in Appendix B.2 that equation 3 serves as an explicit formulation of equation 8. When
f∗

i is known (as in the case of interpolation under Assumption 1), the method becomes both adaptive and
parameter-free. Otherwise, an estimate of f∗

i must be tuned, analogous to tuning the step-size parameter γt

in SGD. Furthermore, we show that a similar transition can be applied to other methods.

Preconditioned SGD. Preconditioning is used to introduce curvature information into SGD equation 5.
We precondition the stochastic gradient approximation, denoted as mt, with a positive definite matrix Bt ≻ 0.
There are many methods that fit this description, ranging from the classical Damped Newton method and
Quasi-Newton methods (like BFGS) to modern diagonal preconditioning techniques such as Adam, AdaGrad,
and Hutchinson method. We can derive Preconditioned SGD from equation 6.
With 0 < γt ≤ 1 as a step-size, we choose the parameters as follows:

τt = γt, mt = gt, Dt = 0, Bt = Bt,

and solve the following problem:

wt+1, αt+1 = arg min
w∈Rd,α∈R

1
2∥w − wt∥2

Bt
+ γtα, s.t. fi(wt) + ⟨gt, w − wt⟩ ≤ α. (9)

We get the next explicit step: wt+1 = wt − γtB
−1
t gt. Note that gt can represent either ∇fi(wt) or an

alternative approximation of the gradient. This notation will also be used in the subsequent text.

Next, we describe some preconditioning methods.

AdaGrad is an adaptive optimization method that approximates the Hessian of the objective function
using the cumulative squared gradient information to scale the learning rates. Accumulation of all previous
gradients in the preconditioner Bt leads to decay in the learning rate γt which increases performance for
sparse settings (non-frequent features) at the cost of degrading in case of dense settings.
The AdaGrad preconditioning is derived by: mt = gt = ∇fi(wt), and Bt = diag

(√∑t
j=1 g

2
j

)
.

Adam is incorporating both adaptive learning rates and momentum. The update rule involves the computation
of the moving average of both the first and second moments of the gradients. The first moment (β1) is the
mean of the gradients, and the second moment (β2) is the uncentered variance of the gradients.
The Adam preconditioning is derived by:

mt =
(1− β1)

∑t
j=1 β

t−i
1 gj

1− βt
1

, Bt = diag(

√
(1− β2)

∑t
j=1 β

t−j
2 g2

j

1− βt
2

),

where 0 < β1, β2 < 1 are two hyperparameters referred to as first and second moment coefficients. The
biased estimates are corrected by dividing them by the bias correction terms, which are powers of the decay
rates β1 and β2, respectively.
Hutchinson’s method is employed to estimate the diagonal of the Hessian matrix (Hutchinson, 1989). To
achieve this, the method utilizes only a handful of Hessian-vector products, which can be efficiently computed

5

Under review as submission to TMLR

using backpropagation (Christianson, 1992). Specifically, the product of a Hessian matrix ∇2f(w) and a vector
h can be computed through a directional derivative of the gradient, given by d

dt ∇f(w + th)|t=0 = ∇2f(w)h.
Hutchinson’s method leverages Hessian-vector products to estimate the diagonal through diag(∇2f(w)) =
E[h⊙ (∇2f(w)h)], where h is a random vector with Rademacher distribution2 or a normal distribution as
discussed in (Bekas et al., 2007) and Lemma B.4 in Appendix. Utilizing this identity, we can estimate the
Hessian diagonal by a weighted average of each iteration’s result: Bt = βBt−1 + (1−β) diag(h⊙∇2fit

(wt)h),
where β ∈ (0, 1) is a momentum parameter, it is a number of a random function on the step t, and
B0 = 1

k

∑k
j=1 diag(hj ⊙∇2fj(w0)hj), where k is a number of functions for initialization of the approximation.

To ensure Bt remains positive definite, especially in the face of potential non-convexities in the loss functions,
we apply truncation by positive number µ and retain only the absolute values of elements given by (Bt)j,j =
max{µ, |Bt|j,j}. Some of the recent works utilizing this method are PSPS (Abdukhakimov et al., 2023),
Sophia (Liu et al., 2024), OASIS (Jahani et al., 2022), and others (Sadiev et al., 2022; Pirau et al., 2023).

Preconditioned SPS. Similarly to SGD and SPS, Polyak step-size could be introduced for Preconditioned
SGD methods. Preconditioned SPS (PSPS) was presented by Abdukhakimov et al. (2023). It can be also
derived from SANIA for Bt ≻ 0.
We choose the parameters as follows:

α = f∗
i , mt = gt, Dt = 0, Bt = Bt,

and solve the following problem:

wt+1 = arg min
w∈Rd

1
2∥w − wt∥2

Bt
, s.t. fi(wt) + ⟨mt, w − wt⟩ ≤ f∗

i . (10)

We get the next explicit step:
wt+1 = wt −

fi(wt)− f∗
i

∥mt∥2
B−1

t

B−1
t mt. (11)

Theorem 1

Let fi(w) be a convex, Lmax-Lipschitz smooth function that satisfy the Interpolation Condition
(Assumption 1) for all i ∈ {1, . . . , n}. Assume Bt ≻ 0 is a sequence of positive definite matrices for all
t ∈ {0, . . . , T}, with mt = ∇fi(wt), and that Bt satisfies the ordering Bt ⪰ Bt+1 ⪰ ν for some ν > 0.
Then, for the sequence wt generated by equation 11, the average iterate ŵT = 1

T

∑T −1
t=0 wt satisfies

the following convergence guarantee:

E[f(ŵT)− f∗] ≤
2Lmax∥w0 − w∗∥2

B0

νT
. (12)

In PSPS, the norm in the projection is changed to a weighted norm based on the preconditioning matrix
Bt ≻ 0, it helps to improve the convergence rate in case of badly scaled/ill-conditioned datasets.

Gradient regularized Newton method. One of the main issues of Newton method is a lack of global
convergence. To solve it with provably fast convergence, Cubic Regularized Newton method was proposed by
Nesterov & Polyak (2006). Later, to simplify subproblem solution, the gradient regularization was proposed
by Mishchenko (2023); Doikov & Nesterov (2023). Next, we present a formulation of a Stochastic Cubic
Newton Method with gradient regularization from equation 6.
With L2 as a Lipschitz-continuous constant for Hessian, we choose the parameters as follows:

τt =
√

3
L2∥gt∥

, mt = gt = ∇fi(wt), Dt = Ht = ∇2fi(wt), Bt = I ,

2hj ∈ {−1, +1} with equal probability.

6

Under review as submission to TMLR

and solve the following problem:

wt+1, αt+1 = arg min
w∈Rd,α∈R

1
2∥w − wt∥2

2 + α

√
3

L2∥gt∥

s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]2 ≤ α.

(13)

We get the next step:

wt+1 = wt − (Ht + I

√
L2

3 ∥gt∥)−1gt.

SP2. In (Li et al., 2023), the constraint of SPS equation 3 was extended for the second-order information,
aimed at incorporating additional curvature information to accelerate the convergence rate. Next, we present
the implicit formulation of SP2 under Assumption 1:

wt+1 = arg min
w∈Rd

1
2∥w − wt∥2, s.t. fi(wt) + ⟨gt, w − wt⟩+ 1

2Ht[w − wt]2 = 0. (14)

The explicit formulation was presented only for generalized linear models.

In next sections, we will propose a variant of explicit solution for SP2 with connection to Cubic Newton.

2.3 Proposed methods

Gradient regularized Newton method with Polyak step-size. Similarly to SGD and SPS, we propose
a new version of Cubic Newton method with Polyak step-size and its stochastic version. If f∗

i is known for
example in case of interpolation with Assumption 1, then the method is parameter-free. This result is new
both in deterministic and stochastic cases. Similarly to SGD, we fix α = f∗

i in equation 13 and get the next
method.
We choose the parameters as follows:

α = f∗
i , τt =

√
3

L2∥gt∥
, mt = gt = ∇fi(wt), Dt = Ht = ∇2fi(wt), Bt = I ,

and solve the following problem:

wt+1 = arg min
w∈Rd

1
2∥w − wt∥2

2, s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]2 ≤ f∗

i . (15)

The explicit step is formulated as follows:

wt+1 = wt − (1− κt) [κtI + (1− κt)Ht]−1
gt, (16)

where κt = 0 if fi(wt)− f∗
i >

1
2∥gt∥2

H−1
t

, otherwise κt is computed by Cubic Newton-type line-search.

SANIA Quasi-Newton for Bt ≻ 0. Similarly to PSPS equation 10, this approach covers AdaGrad, Adam,
Hutchinson’s method, Quasi-Newton methods with Bt ≻ 0, and Newton method for convex functions with
Ht ≻ 0. The method is inspired by Affine-Invariant Cubic Newton from Hanzely et al. (2022). Note, the
Hessian approximation Bt is used both in the scaling of the objective norm and in the constraint model. We
derive it from equation 6.
The parameters are chosen as follows:

α = f∗
i , τt = γt, mt = gt, Dt = Bt, Bt = Bt,

7

Under review as submission to TMLR

and solve the following problem:

wt+1 = arg min
w∈Rd

1
2∥w − wt∥2

Bt
, s.t. fi(wt) + ⟨mt, w − wt⟩+ 1

2Bt[w − wt]2 ≤ f∗
i .

The explicit step is:
wt+1 = wt − λtB

−1
t mt, (17)

where for υt = 2(fi(wt)−f∗
i)

∥mt∥2
B

−1
t

, we define

λt =
{

1−
√

1−υt, if υt≤1,
1, otherwise.

(18)

Note, that for υt > 1, there is no solution of equation 2.3 and we define λt = 1 as a minimum of the constraint.
The main difference between PSPS equation 11 and SANIA-Quasi-Newton equation 17 is the parameter λt.
For equation 17, step-size λt ≤ 1 in equation 18, while in contrast for equation 11 λt could be much bigger
than 1. For Newton method, the step-size λt is naturally bounded by 1, which makes SANIA-Quasi-Newton
step-size safer than the step-size of PSPS. More details, comparisons, and theoretical results are presented in
Appendix.

Lemma 1

Let fi(x) be a convex function for all i ∈ [1, . . . , n] and have the same minimum w∗ (Assumption
1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T], and mt = ∇fi(wt). Then for equation 17
method with the step size λt ∈ (0, υt), we have ∥wt+1 − w∗∥2

Bt
< ∥wt − w∗∥2

Bt
. Additionally, for

λt = υt/2, we get ∥wt+1 − w∗∥2
Bt
≤ ∥wt − w∗∥2

Bt
− (fi(wt)− f∗

i)υt/2.

SANIA AdaGrad-SQR. We propose a new preconditioning method, called AdaGrad-SQR, by removing
the square root from AdaGrad update. In Section 2.4, we will prove that the improved algorithm have "scale
invariance" property. Figure 1 shows that the proposed algorithm behaves the same both on original and
scaled versions of datasets.
We define mt, Bt, Dt for equation 17 as follows:

mt = gt, Bt = Dt = diag

 t∑
j=1

g2
j

 . (19)

SANIA Adam-SQR. Along with SANIA AdaGrad-SQR, we propose another "scale-invariant" method.
Following the same idea, it removes the square root from the preconditioning matrix of Adam.
We define mt, Bt, Dt for equation 17 as follows:

mt =
(1− β1)

∑t
j=1 β

t−j
1 gj

1− βt
1

, Bt = Dt = diag
(

(1− β2)
∑t

j=1 β
t−j
2 g2

j

1− βt
2

)
. (20)

SANIA PCG for Newton method for non-convex functions. In cases where the functions fi(w) are
non-convex, the Hessian matrix Ht may not be positive definite but invertible. This characteristic renders
the approach not applicable, as ∥gt∥H−1

t
is no longer a norm. To address this issue, we propose a solution

based on the rank-1 SR-1 approximation.
First, let us define Bt and Dt as follows:

Bt = Dt = yy⊤

s⊤y
, mt = gt, α = f∗

i , τt = γt, where s = H−1
t gt and y = Hts = gt.

8

Under review as submission to TMLR

0 20 40 60 80 100
Epochs

10 1

100
Te

st
 L

os
s SANIA Id (original data)

SANIA Id (scaled data)
SANIA (V 1)2 (scaled data)
SANIA diag(H) 1 (original data)
SANIA diag(H) 1 (scaled data)

Synthetic, n=10,000, d=200

0 20 40 60 80 100
Epochs

10 1Te
st

 L
os

s

SANIA Adagrad (original data)
SANIA Adagrad (scaled data)
SANIA AdagradSQR (original data)
SANIA AdagradSQR (scaled data)

Synthetic, n=10,000, d=200

0 20 40 60 80 100
Epochs

10 1Te
st

 L
os

s

SANIA Adam (original data)
SANIA Adam (scaled data)
SANIA AdamSQR (original data)
SANIA AdamSQR (scaled data)

Synthetic, n=10,000, d=200

Figure 1: Observation of scale invariance of SANIA while minimizing logistic regression objective function on
synthetic binary classification dataset with scaling factor k = 4.

Then, by solving the problem equation 2.3, we get an explicit method:

wt+1 = wt − λtB
+
t ∇fi(wt),

where for υt = 2(fi(wt)−f∗
i)

∥gt∥2
B

+
t

we define λt =
{

1−
√

1−υt, if υt≤1,
1, otherwise.

Note that Bt is a rank-1 matrix, hence non-invertible, but it does have a pseudoinverse which is given by
B+

t = ss⊤

s⊤y
, hence, B+

t gt = H−1
t gt.

We present more details in Appendix C.6. In practice, we solve H−1
t gt by using Conjugate Gradient method,

which allows to compute only Hessian-vector products without computing and storing the full Hessian Ht.

2.4 Affine and scale invariance

The family of Stochastic Gradient Methods with Polyak step-size offers an update rule that alleviates the need
of fine-tuning the learning rate of an optimizer. However, existing first-order algorithms, whether stochastic
or deterministic, perform poorly on ill-conditioned datasets. One possible reason for this is their strong
dependence on the chosen basis. This is why, in machine learning, it is common practice to normalize data,
as it makes the optimization space and basis more amenable. In the case of generalized linear models (GLM),
the choice of basis is directly linked to the handling of ill-conditioned datasets. Changing the basis leads to
improvement of conditioning.

Affine invariance is one of the key features of the Newton method, which makes it basis-independent
(Nesterov & Nemirovskii, 1994; Nesterov, 2018). Let A ∈ Rd×d be a non-degenerate matrix. We consider
function ϕ(y) = f(Ay). By affine transformation, we denote f(w) → ϕ(y) = f(Ay), w → A−1y. Now, we
discuss what is affine invariant friendly and what is not. First of all, the local Hessian norm ∥h∥∇2f(w) is
affine-invariant: ∥z∥2

∇2ϕ(y) =
〈
∇2ϕ(y)z, z

〉
=
〈
A⊤∇2f(Ay)Az, z

〉
=
〈
∇2f(w)h, h

〉
= ∥h∥2

∇2f(w). However,
the norm ∥z∥2

I is not affine invariant. Second of all, Damped Newton method is affine invariant (Lemma
5.1.1 (Nesterov, 2018)). It means that for the function f(w) Damped Newton method with affine invariant
step-size γt generates wt+1 = wt − γt[∇2f(wt)]−1∇f(wt). For a function ϕ(y), Damped Newton method
generates yt+1 = yt − γt[∇2ϕ(yt)]−1∇ϕ(yk). If y0 = A−1w0, then ∀t : yt = A−1wt. Essentially, we get a
bijection between yt and wt. Also, the function values during the optimization are the same ϕ(yt) = f(wt).
It means that for GLM, we will automatically get the best basis. Finally, we can show that SANIA Newton
and SANIA CG are affine invariant, because the step-size λt in equation 18 is affine-invariant friendly. All
proofs are presented in Appendix D.2.

Scale invariance is a special case of affine invariance, where the matrix A is a diagonal matrix. This implies
the removal of rotations from the transformations, allowing only diagonal transformations. To distinguish
scale invariance from affine invariance, we denote the transformation V ∈ Rd×d as a non-degenerate diagonal
matrix. It’s evident that the diagonal preconditioning from AdaGrad, Adam, and Hutchinson is not affine
invariant because it does not adapt to rotations. However, they could be scale invariant. It turns out that

9

Under review as submission to TMLR

0 25 50 75 100 125 150 175 200
Epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Te

st
 A

cc
ur

ac
y

Adam t = 0.001
SANIA AdamSQR
Adagrad t = 0.025
SANIA AdagradSQR
KATE t = 0.0001

CIFAR10 (DenseNet121)

0 20 40 60 80 100
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 To
p-

3
Ac

cu
ra

cy

Adam t = 0.01
SANIA AdamSQR
Adagrad t = 0.01
SANIA AdagradSQR
KATE t = 0.0001

CIFAR100 (ResNet18)

0 25 50 75 100 125 150 175 200
Epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

Adam t = 0.01
SANIA AdamSQR
Adagrad t = 0.1
SANIA AdagradSQR
KATE t = 0.1

SVHN (ShuffleNetV2x0_5)

Figure 2: Performance of SANIA variants of Adam, Adagrad compared to standard Adam, Adagrad and
KATE.

classical AdaGrad and Adam are not scale invariant, but if we remove the square root, they become scale
invariant. We propose the new scale invariant SANIA AdaGrad-SQR in equation 19 and new scale invariant
SANIA Adam-SQR in equation 20. All proofs are presented in Appendix D.2. Scale invariance property of
SANIA Adam-SQR and SANIA AdaGrad-SQR is shown in Figure 1, where SANIA Adam-SQR and SANIA
AdaGrad-SQR are converging identically for both original and badly scaled versions of the datasets, while
using classical Adam and AdaGrad preconditioners result in different convergence steps. Recently, scale
invariant version of AdaGrad, named KATE, was proposed by Choudhury et al. (2024).

Figure 1 illustrates that SANIA is able to become scale invariant with various preconditioners. Note that
SANIA Bt = Id, SANIA Bt = diag((V −1)2), and SANIA Bt = diag(H−1) are preconditioned by Identity
matrix (i.e. no preconditioning), squared inverse of the scaling vector used to obtain the scaled version of
the dataset, and inverse of the Hessian diagonal of the objective function, respectively. One of the most
noteworthy observations from this figure is that using the vector employed to transform the dataset for
scaling, as a preconditioner, results in a scale invariant method. This essentially leads to convergence in a
similar manner as non-preconditioned SANIA applied to the original dataset. In practice, obtaining such
information is typically unattainable and often not even approximable. However, by utilizing the curvature
of the objective function, we can achieve the same scale invariance property. This is also demonstrated in
Figure 1 by comparing SANIA preconditioned with the diagonal of the Hessian (SANIA diag(H−1

t)) on
both the original and scaled data. This method results in improved convergence while maintaining scale
invariance, albeit with minor numerical instabilities. Nevertheless, SANIA diag(H−1

t) is still impractical for
large problems involving demanding calculations of Hessian. For reference, in the same figure we display
performance of Adam with a constant step size, which deteriorates when scaled data is introduced.

3 Experiments

We test our methods on multiclass and binary classification problems with both linear models and neural
networks. Considering practicality of the methods in experiments we only focus on SANIA Adam-SQR
and SANIA Adagrad-SQR. For experiments with NNs we choose 5 architectures, namely LeNet5 Lecun
et al. (1998), Simple Convolutional Neural Network with 2 convolutional layers (∼ 400K parameters),
DenseNet121 Huang et al. (2018), ResNet18 He et al. (2015) and ShuffleNetV2 with 0.5x output
channels Ma et al. (2018a) trained on 5 datasets, MNIST LeCun et al. (2010), Fashion-MNIST Xiao et al.
(2017), CIFAR10 and CIFAR100, Krizhevsky et al. (2009) and SVHN Netzer et al. (2011) respectively.
For evaluations with a linear model on binary classification problems we consider logistic regression that
is defined as fLogReg(w) = 1

n

∑n
i=1 log(1 + exp(−yix

T
i w)), where {(xi, yi)}n

i=1 is our dataset, xi ∈ Rd and
yi ∈ {−1,+1}. We select small and large scale datasets from LibSVM data repository lib and conduct
additional experiments to illustrate performance and scale invariance property of out methods. To simulate
badly scaled data we introduce scaled version of each dataset where its feature columns are multiplied by a
vector e = {exp(ai)}d

i=1 where ai is generated from a uniform distribution on the interval [−k, k].

All experiments are conducted with 5 initial seeds (0-4) and learning rates for Adam and Adagrad are chosen
after multiple rounds of manual fine-tuning. Additional experiments, findings and other details (synthetic
dataset generation, learning rates and etc.) can be found in Appendix E. The source code is available at
https://anonymous.4open.science/r/SANIA-A12E.

10

https://anonymous.4open.science/r/SANIA-A12E

Under review as submission to TMLR

In Figure 2 (see also Figures 3 and 6 in appendix) we can see that all presented variations of SANIA closely
match or outperform other adaptive optimization methods across both under- and over-parametarized settings.
Once again, note that while other methods require step-size fine-tuning and multiple runs of experiments,
SANIA only needs one run for one set of configurations (i.e. scaling factor, batch-size, and etc.).

4 Conclusion

In this paper, we introduced a versatile and inclusive framework that not only encompasses classical
optimization techniques but also sheds valuable light on Polyak step-size methods. Our research introduce the
first Cubic Newton method with Polyak step-size which combines the efficiency of stochastic methods and the
robustness of Newton methods. We have presented innovative variants of AdaGrad and Adam optimization
algorithms that are scale invariant. Our proposed methods are affine or scale invariant, and this important
development ensures the invariance of these methods to basis transformation, expanding their applicability
and reliability in various scenarios. Our work is supported by comprehensive experiments including both
convex and non-convex settings.

References
Libsvm data: Classification, regression and multi-label. https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/. Accessed: 2025-05-16.

Farshed Abdukhakimov, Chulu Xiang, Dmitry Kamzolov, and Martin Takáč. Stochastic gradient descent
with preconditioned Polyak step-size. arXiv preprint arXiv:2310.02093, 2023.

C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Applied Numerical
Mathematics, 57(11):1214–1229, 2007. ISSN 0168-9274. doi: https://doi.org/10.1016/j.apnum.2007.01.
003. URL https://www.sciencedirect.com/science/article/pii/S0168927407000244. Numerical
Algorithms, Parallelism and Applications (2).

Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contradict statistical
optimality? In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1611–1619.
PMLR, 2019.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Albert A Bennett. Newton’s method in general analysis. Proceedings of the National Academy of Sciences,
2(10):592–598, 1916.

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Training neural networks for and by interpolation.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119, pp. 799–809. PMLR, 9 2020. URL https://proceedings.mlr.press/v119/
berrada20a.html.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311, 2018.

Charles G Broyden. Quasi-Newton methods and their application to function minimisation. Mathematics of
Computation, 21:368–381, 1967. doi: 10.2307/2003239. URL http://www.jstor.org/stable/2003239.

Yair Carmon and Oliver Hinder. Making SGD parameter-free. In Po-Ling Loh and Maxim Raginsky
(eds.), Proceedings of Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of Machine
Learning Research, pp. 2360–2389. PMLR, 02–05 Jul 2022. URL https://proceedings.mlr.press/
v178/carmon22a.html.

Lei Chen and Joan Bruna. Beyond the edge of stability via two-step gradient updates. In International
Conference on Machine Learning, pp. 4330–4391. PMLR, 2023.

11

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.sciencedirect.com/science/article/pii/S0168927407000244
https://proceedings.mlr.press/v119/berrada20a.html
https://proceedings.mlr.press/v119/berrada20a.html
http://www.jstor.org/stable/2003239
https://proceedings.mlr.press/v178/carmon22a.html
https://proceedings.mlr.press/v178/carmon22a.html

Under review as submission to TMLR

Sayantan Choudhury, Nazarii Tupitsa, Nicolas Loizou, Samuel Horvath, Martin Takac, and Eduard Gor-
bunov. Remove that square root: A new efficient scale-invariant version of adagrad. arXiv preprint
arXiv:2403.02648, 2024.

Bruce Christianson. Automatic Hessians by reverse accumulation. IMA Journal of Numerical Analysis, 12
(2):135–150, 1992.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Convergence of Quasi-Newton matrices
generated by the symmetric rank one update. Mathematical Programming, 50:177–195, 1991. doi:
10.1007/BF01594934. URL https://doi.org/10.1007/BF01594934.

Ashok Cutkosky, Aaron Defazio, and Harsh Mehta. Mechanic: A learning rate tuner. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
uhKtQMn21D.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202, pp. 7449–7479.
PMLR, 1 2023. URL https://proceedings.mlr.press/v202/defazio23a.html.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Nikita Doikov and Yurii Nesterov. Gradient regularization of Newton method with Bregman distances.
Mathematical Programming, 2023. ISSN 1436-4646. doi: 10.1007/s10107-023-01943-7. URL https:
//doi.org/10.1007/s10107-023-01943-7.

Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized newton method.
SIAM Journal on Optimization, 34:27–56, 2024. doi: 10.1137/22M1519444. URL https://doi.org/10.
1137/22M1519444.

Ryan D’Orazio, Nicolas Loizou, Issam Laradji, and Ioannis Mitliagkas. Stochastic mirror descent: Convergence
analysis and adaptive variants via the mirror stochastic polyak stepsize. arXiv preprint arXiv:2110.15412,
2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL http:
//jmlr.org/papers/v12/duchi11a.html.

Soheil Sadeghi Eshkevari, Martin Takáč, Shamim N Pakzad, and Majid Jahani. Dynnet: Physics-based neural
architecture design for nonlinear structural response modeling and prediction. Engineering Structures, 229:
111582, 2021.

Roger Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13:317–322, 1 1970.
ISSN 0010-4620. doi: 10.1093/comjnl/13.3.317. URL https://doi.org/10.1093/comjnl/13.3.317.

Guillaume Garrigos, Robert M Gower, and Fabian Schaipp. Function value learning: Adaptive learning rates
based on the Polyak stepsize and function splitting in erm. arXiv preprint arXiv:2307.14528, 2023.

Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathematics of
Computation, 24:23–26, 1970. doi: 10.2307/2004873. URL https://doi.org/10.2307/2004873.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and
Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of molecules.
ACS central science, 4(2):268–276, 2018.

Robert M. Gower, Aaron Defazio, and Michael Rabbat. Stochastic polyak stepsize with a moving target,
2021.

12

https://doi.org/10.1007/BF01594934
https://openreview.net/forum?id=uhKtQMn21D
https://openreview.net/forum?id=uhKtQMn21D
https://proceedings.mlr.press/v202/defazio23a.html
https://doi.org/10.1007/s10107-023-01943-7
https://doi.org/10.1007/s10107-023-01943-7
https://doi.org/10.1137/22M1519444
https://doi.org/10.1137/22M1519444
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.2307/2004873

Under review as submission to TMLR

Robert M Gower, Mathieu Blondel, Nidham Gazagnadou, and Fabian Pedregosa. Cutting some slack for
SGD with adaptive Polyak stepsizes. arXiv preprint arXiv:2202.12328, 2022.

Andreas Griewank. The modification of Newton’s method for unconstrained optimization by bounding cubic
terms. Technical report, Technical report NA/12, 1981.

Nur Sila Gulgec, Martin Takáč, and Shamim N Pakzad. Structural damage detection using convolutional
neural networks. In Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 35th
IMAC, A Conference and Exposition on Structural Dynamics 2017, pp. 331–337. Springer International
Publishing, 2017.

Nur Sila Gulgec, Martin Takáč, and Shamim N Pakzad. Structural sensing with deep learning: Strain estima-
tion from acceleration data for fatigue assessment. Computer-Aided Civil and Infrastructure Engineering,
35(12):1349–1364, 2020.

Slavomír Hanzely, Dmitry Kamzolov, Dmitry Pasechnyuk, Alexander Gasnikov, Peter Richtárik,
and Martin Takáč. A damped Newton method achieves global O

(1
k2

)
and local quadratic con-

vergence rate. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 25320–25334. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition,
2015. URL https://arxiv.org/abs/1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected convolutional
networks, 2018. URL https://arxiv.org/abs/1608.06993.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076, 1989.

Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic step size
schedule. arXiv preprint arXiv:2302.12022, 2023.

Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik, Michael W Mahoney, and Martin
Takáč. Doubly adaptive scaled algorithm for machine learning using second-order information.
In Tenth International Conference on Learning Representations (ICLR 2022), 2022. URL https://
openreview.net/forum?id=HCelXXcSEuH.

Xiaowen Jiang and Sebastian U Stich. Adaptive SGD with Polyak stepsize and line-search: Robust convergence
and variance reduction. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=blC2kbzvNC.

Alibek T Kaliyev, Ryan F Forelli, Shuyu Qin, Yichen Guo, Seda Memik, Michael W Mahoney, Amir Gholami,
Nhan Tran, Philip Harris, Martin Takáč, et al. Rapid fitting of band-excitation piezoresponse force
microscopy using physics constrained unsupervised neural networks. In AI for Accelerated Materials
Design-NeurIPS 2023 Workshop.

Leonid Vitalyevich Kantorovich. Functional analysis and applied mathematics. Uspekhi Matematicheskikh
Nauk, 3(6):89–185, 1948a. (In Russian). Translated as N.B.S Report 1509, Washington D.C. (1952).

Leonid Vitalyevich Kantorovich. On Newton’s method for functional equations. Doklady Akademii Nauk
SSSR, 59(7):1237–1240, 1948b. (In Russian).

Leonid Vitalyevich Kantorovich. On Newton’s method. Trudy Matematicheskogo Instituta imeni VA Steklova,
28:104–144, 1949. (In Russian).

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
https://openreview.net/forum?id=HCelXXcSEuH
https://openreview.net/forum?id=HCelXXcSEuH
https://openreview.net/forum?id=blC2kbzvNC

Under review as submission to TMLR

Leonid Vitalyevich Kantorovich. Some further applications of principle of majorants. Doklady Akademii
Nauk SSSR, 80(6):849–852, 1951a. (In Russian).

Leonid Vitalyevich Kantorovich. Principle of majorants and Newton’s method. Doklady Akademii Nauk
SSSR, 76(1):17–20, 1951b. (In Russian).

Leonid Vitalyevich Kantorovich. On approximate solution of functional equations. Uspekhi Matematicheskikh
Nauk, 11(6):99–116, 1956. (In Russian).

Leonid Vitalyevich Kantorovich. Some further applications of Newton’s method. Vestnik LGU, Seriya
Matemetika Mekhanika, 0(7):68–103, 1957. (In Russian).

Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue and general-
ization. In Proceedings on, pp. 51–65. PMLR, 2023.

Michal Kempka, Wojciech Kotlowski, and Manfred K Warmuth. Adaptive scale-invariant online algorithms
for learning linear models. In International conference on machine learning, pp. 3321–3330. PMLR, 2019.

H Fayez Khalfan, Richard H Byrd, and Robert B Schnabel. A theoretical and experimental study of the
symmetric rank-one update. SIAM Journal on Optimization, 3:1–24, 1993. doi: 10.1137/0803001. URL
https://doi.org/10.1137/0803001.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), San Diego, CA, USA, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Yann LeCun, B Boser, John S Denker, Donnie Henderson, RE Howard, Wayne E Hubbard, LD Jackel, and
DS Touretzky. Advances in neural information processing systems. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc, pp. 396–404, 1990.

Yann LeCun, Corinna Cortes, Chris Burges, et al. Mnist handwritten digit database, 2010.

Shuang Li, William Joseph Swartworth, Martin Takáč, Deanna Needell, and Robert M. Gower. SP2 : A second
order stochastic Polyak method. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=5mqFra2ZSuf.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and Statistics, volume 89, pp. 983–992. PMLR, 4 2019.
URL https://proceedings.mlr.press/v89/li19c.html.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can generalize. 2020.

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45:503–528, 1989. doi: 10.1007/BF01589116. URL https://doi.org/10.
1007/BF01589116.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic second-order
optimizer for language model pre-training, 2024. URL https://arxiv.org/abs/2305.14342.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic Polyak step-size
for SGD: An adaptive learning rate for fast convergence. In Arindam Banerjee and Kenji Fukumizu (eds.),
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130, pp.
1306–1314. PMLR, 10 2021. URL https://proceedings.mlr.press/v130/loizou21a.html.

14

https://doi.org/10.1137/0803001
https://openreview.net/forum?id=5mqFra2ZSuf
https://proceedings.mlr.press/v89/li19c.html
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://arxiv.org/abs/2305.14342
https://proceedings.mlr.press/v130/loizou21a.html

Under review as submission to TMLR

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Jianhao Ma and Salar Fattahi. Blessing of nonconvexity in deep linear models: Depth flattens the optimization
landscape around the true solution. arXiv preprint arXiv:2207.07612, 2022.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient
cnn architecture design, 2018a. URL https://arxiv.org/abs/1807.11164.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the effectiveness of
sgd in modern over-parametrized learning. In International Conference on Machine Learning, pp. 3325–3334.
PMLR, 2018b.

James Martens et al. Deep learning via hessian-free optimization. In ICML, volume 27, pp. 735–742, 2010.

Brendan Mcmahan and Matthew Streeter. No-regret algorithms for unconstrained online convex optimization.
In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.), Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/
paper_files/paper/2012/file/38ca89564b2259401518960f7a06f94b-Paper.pdf.

H. Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in hilbert spaces:
Minimax algorithms and normal approximations. In Maria Florina Balcan, Vitaly Feldman, and Csaba
Szepesvári (eds.), Proceedings of The 27th Conference on Learning Theory, volume 35 of Proceedings
of Machine Learning Research, pp. 1020–1039, Barcelona, Spain, 13–15 Jun 2014. PMLR. URL https:
//proceedings.mlr.press/v35/mcmahan14.html.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing systems, 26,
2013.

Konstantin Mishchenko. Regularized Newton method with global ≀(1/k2) convergence. SIAM Journal
on Optimization, 33(3):1440–1462, 2023. doi: 10.1137/22M1488752. URL https://doi.org/10.1137/
22M1488752.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free learner.
arXiv preprint arXiv:2306.06101, 2023.

Jorge J. Moré. The levenberg–marquardt algorithm: implementation and theory. In Conference on Numerical
Analysis, University of Dundee, Scotland, 7 1977. URL https://www.osti.gov/biblio/7256021.

A Nemirovski, A Juditsky, G Lan, and A Shapiro. Robust stochastic approximation approach to stochastic
programming. SIAM Journal on Optimization, 19:1574–1609, 2009. doi: 10.1137/070704277. URL
https://doi.org/10.1137/070704277.

Yurii Nesterov. Lectures on Convex Optimization. Springer Cham, 2 edition, 2018. ISBN 978-3-319-91577-7.
doi: 10.1007/978-3-319-91578-4.

Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming.
Society for Industrial and Applied Mathematics, 1994. doi: 10.1137/1.9781611970791. URL https:
//epubs.siam.org/doi/abs/10.1137/1.9781611970791.

Yurii Nesterov and Boris T Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, 108:177–205, 2006. doi: 10.1007/s10107-006-0706-8. URL https://doi.
org/10.1007/s10107-006-0706-8.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Isaac Newton. Philosophiae naturalis principia mathematica. Edmond Halley, 1687.

15

https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/1807.11164
https://proceedings.neurips.cc/paper_files/paper/2012/file/38ca89564b2259401518960f7a06f94b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/38ca89564b2259401518960f7a06f94b-Paper.pdf
https://proceedings.mlr.press/v35/mcmahan14.html
https://proceedings.mlr.press/v35/mcmahan14.html
https://doi.org/10.1137/22M1488752
https://doi.org/10.1137/22M1488752
https://www.osti.gov/biblio/7256021
https://doi.org/10.1137/070704277
https://epubs.siam.org/doi/abs/10.1137/1.9781611970791
https://epubs.siam.org/doi/abs/10.1137/1.9781611970791
https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.1007/s10107-006-0706-8

Under review as submission to TMLR

Jorge Nocedal. Updating Quasi-Newton matrices with limited storage. Mathematics of Computation, 35:
773–782, 1980. doi: 10.2307/2006193. URL https://doi.org/10.2307/2006193.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer New York, 2 edition, 2006. ISBN
978-0-387-30303-1. doi: 10.1007/978-0-387-40065-5.

Adam M Oberman and Mariana Prazeres. Stochastic gradient descent with polyak’s learning rate. arXiv
preprint arXiv:1903.08688, 2019.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213, 2019.

Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/
2016/file/320722549d1751cf3f247855f937b982-Paper.pdf.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
7c82fab8c8f89124e2ce92984e04fb40-Paper.pdf.

Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of SGD with stochastic Polyak
stepsizes: Truly adaptive variants and convergence to exact solution. In S Koyejo, S Mohamed, A Agarwal,
D Belgrave, K Cho, and A Oh (eds.), Advances in Neural Information Processing Systems, volume 35,
pp. 26943–26954. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf.

Vitali Pirau, Aleksandr Beznosikov, Martin Takáč, Vladislav Matyukhin, and Alexander Gasnikov. Pre-
conditioning meets biased compression for efficient distributed optimization. Computational Management
Science, 21(1):14, Dec 2023. ISSN 1619-6988. doi: 10.1007/s10287-023-00496-6. URL https://doi.org/
10.1007/s10287-023-00496-6.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal
on Control and Optimization, 30:838–855, 1992. doi: 10.1137/0330046. URL https://doi.org/10.1137/
0330046.

Boris Teodorovich Polyak. Minimization of unsmooth functionals. USSR Computational Mathematics and
Mathematical Physics, 9:14–29, 1969. ISSN 0041-5553. doi: https://doi.org/10.1016/0041-5553(69)90061-5.
URL https://www.sciencedirect.com/science/article/pii/0041555369900615.

Boris Teodorovich Polyak. Introduction to optimization. Optimization Software, Inc., Publications Division,
1987.

Boris Teodorovich Polyak. A new method of stochastic approximation type. Avtomatika i Telemekhanika,
51:98–107, 1990.

Boris Teodorovich Polyak. Newton’s method and its use in optimization. European Journal of Operational
Research, 181:1086–1096, 2007. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2005.06.076. URL
https://www.sciencedirect.com/science/article/pii/S0377221706001469.

Roman Polyak. Complexity of the regularized Newton method. arXiv preprint arXiv:1706.08483, 2017.

Roman A Polyak. Regularized Newton method for unconstrained convex optimization. Mathematical
Programming, 120:125–145, 2009. ISSN 1436-4646. doi: 10.1007/s10107-007-0143-3. URL https://doi.
org/10.1007/s10107-007-0143-3.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

16

https://doi.org/10.2307/2006193
https://proceedings.neurips.cc/paper_files/paper/2016/file/320722549d1751cf3f247855f937b982-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/320722549d1751cf3f247855f937b982-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7c82fab8c8f89124e2ce92984e04fb40-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7c82fab8c8f89124e2ce92984e04fb40-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf
https://doi.org/10.1007/s10287-023-00496-6
https://doi.org/10.1007/s10287-023-00496-6
https://doi.org/10.1137/0330046
https://doi.org/10.1137/0330046
https://www.sciencedirect.com/science/article/pii/0041555369900615
https://www.sciencedirect.com/science/article/pii/S0377221706001469
https://doi.org/10.1007/s10107-007-0143-3
https://doi.org/10.1007/s10107-007-0143-3

Under review as submission to TMLR

Joseph Raphson. Analysis Aequationum Universalis Seu Ad Aequationes Algebraicas Resolvendas Methodus
Generalis & Expedita, Ex Nova Infinitarum Serierum Methodo, Deducta Ac Demonstrata. Th. Braddyll,
1697.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=ryQu7f-RZ.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22:400–407, 1951. ISSN 0003-4851. URL http://www.jstor.org/stable/2236626.

Abdurakhmon Sadiev, Aleksandr Beznosikov, Abdulla Jasem Almansoori, Dmitry Kamzolov, Rachael
Tappenden, and Martin Takáč. Stochastic gradient methods with preconditioned updates. arXiv preprint
arXiv:2206.00285, 2022.

Fabian Schaipp, Ruben Ohana, Michael Eickenberg, Aaron Defazio, and Robert M Gower. Momo: Momentum
models for adaptive learning rates. arXiv preprint arXiv:2305.07583, 2023.

David F Shanno. Conditioning of Quasi-Newton methods for function minimization. Mathematics of
Computation, 24:647–656, 1970. doi: 10.2307/2004840. URL https://doi.org/10.2307/2004840.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Thomas Simpson. Essays on several curious and useful subjects, in speculative and mix’d mathematicks.
Illustrated by a variety of examples. H. Woodfall, 1740.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex landscapes.
The Journal of Machine Learning Research, 21(1):9047–9076, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, pp. 38–45, 2020.

Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient descent. In
International Conference on Machine Learning, pp. 37656–37684. PMLR, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney. AdaHessian:
An adaptive second order optimizer for machine learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 35:10665–10673, 5 2021. doi: 10.1609/aaai.v35i12.17275. URL https://ojs.aaai.org/index.
php/AAAI/article/view/17275.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012. URL
http://arxiv.org/abs/1212.5701.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.

Zhenxun Zhuang, Mingrui Liu, Ashok Cutkosky, and Francesco Orabona. Understanding adamw through
proximal methods and scale-freeness. arXiv preprint arXiv:2202.00089, 2022.

17

https://openreview.net/forum?id=ryQu7f-RZ
http://www.jstor.org/stable/2236626
https://doi.org/10.2307/2004840
https://arxiv.org/abs/1708.07747
https://ojs.aaai.org/index.php/AAAI/article/view/17275
https://ojs.aaai.org/index.php/AAAI/article/view/17275
http://arxiv.org/abs/1212.5701

Under review as submission to TMLR

A RELATED WORK

Second-order methods have played a crucial role in contemporary optimization since their inception in
classical works focused on root-finding algorithms by Newton (1687), Raphson (1697), Simpson (1740),
and Bennett (1916). Subsequent significant advancements in the Newton method and its local quadratic
convergence rates were made by Kantorovich (1948b;a; 1949; 1951b;a; 1956; 1957). These methods have
been extensively researched, refined, and enhanced in various works, with notable contributions from Moré
(1977),Griewank (1981), Nesterov & Polyak (2006). Today, they are widely employed in both industrial and
scientific computing. For a comprehensive historical overview of the Newton method, Boris T. Polyak’s paper
Polyak (2007) provides more in-depth insights. Compared to first-order algorithms, second-order methods
typically yield faster convergence. However, it’s important to note that the per-iteration computational cost
of second-order methods is considerably higher. An example of the classical Newton method can be expressed
as follows:

xt+1 = xt −
[
∇2f(xt)

]−1∇f(xt).

It exhibits quadratic local convergence, but it becomes impractical for large-scale optimization problems due
to the necessity of computing the complete Hessian and matrix inversion at each iteration. It also lack of
global convergence properties and could diverge if far from the solution.

The Cubic Regularized Newton method by Yurii Nesterov and Boris T. Polyak (Nesterov & Polyak, 2006) is
one of the main approaches to globalize the Newton method. This algorithm achieves global convergence
with the convergence rate O(ε−1/2) for convex functions. Nonetheless, a notable limitation of the Cubic
Regularized Newton method lies in the auxiliary problem, which typically requires running a separate
optimization algorithm to solve it. Several research papers have proposed regularization techniques based on
the gradient norm, aiming to derive an explicit regularized Newton step Polyak (2009; 2017). In Mishchenko
(2023); Doikov & Nesterov (2023), the convergence rate was improved up to O(ε−1/2) for convex functions,
under higher assumptions on smoothness it accelerates up to O(ε−1/3) Doikov et al. (2024). Affine-Invariant
Cubic Regularized Newton method with local Hessian norms has the convergence rate O(ε−1/2) and the same
subproblem as a classical Newton step Hanzely et al. (2022).

B Proofs

B.1 Stochastic Gradient Descent with SANIA

Lemma 2

The solution w̄ of the next problem

w̄ = arg min
w∈Rd,α∈R

f(w) + τα s.t g(w) ≤ α (21)

is the same as the solution ŵ of
ŵ = arg min

w∈Rd

f(w) + τg(w), (22)

where τ > 0.

Proof. Denote the Lagrangian as L(w,α, λ) = f(w) + τα + λ(g(w) − α), where λ ≥ 0 is the Lagrange
multiplier. We know that ∂L

∂α = τ − λ should be 0, which means λ = τ > 0. According to the complementary
slackness, the condition λ(g(w)− α) = 0 should hold. Thus, α = g(w), which means solving problem 21 is
the same as solving problem 22.

18

Under review as submission to TMLR

Lemma 3: Stochastic Gradient Descent

Let γt > 0, then the solution to

wt+1, αt+1 = arg min
w∈Rd,α∈R

1
2∥w − wt∥2

2 + γtα s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ α, (23)

is given by
wt+1 = wt − γt∇fi(wt) (24)

Proof. From Lemma B.1, we know that solving problem 23 is the same as solving the following problem:

wt+1 = arg min
w∈Rd

1
2∥w − wt∥2

2 + γt(fi(wt) + ⟨∇fi(wt), w − wt⟩). (25)

By taking the derivative of the objective function, we get the solution right away.

B.2 Stochastic Polyak step-size with SANIA

Lemma 4: Stochastic Polyak step-size

f∗
i is the minimal value of function fi(wt). The solution to

wt+1 = arg min
w∈Rd

1
2∥w − wt∥2

2 s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ f∗
i , (26)

is given by
wt+1 = wt −

fi(wt)− f∗
i

∥∇fi(wt)∥2∇fi(wt). (27)

Proof. Denote the Lagrangian as L(w, λ) = 1
2∥w − wt∥2

2 + λ(fi(wt) + ⟨∇fi(wt), w − wt⟩ − f∗
i), and we can

get Karush–Kuhn–Tucker(KKT) conditions as below:


∂L
∂w = w − wt + λ∇fi(wt) = 0
λ(fi(wt) + ⟨∇fi(wt), w − wt⟩ − f∗

i) = 0
fi(wt) + ⟨∇fi(wt), w − wt⟩ − f∗

i ≤ 0
λ ≥ 0.

(28)

λ ∈ R+ is called Lagrange multiplier, and if λ = 0, then the constrain is not active. We consider these two
cases as following.

(i) λ = 0:
{
wt+1 = wt

fi(wt)− f∗
i ≤ 0, It’s only true when they are equal.

(ii) λ > 0:
{
wt+1 = wt − λ∇fi(wt)
λ = fi(wt)−f∗

i

∥∇fi(wt)∥2 .

19

Under review as submission to TMLR

B.3 Preconditioned SGD with SANIA

Lemma 5: Preconditioned SGD

Let Bt ∈ Rd×d be a symmetric positive definite matrix. Let γt > 0, then the solution to

wt+1, αt+1 = arg min
w∈Rd,α∈R

1
2∥w − wt∥2

Bt
+ γtα s.t. fi(wt) + ⟨mt, w − wt⟩ ≤ α, (29)

is given by:
wt+1 = wt − γtB

−1
t mt. (30)

For AdaGrad setting, we let

mt = ∇fi(wt), Bt =

√√√√ t∑
j=1

gj ⊙ gj ;

for Adam setting,

mt =
(1− β1)

t∑
j=1

βt−j
1 gj

1− βt
1

, Bt =

√√√√√ (1− β2)
t∑

j=1
βt−j

2 gj ⊙ gj

1− βt
2

;

for KATE setting,

bt =
t∑

j=1
gj ⊙ gj , mt =

 t∑
j=1

η(gj ⊙ gj) + gj ⊙ gj

bj ⊙ bj

 gt, Bt = diag(bt);

and for Sophia setting,

mt = β1mt−1 + (1− β1)gt, Bt = Estimator(wt).

Sophia employes clipping, hence the update rule is slightly modified:

wt+1 = wt − γt · clip(B−1
t mt).

Proof. From Lemma B.1, we know problem 29 is equivalent to:

wt+1 = arg min
w∈Rd

1
2∥w − wt∥2

Bt
+ γt(fi(wt) + ⟨mt, w − wt⟩). (31)

Take derivative of w and get solution:

wt+1 = wt − γtB
−1
t mt. (32)

By plugging in mt and Bt, we get formulas for AdaGrad: wt+1 = wt − γt
gt√∑t

j=1
gj⊙gj

,

and for Adam: wt+1 = wt − γt

(1−β1)
∑t

j=1
β

t−j
1 gj

1−βt
1√

(1−β2)
∑t

j=1
β

t−j
2 gj ⊙gj

1−βt
2

20

Under review as submission to TMLR

B.4 Hutchinson’s Lemma

Lemma 6: Hutchinson

Let I ∈ Rd×d be the identity matrix. Let H ∈ Rd×d and let z ∈ Rd be a random vector with a
distribution such that

E[zzT] = I. (33)

It follows that
diagonal(H) = E[z ⊙Hz]. (34)

Furthermore if z has Rademacher or a normal distribution, then 33 holds.

Proof. Taking expectation the Hadamard product we have that

E[z ⊙Hz] = E[
∑

i

zi(
∑

j

Hijzj)ei] =
∑

i

∑
j

HijE[zjzi]ei. (35)

Since E[zjzi] = I we have that E[zjzi] = δij =
{

1 if i = j

0 if i ̸= j.

Using the above in 35 we have that
E[z ⊙Hz] =

∑
i

Hiiei (36)

which is the diagonal of the Hessian matrix.

Let z be a Rademacher random varaible. That is zi =
{

1 with probability 1
2

−1 with probability 1
2 .

Thus for i, j ∈ 1, . . . , d

and i ̸= j, we have that E[zi] = 0, E[z2
i] = 1 and E[zizj] = 0. The same results follow for z ∈ ℵ(0, 1).

C Proposed methods

C.1 Gradient regularized Newton method with Polyak step-size

Lemma 7: Gradient regularized Newton method with Polyak step-size.

f∗
i is the minimal value of function fi(wt). The solution to

wt+1 = arg min
w∈Rd

1
2∥w − wt∥2

2 (37)

s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]2 ≤ f∗

i .

is given by
wt+1 = wt − (1− κt) [(1− κt)Ht + κtI]−1

gt,

where κt = 0 if fi(wt)− f∗
i >

1
2∥gt∥2

H−1
t

, otherwise κt is a solution of the next equation

C(κ) = fi(wt)− f∗
i −

1− κ
2 g⊤ [(1− κ)Ht + κI]−1

gt −
κ(1− κ)

2

∥∥∥[(1− κ)Ht + κI]−1
gt

∥∥∥2

2
= 0,

which can be computationally solved by segment-search for κ ∈ [0, 1]. Note, that C(1) > 0, and
C(0) < 0 if fi(wt)− f∗

i ≤ 1
2∥gt∥2

H−1
t

hence the solution exists and could be found by bisection search.

21

Under review as submission to TMLR

Proof. For problem equation 37, the Lagrangian could be written as follows:

L(w, λ) = 1
2∥w − wt∥2

2 + λ

(
fi(wt) + ⟨gt, w − wt⟩+ 1

2Ht[w − wt]2 − f∗
i

)
.

Then, we get the next KKT conditions:
∂L
∂w = I(w − wt) + λ (gt +Ht(w − wt)) = 0
λ(fi(wt) + ⟨gt, w − wt⟩+ 1

2Ht[w − wt]2 − f∗
i) = 0

fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]2 − f∗

i ≤ 0
λ ≥ 0.

Similarly, to previous proofs, the case of inactive constraint with λ = 0 us trivial and we focus on active
constraint case. 

I(w − wt) + λ (gt +Ht(w − wt)) = 0
fi(wt) + ⟨gt, w − wt⟩+ 1

2Ht[w − wt]2 − f∗
i = 0,

λ > 0.

First, we find wt+1 as

I(w − wt) + λ (gt +Ht[w − wt]) = 0
wt+1 = wt − λ [λHt + I]−1

gt.

Now, we substitute its new form in the active constraint and get

fi(wt)− f∗
i − λg⊤ [λHt + I]−1

gt + λ

2 g
⊤ [λHt + I]−1

λHt [λHt + I]−1
gt = 0

fi(wt)− f∗
i − λg⊤ [λHt + I]−1

gt + λ

2 g
⊤ [λHt + I]−1 (λHt + I) [λHt + I]−1

gt −
λ

2 ∥ [λHt + I]−1
gt∥2

2 = 0

fi(wt)− f∗
i −

λ

2 g
⊤ [λHt + I]−1

gt −
λ

2 ∥ [λHt + I]−1
gt∥2

2 = 0.

To simplify the line-search by λ ∈ [0,+∞], we transform it to κ = 1
1+λ , which is now κ ∈ [0, 1].

fi(wt)− f∗
i −

1− κ
2 g⊤ [(1− κ)Ht + κI]−1

gt −
κ(1− κ)

2

∥∥∥[(1− κ)Ht + κI]−1
gt

∥∥∥2

2
= 0.

To simplify the multiple computations of the inverse matrix, one can apply SVD for Ht and get the next
simplified formulation:

Ht = UtStU
⊤
t

[(1− κ)Ht + κI]−1 =
[
(1− κ)UtStU

⊤
t + κUtIU

⊤
t

]−1 = Ut [(1− κ)St + κI]−1
U⊤

t

fi(wt)− f∗
i −

1− κ
2 g⊤Ut [(1− κ)St + κI]−1

U⊤
t gt −

κ(1− κ)
2

∥∥∥[(1− κ)St + κI]−1
U⊤

t gt

∥∥∥2

2
= 0

g̃t = U⊤
t gt

fi(wt)− f∗
i −

1− κ
2 g̃t

⊤ [(1− κ)St + κI]−1
g̃t −

κ(1− κ)
2

∥∥∥[(1− κ)St + κI]−1
g̃t

∥∥∥2

2
= 0,

where St is a diagonal matrix. Note, that this type of line-search is pretty common for Cubic Newton Methods.
It adds only additional logarithmic inversions O(log ε−1) compared to classical Newton.

22

Under review as submission to TMLR

C.2 SANIA Quasi-Newton

Lemma 8: Projection Quadratic Inequality

Let B ∈ Rd×d be a symmetric positive definite matrix. Let fi(wt) ≥ 0. The solution to

wt+1 = arg min
w∈Rd

1
2∥w − wt∥2

Bt
(38)

s.t. fi(wt) + ⟨mt, w − wt⟩+ 1
2∥w − wt∥2

Bt
≤ 0. (39)

is given by

wt+1 = wt −

(
1−

√
1− 2(fi(wt)− f∗

i)
∥mt∥2

B−1
t

)
B−1

t mt, (40)

if
2(fi(wt)− f∗

i)
∥mt∥2

B−1
t

≤ 1, (41)

otherwise there is no feasible solution.

Proof. First we apply a change of coordinates and abbreviate. Let x := B
1/2
t (w − wt), a := B

−1/2
t ∇fi(wt)

and c := fi(wt). With this notation equation 38 is given by

arg arg min
x∈Rd

1
2∥x∥

2 s.t. c+ ⟨a, x⟩+ 1
2∥x∥

2︸ ︷︷ ︸
=:q(x)

≤ 0. (42)

The associated Lagrangian is given by

L(x, µ) = 1
2∥x∥

2 + µq(x),

where µ ≥ 0 is the Lagrange multiplier. Taking the derivative in x and setting to zero gives

x = − µ

1 + µ
a. (43)

Consider the case that the constraint is not active, that is µ = 0. Thus x = 0 and consequently q(x) = c ≥ 0,
which is only possible if the constraint is active thus a contradiction. Thus the constraint must be active and
µ ̸= 0.

Let τ := µ
1+µ . To determine τ , and consequently µ, we substituting back x give in equation 43 into the

constraint

q(x) = c− τ∥a∥2 + τ2

2 ∥a∥
2 =

(
1−

√
1− 2c
∥a∥2 − τ

)(
1 +

√
1− 2c
∥a∥2 − τ

)
∥a∥2

2 = 0,

where we have factored q(x) according to its roots in τ. The above only has a solution if 1− 2c
∥a∥2 ≥= 0⇔

∥a∥2 ≥ 2c. In which case either root of τ is positive, but only the root τ = 1−
√

1− 2c
∥a∥2 gives a positive µ.

Substituting this τ into equation 43 gives

x = −
(

1−
√

1− 2c
∥a∥2

)
a. (44)

Substituting back x := B
1/2
t (w − wt), a := B

−1/2
t ∇fi(wt) and c := fi(wt) gives

B
1/2
t (wt+1 − wt) = −

(
1−

√
1− 2fi(wt)
∥∇fi(wt)∥2

B−1
t

)
B

−1/2
t ∇fi(wt). (45)

23

Under review as submission to TMLR

Right multiplying by B−1/2
t and re-arranging gives the solution.

C.3 SANIA AdaGrad-SQR for Quasi-Newton.

The following is the explicit implementation of the Quasi-Newton algorithm when choosing AdaGrad-SQR as
preconditioning matrix. We add some insurance ϵ to avoid numerical collapse.

Algorithm 1 SANIA AdaGrad-SQR
Given batch size m, ϵ, initial point w ← 0;
for epoch = 0, 1, 2, . . . do

Set G0 = 0
for t = 1, 2, . . . do

Compute gradient vector gt ← 1
m∇w

∑m
i=1 fi(w) fi(w): stochastic objective function

Accumulate Gt ← Gt−1 + g2
t

Bt = diag(Gt) + ϵ
λt ← step-size in equation 17
w ← w − λtB

−1
t gt

end
end

C.4 SANIA Adam-SQR for Quasi-Newton.

The following is the explicit implementation of the Quasi-Newton algorithm when choosing Adam-SQR as
preconditioning matrix. We add some insurance ϵ to avoid numerical collapse.

Algorithm 2 SANIA Adam-SQR
Given batch size m, ϵ, β1, β2, initial point w ← 0;
for epoch = 0, 1, 2, . . . do

Set m0 = 0, v0 = 0
for t = 1, 2, . . . do

gt ← 1
m∇w

∑m
i=1 fi(w) Compute gradient vector

mt ← β1mt−1 + (1− β1)gt Accumulate 1st momentum vector
vt ← β2vt−1 + (1− β2)g2

t Accumulate 2nd momentum vector
m̂t ← mt/(1− βt

1))
v̂t ← vt/(1− βt

2))
Bt = diag(v̂t) + ϵ
λt ← step-size in equation 17
w ← w − λtB

−1
t m̂t

end
end

C.5 SANIA PCG for Newton method on convex functions.

For convex setting where Hessian is positive definite, we can choose Bt in equation 17 as Hessian or the
approximation matrix of diagonal Hessian. We present detailed algorithm when Bt = ∇2fi(wt)(we denote as
Hk) as below.

24

Under review as submission to TMLR

Algorithm 3 SANIA PCG for convex setting
Given ϵ, γ, η, initial point w ← 0;
for epoch = 0, 1, 2, . . . do

for k = 0, 1, 2, . . . do
Set s = 0, r0 = ∇fk, z0 = M−1

0 r0, p0 = z0 ∇fk here is the stochastic mini-batch gradient as
for j = 0, 1, 2, . . . do

αj = rT
j zj

pT
j

Hkpj

s← s+ αjpj

rj+1 = rj − αjHkpj

if ∥rj+1∥Mk
−1 < ϵ then

break
end
zj+1 = M−1

k rj+1

βj = rT
j+1zj+1

rT
j

zj

pj+1 = zj+1 + βjpj

end
λk ← step-size in equation 17
w ← w − λks

end
end

In practice, we solve this matrix-vector product (∇2fi(wt))−1∇fi(wt) using Conjugate Gradient method.
Furthermore, we can incorporate curvature information from Hessian approximation using Hutchinson’s
method, Adam or AdaGrad, which allows us to benefit from preconditioned system. In Conjugate Gradient
method preconditioning is required to ensure faster convergence and the system can be preconditioned by a
matrix M−1 that is symmetric and positive-definite. Preconditioned Conjugate Gradient is equivalent to
solving the following system:

E−1∇2fi(wt)(E−1)TETx = E−1∇fi(wt),

where

EET = M.

If matrix Mk = Hk, then SANIA PCG is affine invariant; if Mk = diag(Hk), then this method is scale
invariant. In experiments you can choose Mk as AdaGrad-SQR19 or Adam-SQR20.

C.6 SANIA PCG for Newton method on non-convex functions.

For non-convex settings, we cannot use conjugate gradient method to solve this Hx = g (Hessian is not
positive definite) linear system of equations anymore. We try to combine Polyak step-size and line searxch
Newton-CG method together to get good performance. The following is our specific implementation of the
algorithm.

25

Under review as submission to TMLR

Algorithm 4 SANIA PCG for Non-convex setting
Given ϵ, γ, η, initial point w ← 0;
for epoch = 0, 1, 2, . . . do

for k = 0, 1, 2, . . . do
Set s0 = 0, x0, r0 = ∇fk, z0 = M−1

0 r0, p0 = z0
for j = 0, 1, 2, . . . do

if pT
j Hkpj ≤ 0 then
sk = γxj + (1− γ)sign(∇fT

k pj)pj

λk = min(fk

∇fT
k

sk
, η)

break
end
αj = rT

j zj

pT
j

Hkpj

xj+1 = xj + αjpj

rj+1 = rj − αjHkpj

zj+1 = M−1
k rj+1

if rT
j+1zj+1 < ϵ then
sk = xj+1
λk ← step-size in equation 17
break

end
βj = rT

j+1zj+1

rT
j

zj

pj+1 = zj+1 + βjpj

end
w ← w − λksk

end
end

Since product B+
t ∇fi(wt) results in the same direction as (∇2fi(wt))−1∇fi(wt) , and now the algorithm

stops once it detects negative curvature, otherwise it still takes CG steps until it hits stopping criteria. You
can choose matrix Mk to be AdaGrad-SQR19 or Adam-SQR20 to attain the scale-invariance property and
we name them as SANIA PCG AdaGrad-SQR and SANIA PCG Adam-SQR. Notice that the names for the
convex and non-convex setting are the same, but the implementation of these methods are slightly different
due to the effectiveness of conjugate gradient methods.

D Affine and Scale Invariance

D.1 Affine Invariance

Lemma 9: Affine Invariance (Lemma 5.1.1 from (Nesterov, 2018))

Let the sequence {xk} be generated by the Newton’s method as applied to the function f:

xk+1 = xk − [∇2f(xk)]−1∇f(xk), k ≥ 0. (46)

Consider the sequence {yk}, generated by the Newton’s method for the function ϕ:

yk+1 = yk − [∇2ϕ(yk)]−1∇ϕ(yk), k ≥ 0, (47)

with y0 = B−1x0. Then yk = B−1xk for all k ≥ 0.

26

Under review as submission to TMLR

Proof. Let yk = B−1xk for some k ≥ 0. Then

yk+1 =yk − [∇2ϕ(yk)]−1∇ϕ(yk) = yk − [BT∇2f(Byk)B]−1BT∇f(Byk)
=B−1xk −B−1[∇2f(xk)]−1∇f(xk) = B−1xk+1.

Thus, the Newton’s method is affine invariant with respect to affine transformations of variables.

Lemma 10: Affine Invariance for SANIA Newton

Let the sequence {xk} be generated by the SANIA Newton method as applied to the function f:

xk+1 = xk − λk[∇2f(xk)]−1∇f(xk), k ≥ 0. (48)

Consider the sequence {yk}, generated by the SANIA Newton method for the function ϕ:

yk+1 = yk − λ̂k[∇2ϕ(yk)]−1∇ϕ(yk), k ≥ 0, (49)

with y0 = B−1x0. Then yk = B−1xk for all k ≥ 0.

Proof. We define

λk =
{

1−
√

1− υk, if υk ≤ 1,
1, otherwise,

(50)

where
υk = 2(fi(xk)− f∗

i)
∥∇fi(xk)∥2

∇2f(xk)−1
(51)

and

λ̂k =
{

1−
√

1− υ̂k, if υ̂k ≤ 1,
1, otherwise,

(52)

where
υ̂k = 2(ϕi(yk)− ϕ∗

i)
∥∇ϕi(yk)∥2

∇2ϕ(yk)−1
. (53)

Let yk = B−1xk for some k ≥ 0. We have this condition υ̂k = 2(ϕi(yk)−ϕ∗
i)

∥∇ϕi(yk)∥2
∇2ϕ(yk)−1

=
2(fi(Byk)−f∗

i)
∥BT ∇fi(Byk)∥2

[BT ∇2f(Byk)B]−1
= 2(fi(xk)−f∗

i)
∥∇fi(xk)∥2

∇2f(xk)−1
= υk holds, which means λ̂k = λk. Then

yk+1 =yk − λk[∇2ϕ(yk)]−1∇ϕ(yk) = yk − λk[BT∇2f(Byk)B]−1BT∇f(Byk)
=B−1xk − λkB

−1[∇2f(xk)]−1∇f(xk) = B−1xk+1.

Thus, the SANIA Newton method is affine invariant with respect to affine transformations of variables.

D.2 Scale Invariance

Kempka et al. (2019); Zhuang et al. (2022) illustrate this important but overlooked property of an optimization
algorithm. It is widely recognized that the convergence rate of minimizing a twice continuously differentiable
function f through a first-order optimization algorithm depends heavily on the condition number. To mitigate
the impact of the condition number, one effective approach is the use of preconditioners relying on Hessian of
the function which yields affine invaraince. Consider the Hessian cannot be easily estimated, Zhuang et al.
(2022) shows that scale invariance gives similar advantages to the use of an optimal diagonal preconditioner.

They also showed why algorithms like SGD and Adam have such excellent performances in DNNs even
though they are not scale invariant. Because they are intensively linked to the use of batch normalization

27

Under review as submission to TMLR

which normalizes the gradients. Without BN, using SGD with momentum and weight decay, even a tiny
learning rate will lead to divergence while training a deep neural network. But for the upgraded version of
Adam–AdamW which enjoys scale invariance outperforms Adam when both are finely tuned.

Now, we will show the classical AdaGrad and Adam are not scale invariant but AdaGrad-SQR and Adam-SQR
enjoy this property.

Lemma 11: Scale Invariance of AdaGrad-SQR

Let the sequence {xk} be generated by the AdaGrad-SQR as applied to the function f:

xk+1 = xk − λkB
−1
k mk, k ≥ 0, where mk = ∇fik

(xk), Bk =
k∑

j=1
∇fij

(xj)2. (54)

Consider the sequence {yk}, generated by the AdaGrad-SQR for the function ϕ:

yk+1 = yk − λ̂kB̂k
−1
m̂k, k ≥ 0, where m̂k = ∇ϕik

(yk), B̂k =
k∑

j=1
∇ϕij

(yj)2, (55)

with y0 = V −1x0. Then yk = V −1xk for all k ≥ 0. V is a diagonal matrix.

Proof. We define λk =
{

1−
√

1− υk, if υk ≤ 1,
1, otherwise,

where υk = 2(fi(xk)−f∗
i)

∥mk∥2
B

−1
k

, and for λ̂k, υ̂k = 2(ϕi(yk)−ϕ∗
i)

∥m̂k∥2
B̂k

−1
.

Let yk = V −1xk for some k ≥ 0. We have
B̂k =

∑k
j=1∇ϕij

(yk)2 =
∑k

j=1[V T∇fij
(V yk)]2 = V T [

∑k
j=1∇fij

(xk)2]V = V TBkV,

m̂k = ∇ϕij
(yk) = V T∇fij

(V yk) = V T∇fij
(xk) = V Tmk,

υ̂k = 2(ϕi(yk)−ϕ∗
i)

∥m̂k∥2
B̂k

−1
= 2(fi(V yk)−f∗

i)
∥V T mk∥2

(V T BkV)−1
= 2(fi(xk)−f∗

i)
∥mk∥2

B
−1
k

= υk.

Then

yk+1 =yk − λ̂kB̂k
−1
m̂k = yk − λk[V TBkV]−1V Tmk

=V −1xk − λkV
−1B−1

k mk = V −1xk+1.

Thus, the AdaGrad-SQR method is scale invariant.

And for Adam-SQR setting where mk =
(1−β1)

∑k

j=1
βk−j

1 ∇fij
(xk)

1−βk
1

, Bk =
(1−β2)

∑k

j=1
βk−j

2 ∇fij
(xk)2

1−βk
2

, and m̂k =
(1−β1)

∑k

j=1
βk−j

1 ∇ϕij
(yk)

1−βk
1

, B̂k =
(1−β2)

∑k

j=1
βk−j

2 ∇ϕij
(yk)2

1−βk
2

. Similarly, we can get B̂k = V TBkV, m̂k = V Tmk.

Rest proofs are the same. From proofs above we can know for simple AdaGrad and Adam they are not scale
invariant , because B̂k = V TBk ̸= V TBkV .

D.3 GLM

Suppose fi is the loss over a linear model with

fi(w) = ψi(xT
i w − yi), (56)

where ψi : R → R is the loss function, and xi is the ith data and yi is the corresponding label. Let the
sequence {wk} be generated by method as applied to the function f . Consider the sequence {ŵk}, generated
by the same method but for function ϕ where ϕ(ŵk) = f(Bŵk) = ψi(xT

i Bŵk − yi).

28

Under review as submission to TMLR

0 20 40 60 80 100
Epochs

10 18

10 15

10 12

10 9

10 6

10 3

100

Te
st

 L
os

s

Adam t = 5.0 (original data)
Adam t = 2.0 (scaled data)
Adam t = 3.0 (scaled data)
Adam t = 5.0 (diverge) (scaled data)
SANIA AdamSQR (original data)
SANIA AdamSQR (scaled data)

mushrooms

0 20 40 60 80 100
Epochs

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

Adagrad t = 5.0 (original data)
Adagrad t = 3.0 (scaled data)
Adagrad t = 4.0 (scaled data)
Adagrad t = 5.0 (diverge) (scaled data)
SANIA AdagradSQR (original data)
SANIA AdagradSQR (scaled data)

mushrooms

0 20 40 60 80 100
Epochs

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

Te
st

 L
os

s

Adam t = 0.1 (original data)
Adam t = 0.001 (scaled data)
Adam t = 0.01 (scaled data)
Adam t = 0.1 (diverge) (scaled data)
SANIA AdamSQR (original data)
SANIA AdamSQR (scaled data)

colon-cancer

0 20 40 60 80 100
Epochs

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Te
st

 L
os

s

Adagrad t = 0.5 (original data)
Adagrad t = 0.05 (scaled data)
Adagrad t = 0.005 (scaled data)
Adagrad t = 0.5 (diverge) (scaled data)
SANIA AdagradSQR (original data)
SANIA AdagradSQR (scaled data)

colon-cancer

0 20 40 60 80 100
Epochs

10 16

10 13

10 10

10 7

10 4

10 1

102

Te
st

 L
os

s

Adam t = 0.035 (original data)
Adam t = 0.0035 (scaled data)
Adam t = 0.00035 (scaled data)
Adam t = 0.035 (diverge) (scaled data)
SANIA AdamSQR (original data)
SANIA AdamSQR (scaled data)

duke

0 20 40 60 80 100
Epochs

10 8

10 6

10 4

10 2

100

Te
st

 L
os

s

Adagrad t = 0.045 (original data)
Adagrad t = 0.0045 (scaled data)
Adagrad t = 0.00045 (scaled data)
Adagrad t = 0.045 (diverge) (scaled data)
SANIA AdagradSQR (original data)
SANIA AdagradSQR (scaled data)

duke

0 20 40 60 80 100
Epochs

100

101

Te
st

 L
os

s

Adam t = 1.0 (original data)
Adam t = 0.01 (scaled data)
Adam t = 0.001 (scaled data)
Adam t = 1.0 (scaled data)
SANIA AdamSQR (original data)
SANIA AdamSQR (scaled data)

sonar_scale

0 20 40 60 80 100
Epochs

100

101

Te
st

 L
os

s

Adagrad t = 1.0 (original data)
Adagrad t = 0.1 (scaled data)
Adagrad t = 0.01 (scaled data)
Adagrad t = 1.0 (scaled data)
SANIA AdagradSQR (original data)
SANIA AdagradSQR (scaled data)

sonar_scale

Figure 3: Observation of scale invariance of SANIA while minimizing logistic regression objective function on
binary classification datasets from LibSVM with scaling factor k = 4.

0 100 200 300 400 500

10 16

10 13

10 10

10 7

10 4

10 1

102

f i(
w

t)

colon-cancer

0 100 200 300 400 500

10 16

10 13

10 10

10 7

10 4

10 1

duke

0 100 200 300 400 500

10 16

10 13

10 10

10 7

10 4

10 1

leu

Adam AdaGrad Adadelta SANIA PCG AdaGrad-SQR SANIA PCG AdaGrad-SQR SANIA Adam-SQR SANIA Adam-SQR SANIA AdaGrad-SQR SANIA AdaGrad-SQR

Original data
Scaled data

epochs

Adam AdaGrad Adadelta SANIA PCG AdaGrad-SQR SANIA PCG AdaGrad-SQR SANIA Adam-SQR SANIA Adam-SQR SANIA AdaGrad-SQR SANIA AdaGrad-SQR

Figure 4: Performance of SANIA and other adaptive methods on 3 datasets (original and badly scaled with
scaling factor k = 6) with logistic regression loss.

Take xT
i B as a whole, it can be seen as we are doing linear transformation to the data. When matrix B

is badly scaled, it will lead to a ill-conditioning dataset. And it inhibits the performance of the general
algorithms, which is specifically reflected in the need for more iterations to converge, or even diverge on
the worst case. But if the algorithm enjoys affine invariant property, that is, ŵk = B−1xk. Then we have
ψi(xT

i Bŵk − yi) = ψi(xT
i BB

−1xk − yi) = fi(w), which means we automatically have the same function value
as the original one as every iteration goes.

E Additional Experiments and Details

All experiments were run with 5 different seeds (0, 1, 2, 3, 4) using PyTorch 2.0.1+cu118 on a computing
machine with AMD EPYC 7402 24-Core Processor with 2.8GHz of base clock and 1 x NVIDIA RTX A6000
GPU unit. Default datatype in PyTorch is set to torch.float64 . LibSVM3 datasets and source code of
optimizers used for the experiments are publicly available 4.

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4https://anonymous.4open.science/r/SANIA-A12E

29

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://anonymous.4open.science/r/SANIA-A12E

Under review as submission to TMLR

0 20 40 60 80 100
Epochs

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

100

4 × 10 1

6 × 10 1Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

a1a Adam, t = 0.001
Adagrad, t = 0.1
KATE, t = 0.01
SGD, t = 1.0
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

australian_scale Adam, t = 0.1
Adagrad, t = 0.5
KATE, t = 0.1
SGD, t = 1.0
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

breast-cancer_scale Adam, t = 0.5
Adagrad, t = 1.0
KATE, t = 0.5
SGD, t = 1.0
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

cod-rna Adam, t = 0.01
Adagrad, t = 0.01
KATE, t = 1.0
SGD, t = 1e 05
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

10 16

10 13

10 10

10 7

10 4

10 1

102

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 14

10 11

10 8

10 5

10 2

101

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Te
st

 A
cc

ur
ac

y

colon-cancer Adam, t = 0.1
Adagrad, t = 0.5
KATE, t = 0.1
SGD, t = 0.5
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

10 3

10 2

10 1

100

101

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

gisette_scale Adam, t = 0.001
Adagrad, t = 0.01
KATE, t = 0.01
SGD, t = 0.01
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

leu Adam, t = 0.001
Adagrad, t = 0.001
KATE, t = 0.0001
SGD, t = 0.01
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

100

101

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

100

101

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

madelon Adam, t = 0.0001
Adagrad, t = 0.001
KATE, t = 0.0001
SGD, t = 1e 08
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

10 8

10 6

10 4

10 2

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 8

10 6

10 4

10 2

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

mushrooms Adam, t = 1.0
Adagrad, t = 1.0
KATE, t = 1.0
SGD, t = 1.0
SANIA AdamSQR
SANIA AdagradSQR

Figure 5: Performance of SANIA and other first-order optimization methods on binary classification tasks
from LibSVM with logistic regression loss.

30

Under review as submission to TMLR

0 20 40 60 80 100
Epochs

3 × 10 1

4 × 10 1

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

news20.binary Adam t = 0.125
SANIA AdamSQR

0 20 40 60 80 100
Epochs

10 2

10 1

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

news20.binary Adagrad t = 0.225
SANIA AdagradSQR

0 10 20 30 40 50
Epochs

10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

webspam Adam t = 0.001
SANIA AdamSQR

0 10 20 30 40 50
Epochs

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Tr
ai

n
Lo

ss
0 10 20 30 40 50

Epochs

10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

webspam Adagrad t = 0.005
SANIA AdagradSQR

0 10 20 30 40 50
Epochs

10 1

4 × 10 2

6 × 10 2

2 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

rcv1.binary Adam t = 0.1
SANIA AdamSQR

0 10 20 30 40 50
Epochs

10 1

4 × 10 2

6 × 10 2

2 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s
0 10 20 30 40 50

Epochs
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

rcv1.binary Adagrad t = 1.0
SANIA AdagradSQR

0 10 20 30 40 50
Epochs

10 1

7 × 10 2

8 × 10 2

9 × 10 2

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

10 1

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

real-sim Adam t = 0.1
SANIA AdamSQR

0 10 20 30 40 50
Epochs

10 1

6 × 10 2

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

10 1

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

real-sim Adagrad t = 1.0
SANIA AdagradSQR

0 10 20 30 40 50
Epochs

4 × 10 1

5 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

a9a Adam t = 0.05
SANIA AdamSQR

0 10 20 30 40 50
Epochs

4 × 10 1

5 × 10 1

6 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

a9a Adagrad t = 1.0
SANIA AdagradSQR

0 10 20 30 40 50
Epochs

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

w8a Adam t = 0.05
SANIA AdamSQR

0 10 20 30 40 50
Epochs

1.2 × 10 1

1.4 × 10 1

1.6 × 10 1

1.8 × 10 1

2 × 10 1

2.2 × 10 1

2.4 × 10 1
2.6 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

w8a Adagrad t = 1.0
SANIA AdagradSQR

Figure 6: Large-scale binary classification experiments on datasets from LibSVM.

31

Under review as submission to TMLR

0 20 40 60 80 100
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 L
os

s
0 20 40 60 80 100

Epochs
0.970

0.975

0.980

0.985

0.990

0.995

1.000

Te
st

 A
cc

ur
ac

y

MNIST (LeNet5) Adam t = 0.001
SANIA AdamSQR
Adagrad t = 0.01
SANIA AdagradSQR
KATE t = 0.001

0 20 40 60 80 100
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

FashionMNIST (SimpleConvNet) Adam t = 0.001
SANIA AdamSQR
Adagrad t = 0.01
SANIA AdagradSQR
KATE t = 0.001

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
Lo

ss

0 25 50 75 100 125 150 175 200
Epochs

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Te
st

 L
os

s

0 25 50 75 100 125 150 175 200
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

CIFAR10 (DenseNet121) Adam t = 0.001
SANIA AdamSQR
Adagrad t = 0.025
SANIA AdagradSQR
KATE t = 0.0001

0 20 40 60 80 100
Epochs

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

2

3

4

5

6

7

8

9

10

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 To
p-

3
Ac

cu
ra

cy

CIFAR100 (ResNet18) Adam t = 0.01
SANIA AdamSQR
Adagrad t = 0.01
SANIA AdagradSQR
KATE t = 0.0001

0 25 50 75 100 125 150 175 200
Epochs

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Tr
ai

n
Lo

ss

0 25 50 75 100 125 150 175 200
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

0 25 50 75 100 125 150 175 200
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

SVHN (ShuffleNetV2x0_5) Adam t = 0.01
SANIA AdamSQR
Adagrad t = 0.1
SANIA AdagradSQR
KATE t = 0.1

Figure 7: Performance of SANIA and other methods on multiple classification problems and neural networks.

32

Under review as submission to TMLR

0 100 200 300 400 500

10 19

10 16

10 13

10 10

10 7

10 4

10 1

f i(
w

t)

duke

0 100 200 300 400 500

10 28

10 24

10 20

10 16

10 12

10 8

10 4

100

leu

Adam
AdaGrad
Adadelta
SANIA PCG AdaGrad-SQR
SANIA PCG AdaGrad-SQR
SANIA PCG diag(H0) 1

SANIA PCG diag(H0) 1

Original data
Scaled data

epochs

Adam
AdaGrad
Adadelta
SANIA PCG AdaGrad-SQR
SANIA PCG AdaGrad-SQR
SANIA PCG diag(H0) 1

SANIA PCG diag(H0) 1

Original data
Scaled data

Figure 8: Performance of SANIA and other adaptive methods on 2 LibSVM datasets (original and badly
scaled with scaling factor k = 6) with non-linear least squares loss.

E.1 Non-linear least squares

To show experiments for non-convex problems, we use non-linear least squares in Figure 8. Let {(xi, yi)}n
i=1

be our dataset, where xi ∈ Rd and yi ∈ {0, 1}, then Non-linear least squares problem is given by fNLLSQ(w) =
1
n

∑n
i=1(yi − 1

(1+exp(−xT
i

w)))2.

E.2 Badly scaled dataset

In order to simulate badly scaled datasets we use scaling procedure shown in equation 57.

An×d =


a1,1 a1,2 . . . a1,d

a2,1 a2,2 . . . a2,d

...
an,1 an,2 . . . an,d

 scale−−−→ Ân×d =


a1,1 × v1 a1,2 × v2 . . . a1,d × vd

a2,1 × v1 a2,2 × v2 . . . a2,d × vd

...
an,1 × v1 an,2 × v2 . . . an,d × vd

 , (57)

where vi = ebj , bj ∈ Uniform[−k, k].

E.3 Learning rates

Learning rates of algorithms used for experiments are not chosen randomly. To avoid overoptimized learning
rates obtained using special algorithms and at the same time to adhere to some fairness of the results we
conducted experiments with a series of learning rates γ = 2n where n ∈ range(−2,−16, 2). Next, we used
the best performing step size as the main result for certain optimizer.

E.4 More findings

In Figure 9 we can see that proposed SANIA CG and SP2 for Generalized Linear Models presented in
Li et al. (2023) generate identical steps towards the minimum given the exact same set of observations xi.
However, disadvantage of SP2 in this case is that it has a closed form solution only for GLMs.

Figure 11 shows that unlike other classical adaptive methods, SANIA with Newton step is scaling invariant.
The same behaviour can be observed in Figure 12 where SANIA AdaGrad-SQR is not only scaling invariant
but also displays significantly better performance compared to Adam, AdaGrad and Adadelta with a constant
learning rate.

In Figure 10 we show how step-sizes of SANIA AdamSQR and SANIA AdagradSQR change during training on
synthetic binary classification problem over 5 runs. Interestingly, evolution of step-sizes of SANIA AdamSQR
closely resemble "warm-up" technique often used in practice, that is known to prevent instability in the
beginning of training.

33

Under review as submission to TMLR

0 20 40 60 80 100
steps

10 6

10 5

10 4

10 3

10 2

10 1

f i(
w

t) colon-cancer

synthetic

SANIA CG
SP2 GLM

Figure 9: SANIA CG and SP2 GLM generate identical steps on logistic regression problem with batch size
= 1.

E.5 Experiments with Cubic Newton with Polyak step-size

In this subsection, we present results for Cubic Newton with Polyak step-size from equation 16. In Figure 13,
we compare classical Cubic Newton from (Nesterov & Polyak, 2006), Gradient Regularized Newton from
(Mishchenko, 2023; Doikov & Nesterov, 2023) and our Cubic Newton with Polyak step-size on full-batch
logistic regression with µ

2 ∥w∥
2
2-regularization, where µ = 1e− 4. To show globalization properties, we choose

the starting point far from the solution x0 = 3e, where e is a vector of all ones. We present Cubic Newton
with theoretical parameter L2 = 0.1, with fine-tuned parameter L2 = 0.0004; Gradient Regularized Newton
with fine-tuned parameter L2 = 0.0004. There is a huge difference between fine-tuned and theoretical choice.
It means that the method is pretty sensitive to the choice of the parameter L2. For Cubic Newton with Polyak
step-size, we denote approximate f∗ as f̂ . Then, we present the precise approximation f̂ = f∗ = 0.3361,
close lower approximation f̂ = 0.3, and the very simple and naive lower bound f̂ = 0. For all three cases, the
convergence is almost the same. It also shows that Cubic Newton with Polyak step-size is very robust to the
parameter f̂ , where even the most naive choice works perfectly fine. Finally, we highlight that Cubic Newton
with Polyak step-size significantly overperform other Cubic methods even with fine-tuned parameters.

F Convergence Analysis

In this section, we prove the theoretical convergence results for SANIA Quasi-Newton and Preconditioned
SPS (PSPS). These two methods are very close. Both of these methods have the next explicit form:

wt+1 = wt − λtB
−1
t mt (58)

The difference is the step size. We introduce an additional parameter

υt = 2(fi(wt)− f∗
i)

∥mt∥2
B−1

t

. (59)

For PSPS, the step size is

λP SP S
t = fi(wt)− f∗

i

∥mt∥2
B−1

t

= υt

2 . (60)

For SANIA Quasi-Newton, the step size is

λSANIA
t =

{
1−
√

1− υt, if υt ≤ 1,
1, otherwise.

(61)

34

Under review as submission to TMLR

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

101

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 500 1000 1500
Steps

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

St
ep

siz
e

Logistic Regression, synthetic-interpolation, n = 2, 000, d = 200 SANIA_AdamSQR
Adam, t = 0.001
Adam, t = 0.01
Adam, t = 0.1

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

101

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

0 500 1000 1500
Steps

0.00

0.02

0.04

0.06

0.08

0.10

St
ep

siz
e

Logistic Regression, synthetic-interpolation, n = 2, 000, d = 200 SANIA_AdamSQR
Adam, OneCycleLR
Adam, CosineAnnealingLR
Adam, ExpDecayLR

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 500 1000 1500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

St
ep

siz
e

Logistic Regression, synthetic-interpolation, n = 2, 000, d = 200 SANIA_AdagradSQR
Adagrad, t = 0.01
Adagrad, t = 0.1
Adagrad, t = 1.0

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

0 500 1000 1500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

St
ep

siz
e

Logistic Regression, synthetic-interpolation, n = 2, 000, d = 200 SANIA_AdagradSQR
Adagrad, OneCycleLR
Adagrad, CosineAnnealingLR
Adagrad, ExpDecayLR

Figure 10: Evolution of metrics and step-sizes in SANIA, fine-tuned methods and learning rate schedules.

35

Under review as submission to TMLR

0 100 200 300 400 500
10 3

10 2

10 1

100

f i(
w

t)

0 100 200 300 400 500
10 5

10 3

10 1

101

103

f i(
w

t)
2

Adam lr=0.01
AdaGrad lr=0.01
Adadelta lr=0.01
SANIA Newton
SANIA Newton

Original data
Scaled data

epochs

Adam lr=0.01
AdaGrad lr=0.01
Adadelta lr=0.01
SANIA Newton
SANIA Newton

Original data
Scaled data

Figure 11: SANIA Newton compared to other adaptive methods on original and badly scaled (k = 5) synthetic
binary classification dataset (batch size = 100) with logistic regression objective function.

0 100 200 300 400 500
10 7

10 6

10 5

10 4

10 3

10 2

10 1

f i(
w

t)

0 100 200 300 400 500

10 12

10 9

10 6

10 3

100

103

106

f i(
w

t)
2

Adam lr=0.001
AdaGrad lr=0.001
Adadelta lr=0.001
SANIA AdaGrad-SQR

Original data
Scaled data

epochs

Adam lr=0.001
AdaGrad lr=0.001
Adadelta lr=0.001
SANIA AdaGrad-SQR

Original data
Scaled data

Figure 12: SANIA AdaGrad-SQR compared to other adaptive methods on original and badly scaled (k = 10)
mushrooms dataset (batch size = 256) with non-linear least squares objective function.

Let us show the relation between them. For υt ≤ 2, SANIA step size is bigger but very close to PSPS,
2λP SP S

t ≤ λSANIA
t ≥ λP SP S

t . However, for υt > 2, the PSPS becomes more aggressive and λP SP S
t > 1,

which is quite big for Newton-type methods and could be an issue when f∗
i was chosen not accurate enough.

We plot both of the step sizes to visualize the difference between them in Figure 14. Next, we provide the
proofs for both step sizes inspired by proofs from (Schaipp et al., 2023).

Lemma 12

Let fi(x) be a convex function for all i ∈ [1, . . . , n] and have the same minimum w∗ (Assumption 1),
Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T], mt = ∇fi(wt), and υt = 2(fi(wt)−f∗

i)
∥∇fi(wt)∥2

B
−1
t

. Then

for equation 58 method with the step size λt ∈ (0, υt), we have

∥wt+1 − w∗∥2
Bt
< ∥wt − w∗∥2

Bt
. (62)

Additionally, for λt = fi(wt)−f∗
i

∥∇fi(wt)∥2
B

−1
t

, we get

∥wt+1 − w∗∥2
Bt
≤ ∥wt − w∗∥2

Bt
− (fi(wt)− f∗

i)2

∥∇fi(wt)∥2
B−1

t

. (63)

Proof. We start with the Polyak-step upper bound of the distance to the solution.

∥wt+1 − w∗∥2
Bt

equation 17= ∥wt − γtB
−1
t ∇fi(wt)− w∗∥2

Bt

= ∥wt − w∗∥2
Bt
− 2λt ⟨∇fi(wt), wt − w∗⟩+ λ2

t∥∇fi(wt)∥2
B−1

t

≤ ∥wt − w∗∥2
Bt
− 2λt (fi(wt)− f∗

i) + λ2
t∥∇fi(wt)∥2

B−1
t

,

where in the last inequality we used the convexity of fi(x).

36

Under review as submission to TMLR

0 5 10 15 20 25 30
Iterations, t

10 5

10 4

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

a9a, Logistic Regression, = 1e 4
Cubic Newton (theory), L2 = 0.1
Cubic Newton (tuned), L2 = 0.0004
Gradient Regularized Newton, L2 = 0.0004
Polyak Cubic Newton (tuned+theory), f = f * = 0.3361
Polyak Cubic Newton (approx), f = 0.3
Polyak Cubic Newton (naive), f = 0.0

Figure 13: Gradient regularized(Cubic) Newton with Polyak step-size vs Cubic Newton methods for µ
2 ∥w∥

2-
regularized logistic regression

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
vt

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

t

t = vt / 2
t = 1 1 vt

Figure 14: The comparison of step sizes λP SP S
t (blue dashed line) from equation 60 and λSANIA

t (orange
dashed line) from equation 61.

For λt ∈ (0, υt) from equation 59, the right hand side is negative −2λt (fi(wt)− f∗
i) + λ2

t∥∇fi(wt)∥2
B−1

t

< 0,
hence

∥wt+1 − w∗∥2
Bt
< ∥wt − w∗∥2

Bt

Next, if we optimize the right hand side by λt, we get the optimal λt = λP SP S
t = υ

2 and

∥wt+1 − w∗∥2
Bt
≤ ∥wt − w∗∥2

Bt
− 2λt (fi(wt)− f∗

i) + λ2
t∥∇fi(wt)∥2

B−1
t

≤ ∥wt − w∗∥2
Bt
− (fi(wt)− f∗

i)2

∥∇fi(wt)∥2
B−1

t

37

Under review as submission to TMLR

Next, we show the convergence theorem for the equation 58 method with the step size λt = fi(wt)−f∗
i

∥∇fi(wt)∥2
B

−1
t

.

Additionally, we assume that the preconditioning is not expanding Bt ⪰ Bt+1 ⪰ ν. It helps to work with the
changing Bt-Euclidean norm. This assumption is satisfied for Bt = I and for some Quasi-Newton updates.

Theorem 2

Let fi(x) be a convex Lmax-Lipschitz smooth function for all i ∈ [1, . . . , n] and have the same
minimum w∗ (Assumption 1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T], mt = ∇fi(wt),
and Bt ⪰ Bt+1 ⪰ ν. Then for equation 58 method with the step size λt = fi(wt)−f∗

i

∥∇fi(wt)∥2
B

−1
t

, we get

E[f(ŵT)− f∗] ≤
2Lmax∥w0 − w∗∥2

B0

νT
, (64)

where

ŵT = 1
T

T −1∑
t=0

wt (65)

Proof. From equation 63 and the assumption that Bt ⪰ Bt+1 ⪰ ν, we get:

∥wt+1 − w∗∥2
Bt+1

≤ ∥wt+1 − w∗∥2
Bt

equation 63
≤ ∥wt − w∗∥2

Bt
− (fi(wt)− f∗

i)2

∥∇fi(wt)∥2
B−1

t

≤ ∥wt − w∗∥2
Bt
− ν(fi(wt)− f∗

i)2

∥∇fi(wt)∥2 = ∥wt − w∗∥2
Bt
− ν(fi(wt)− f∗

i) (fi(wt)− f∗
i)

∥∇fi(wt)∥2

≤ ∥wt − w∗∥2
Bt
− ν(fi(wt)− f∗

i)
2Lmax

,

where the last inequality is coming from the Lipschitz-smoothness of fi: 1
2Lmax

≤ (fi(wt)−f∗
i)

∥∇fi(wt)∥2 .

Now, by taking the expectation and summing the previous inequality for t = 0, . . . , T − 1, we get

E[∥wt+1 − w∗∥2
BT

] ≤ E[∥w0 − w∗∥2
B0

]−
T −1∑
t=0

ν

2Lmax
E[(fi(wt)− f∗

i)].

Finally, by applying convexity to the average point ŵT , we get the convergence rate

E[f(ŵT)− f∗] ≤ 1
T

T −1∑
t=0

E[f(wt)− f∗]

≤ 2Lmax

Tν
E
[
∥w0 − w∗∥2

B0
− ∥wT − w∗∥2

BT

]
≤

2Lmax∥w0 − w∗∥2
B0

νT
.

38

Under review as submission to TMLR

Theorem 3

Let fi(x) be a convex function for all i ∈ [1, . . . , n] and have the same minimum w∗ (Assumption
1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T], mt = ∇fi(wt), Bt ⪰ Bt+1 ⪰ ν, and
E[∥∇fi(wt)∥2

B−1
t

] ≤ G2. Then for equation 58 method with the step size λt = fi(wt)−f∗
i

∥∇fi(wt)∥2
B

−1
t

, we get

min
t=0,...,T −1

E[(f(wt)− f∗)] ≤ G∥w0 − w∗∥B0√
T

. (66)

Proof. From equation 63 and the assumption that Bt ⪰ Bt+1 ⪰ ν, we get

∥wt+1 − w∗∥2
Bt+1

≤ ∥wt − w∗∥2
Bt
− (fi(wt)− f∗

i)2

∥∇fi∥2
B−1

t

(67)

(68)

By taking the expectation on both sides, we get

E[∥wt+1 − w∗∥2
Bt+1

] ≤ E[∥wt − w∗∥2
Bt

]− E

[
(fi(wt)− f∗

i)2

∥∇fi∥2
B−1

t

]

≤ E[∥wt − w∗∥2
Bt

]− E[(fi(wt)− f∗
i)2]

E[∥∇fi∥2
B−1

t

]

= E[∥wt − w∗∥2
Bt

]− (f(wt)− f∗)2

E[∥∇fi∥2
B−1

t

]

≤ E[∥wt − w∗∥2
Bt

]− (f(wt)− f∗)2

G2

We sum up and rearrange:

1
T

T −1∑
t=0

E[(f(wt)− f∗)2] ≤ G2 1
T

T −1∑
t=0

(
E[∥wt − w∗∥2

Bt
]− ∥wt+1 − w∗∥2

Bt+1
]
)

(69)

≤ G2

T

E[∥w0 − w∗∥2
B0

]− E[∥wT − w∗∥2
BT

]︸ ︷︷ ︸
>0

 (70)

≤ G2

T
∥w0 − w∗∥2

B0
(71)

(72)

Due to Jensen’s inequality E[X2] ≥ E[X]2 and concavity of square root:

E[(f(wt)− f∗)2] ≥ E[(f(wt)− f∗)]2 (73)

1
T

T −1∑
t=0

E[(f(wt)− f∗)] ≤

√√√√ 1
T

T −1∑
t=0

E[(f(wt)− f∗)]2 (74)

Using the above, we obtain:

min
t=0,...,T −1

E[(f(wt)− f∗)] ≤ 1
T

T −1∑
t=0

E[(f(wt)− f∗)] ≤ G∥w0 − w∗∥B0√
T

. (75)

39

Under review as submission to TMLR

Remark 1. The convergence proofs for the Gradient regularized Newton method with Polyak step-size
equation 15 are presented in SP2 paper Li et al. (2023). Our main contribution in this part is deriving the
explicit formula for general functions equation 16 and finding its connection to Cubic Regularized Newton.

Remark 2. The presented proofs do not cover all proposed methods and all step sizes. For example, from
the current proofs λP SP S

t is better than λSANIA
t There are still open theoretical problems for us:

1) The convergence for expanding Euclidean norms, where Bt+1 ⪰ Bt.
2) Better convergence rates for Gradient regularized Newton method with Polyak step-size comparable to
Cubic Newton convergence rates O(T−2).
3) Better convergence rates for λSANIA

t step-size in equation 58.
4) Extend the proofs to general mt.

40

	Introduction
	SANIA – general framework
	General framework
	Existing methods
	Proposed methods
	Affine and scale invariance

	Experiments
	Conclusion
	RELATED WORK
	Proofs
	Stochastic Gradient Descent with SANIA
	Stochastic Polyak step-size with SANIA
	Preconditioned SGD with SANIA
	Hutchinson's Lemma

	Proposed methods
	Gradient regularized Newton method with Polyak step-size
	SANIA Quasi-Newton
	SANIA AdaGrad-SQR for Quasi-Newton.
	SANIA Adam-SQR for Quasi-Newton.
	SANIA PCG for Newton method on convex functions.
	SANIA PCG for Newton method on non-convex functions.

	Affine and Scale Invariance
	Affine Invariance
	Scale Invariance
	GLM

	Additional Experiments and Details
	Non-linear least squares
	Badly scaled dataset
	Learning rates
	More findings
	Experiments with Cubic Newton with Polyak step-size

	Convergence Analysis

