
Supported Value Regularization for Offline
Reinforcement Learning

Yixiu Mao1, Hongchang Zhang1, Chen Chen1, Yi Xu2, Xiangyang Ji1
1Department of Automation, Tsinghua University

2School of Artificial Intelligence, Dalian University of Technology
myx21@mails.tsinghua.edu, xyji@tsinghua.edu

Abstract

Offline reinforcement learning suffers from the extrapolation error and value overes-
timation caused by out-of-distribution (OOD) actions. To mitigate this issue, value
regularization approaches aim to penalize the learned value functions to assign
lower values to OOD actions. However, existing value regularization methods lack
a proper distinction between the regularization effects on in-distribution (ID) and
OOD actions, and fail to guarantee optimal convergence results of the policy. To
this end, we propose Supported Value Regularization (SVR), which penalizes the
Q-values for all OOD actions while maintaining standard Bellman updates for
ID ones. Specifically, we utilize the bias of importance sampling to compute the
summation of Q-values over the entire OOD region, which serves as the penalty
for policy evaluation. This design automatically separates the regularization for ID
and OOD actions without manually distinguishing between them. In tabular MDP,
we show that the policy evaluation operator of SVR is a contraction, whose fixed
point outputs unbiased Q-values for ID actions and underestimated Q-values for
OOD actions. Furthermore, the policy iteration with SVR guarantees strict policy
improvement until convergence to the optimal support-constrained policy in the
dataset. Empirically, we validate the theoretical properties of SVR in a tabular
maze environment and demonstrate its state-of-the-art performance on a range of
continuous control tasks in the D4RL benchmark.

1 Introduction

Offline Reinforcement Learning (RL) aims to learn a policy from a fixed dataset collected by some
behavior policy [24, 26]. It can tap into existing large-scale datasets [15, 30] for safe and efficient
learning. However, it suffers from the extrapolation error [10] caused by out-of-distribution (OOD)
actions, which can further result in severe overestimation of value functions [26].

To mitigate this issue, value regularization approaches attempt to penalize the Q-values of OOD
actions to introduce conservatism in value estimation [23, 20, 46, 14, 3, 6]. However, we observe
that existing value regularization methods not only fall short in penalizing all OOD Q-values but
also may introduce detrimental changes to in-distribution (ID) ones. Specifically, most of them
involve adding penalties to the critic learning objective [23, 50, 27, 6, 48]. However, due to the
difficulty of distinguishing between ID and OOD actions, they typically adopt the idea of being
pessimistic about the actions under the current policy and optionally optimistic about the ones within
the dataset [23, 50, 46, 6]. Rather than relying on ID or OOD, this regularization is essentially based
on the policy density, which we show is problematic when the dataset is heavily corrupted by sub-
optimal actions. Other works involve reducing the Bellman target with uncertainty quantifiers [14, 3]
or ensembles [2, 34]. However, if not incorporating additional penalties, they do not provide learning
signals on OOD Q-values, logically only suppressing the overestimation in the ID region [14, 2].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

In this work, we revisit the original objective of value regularization and ask a question - “Can we
devise a value regularization method that penalizes all OOD Q-values without affecting ID ones”?
We point out that the inability of prior methods to achieve this leads to a lack of strong theoretical
guarantees for policy performance. In offline RL, the best policy that can be guaranteed should lie
within the support of the behavior policy, known as the optimal support-constrained policy [22].
However, existing value regularization methods do not provide reliable guarantees for converging to
it. On the other hand, several endeavors aim to learn it through specific policy constraints [10, 22, 11],
but their empirical performance leaves considerable room for improvement.

To this end, we propose Supported Value Regularization (SVR), a new value regularization method
that penalizes the Q-values for all OOD actions while maintaining standard Bellman updates for
ID ones. Specifically, we leverage the bias of importance sampling to calculate the summation
of Q-values over the entire OOD region, which serves as the penalty term for policy evaluation.
This design circumvents the dilemma of distinguishing between ID and OOD actions and separates
the regularization effects on them automatically. Theoretically, SVR offers stronger guarantees
than previous methods. Under tabular MDP, we show that the SVR policy evaluation operator is
a contraction in the whole state-action space and its fixed point outputs unbiased Q-values for ID
actions and underestimated Q-values for OOD ones, while the fixed point of Q in CQL [23] may
underestimate or overestimate Q-values. More importantly, SVR guarantees strict policy improvement
until convergence to the optimal support-constrained policy, while prior value regularization methods
lack such each-step improvement and global optimal convergence guarantees.

In practice, SVR is easy to implement by adding a penalty term to the ordinary policy evaluation loss.
Empirically, we validate the support-constrained optimality of SVR in a tabular maze environment,
where baselines fail to converge. Moreover, SVR achieves state-of-the-art performance on a range of
continuous control tasks in the D4RL benchmark [7] and shows strong advantages on noisy datasets.

2 Preliminaries

Offline RL. The environment in RL is typically modeled as a Markov Decision Process (MDP)
M = (S,A, P,R, γ, d0), with state space S , action spaceA, transition dynamics P : S×A → ∆(S),
reward function R : S ×A → [Rmin, Rmax], discount factor γ ∈ [0, 1), and initial state distribution
d0 [41]. The goal of RL is to find a policy π : S → ∆(A) that maximizes the expected discounted
return: Es0∼d0,at∼π(·|st),st+1∼P (·|st,at)[

∑∞
t=0 γ

tR(st, at)]. For any policy π, we define the value
function as V π(s) = Eπ [

∑∞
t=0 γ

tR(st, at)|s0 = s] and the state-action value function (Q-value
function) as Qπ(s, a) = Eπ[

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a]. By the boundedness of rewards, we
have Qπ ∈ [Qmin, Qmax], where Qmin := Rmin/(1− γ) and Qmax := Rmax/(1− γ). In addition,
we use ρπsa to denote the normalized and discounted state-action occupancy of policy π with the initial
state-action pair (s, a): ρπsa(s

′, a′) = (1− γ)
∑∞

t=0 γ
tEπ [I [st = s′, at = a′] |s0 = s, a0 = a].

Actor-critic methods [19] alternate between evaluating the policy by iterating the Bellman operator
(T πQ) (s, a) := R(s, a) + γEs′Ea′∼π(·|s′) [Q (s′, a′)], and improving the policy by maximizing the
Q-value. In offline RL, the agent is provided with a fixed datasetD collected by some behavior policy
β. Ordinary actor-critic algorithms [9, 12, 39] minimize the following losses alternately:
LQ(θ) = E(s,a,s′)∼D[(Qθ(s, a)−R(s, a)− γEa′∼πϕ(·|s′)Qθ′(s′, a′))2] (policy evaluation) (1)

Lπ(ϕ) = − Es∼D,a∼πϕ
[Qθ (s, a)] (policy improvement) (2)

where πϕ is a policy parameterized by ϕ, Qθ(s, a) is a Q function parameterized by θ, and Qθ′(s, a)
is a target Q function whose parameters are updated via Polyak averaging [32].

Value regularization. In offline RL, OOD actions a′ can produce erroneous Bellman targets and
lead to an inaccurate estimation of Q-values. Then in policy improvement, the policy tends to
prioritize OOD actions whose values have been overestimated, resulting in poor performance.

To address this issue, value regularization methods regularize the Q function to introduce conservatism
in value estimation [23, 20]. As the most representative one, CQL [23] minimizes the following
policy evaluation loss, which guarantees to obtain underestimated V functions:

min
Q

Es∼D,a∼β

[
(Q(s, a)− T πQ′(s, a))

2
]
+ α (Es∼D,a∼π[Q(s, a)]− Es∼D,a∼β [Q(s, a)]) (3)

where Q′ is the target Q function and α is a hyperparameter.

2

3 Supported Value Regularization

In this section, we first briefly analyze the existing density-based value regularization and identify
some important issues. Then we propose Supported Value Regularization (SVR) to penalize all OOD
Q-values while maintaining standard updates for ID ones. Next, we conduct a thorough analysis of
SVR and demonstrate its theoretical superiority. Last, we present the implementation details of SVR.

3.1 Density-based value regularization

A large portion of value regularization methods are built on the idea of being pessimistic about the
actions under current policy and optimistic about the actions within the dataset [23, 50, 27, 6]. Instead
of relying on ID or OOD, we show that this regularization is essentially based on the policy density,
which we refer to as density-based value regularization. Specifically, we take CQL (Eq. (3)) [23], the
foundational work on value regularization, as an example for mathematical analysis. Here we remove
the strong assumption supp(π) ⊆ supp(β) in their paper and analyze its regularization effects on
the Q functions. From Eq. (3), we can obtain the analytical solution of Q, which corresponds to the
following policy evaluation operator T π

CQL:

T π
CQLQ(s, a) =

 T πQ(s, a)− α
(

π(a|s)
β(a|s) − 1

)
, β(a|s) > 0,

−∞, β(a|s) = 0, π(a|s) > 0,
Q(s, a), β(a|s) = 0, π(a|s) = 0.

(4)

Considering the iteration of policy evaluation: Qk+1(s, a) = T π
CQLQ

k(s, a), we have Observation 1:

Observation 1. In each iteration k, compared to T π, T π
CQL (1) lowers Qk+1(s, a) when π(a|s) >

β(a|s); (2) raises Qk+1(s, a) when π(a|s) < β(a|s); (3) obtains the same Qk+1(s, a) when
π(a|s) = β(a|s) > 0; (4) does not update Qk+1(s, a) when π(a|s) = β(a|s) = 0.

For (1)(2)(3), lowering or raising Q-values based on the relative density between π and β could
be problematic, especially when the dataset contains a large portion of bad actions. In such cases,
assuming the policy π has found the optimal action a∗, it holds that π(a∗|s) > β(a∗|s), and thus
CQL will lower Q(s, a∗); for some bad action â ∈ D, it holds that π(â|s) < β(â|s), and thus CQL
will raise Q(s, â). That is, CQL tends to raise the Q-values of numerous bad actions and lower the
Q-values of scare good actions, forcing the policy to choose bad actions in policy improvement
stage. Regarding (4), in the entire OOD region (β(a|s) = 0), the penalization is only performed
where π(a|s) > 0. Since the distribution of π is narrow compared to the whole action space, the
regularization region of CQL and most existing methods [50, 6, 27, 3, 48] tends to be too narrow.

3.2 Supported value regularization

In this paper, we aim to penalize Q-values for all OOD actions (a /∈ supp(β)) and maintain standard
Bellman updates for ID ones (a ∈ supp(β)). That is, the regularization is solely determined by the
support of β, which we refer to as supported value regularization.

However, it is a well-known challenge to distinguish between ID and OOD actions. Directly
determining if the behavior density exceeds a threshold [43] would necessitate an extremely precise
density estimator, and it is particularly difficult to estimate the density of OOD actions. In this work,
we draw inspiration from the link between support and Importance Sampling (IS) to circumvent this
dilemma and achieve the same goal.

We begin by explaining its principle with simplified notations. IS computes l1 = Eq[p(x)f(x)/q(x)]
to estimate l2 = Epf(x). When assuming supp(p) ⊆ supp(q), IS is unbiased: l1 = l2. However,
when removing the support assumption, IS actually computes l1 =

∑
x∈supp(q) p(x)f(x). We

observe that l := l1− l2 =
∑

x/∈supp(q) p(x)f(x) gives the summation over the out-of-support region.
In the offline RL setting, let f be the Q function. If we choose the behavior policy β as q and any
samplable distribution that covers the whole action space as p, then minimizing l would lower all
OOD Q-values without affecting the ID ones. Besides, since both distribution q and p are samplable
in this case, we can obtain l1 and l2 based on sampling, which provides an unbiased l to optimize.

3

Therefore, we minimize the following loss for policy evaluation in SVR:

min
Q

Es∼D,a∼β

[
(Q(s, a)− T πQ′(s, a))

2
]

+ α

(
Es∼D,a∼u

[
(Q(s, a)−Qmin)

2
]
− Es∼D,a∼β

[
u(a|s)
β(a|s)

(Q(s, a)−Qmin)
2

]) (5)

where u(·|s) is any samplable distribution (e.g., Gaussian, uniform) whose support covers the whole
action space, and Qmin := Rmin/(1− γ) is the minimal possible Q of the MDP. According to the
analysis above, Eq. (5) is equivalent to the following minimization problem:

min
Q

Es∼D,a∼β

[(
Q(s, a)− T πQ′(s, a)

)2]
+ αEs∼D

 ∑
a/∈supp(β(·|s))

u(a|s)(Q(s, a)−Qmin)
2

 (6)

It is clearer from Eq. (6) that the loss in Eq. (5) penalizes all OOD Q-values without affecting
the ID ones. Note that optimizing Eq. (5) requires pre-training a behavior model β to output the
behavior density β(a|s) in the IS ratio. Compared with other methods that also require the behavior
model [43, 20, 11, 27], SVR is less susceptible to model errors. This is because SVR only needs to
query the behavior density of in-dataset (s, a) pairs, thus not requiring much generalization ability of
the model, making it relatively easier to estimate accurately.

From an optimization perspective, minimizing Eq. (6) reduces all OOD Q-values with a strength
proportional to u(aood|s). Therefore, we can even choose various u to flexibly penalize the OOD
region. For example, let u assign higher weight to areas with a high probability of overestimation.
Note that u can have any positive density in the ID region without affecting the ID Q-values, thereby
eliminating the necessity to manually distinguish between ID and OOD regions. From an optimal
solution perspective, Eq. (5,6) lead to the following SVR policy evaluation operator:

T π
SVRQ(s, a) =

{
T πQ(s, a), β(a|s) > 0,
Qmin, else. (7)

In contrast to Observation 1, we make the following claim for SVR.
Claim 1. In each iteration k, compared to T π, T π

SVR obtains the same Qk+1(s, a) when β(a|s) >
0 (ID region); and lowers Qk+1(s, a) when β(a|s) = 0 (OOD region).

3.3 Analysis

In this section, we refer to the policy iteration, whose evaluation part is repeatedly applying T π
SVR and

whose improvement part is vanilla maximization of Q, as SVR. We will give a comprehensive analysis
of SVR, including the fixed point in policy evaluation, the monotonic improving performance in
policy improvement, and the support-constrained optimal convergence for the whole policy iteration.

We first define the support-constrained policy set [22], which plays an important role in our analysis.
However, it is worth noting that SVR does not impose any constraint or regularization on the policy.
Definition 1 (Support-constrained policy). The support-constrained policy class Π is defined as

Π = {π | π(a|s) = 0 whenever β(a|s) = 0} (8)

Following prior works [22], we also define the optimal support-constrained policy π∗
Π.

Definition 2 (Optimal support-constrained policy). The optimal support-constrained policy π∗
Π is:

π∗
Π(a|s) := I

[
a = argmax

a′∈supp(β(·|s))
Q∗

Π(s, a
′)

]
(9)

where Q∗
Π satisfies the support-constrained Bellman optimality equation:

Q∗
Π(s, a) = R(s, a) + γEs′∼P (·|s,a)

[
max

a′∈supp(β(·|s′))
Q∗

Π(s
′, a′)

]
. (10)

Proposition 1 (Contraction). In the whole S × A space and for any π, T π
SVR is a γ-contraction

operator in the L∞ norm.

4

Therefore, in the policy evaluation stage of SVR, any initial Q function can converge to a unique
fixed point by repeatedly applying T π

SVR. We give this fixed point in the following theorem.
Theorem 1 (Fixed point). SVR yields support-constrained πi : πi ∈ Π. The fixed point of T πi

SVR is

fπi(s, a) =

{
Qπi(s, a), β(a|s) > 0,
Qmin, β(a|s) = 0.

(11)

Therefore, for the policies πi in SVR, this fixed point provides unbiased Q-values for all ID actions
and underestimated Q-values for all OOD actions.

Though Theorem 1 guarantees that SVR only obtains support-constrained policies during learning,
we show that, even for any π (π /∈ Π due to various errors in practice), the fixed point of T π

SVR still
ensures that Q will not be overestimated over the entire action space.
Proposition 2. For any π, the fixed point of T π

SVR satisfies{
Qmin ≤ fπ(s, a) ≤ Qπ(s, a), β(a|s) > 0,
fπ(s, a) = Qmin, β(a|s) = 0.

(12)

For comparison, the following proposition characterizes the contraction property of CQL.
Proposition 3. Only in the ID region (β(a|s) > 0) and when the evaluated policy is support-
constrained (π ∈ Π), T π

CQL is a contraction operator. Its fixed point satisfies

fπ(s, a) = Qπ(s, a)− α

1− γ
(ρπsa)

T

(
π

β
− 1

)
, β(a|s) > 0. (13)

Therefore, T π
CQL has no fixed point in the OOD region. Even in the ID region, the condition π ∈ Π is

required and its fixed point may underestimate or overestimate Q-values in a complicated way.

Finally, we show that SVR guarantees strict policy improvement for each iteration until convergence
to the optimal support-constrained policy π∗

Π. Note that existing value regularization methods fail to
guarantee such each-step policy improvement and optimal convergence results.
Theorem 2 (Strict policy improvement to support-constrained optimal). SVR yields support-
constrained πi and guarantees monotonic performance improvement:

V πi+1(s) ≥ V πi(s) ∀s, (14)

where the improvement is strict in at least one state until π∗
Π is found.

3.4 Practical implementation of SVR

Algorithm 1 Supported Value Regularization (SVR)
1: Initialize behavior policy βω , policy network πϕ,

Q-network Qθ, and target Q-network Qθ′

2: // Behavior Policy Pre-training
3: for each gradient step do
4: Sample minibatch (s, a) ∼ D
5: Update ω by maximizing Jβ(ω) in Eq. (15)
6: end for
7: // Policy Training
8: for each gradient step do
9: Sample minibatch (s, a, r, s′) ∼ D

10: Update θ by minimizing LQ(θ) in Eq. (16)
11: Update ϕ by minimizing Lπ(ϕ) in Eq. (2)
12: Update target network: θ′ ← (1− τ)θ′ + τθ
13: end for

SVR is easy to implement and we design the
practical algorithm to be as simple as possible
to avoid some complex modules confusing our
algorithm’s impact on the final performance 1.

Behavior model. Following previous
works [22, 44], we learn a Gaussian model
βω for the behavior policy by maximizing

Jβ(ω) = Es,a∼D log βω(a|s) (15)

Sampling distribution u. In our method, u
in Eq. (5) can be any samplable distribution
that covers the entire action space. In our
implementation, we set u to the Gaussian with
the same mean as π and a fixed variance that
is much larger than that of π. This choice is
made because during learning, π is typically
located where Q is maximized and where overestimation is most likely to occur. So if π is OOD, this
choice will assign higher weight to the area around π to reduce the Q-value. Note that if π is ID, it
will not penalize the Q-values in the ID region even though u may have a higher weight there.

1Our code is available at https://github.com/MAOYIXIU/SVR.

5

https://github.com/MAOYIXIU/SVR

(a) tabular maze (b) support optimal (c) vanilla (d) CQL

10

8

6

4

2

0

(e) SVR

Figure 1: (a) The maze environment with OOD actions. (b) The optimal support-constrained policy
and its value function. (c) (d) (e) The value functions and policies learned by vanilla policy iteration,
CQL and SVR, respectively. The resulting trajectories are illustrated by white dashed lines. SVR is
capable of obtaining the optimal support-constrained policy and value function.

Policy evaluation. With policy πϕ, Q function Qθ, and target Q function Qθ′ , we minimize the
following loss for policy evaluation:

LQ(θ) = E(s,a,s′)∼D[
(
Qθ(s, a)−R(s, a)− γEa′∼πϕ(·|s′)Qθ′(s′, a′)

)2
]

+ α

(
Es∼D,a∼u

[
(Qθ(s, a)−Qmin)

2
]
− Es,a∼D

[
u(a|s)
βω(a|s)

(Qθ(s, a)−Qmin)
2

]) (16)

where α is a hyperparameter and Qmin := Rmin/(1 − γ). For the environment where Rmin is
unknown, we choose the smallest reward in the dataset as Rmin.

Overall Algorithm. Putting everything together, we summarize our final algorithm in Algorithm 1.
Our algorithm first trains the estimated behavior policy to obtain the behavior density. Then it turns
to the actor-critic framework for policy training.

4 Experiments

In this section, we conduct several experiments to justify the validity of our method. We aim to
answer five questions: (1) Does SVR actually converge to the optimal support-constrained policy? (2)
Does SVR perform better than previous methods on standard offline RL benchmarks? (3) When does
SVR empirically benefit the most compared to the density-based regularization? (4) How should
we select the sampling distribution of SVR in practice? (5) How does the implementation of each
component affect SVR? More experimental details and results are provided in Appendix B and C.

4.1 Support-constrained optimality in the tabular setting

0 10 20 30 40 50
Iteration

20

60

100

Ep
is

od
e

R
et

ur
n

Toy Maze

SVR
CQL
Vanilla PI
Supp. Optimal
Behavior

Figure 2: Learning curves of
SVR, CQL and vanilla policy it-
eration on the toy maze.

We use a simple maze environment to verify the support-
constrained optimality of SVR. As depicted in Fig. 1(a), the task is
to navigate from bottom-left to top-right, with a wall in the middle.
The agent receives a reward of 0 for reaching the goal and −1 for
all other transitions. Episodes are terminated after 100 steps and
γ is set to 0.9. We first collect 10, 000 transitions using a random
policy. Then we remove all the transitions containing rightward
actions in the bottom-left 4× 4 region to introduce OOD actions.
It makes the optimal support-constrained policy (see Fig. 1(b))
differ from the actual optimal policy in the environment.

We test three algorithms: vanilla policy iteration [41], CQL [23],
and SVR. Fig. 1(c, d, e) depict their learned value functions and
policies respectively. To show convergence results, we also present
the learning curves in Fig. 2, along with the performance of the behavior policy and the optimal
support-constrained policy. The results indicate that vanilla policy iteration has a severe over-
estimation of value functions, leading to poor performance. On the other hand, although CQL does
not overestimate V functions, it fails to converge and performs poorly when the dataset is highly sub-
optimal. In contrast, SVR converges to the optimal support-constrained policy and the learned value
function closely matches the true support-constrained optimal value function, verifying Theorem 2.

6

Table 1: Averaged normalized scores on the D4RL benchmarks over five random seeds. Note that m
= medium, m-r = medium-replay, m-e = medium-expert, e = expert, r = random.

Dataset BC OneStep TD3BC AWAC BCQ BEAR UWAC CQL IQL SVR (Ours)

halfcheetah-m 42.0 50.4 48.3 47.9 46.6 43.0 42.2 47.0 47.4 60.5±1.2
hopper-m 56.2 87.5 59.3 59.8 59.4 51.8 50.9 53.0 66.2 103.5±0.4
walker2d-m 71.0 84.8 83.7 83.1 71.8 -0.2 75.4 73.3 78.3 92.4±1.2
halfcheetah-m-r 36.4 42.7 44.6 44.8 42.2 36.3 35.9 45.5 44.2 52.5±3.0
hopper-m-r 21.8 98.5 60.9 69.8 60.9 52.2 25.3 88.7 94.7 103.7±1.3
walker2d-m-r 24.9 61.7 81.8 78.1 57.0 7.0 23.6 81.8 73.8 95.6±2.5
halfcheetah-m-e 59.6 75.1 90.7 64.9 95.4 46.0 42.7 75.6 86.7 94.2±2.2
hopper-m-e 51.7 108.6 98.0 100.1 106.9 50.6 44.9 105.6 91.5 111.2±0.9
walker2d-m-e 101.2 111.3 110.1 110.0 107.7 22.1 96.5 107.9 109.6 109.3±0.2
halfcheetah-e 92.9 88.2 96.7 81.7 89.9 92.7 92.9 96.3 95.0 96.1±0.7
hopper-e 110.9 106.9 107.8 109.5 109.0 54.6 110.5 96.5 109.4 111.1±0.4
walker2d-e 107.7 110.7 110.2 110.1 106.3 106.6 108.4 108.5 109.9 110.0±0.2
halfcheetah-r 2.6 2.3 11.0 6.1 2.2 2.3 2.3 17.5 13.1 27.2±1.2
hopper-r 4.1 5.6 8.5 9.2 7.8 3.9 2.7 7.9 7.9 31.0±0.3
walker2d-r 1.2 6.9 1.6 0.2 4.9 12.8 2.0 5.1 5.4 2.2±1.5

gym-v2 total 784.2 1041.2 1013.2 975.6 968.0 581.7 756.2 1010.2 1033.1 1200.5

pen-expert 85.1 61.6 111.0 115.2 114.9 105.9 111.9 107.0 110.2 138.9±9.2
pen-human 34.4 73.7 54.9 25.5 68.9 -1.0 21.7 37.5 71.5 73.1±12.1
pen-cloned 56.9 31.8 63.8 10.4 44.0 26.5 33.1 39.2 37.3 70.2±17.4

adroit-v0 total 176.4 167.1 229.7 151.1 227.8 131.4 166.7 183.7 219.0 282.2

4.2 Comparisons on D4RL benchmarks

Then we evaluate our approach on the D4RL benchmarks [7]. We compare SVR with prior state-of-
the-art offline RL methods, including BC [37], BCQ [10], BEAR [22], OneStep RL [4], TD3+BC [8],
AWAC [33], UWAC [45], CQL [23], and IQL [21].

The results are reported in Table 1. In both Gym-MuJoCo and Adroit domains, SVR achieves
state-of-the-art performance and outperforms prior value regularization methods (CQL, UWAC) by a
large margin. We also observe that SVR has strong advantages on the sub-optimal datasets (medium,
medium-replay, random). This is because SVR exploits the optimal support-constrained policy in
the dataset in a theoretically sound way and is less affected by the average quality of the dataset. In
addition, while BCQ and BEAR are the policy constraint methods that are also designed to search for
the optimal policy within the behavior support, they have much poorer performance. As stated in
previous works [11, 44], they are limited respectively by the errors of the generative model and the
unsuitability of using Maximum Mean Discrepancy (MMD) to characterize the support constraint. In
contrast, without querying out-of-dataset behavior density, SVR takes the form of value regularization
to search for the optimal support-constrained policy and achieves superior performance. For learning
curves and more experimental details, please see Section B in the supplementary material.

4.3 Comparisons on noisy datasets.

In this section, we aim to validate that, compared with the existing density-based value regularization,
the supported value regularization of SVR will benefit when the dataset contains a large portion of
bad actions. To this end, we construct a “noisy” dataset by combining the random dataset and the
expert dataset, and then evaluate SVR and CQL under different expert ratios.

The results are shown in Fig. 3. In all environments, SVR outperforms CQL over nearly all expert
ratios. Moreover, as the expert ratio gets lower, the improvement is more significant. The performance
of CQL is susceptible to the expert ratio and exhibits a sharp decrease at the expert ratio 20%, while
SVR can still retain good or even expert performance (most spark in Hopper and Walker2d).

4.4 Empirical study on the sampling distribution of SVR

In this section, we investigate how to practically select the sampling distribution u in SVR, which
controls the relative strength of penalizing different OOD Q-values. In our implementation, u is the

7

1.0 0.8 0.6 0.4 0.2 0.0
Expert Ratio

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 R
et

ur
n

Hopper

1.0 0.8 0.6 0.4 0.2 0.0
Expert Ratio

0

20

40

60

80

100

120 Walker2d

1.0 0.8 0.6 0.4 0.2 0.0
Expert Ratio

0

30

60

90

120

150
Ant

1.0 0.8 0.6 0.4 0.2 0.0
Expert Ratio

0

20

40

60

80

100

120 Halfcheetah
SVR
CQL

Figure 3: Evaluations of SVR (supported value regularization) vs CQL (density value regularization)
on noisy datasets, which are made by mixing random and expert datasets with varying expert ratios.

0 0.25 0.5 0.75 1
Gradient Steps (×106)

0

50

100

N
or

m
al

iz
ed

 R
et

ur
n

halfcheetah-medium

0 0.25 0.5 0.75 1
Gradient Steps (×106)

0

50

100

hopper-medium

0 0.25 0.5 0.75 1
Gradient Steps (×106)

0

50

100

hopper-medium-replay

0 0.25 0.5 0.75 1
Gradient Steps (×106)

0

50

100
walker2d-medium-replay

= 0.1 = 0.2 = 0.3 = 0.5 = 0.7 Uniform

Figure 4: Learning curves of SVR with different sampling distribution u. σ is the standard deviation
of Gaussian. SVR is able to converge to good performance under various sampling distributions.

Gaussian with the same mean as the current policy. Here we vary its standard deviation σ and present
the corresponding results in Fig. 4. We do not show the results for σ > 0.7 because such a large σ
would cause most sampled actions to lie at the boundary of the action space. Instead, we use Uniform
distribution to represent σ =∞.

As shown in Fig. 4, SVR is able to converge to good performance over a very wide range of σ.
However, if σ is too small, SVR may not be able to adequately penalize all OOD Q-values and the IS
ratio will have a large variance, thereby disrupting the learning process (see σ = 0.1 in hopper-m-r).
Conversely, if σ is too large or if the uniform distribution is used, sampling from u may fail to
emphasize the key areas where overestimation is most likely to occur (as indicated by the current
policy), leading to insufficient mitigation of overestimation and inferior performance (see Uniform in
hopper-m, hopper-m-r, walker2d-m-r and σ = 0.7 in hopper-m).

4.5 Effects of components in SVR

HC
-mH-
m

W
-m

HC
-m

r
H-

m
r

W
-m

r
HC

-m
e

H-
m

e
W

-m
e

HC
-r H-
r50

25

0

25

50

Pe
rc

en
t D

iff
er

en
ce

SVR-VAE

HC
-mH-
m

W
-m

HC
-m

r
H-

m
r

W
-m

r
HC

-m
e

H-
m

e
W

-m
e

HC
-r H-
r50

25

0

25

50 SVR-SNIS

Figure 5: Percentage performance difference of the SVR
variant compared to the original algorithm. (Left) SVR
with VAE density estimator. (Right) SVR with self-
normalized importance sampling. HC = HalfCheetah,
H = Hopper, W = Walker2d.

Density estimator. We speculate that a
more precise behavior density estimator
may further improve SVR. So following
previous works [10, 43], we consider to
replace the Gaussian density estimator
βω with the conditional variational auto-
encoder [18, 40]. We refer to this vari-
ant as SVR-VAE. The results of SVR-
VAE are shown in Fig. 5 (left). Over-
all, SVR-VAE has only marginal perfor-
mance gains over SVR.

IS techniques. Self-Normalized Im-
portance Sampling (SNIS) [35] is some-
times adopted to reduce the high variance
of IS [38]. The SNIS estimator has lower variance but is biased [35]. Here we test an SVR variant
SVR-SNIS, which normalizes the IS ratio across the batch. As shown in Fig. 5 (right), the perfor-

8

mance of SVR-SNIS is worse in hopper-m and hopper-m-e, and slightly better in other tasks. This
discrepancy may be due to the varying requirements for variance and bias across different tasks.

5 Related Work

Offline RL. In offline RL, extrapolation error and overestimation caused by OOD actions pose
significant challenges [10]. Among various solutions, value regularization methods aim to introduce
conservatism in value estimation [23, 20, 29, 6, 3, 27], while policy constraint approaches enforce
proximity between the trained policy and the behavior policy, either explicitly via divergence penal-
ties [44, 22, 13, 8], implicitly by weighted behavior cloning [5, 36, 33, 42, 31], or directly through
specific parameterization of the policy [10, 11, 53]. Another line of the methods, instead, opt for
in-sample learning, which involves formulating the Bellman target with only the actions in the dataset
[4, 28, 21, 51, 47]. However, the performance of most existing methods is largely confined by the
average quality of the dataset [25]. In contrast, SVR guarantees the convergence to the optimal
support-constrained policy and achieve superior performance in sub-optimal datasets.

Value regularization. We divide the value regularization methods in offline RL into two categories:
direct Q penalization and Bellman target reduction. The former involves adding penalties to the critic
learning loss, trying to penalize OOD Q-values [23, 50, 46, 6, 27]. Due to the difficulty of determining
the OOD region, they typically penalize Q-values under the current policy distribution [23, 3, 27, 48]
and optionally incorporate a maximization term under the data distribution for milder pessimism [23,
50, 6]. Thus, existing works of this category belong to policy density based value regularization,
rather than ID/OOD based. On the other hand, the Bellman target reduction methods either subtract an
uncertainty quantifier from the Bellman target [14, 3] or directly use the minimum of Q ensembles [34]
to compute the target [2, 9]. However, if not incorporating additional penalties, they do not provide
learning signals on OOD Q-values [2]. It empirically works because after the minimization over
ensemble (or subtracting the uncertainty quantifier), the random generalized OOD Q-values will
be smaller than ID ones with high probability, reducing the impact of OOD Q-values on learning.
However, it requires a large number of Q networks and is much more computationally expensive [2].

Support-constrained optimality. In absence of additional information beyond the dataset, the
optimal support-constrained policy represents the best policy that we can hope to obtain. Recent works
have considered various policy constraints to learn it, but their performance still leaves considerable
room for improvement. For example, BEAR [22] attempts to keep the learned policy within the
support of the behavior policy by minimizing MMD between them. However, this choice lacks
a theoretical guarantee, and Wu et al. [44] empirically found that MMD has no performance gain
over KL. Other works adopt a specific parameterization of the policy to constrain it to the behavior
support [10, 11]. They first pre-train a generative model (e.g., VAE) for the behavior policy. Then
during learning, they sample several actions at each state and choose the one with the highest Q-value
as the output of the policy, aiming to obtain the maximum within the behavior support. However,
these methods are vulnerable to model errors [11] and have a high computational cost for generating
sufficient actions for each state. Instead of working on policy constraints, SVR is the first value
regularization algorithm to achieve support-constrained optimality. Moreover, SVR only needs to
query the behavior density of in-dataset (s, a) pairs, making it less susceptible to model errors.

6 Conclusions and Limitations

In this work, we propose a novel value regularization method, SVR, which penalizes the Q-values
for all OOD actions while maintaining standard Bellman updates for ID ones. We show that the
policy evaluation operator of SVR is a contraction, whose fixed point outputs unbiased Q-values in
ID region and underestimated Q-values in OOD region. Furthermore, SVR guarantees strict policy
improvement until convergence to the optimal support-constrained policy. Empirical results validate
the theoretical properties of SVR and demonstrate its SoTA performance on the D4RL benchmarks.

One limitation of SVR lies in the need of pre-training the behavior model. An exciting direction
for future work would be to achieve supported value regularization without explicit behavior policy
estimation.

9

Acknowledgment

This work was supported by the National Key R&D Program of China under Grant 2018AAA0102801,
National Natural Science Foundation of China under Grant 61827804.

References
[1] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory

and algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, pages 10–4, 2019.

[2] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

[3] Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and
Zhaoran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=Y4cs1Z3HnqL.

[4] David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without
off-policy evaluation. Advances in Neural Information Processing Systems, 34:4933–4946,
2021.

[5] Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353–18363, 2020.

[6] Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor
critic for offline reinforcement learning. In International Conference on Machine Learning,
pages 3852–3878. PMLR, 2022.

[7] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[8] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

[9] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[10] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pages 2052–2062.
PMLR, 2019.

[11] Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq:
Expected-max q-learning operator for simple yet effective offline and online rl. In International
Conference on Machine Learning, pages 3682–3691. PMLR, 2021.

[12] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[13] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza,
Noah Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement
learning of implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

[14] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[15] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

10

https://openreview.net/forum?id=Y4cs1Z3HnqL
https://openreview.net/forum?id=Y4cs1Z3HnqL

[16] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In In Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[19] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 12, 1999.

[20] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement
learning with fisher divergence critic regularization. In International Conference on Machine
Learning, pages 5774–5783. PMLR, 2021.

[21] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=68n2s9ZJWF8.

[22] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-
policy q-learning via bootstrapping error reduction. Advances in Neural Information Processing
Systems, 32, 2019.

[23] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

[24] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. Reinforce-
ment learning: State-of-the-art, pages 45–73, 2012.

[25] Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pages 1702–1712. PMLR, 2022.

[26] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[27] Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=VYYf6S67pQc.

[28] Xiaoteng Ma, Yiqin Yang, Hao Hu, Qihan Liu, Jun Yang, Chongjie Zhang, Qianchuan Zhao, and
Bin Liang. Offline reinforcement learning with value-based episodic memory. arXiv preprint
arXiv:2110.09796, 2021.

[29] Yecheng Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional
reinforcement learning. Advances in Neural Information Processing Systems, 34:19235–19247,
2021.

[30] Will Maddern, Geoffrey Pascoe, Chris Linegar, and Paul Newman. 1 year, 1000 km: The oxford
robotcar dataset. The International Journal of Robotics Research, 36(1):3–15, 2017.

[31] Yixiu Mao, Hongchang Zhang, Chen Chen, Yi Xu, and Xiangyang Ji. Supported trust region
optimization for offline reinforcement learning. In International Conference on Machine
Learning, pages 23829–23851. PMLR, 2023.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[33] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

11

https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=VYYf6S67pQc
https://openreview.net/forum?id=VYYf6S67pQc

[34] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

[35] Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/
mc/, 2013.

[36] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[37] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in
neural information processing systems, 1, 1988.

[38] Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning
with function approximation. In ICML, pages 417–424, 2001.

[39] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning,
pages 387–395. Pmlr, 2014.

[40] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. Advances in neural information processing systems, 28,
2015.

[41] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[42] Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

[43] Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy
optimization for offline reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=KCXQ5HoM-fy.

[44] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[45] Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. arXiv
preprint arXiv:2105.08140, 2021.

[46] Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-
consistent pessimism for offline reinforcement learning. Advances in neural information
processing systems, 34:6683–6694, 2021.

[47] Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan,
and Xianyuan Zhan. Offline RL with no OOD actions: In-sample learning via implicit value
regularization. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=ueYYgo2pSSU.

[48] Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. RORL:
Robust offline reinforcement learning via conservative smoothing. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=_QzJJGH_KE.

[49] Shentao Yang, Zhendong Wang, Huangjie Zheng, Yihao Feng, and Mingyuan Zhou. A behavior
regularized implicit policy for offline reinforcement learning. arXiv preprint arXiv:2202.09673,
2022.

[50] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. Advances in neural
information processing systems, 34:28954–28967, 2021.

12

https://artowen.su.domains/mc/
https://artowen.su.domains/mc/
https://openreview.net/forum?id=KCXQ5HoM-fy
https://openreview.net/forum?id=ueYYgo2pSSU
https://openreview.net/forum?id=_QzJJGH_KE

[51] Hongchang Zhang, Yixiu Mao, Boyuan Wang, Shuncheng He, Yi Xu, and Xiangyang Ji.
In-sample actor critic for offline reinforcement learning. In The Eleventh International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?id=
dfDv0WU853R.

[52] Jing Zhang, Chi Zhang, Wenjia Wang, and Bing-Yi Jing. Apac: Authorized probability-
controlled actor-critic for offline reinforcement learning. arXiv preprint arXiv:2301.12130,
2023.

[53] Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline
reinforcement learning. In Conference on Robot Learning, pages 1719–1735. PMLR, 2021.

13

https://openreview.net/forum?id=dfDv0WU853R
https://openreview.net/forum?id=dfDv0WU853R

A Proofs

In this section, we present the proofs for all the theories in the paper.

We first restate the two definitions in the paper.

Definition 3 (Support-constrained policy, Definition 1). The support-constrained policy class Π is
defined as

Π = {π | π(a|s) = 0 whenever β(a|s) = 0} (17)

Definition 4 (Optimal support-constrained policy, Definition 2). The optimal support-constrained
policy π∗

Π is:

π∗
Π(a|s) := I

[
a = argmax

a′∈supp(β(·|s))
Q∗

Π(s, a
′)

]
(18)

where Q∗
Π satisfies the support-constrained Bellman optimality equation:

Q∗
Π(s, a) = R(s, a) + γEs′∼P (·|s,a)

[
max

a′∈supp(β(·|s′))
Q∗

Π(s
′, a′)

]
. (19)

Proposition 4 (Contraction, Proposition 1). In the whole S × A space and for any π, T π
SVR is a

γ-contraction operator in the L∞ norm.

Proof.

T π
SVRQ(s, a) =

{
T πQ(s, a), β(a|s) > 0,
Qmin, else. (20)

Let f1 and f2 be two arbitrary functions.

For all (s, a) s.t. β(a|s) = 0, we have

|T π
SVRf1(s, a)− T π

SVRf2(s, a)| = Qmin −Qmin ≤ γ∥f1 − f2∥∞ (21)

For all (s, a) s.t. β(a|s) > 0, we have

|T π
SVRf1(s, a)− T π

SVRf2(s, a)| =
∣∣γEs′∼P (·|s,a),a′∼π(·|s)[f1(s

′, a′)− f2(s
′, a′)]

∣∣
≤ γEs′∼P (·|s,a),a′∼π(·|s)[|f1(s′, a′)− f2(s

′, a′)|]
≤ γ∥f1 − f2∥∞

(22)

Therefore, we have ∥T π
SVRf1 − T π

SVRf2∥∞ ≤ γ∥f1 − f2∥∞.

Proposition 5 (Proposition 2). For any π, the fixed point of T π
SVR satisfies{

Qmin ≤ fπ(s, a) ≤ Qπ(s, a), β(a|s) > 0,
fπ(s, a) = Qmin, β(a|s) = 0.

(23)

Proof. By Proposition 4, T π
SVR is a contraction and has a unique fixed point. Assume the fixed point

is fπ . Thus,

fπ(s, a) = T π
SVRf

π(s, a) =

{
T πfπ(s, a), β(a|s) > 0,
Qmin, else. (24)

Define (ŝ, â) := argmins∈S,a∈supp(β(·|s)) f
π(s, a), and pπ(s, a) := Es′∼P (·|s,a),a′∼π(·|s′)π(a

′|s′).

14

As β(â|ŝ) > 0,

fπ(ŝ, â) = T π
SVRf

π(ŝ, â)

= r(ŝ, â) + γEŝ′Eâ′∼π(·|ŝ′)[f
π(ŝ′, â′)]

= r(ŝ, â) + γEŝ′Eâ′∼π(·|ŝ′)[T π
SVRf

π(ŝ′, â′)]

= r(ŝ, â) + γEŝ′

 ∑
â′∈supp(β(·|ŝ′))

π(â′|ŝ′)T πfπ(ŝ′, â′) +
∑

â′ /∈supp(β(·|ŝ′))

π(â′|ŝ′)Qmin


= r(ŝ, â) + γEŝ′

 ∑
â′∈supp(β(·|ŝ′))

π(â′|ŝ′)fπ(ŝ′, â′) +
∑

â′ /∈supp(β(·|ŝ′))

π(â′|ŝ′)Qmin


≥ rmin + γEŝ′

 ∑
â′∈supp(β(·|ŝ′))

π(â′|ŝ′)fπ(ŝ, â) +
∑

â′ /∈supp(β(·|ŝ′))

π(â′|ŝ′)Qmin



The last inequality holds because fπ(ŝ, â) := mins∈S,a∈supp(β(·|s)) f
π(s, a).

Now we define a shorthand

λ := Eŝ′

 ∑
â′∈supp(β(·|ŝ′))

π(â′|ŝ′)


It follows that

fπ(ŝ, â) ≥ rmin + γλfπ(ŝ, â) + γ(1− λ)Qmin

Because λ ∈ [0, 1], we have

fπ(ŝ, â) ≥ rmin + γ(1− λ)Qmin

1− γλ

=
(1− γ)Qmin + γ(1− λ)Qmin

1− γλ

= Qmin

Therefore, for all (s, a) s.t. β(a|s) > 0, it holds that fπ(s, a) ≥ fπ(ŝ, â) ≥ Qmin. Besides, For
(s, a) s.t. β(a|s) = 0, it holds that fπ(s, a) = Qmin. Thus fπ(s, a) ≥ Qmin, ∀s, a.

Before we prove fπ(s, a) ≤ Qπ(s, a) when β(a|s) > 0, we first prove T π
SVRf

π(s, a) ≤
T πfπ(s, a), ∀s, a
For any (s, a), We have

T πfπ(s, a) = r(s, a) + γEs′Ea′∼π(·|s′)[f
π(s′, a′)]

≥ rmin + γEs′Ea′∼π(·|s′)[Qmin]

= Qmin (25)

Therefore,

T π
SVRf

π(s, a) =

{
T πfπ(s, a) ≤ T πfπ(s, a), β(a|s) > 0,
Qmin ≤ T πfπ(s, a), else. (26)

Thus, it holds that T π
SVRf

π(s, a) ≤ T πfπ(s, a), ∀s, a.

15

Now we prove fπ(s, a) ≤ Qπ(s, a) when β(a|s) > 0. For β(a|s) > 0,

fπ(s, a) = T π
SVRf

π(s, a)

= r(s, a) + γEs′Ea′∼π(·|s′)[f
π(s′, a′)]

= r(s, a) + γEs′Ea′∼π(·|s′)[T π
SVRf

π(s′, a′)]

≤ r(s, a) + γEs′Ea′∼π(·|s′)[T πfπ(s′, a′)]

= r(s, a) + γEs′Ea′∼π(·|s′)[r(s
′, a′) + γEs′′Ea′′∼π(·|s′′)[f

π(s′′, a′′)]]

= r(s, a) + γEs′Ea′∼π(·|s′)[r(s
′, a′) + γEs′′Ea′′∼π(·|s′′)[T π

SVRf
π(s′′, a′′)]]

≤ r(s, a) + γEs′Ea′∼π(·|s′)[r(s
′, a′) + γEs′′Ea′′∼π(·|s′′)[T πfπ(s′′, a′′)]]

· · ·

≤ Eπ

 ∞∑
j=0

γjr(st+j , at+j)|st = s, at = a


= Qπ(s, a)

In conclusion, for any π, the fixed point of T π
SVR satisfies{

Qmin ≤ fπ(s, a) ≤ Qπ(s, a), β(a|s) > 0,
fπ(s, a) = Qmin, β(a|s) = 0.

(27)

Theorem 3 (Fixed point, Theorem 1). SVR yields support-constrained πi : πi ∈ Π. The fixed point
of T πi

SVR is

fπi(s, a) =

{
Qπi(s, a), β(a|s) > 0,
Qmin, β(a|s) = 0.

(28)

Therefore, for the policies πi in SVR, this fixed point provides unbiased Q-values for all ID actions
and underestimated Q-values for all OOD actions.

Proof. By Proposition 4, T π
SVR is a contraction and has a unique fixed point. For any πi, the fixed

point of policy evaluation satisfies fπi = T π
SVRf

πi .

According to Proposition 5, the policy improvement at this iteration satisfies

πi+1(a|s) = I
[
a = argmax

a′
fπi(s, a′)

]
= I

[
a = argmax

a′∈supp(β(·|s))
fπi(s, a′)

]
(29)

Therefore, for arbitrary initial policy π0, πi (i > 0) in SVR is support-constrained: πi ∈ Π, i > 0.

Now we show the fixed point of T πi

SVR (i > 0). Assume the fixed point is fπi :

fπi(s, a) = T πi

SVRf
πi(s, a) =

{
T πifπi(s, a), β(a|s) > 0,
Qmin, else. (30)

For β(a|s) > 0,

fπi(s, a) = T πi

SVRf
πi(s, a)

= r(s, a) + γEs′Ea′∼πi(·|s′)[f
πi(s′, a′)]

= r(s, a) + γEs′Ea′∼πi(·|s′)[T
πi

SVRf
πi(s′, a′)]

= r(s, a) + γEs′Ea′∼πi(·|s′)[r(s
′, a′) + γEs′′Ea′′∼πi(·|s′′)[f

πi(s′′, a′′)]]

= r(s, a) + γEs′Ea′∼πi(·|s′)[r(s
′, a′) + γEs′′Ea′′∼πi(·|s′′)[T

πi

SVRf
πi(s′′, a′′)]]

· · ·

= Eπi

 ∞∑
j=0

γjr(st+j , at+j)|st = s, at = a


= Qπi(s, a)

16

The fourth equality holds because πi is support-constrained and thus the expectation Ea′∼πi(·|s′) has
non-zero mass only on support-constrained a′, i.e., β(a′|s′) > 0.

Therefore, for the policies πi (i > 0) in SVR, the fixed point of T πi

SVR is

fπi(s, a) =

{
Qπi(s, a), β(a|s) > 0,
Qmin, β(a|s) = 0.

(31)

This fixed point provides unbiased Q-values for all ID actions and underestimated Q-values for all
OOD actions.

Proposition 6 (Proposition 3). Only in the ID region (β(a|s) > 0) and when the evaluated policy is
support-constrained (π ∈ Π), T π

CQL is a contraction operator. Its fixed point satisfies

fπ(s, a) = Qπ(s, a)− α

1− γ
(ρπsa)

T

(
π

β
− 1

)
, β(a|s) > 0. (32)

Proof.

T π
CQLQ(s, a) =

 T πQ(s, a)− α
(

π(a|s)
β(a|s) − 1

)
, β(a|s) > 0,

−∞, β(a|s) = 0, π(a|s) > 0,
Q(s, a), β(a|s) = 0, π(a|s) = 0.

(33)

Let f1 and f2 be two arbitrary functions.

We first consider the OOD region (β(a|s) = 0). We separate it into π(a|s) = 0 and π(a|s) > 0.

For all (s, a) s.t. β(a|s) = 0 and π(a|s) = 0,

|T π
CQLf1(s, a)− T π

CQLf2(s, a)| = |f1(s, a)− f2(s, a)| (34)

For all (s, a) s.t. β(a|s) = 0 and π(a|s) > 0,

|T π
CQLf1(s, a)− T π

CQLf2(s, a)| = |∞ −∞| (35)

In both cases, T π
CQL is not a contraction. Therefore, the contraction region of T π

CQL (if exists) cannot
contain the OOD region (β(a|s) = 0).

Now we consider the ID region (β(a|s) > 0).

If π is not support-constrained, for all (s, a) s.t. β(a|s) > 0 and ∀π /∈ Π, we have

|T π
CQLf1(s, a)− T π

CQLf2(s, a)| = |T πf1(s, a)− T πf2(s, a)|
=

∣∣γEs′∼P (·|s,a),a′∼π(·|s′)[f1(s
′, a′)− f2(s

′, a′)]
∣∣ (36)

Since π /∈ Π, the expectation Ea′∼π(·|s′) can have non-zero mass on some (s′, a′) in the OOD region.
Thus T π

CQL cannot be a contraction.

If π is support-constrained, for all (s, a) s.t. β(a|s) > 0 and ∀π ∈ Π, we have

|T π
CQLf1(s, a)− T π

CQLf2(s, a)| = |T πf1(s, a)− T πf2(s, a)|
=

∣∣γEs′∼P (·|s,a),a′∼π(·|s′)[f1(s
′, a′)− f2(s

′, a′)]
∣∣

≤ γEs′∼P (·|s,a),a′∼π(·|s′)[|f1(s′, a′)− f2(s
′, a′)|]

≤ γ max
(s,a):β(a|s)>0

|f1(s, a)− f2(s, a)|

(37)

The last inequality holds because π ∈ Π and thus the expectation Ea′∼π(·|s′) has non-zero mass only
on support-constrained a′, i.e., β(a′|s′) > 0.

Therefore, in the ID region (β(a|s) > 0) and when ∀π ∈ Π, T π
CQL is a γ-contraction operator.

Assume the fixed point is fπ . We have

fπ(s, a) = T π
CQLf

π(s, a) = T πfπ(s, a)− α

(
π(a|s)
β(a|s)

− 1

)
, β(a|s) > 0. (38)

17

We define R as the vector of reward function, and Pπ as the transition matrix on state-action pairs
induced by policy π: Pπ

(s,a),(s′,a′) := P (s′|s, a)π(a′|s′). Now Eq. (38) can be written in vector form:

fπ(s, a) = [R+ γPπfπ] (s, a)− α

(
π(a|s)
β(a|s)

− 1

)
, β(a|s) > 0

⇒ fπ(s, a) = (I − γPπ)−1

[
R− α

(
π

β
− 1

)]
(s, a), β(a|s) > 0

⇒ fπ(s, a) = Qπ(s, a)− α

[
(I − γPπ)−1

(
π

β
− 1

)]
(s, a), β(a|s) > 0

The row (s, a) of the matrix (I − γPπ)−1 is ρπsa/(1− γ), i.e., the unnormalized discounted state-
action occupancy induced by policy π with initial state-action pair (s, a) (Lemma 1.6 in [1]).
Therefore, in the ID region (β(a|s) > 0) and when π ∈ Π, the fixed point is:

fπ(s, a) = Qπ(s, a)− α

1− γ
(ρπsa)

T

(
π

β
− 1

)
, β(a|s) > 0.

Theorem 4 (Strict policy improvement to support-constrained optimal, Theorem 2). SVR yields
support-constrained πi and guarantees monotonic performance improvement:

V πi+1(s) ≥ V πi(s) ∀s, (39)

where the improvement is strict in at least one state until π∗
Π is found.

Proof. In Theorem 3, we have proved that SVR yields support-constrained πi and the fixed point of
policy evaluation is:

fπi(s, a) =

{
Qπi(s, a), β(a|s) > 0,
Qmin, β(a|s) = 0.

(40)

Now we prove the monotonic improvement results. We start out with the performance difference
lemma [16]. Given two policies π′, π,

V π′
(s)− V π(s) =

1

1− γ
Es′∼dπ′,s [Aπ(s′, π′(s′))] (41)

where dπ
′,s is the normalized discounted state occupancy induced by policy π′ from starting state s.

Thus for i > 0,

V πi+1(s)− V πi(s) =
1

1− γ
Es′∼dπi+1,s [Aπi(s′, πi+1(s

′))] (42)

=
1

1− γ
Es′∼dπi+1,s [Ea∼πi+1

Qπi(s′, a)− Ea∼πi
Qπi(s′, a)] (43)

=
1

1− γ
Es′∼dπi+1,s [Ea∼πi+1f

πi(s′, a)− Ea∼πif
πi(s′, a)] (44)

≥ 0 (45)

The third equality holds because πi (i > 0) is support-constrained and fπi(s, a) = Qπi(s, a) for
β(a|s) > 0 by Eq. (40). The last inequality holds because πi+1 is the greedy policy with respect to
fπi(s, a) and it holds that Ea∼πi+1

fπi(s′, a) ≥ Ea∼πi
fπi(s′, a) at every s′.

When the improvement V πi+1(s) − V πi(s) is 0 at every state s, it implies Ea∼πi+1f
πi(s, a) =

Ea∼πif
πi(s, a) at every s, because the point mass on s is “contained” in dπi+1,s: dπi+1,s(s) > 0.

In this case,

fπi(s, a) = T πi

SVRf
πi(s, a) =

{
r(s, a) + γEs′Ea′∼πi(·|s′)[f

πi(s′, a′)], β(a|s) > 0,
Qmin, β(a|s) = 0.

(46)

18

For β(a|s) > 0,

fπi(s, a) = r(s, a) + γEs′Ea′∼πi(·|s′)[f
πi(s′, a′)] (47)

= r(s, a) + γEs′Ea′∼πi+1(·|s′)[f
πi(s′, a′)] (48)

= r(s, a) + γEs′

[
max

a′∈supp(β(·|s′))
fπi(s′, a′)

]
(49)

The last equality holds as πi+1 is support-constrained and is greedy with respect to fπi . It can be
seen that Eq. (49) is the support-constrained Bellman optimality equation in Eq. (19):

Therefore,

fπi(s, a) =

{
Q∗

Π, β(a|s) > 0,
Qmin, β(a|s) = 0.

(50)

Consequently,

πi+1(a|s) = I
[
a = argmax

a′
fπi(s, a′)

]
(51)

= I

[
a = argmax

a′∈supp(β(·|s))
fπi(s, a′)

]
(52)

= I

[
a = argmax

a′∈supp(β(·|s))
Q∗

Π(s, a
′)

]
(53)

= π∗
Π (54)

where the last equality is the definition of the support-constrained optimal policy π∗
Π.

To conclude, the policy iteration with T π
SVR guarantees monotonic performance improvement, and

the improvement is strict until the optimal support-constrained policy π∗
Π is found.

B Experimental Details

B.1 Experimental details on D4RL experiments

Table 2: Hyperparameters in SVR.

Hyperparameter Value

SVR

Optimizer Adam [17]
Critic learning rate 3× 10−4

Actor learning rate 3× 10−4 with cosine schedule
Batch size 256
Discount factor 0.99
Number of iterations 106

Target update rate τ 0.005
Policy update frequency 2
Number of Critics 4
Penalty coefficient α {0.001, 0.02} for Gym-MuJoCo

{10} for Adroit
Standard deviation of u 0.2

Architecture Actor input-256-256-output
Critic input-256-256-1

All hyperparameters of SVR are included in Table 2. Note that the only hyperparameter we tuned is
the penalty coefficient α. We use α = 10 for Adroit tasks and α = {0.001, 0.02} for Gym-MuJoCo
tasks (λ = 0.02 for expert and medium-expert datasets, λ = 0.001 for medium, medium-replay,
random datasets). The discrepancy of α in this two domains is due to their characteristics. Adroit

19

10 5 10 4 10 3 10 2 10 1

Penalty Coefficient

0

50

100

Ep
is

od
e

R
et

ur
n

hopper-medium-replay-v2

10 5 10 4 10 3 10 2 10 1

Penalty Coefficient

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-medium-replay-v2

10 5 10 4 10 3 10 2 10 1

Penalty Coefficient

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-medium-v2

10 5 10 4 10 3 10 2 10 1

Penalty Coefficient

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-medium-expert-v2

Figure 6: Parameter study on the penalty coefficient α of SVR. The curves are averaged over 4
random seeds, with the shaded area representing the standard deviation across seeds.

datasets are mostly collected by human behavior and the data coverage is very narrow, so strong
value regularization is needed to keep value functions from overestimation. We set the standard
deviation of the sampling distribution in SVR as 0.2, which our experiments have demonstrated to be
an insensitive parameter. And following TD3+BC [8], we normalize the states in all datasets.

For evaluation, we average returns over 10 evaluation trajectories and 5 random seeds on all tasks.
The reported results are the normalized scores, which are offered by the D4RL benchmark [7] to
measure how the learned policy compared with random and expert policy:

D4RL score = 100× learned policy return− random policy return
expert policy return− random policy return

B.2 Experimental details on tabular maze experiments

As depicted in Fig. 1(a) in the paper, the task is to navigate from bottom-left to top-right in as
few steps as possible, with a wall in the middle. The agent receives a reward of 0 for reaching
the goal and −1 for all other transitions. Episodes are terminated after 100 steps and γ is set to
0.9. We first collect 10, 000 transitions using a random policy. Then we remove all the transitions
containing rightward actions in the bottom-left 4 × 4 region to introduce OOD actions. It makes
the optimal support-constrained policy (see Fig. 1(b) in the paper) differ from the actual optimal
policy in the environment. To magnify the impact of bootstrapping from OOD actions, we used
optimistic initialization for each algorithm (i.e., initialized all Q-values with Qmax). This ensures
overestimation occurs in some states and we can observe how well the algorithms mitigate it.

Here we are verifying the support-constrained optimality of the SVR operator in the tabular MDP,
and the actual updates of CQL and SVR are Eq. (4) and Eq. (7) in the paper respectively. We run
experiments over 5 random seeds that affect dataset collection and policy/Q initialization.

B.3 Experimental details on noisy dataset experiments

In noisy dataset experiments, we construct a “noisy” dataset by combining the random and expert
datasets in D4RL with different expert ratios. The size of the combined dataset is set to 1× 106. In
some environments, the size of the random or expert dataset in D4RL is slightly smaller than 1× 106,
so we directly utilize the corresponding D4RL dataset when expert ratio is 0 or 1.

The hyperparameters of SVR follow Table 2: α = 0.001 for expert ratio of 0 and α = 0.02 for
all other expert ratios. For CQL, we tune its regularization coefficient in {5, 10, 20, 30} (performs
relatively well in this range) and present the best results obtained for each dataset.

C More Experimental Results

C.1 Ablation on the penalty coefficient

We also conduct an ablation study on the penalty coefficient α of SVR in Fig. 6. Experimental results
indicate that different datasets have different requirements for α, but choosing α ∈ [1e− 3, 1e− 2]
generally induces relatively satisfying performance.

20

Table 3: Comparisons with additional baselines on the D4RL benchmark.

Dataset APAC GAN-Joint SPOT MCQ IAC SVR (Ours)

halfcheetah-med 58.4±2.6 44.0±0.2 58.4±1.0 64.3±0.2 51.6±0.3 60.5±1.2
hopper-med 93.8±5.4 86.4±10.9 86.0±8.7 78.4±4.3 74.6±11.5 103.5±0.4
walker2d-med 58.5±7.4 69.9±6.4 86.4±2.7 91.0±0.4 85.2±0.4 92.4±1.2
halfcheetah-med-rep 57.3±2.8 33.4±2.4 52.2±1.2 56.8±0.6 47.2±0.3 52.5±3.0
hopper-med-rep 51.9±5.6 30.9±3.2 100.2±1.9 101.6±0.8 103.2±1.0 103.7±1.3
walker2d-med-rep 16.3±5.3 6.7±2.2 91.6±2.8 91.3±5.7 93.2±1.8 95.6±2.5
halfcheetah-med-exp - 72.6±11.1 86.9±4.3 87.5±1.3 92.9±0.7 94.2±2.2
hopper-med-exp - 71.1±10.7 99.3±7.1 111.2±0.1 109.3±4.0 111.2±0.9
walker2d-med-exp - 79.6±1.9 112.0±0.5 114.2±0.7 110.1±0.1 109.3±0.2

gym total - 495.2 796.3 773.0 767.3 822.9

pen-expert - 134.5±10.8 116.3±22.3 - 103.3±12.2 138.9±9.2
pen-human - 71.0±23.2 91.4±13.4 68.5±6.5 45.9±23.0 73.1±12.1
pen-cloned - 27.6±7.1 47.9±20.5 49.4±4.3 36.4±9.2 70.2±17.4

adroit total - 233.1 255.6 - 185.6 282.2

0 101 102 103 104 105

Trained steps of

0

50

100

N
or

m
al

iz
ed

 R
et

ur
n

hopper-medium-v2

0 101 102 103 104 105

Trained steps of

0

50

100

N
or

m
al

iz
ed

 R
et

ur
n

walker2d-medium-v2

0 101 102 103 104 105

Trained steps of

0

50

100

N
or

m
al

iz
ed

 R
et

ur
n

hopper-medium-exp-v2

0 101 102 103 104 105

Trained steps of

0.0

0.5

Training Loss of
hopper-med
walker2d-med
hopper-med-exp

Figure 7: (Left) Performance of SVR under different behavioral model checkpoints, which are
obtained at different steps in the behavioral model training process. (Right) Training loss of the
behavioral model βω at different training steps. The curves are averaged over 4 random seeds, with
the shaded area representing the standard deviation across seeds.

C.2 Comparisons with additional baselines

To make a more comprehensive comparison, we also compare SVR with APAC [52], GAN-Joint [49],
SPOT [43], MCQ [27], and IAC [51] on the D4RL benchmark. The results are shown in Table 3. The
results indicate that our methods have better performance than these baselines.

C.3 Empirical study on the behavior model error of SVR

To empirically investigate SVR under different behavior model errors, we run SVR using different
checkpoints of the behavior model, which are obtained at different steps in the behavior model
training process (Eq. (15) in the paper). The model error is controlled by the number of steps taken to
train the behavioral model. The results are shown in Fig. 7. We observe that the performance of SVR
increases with the number of training steps of the behavioral model. Notably, the performance of SVR
stabilizes at a high level after only 102 steps of behavioral model training, where the model has not
been adequately trained. Theoretically, in Eq. (16) in the paper, the error of βω only affects the weights
of rewarding ID actions. Thus, an imperfect model can make the maximization and minimization
of ID Q-values not cancel out well, but have little effect on OOD ones (still penalizing all OOD
Q-values). We hypothesize that this is the reason why SVR can still achieve good performance with
an imperfect behavior model.

C.4 Computational cost

We test the runtime of SVR on halfcheetah-medium-replay-v2 on a GeForce RTX 3090. The results
of SVR and other baselines are shown in Table 4. It takes 2h40min for SVR to finish the task, which
is comparable to other baselines. Note that it only takes two minutes for the pre-training part. SVR is
computationally more efficient than CQL, because the practical CQL algorithm needs to sample 10

21

Table 4: Runtime of TD3BC, IQL, CQL, SVR for halfcheetah-medium-replay-v2 on a GeForce RTX
3090.

Algorithm TD3BC IQL CQL SVR pre-training in SVR

Runtime 1h 1h50min 4h10min 2h40min 2min

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

halfcheetah-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

halfcheetah-medium-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

halfcheetah-medium-replay-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

halfcheetah-medium-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

15

30

Ep
is

od
e

R
et

ur
n

halfcheetah-random-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

hopper-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

hopper-medium-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

hopper-medium-replay-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

hopper-medium-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

15

30

Ep
is

od
e

R
et

ur
n

hopper-random-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-medium-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-medium-replay-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-medium-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

15

30

Ep
is

od
e

R
et

ur
n

walker2d-random-v2

Figure 8: Learning Curves of SVR on Gym-MuJoCo Tasks.

actions at each state to compute log-sum-exp [23], while SVR only needs to sample a single action at
each state. SVR can achieve better performance with lower computational costs.

C.5 Learning curves of SVR

Learning curves on Gym-MuJoCo tasks and Adroit tasks are presented in Fig. 8 and Fig. 9, respec-
tively. The curves are averaged over 5 random seeds, with the shaded area representing the standard
deviation across seeds.

D Broader Impact

Societal. Offline reinforcement learning (RL) holds significant promise in facilitating and expanding
practical applications of RL, including domains such as robotics, recommendation systems, healthcare,

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

75

150

Ep
is

od
e

R
et

ur
n

pen-expert-v0

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

pen-human-v0

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

pen-cloned-v0

Figure 9: Learning Curves of SVR on Adroit Tasks.

22

and education, where the data collection processes are often costly or risky. However, it is important
to acknowledge the potential negative societal impacts associated with any offline RL algorithm. One
such concern is that the offline data used for training may contain inherent biases, and these biases
can potentially transfer to the learned policy. Additionally, it is worth considering the potential impact
of offline RL on employment, as it contributes to the automation of tasks traditionally performed by
human experts, such as factory automation or autonomous driving. Addressing these challenges will
contribute to the responsible development and deployment of offline RL algorithms, maximizing
their positive impact while minimizing negative societal consequences.

Academic. We reexamine the fundamental objective of value regularization in offline RL and
propose supported value regularization, which not only offers enhanced theoretical guarantees but
also demonstrates remarkable improvements over existing methods on widely recognized offline RL
benchmarks. This research potentially offers researchers a novel perspective and a promising avenue
for exploring value regularization and achieving support-constrained optimality in offline RL.

23

	Introduction
	Preliminaries
	Supported Value Regularization
	Density-based value regularization
	Supported value regularization
	Analysis
	Practical implementation of SVR

	Experiments
	Support-constrained optimality in the tabular setting
	Comparisons on D4RL benchmarks
	Comparisons on noisy datasets.
	Empirical study on the sampling distribution of SVR
	Effects of components in SVR

	Related Work
	Conclusions and Limitations
	Proofs
	Experimental Details
	Experimental details on D4RL experiments
	Experimental details on tabular maze experiments
	Experimental details on noisy dataset experiments

	More Experimental Results
	Ablation on the penalty coefficient
	Comparisons with additional baselines
	Empirical study on the behavior model error of SVR
	Computational cost
	Learning curves of SVR

	Broader Impact

