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Pietro Liò1 pietro.lio@cl.cam.ac.uk
1Department of Computer Science and Technology, University of Cambridge, UK
2Qualcomm AI Research, The Netherlands†

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, Nina Miolane

Abstract

We propose a geometric version of the Weisfeiler-Leman graph isomorphism test (GWL)
for discriminating geometric graphs while respecting the underlying physical symmetries:
permutations, rotation, reflection, and translation. We use GWL to characterise the ex-
pressive power of Graph Neural Networks (GNNs) that are invariant or equivariant to
physical symmetries in terms of the classes of geometric graphs they can distinguish. This
allows us to formalise the advantages of equivariant GNNs over invariant GNNs: equivari-
ant layers have greater expressive power as they enable propagating geometric information
beyond local neighbourhoods, while invariant layers only reason locally via scalars and
cannot discriminate geometric graphs with different non-local properties.
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1. Introduction

The graph isomorphism problem and the Weisfeiler-Leman (WL) (Weisfeiler and Leman,
1968) test for distinguishing non-isomorphic graphs have become a powerful tool for analysing
the expressive power of Graph Neural Networks (GNNs) (Xu et al., 2019; Morris et al., 2019).
The WL framework has been a major driver of progress for more expressive GNNs (Maron
et al., 2019; Morris et al., 2020; Bodnar et al., 2021a). However, WL does not directly
apply to the increasingly relevant special case of geometric graphs – graphs embedded in
Euclidean space – which come equipped with a stronger notion of isomorphism that also
takes spatial symmetries into account. The lack of theoretical tools is becoming more ap-
parent as geometric graphs are increasingly used to model systems in biochemistry (Jamasb
et al., 2022), material science (Chanussot et al., 2021), and multiagent robotics (Li et al.,
2020). Graph Neural Networks (GNNs) with Euclidean symmetries ‘baked in’ have emerged
as the architecture of choice for these domains (Geiger and Smidt, 2022).

Geometric GNNs follow the message passing paradigm (Gilmer et al., 2017) where node
features are updated in a permutation equivariant manner by aggregating features from lo-
cal neighbourhoods. In addition to the permutation group, the geometric attributes of the
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Figure 1: Geometric Weisfeiler-Leman Test. GWL distinguishes non-isomorphic geo-
metric graphs G1 and G2 by injectively assigning colours to distinct neighbourhood
patterns, up to global symmetries (here G = O(d)). Each iteration expands the
neighbourhood from which geometric information can be gathered (shaded for
node i). Example inspired by Schütt et al. (2021).

nodes (e.g. coordinates, velocity) transform along with Euclidean transformations of the
system, i.e. they are equivariant to a Lie group such as the group of rotations (SO(d)) or
rotations and reflections (O(d)). We use G as a generic symbol for such a Lie group. Based
on this, we consider two classes of GNNs for geometric graphs: (1) G-equivariant mod-
els, where the intermediate features and propagated messages are G-equivariant geometric
quantities such as vectors or tensors (Thomas et al., 2018; Satorras et al., 2021); and (2)
G-invariant models, which only propagate G-invariant scalar features such as distances
and angles (Schütt et al., 2018; Gasteiger et al., 2020). Despite promising empirical results
for both classes of architectures, key theoretical questions remain unanswered: (1) How to
characterise the expressive power of geometric GNNs? And (2) what is the tradeoff between
G-equivariant and G-invariant GNNs?

Contributions. In this work, we study the expressive power of geometric GNNs from
the perspective of discriminating non-isomorphic geometric graphs. We propose a geometric
version of the Weisfeiler-Leman graph isomorphism test, termed GWL. (Figure 1). We
use GWL to formally characterise classes of graphs that can and cannot be distinguished
by G-invariant and G-equivariant GNNs. We show how invariant models have limited
expressive power as they only reason locally via scalar quantities, while equivariant models
distinguish a larger class of graphs by propagating geometric vector quantities beyond local
neighbourhoods.

For Background and Preliminaries, please see Appendix A.

2. The Geometric Weisfeiler-Leman Test

Assumptions. Analogously to the WL test, the geometric and scalar features the nodes
are equipped with come from countable subsets C ⊂ Rd and C ′ ⊂ R, respectively. As a
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result, when we require functions to be injective, we require them to be injective over the
countable set of G-orbits that are obtained by acting with G on the dataset.

Intuition. For an intuition of how to generalise the WL test to geometric graphs, we
note that WL uses a local, node-centric, procedure to update the colour of each node i using
the colours of its the 1-hop neighbourhood Ni. In the geometric setting, Ni is an attributed
point cloud around the central node i. As a result, each neighbourhood carries two types
of information: (1) neighbourhood type (invariant to G) and (2) neighbourhood geometric
orientation (equivariant to G). From an axiomatic point of view, our generalisation of the
WL neighbourhood aggregation procedure must meet two properties:

Property 1: Orbit injectivity of colours. If two neighbourhoods are the same up to
an action of G (e.g. rotation), then the colours of the corresponding central nodes should be
the same. Thus, the colouring must be G-orbit injective – which also makes it G-invariant
– over the countable set of all orbits of neighbourhoods in our dataset.

Property 2: Preservation of local geometry. A key property of WL is that the
aggregation is injective. A G-invariant colouring procedure that purely satisfies Property 1
is not sufficient because, by definition, it loses spatial properties of each neighbourhood such
as the relative pose or orientation (Hinton et al., 2011). Thus, we must additionally update
auxiliary geometric information variables in a way that is G-equivariant and injective.

Geometric Weisfeiler-Leman (GWL). These intuitions motivate the following defi-
nition of the GWL test. At initialisation, we assign to each node i ∈ V a scalar node colour
ci ∈ C ′ and an auxiliary object gi containing the geometric information associated to it:

c
(0)
i := Hash(si), g

(0)
i :=

(
c
(0)
i ,−→v i

)
, (1)

where Hash denotes an injective map over the scalar attributes si of node i. To define
the inductive step, assume we have the colours of the nodes and the associated geometric
objects at iteration t− 1. Then, we can aggregate the geometric information around node
i into a new object as follows:

g
(t)
i :=

(
(c

(t−1)
i , g

(t−1)
i ) , {{(c(t−1)

j , g
(t−1)
j ,−→x ij) | j ∈ Ni}}

)
, (2)

Importantly, the group G can act on the geometric objects above inductively by acting on
the geometric information inside it. This amounts to rotating (or reflecting) the entire t-hop
neighbourhood contained inside:

g ·g(0)
i :=

(
c
(0)
i , Qg

−→v i

)
, g ·g(t)

i :=
(
(c

(t−1)
i , g ·g(t−1)

i ), {{(c(t−1)
j , g ·g(t−1)

j ,Qg
−→x ij) | j ∈ Ni}}

)
Clearly, the aggregation building gi for any time-step t is injective and G-equivariant. Fi-
nally, we can compute the node colours at iteration t for all i ∈ V by aggregating the
geometric information in the neighbourhood around node i:

c
(t)
i := I-Hash(t)

(
g
(t)
i

)
, (3)

by using a G-orbit injective and G-invariant function that we denote by I-Hash. That is
for any geometric objects g, g′, I-Hash(g) = I-Hash(g′) if and only if there exists g ∈ G
such that g = g · g′.
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Overview. With each iteration, g
(t)
i aggregates geometric information in progressively

larger t-hop subgraph neighbourhoods N (t)
i around the node i. The node colours summarise

the structure of these t-hops via the G-invariant aggregation performed by I-Hash. The
procedure terminates when the partitions of the nodes induced by the colours do not change
from the previous iteration. Finally, given two geometric graphs G and H, if there exists

some iteration t for which {{c(t)i | i ∈ V(G)}} ≠ {{c(t)i | i ∈ V(H)}}, then GWL deems
the two graphs as being geometrically non-isomorphic. Otherwise, we say the test cannot
distinguish the two graphs.

Invariant GWL. Since we are interested in understanding the role of G-equivariance,
we also consider a more restrictive Invariant GWL (IGWL) that only updates node colours
using the G-orbit injective I-Hash function and does not propagate geometric information:

c
(t)
i := I-Hash

(
(c

(t−1)
i ,−→v i) , {{(c(t−1)

j ,−→v j ,
−→x ij) | j ∈ Ni}}

)
. (4)

2.1. What Geometric Graphs can GWL and IGWL Distinguish?

In order to formalise the expressive power of GWL and IGWL, let us consider what geo-
metric graphs can and cannot be distinguished by the tests. As a simple first observation,
we note that when all coordinates and vectors are set equal to zero GWL coincides with
the standard 1-WL. In this edge case, GWL has the same expressive power as 1-WL.

Next, let us consider consider the simplified setting of two geometric graphs G1 =

(A1,S1,
−→
V 1,

−→
X1) and G2 = (A2,S2,

−→
V 2,

−→
X2) such that the underlying attributed graphs

(A1,S1) and (A2,S2) are isomorphic. This case frequently occurs in (bio)chemical mod-
elling, where molecules occur in different conformations, but with the same graph topology
given by the covalent bonding structure. Recall that each iteration of GWL aggregates ge-

ometric information g
(k)
i from progressively larger neighbourhoods N (k)

i around the node i,

and distinguishes (sub-)graphs via comparing G-orbit injective colouring of g
(k)
i . We say G1

and G2 are k-hop distinct if for all graph isomorphisms b, there is some node i ∈ V1, b(i) ∈ V2

such that the corresponding k-hop subgraphs N (k)
i and N (k)

b(i) are distinct. Otherwise, we

say G1 and G2 are k-hop identical if all N (k)
i and N (k)

b(i) are identical up to group actions. We
can now formalise what geometric graphs can and cannot be distinguished by GWL.

Proposition 1 GWL can distinguish any k-hop distinct geometric graphs G1 and G2 where
the underlying attributed graphs are isomorphic, and k iterations are sufficient.

Proposition 2 Up to k iterations, GWL cannot distinguish any k-hop identical geometric
graphs G1 and G2 where the underlying attributed graphs are isomorphic.

Additionally, we can state the following results about the more constrained IGWL.

Proposition 3 IGWL can distinguish any 1-hop distinct geometric graphs G1 and G2 where
the underlying attributed graphs are isomorphic, and 1 iteration is sufficient.

Proposition 4 Any number of iterations of IGWL cannot distinguish any 1-hop identical
geometric graphs G1 and G2 where the underlying attributed graphs are isomorphic.
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We can now consider the more general case where the underlying attributed graphs

for G1 = (A1,S1,
−→
V 1,

−→
X1) and G2 = (A2,S2,

−→
V 2,

−→
X2) are non-isomorphic and constructed

from point clouds using radial cutoffs, as conventional in biochemistry and material science.

Proposition 5 Assuming geometric graphs are constructed from point clouds using ra-
dial cutoffs, GWL can distinguish any geometric graphs G1 and G2 where the underlying
attributed graphs are non-isomorphic. At most kMax iterations are sufficient, where kMax is
the maximum graph diameter among G1 and G2.

These results enable us to compare the expressive powers of GWL and IGWL.

Theorem 6 GWL is strictly more powerful than IGWL.

This statement formalises the advantage of G-equivariant intermediate layers for graphs
and geometric data, as prescribed in the Geometric Deep Learning blueprint (Bronstein
et al., 2021), in addition to echoing similar intuitions in the computer vision community.
As remarked by (Hinton et al., 2011), translation invariant models do not understand the
relationship between the various parts of an image (colloquially called the “Picasso prob-
lem”). Similarly, our results explain how IGWL fails to understand how the various 1-hops
of a graph are stitched together. Finally, we identify a setting where this distinction between
the two approaches disappears.

Proposition 7 IGWL has the same expressive power as GWL for fully connected geomet-
ric graphs.

2.2. Characterising the Expressive Power of Geometric GNNs

We would like to characterise the maximum expressive power of geometric GNNs based on
the GWL test. Firstly, we show that any message passing G-equivariant GNN can be at
most as powerful as GWL in distinguishing non-isomorphic geometric (sub-)graphs.

Theorem 8 Any pair of geometric graphs distinguishable by a G-equivariant GNN is also
distinguishable by GWL.

With sufficient iterations, the output of G-equivariant GNNs can be equivalent to GWL
if certain conditions are met regarding the aggregate, update and readout functions.

Proposition 9 G-equivariant GNNs have the same expressive power as GWL if the fol-
lowing conditions hold: (1) The aggregation Agg is an injective, G-equivariant multiset
function. (2) The scalar part of the update Upds is a G-orbit injective, G-invariant multi-
set function. (3) The vector part of the update Updv is an injective, G-equivariant multiset
function. (4) The graph-level readout f is an injective multiset function.

Similar statements can be made for G-invariant GNNs and IGWL. Thus, we can directly
transfer our results about GWL and IGWL to the class of GNNs bounded by the respective
tests. This has several interesting practical implications, discussed in Appendix B.

3. Conclusion

This work proposes a geometric version of the Weisfeiler-Leman graph isomorphism test
(GWL) for discriminating geometric graphs while respecting the underlying spatial sym-
metries. We use GWL to characterise the expressive power of geometric Graph Neural
Networks and demonstrate the advantages of equivariant GNNs over invariant GNNs.
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Appendix A. Background

A.1. Graph Isomorphism and the Weisfeiler-Leman Test

An attributed graph G = (A,S) with a node set V of size n consists of an n× n adjacency
matrix A and a matrix of scalar features S ∈ Rn×f . Two attributed graphs G,H are

isomorphic if there exists an edge-preserving bijection b : V(G) → V(H) such that s
(G)
i =

s
(H)
b(i) , where the subscripts index rows and columns in the corresponding matrices.

The Weisfeiler-Leman test (WL) is an algorithm for testing whether two (attributed)
graphs are isomorphic (Read and Corneil, 1977; Weisfeiler and Leman, 1968). At iteration

zero the algorithm assigns a colour c
(0)
i ∈ C from a countable space of colours C to each

node i. Nodes are coloured the same if their features are the same, otherwise, they are
coloured differently. In subsequent iterations t, WL iteratively updates the node colouring

by producing a new c
(t)
i ∈ C:

c
(t)
i := Hash

(
c
(t−1)
i , {{c(t−1)

j | j ∈ Ni}}
)
, (5)
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where Hash is an injective map (i.e. a perfect hash map) that assigns a unique colour to
each input and {{·}} denotes a multiset – a set that allows for repeated elements. The test
terminates when the partition of the nodes induced by the colours becomes stable. Given

two graphs G and H, if there exists some iteration t for which {{c(t)i | i ∈ V(G)}} ≠ {{c(t)i |
i ∈ V(H)}}, then the graphs are not isomorphic. Otherwise, the WL test is inconclusive,
and we say it cannot distinguish the two graphs.

Xu et al. (2019); Morris et al. (2019) showed that GNNs are at most as powerful as
WL at distinguishing non-isomorphic graphs. Since then, the WL hierarchy has became a
powerful tool for analysing the expressive power of GNNs and guided the search for more
expressive models (Chen et al., 2019; Maron et al., 2019; Morris et al., 2020; Dwivedi et al.,
2020; Bodnar et al., 2021b,a).

A.2. Group Theory

We assume basic familiarity with group theory, see Zee (2016) for an overview. We denote
the action of the group G on a space X by g · x. If G acts on spaces X and Y , we say
a function f : X → Y is G-equivariant if f(g · x) = g · f(x). A function f : X → Y is
G-invariant if f(g · x) = f(x). The G-orbit of x ∈ X is OG(x) = {g · x | g ∈ G} ⊆ X.
When x and x′ are part of the same orbit, we write x ≃ x′. We say a function f : X → Y
is G-orbit injective if we have f(x1) = f(x2) if and only if x1 ≃ x2 for any x1, x2 ∈ X.
Necessarily, such a function is G-invariant, since f(g · x) = f(x).

We work with the permutation group over n elements Sn and the Lie groups G = SO(d)
or G = O(d). Invariance to the translation group T (d) is conventionally handled using
relative positions. Given one of the standard groups above, for an element g we denote by
Mg (or another capital letter) its standard matrix representation.

A.3. Geometric Graphs

Systems in biochemistry (Jamasb et al., 2022), material science (Chanussot et al., 2021),
physical simulations (Sanchez-Gonzalez et al., 2020), and multiagent robotics (Li et al.,
2020) are conventionally modelled as geometric graphs. For example, molecules are repre-
sented as a set of nodes corresponding to atoms, which contain information about the atom
type as well as its 3D spatial coordinates and other geometric quantities such as velocity or
acceleration. The geometric attributes transform along with Euclidean transformations of
the system.

A geometric graph G = (A,S,
−→
V ,

−→
X) with a node set V is an attributed graph that

is also decorated with geometric attributes: node coordinates
−→
X ∈ Rn×d and (optionally)

vector features 1 −→V ∈ Rn×d (e.g. velocity, acceleration). The geometric attributes transform
as follows under the action of the relevant groups: (1) Sn acts on the graph via PσG :=

(PσAP⊤
σ ,PσS,Pσ

−→
V ,Pσ

−→
X); (2) Orthogonal transformations Qg ∈ G act on

−→
V ,

−→
X via

−→
V Qg,

−→
XQg; and (3) Translations

−→
t ∈ T (d) act on the coordinates

−→
X via −→x i +

−→
t for all

nodes i. In biochemistry and material science, the conventional procedure for constructing

the geometric graph G = (A,S,
−→
V ,

−→
X) is via the underlying point cloud (S,

−→
V ,

−→
X) using

1. Without loss of generality, we work with a single vector feature per node. Our results generalise to
multiple vector features or higher-order geometric tensors per node.
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a predetermined radial cutoff r. Thus, the adjacency matrix is defined as aij = 1 if ∥−→x i −−→x j∥2 ≤ r, or 0 otherwise, for all aij ∈ A.
Two geometric graphs G and H are geometrically isomorphic (denoted G ≃ H) if there

exists an attributed graph isomorphism b such that the geometric attributes are equivalent,
up to global group actions Qg ∈ G and

−→
t ∈ T (d):(

s
(G)
i ,−→v (G)

i ,−→x (G)
i

)
=

(
s
(H)
b(i) , Qg

−→v (H)
b(i) , Qg(

−→x (H)
b(i) +

−→
t )

)
for all i ∈ V(G). (6)

Geometric graph isomorphism and distinguishing (sub-)graph geometries has important
practical implications for representation learning. For e.g., in molecular systems, an ideal
architecture should map distinct local structural environments around atoms to distinct
embeddings in representation space (Bartók et al., 2013; Pozdnyakov et al., 2020).

A.4. Geometric Graph Neural Networks

We consider two broad classes of geometric GNN architectures. G-equivariant GNN layers
(Thomas et al., 2018; Anderson et al., 2019; Jing et al., 2020; Satorras et al., 2021; Brand-
stetter et al., 2022) update scalar and vector features from iteration t to t+1 via learnable
aggregate and update functions, Agg and Upd, respectively:

m
(t)
i ,−→m(t)

i := Agg
(
{{(s(t)i , s

(t)
j ,−→v (t)

i ,−→v (t)
j ,−→x ij) | j ∈ Ni}}

)
(Aggregate) (7)

s
(t+1)
i ,−→v (t+1)

i := Upd
(
(s

(t)
i ,−→v (t)

i ) , (m
(t)
i ,−→m(t)

i )
)

(Update) (8)

For e.g., PaiNN (Schütt et al., 2021) interaction layers aggregate scalar and vector features
via learnt radial filters:

s
(t+1)
i := s

(t)
i +

∑
j∈Ni

f1

(
s
(t)
j , ∥−→x ij∥

)
(9)

−→v (t+1)
i := −→v (t)

i +
∑
j∈Ni

f2

(
s
(t)
j , ∥−→x ij∥

)
⊙−→v (t)

j +
∑
j∈Ni

f3

(
s
(t)
j , ∥−→x ij∥

)
⊙−→x ij (10)

Alternatively, G-invariant layers (Schütt et al., 2018; Xie and Grossman, 2018; Gasteiger
et al., 2020) do not update vector features and only aggregate scalar quantities from local
neighbourhoods:

s
(t+1)
i := Upd

(
s
(t)
i , Agg

(
{{(s(t)i , s

(t)
j ,−→v i,

−→v j ,
−→x ij) | j ∈ Ni}}

))
. (11)

For e.g., SchNet (Schütt et al., 2018) uses relative distances to scalarise local geometric
information, while DimeNet (Gasteiger et al., 2020) uses both distances and angles, as
follows:

s
(t+1)
i := s

(t)
i +

∑
j∈Ni

f1

(
s
(t)
j , ∥−→x ij∥

)
(SchNet) (12)

s
(t+1)
i :=

∑
j∈Ni

f1

(
s
(t)
i , s

(t)
j ,

∑
k∈Ni\{j}

f2

(
s
(t)
j , s

(t)
k , ∥−→x ij∥, −→x ij · −→x ik

))
(DimeNet) (13)
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For both G-invariant and G-equivariant architectures, the scalar features {s(T )
i } at the

final iteration T are mapped to graph-level features via a permutation-invariant readout
f : Rn×f → Rf ′

.

Invariant GNNs have shown strong performance for protein design (Zhang et al., 2022;
Dauparas et al., 2022) and electrocatalysis (Gasteiger et al., 2021; Shi et al., 2022), while
equivariant GNNs are being used within learnt interatomic potentials for molecular dynam-
ics (Schütt et al., 2021; Batzner et al., 2022; Batatia et al., 2022).

Appendix B. Discussion

Practical Implications. Together, Propositions 1 and 4 highlight critical theoretical
limitations of G-invariant GNNs in computing global and non-local geometric properties.
Our results suggest that G-equivariant GNNs should be preferred when working with large
geometric graphs such as macromolecules with thousands of nodes, where message passing
is restricted to local radial neighbourhoods around each node.

Motivated by these limitations, two straightforward approaches to improvingG-invariant
GNNs may be: (1) pre-computing non-local geometric properties as input features, e.g.
models such as GemNet (Gasteiger et al., 2021) and GearNet (Zhang et al., 2022) success-
fully use two-hop dihedral angles. And (2) working with fully connected geometric graphs,
as Proposition 7 suggests that G-equivariant and G-invariant GNNs can be made equally
powerful when performing all-to-all message passing. This is supported by the empirical
success of recent G-invariant ‘Graph Transformers’ (Joshi, 2020; Shi et al., 2022) for small
molecules with tens of nodes, where working with full graphs is tractable.

Related Work. Literature on the completeness of atom-centred interatomic poten-
tials has focused on distinguishing 1-hop local neighbourhoods (point clouds) around atoms
by building spanning sets for continuous, G-equivariant multiset functions (Shapeev, 2016;
Drautz, 2019; Dusson et al., 2019; Pozdnyakov et al., 2020). Recent theoretical work on
geometric GNNs and their universality has shown that Tensor Field Networks, GemNet
and GVP (Dym and Maron, 2020; Gasteiger et al., 2021; Jing et al., 2020; Villar et al.,
2021) can be universal approximators of continuous, G-equivariant or G-invariant multiset
function over point clouds (not sparse graphs). In contrast, the GWL framework studies
the expressive power of geometric GNNs from the perspective of geometric graph isomor-
phism. Overall, our work formalises what classes of geometric graphs can and cannot be
distinguished by message passing G-invariant/equivariant GNNs while abstracting away
implementation details.

Future Work. GWL provides an abstraction to study the limits of geometric GNNs,
but in practice it is challenging to build maximally powerful GNNs that satisfy the con-
ditions of Proposition 9 as GWL relies on G-orbit injective colouring and G-equivariant
propagation of auxiliary geometric information. Based on the intuitions gained from GWL,
future work will explore building provably powerful, practical geometric GNNs for appli-
cations in biochemistry, material science, and multiagent robotics, and better characterise
the trade-offs related to practical implementation choices.
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Appendix C. Proofs for What GWL and IGWL can Distinguish

The following results are a consequence of the construction of GWL as well as the definitions
of k-hop distinct and k-hop identical geometric graphs. Note that k-hop distinct geometric
graphs are also (k + 1)-hop distinct. Similarly, k-hop identical geometric graphs are also
(k − 1)-hop identical, but not necessarily (k + 1)-hop distinct.

Given two distinct neighbourhoods N1 and N2, the G-orbits of the corresponding ge-
ometric multisets g1 and g2 are mutually exclusive, i.e. OG(g1) ∩ OG(g2) ≡ ∅. By the
properties of I-Hash this implies c1 ̸= c2. Conversely, if N1 and N2 were identical up
to group actions, their G-orbits would overlap, i.e. g1 = g g2 for some g ∈ G and
OG(g1) = OG(g2) ⇒ c1 = c2.

Proposition 10 GWL can distinguish any k-hop distinct geometric graphs G1 and G2 where
the underlying attributed graphs are isomorphic, and k iterations are sufficient.

Proof [Proof of Proposition 1] The k-th iteration of GWL identifies the G-orbit of the

k-hop subgraph N (k)
i at each node i via the geometric multiset g

(k)
i . G1 and G2 being

k-hop distinct implies that there exists some bijection b and some node i ∈ V1, b(i) ∈ V2

such that the corresponding k-hop subgraphs N (k)
i and N (k)

b(i) are distinct. Thus, the G-

orbits of the corresponding geometric multisets g
(k)
i and g

(k)
b(i) are mutually exclusive, i.e.

OG(g
(k)
i ) ∩ OG(g

(k)
b(i)) ≡ ∅ ⇒ c

(k)
i ̸= c

(k)
b(i). Thus, k iterations of GWL are sufficient to

distinguish G1 and G2.

Proposition 11 Up to k iterations, GWL cannot distinguish any k-hop identical geometric
graphs G1 and G2 where the underlying attributed graphs are isomorphic.

Proof [Proof of Proposition 2] The k-th iteration of GWL identifies the G-orbit of the

k-hop subgraph N (k)
i at each node i via the geometric multiset g

(k)
i . G1 and G2 being k-hop

identical implies that for all bijections b and all nodes i ∈ V1, b(i) ∈ V2, the corresponding

k-hop subgraphs N (k)
i and N (k)

b(i) are identical up to group actions. Thus, the G-orbits of

the corresponding geometric multisets g
(k)
i and g

(k)
b(i) overlap, i.e. OG(g

(k)
i ) = OG(g

(k)
b(i)) ⇒

c
(k)
i = c

(k)
b(i). Thus, up to k iterations of GWL cannot distinguish G1 and G2.

Proposition 12 IGWL can distinguish any 1-hop distinct geometric graphs G1 and G2

where the underlying attributed graphs are isomorphic, and 1 iteration is sufficient.

Proof [Proof of Proposition 3] Each iteration of IGWL identifies the G-orbit of the 1-hop

local neighbourhoodN (k=1)
i at each node i. G1 and G2 being 1-hop distinct implies that there

exists some bijection b and some node i ∈ V1, b(i) ∈ V2 such that the corresponding 1-hop

local neighbourhoods N (1)
i and N (1)

b(i) are distinct. Thus, the G-orbits of the corresponding

geometric multisets g
(1)
i and g

(1)
b(i) are mutually exclusive, i.e. OG(g

(1)
i ) ∩ OG(g

(1)
b(i)) ≡ ∅ ⇒

c
(1)
i ̸= c

(1)
b(i). Thus, 1 iteration of IGWL is sufficient to distinguish G1 and G2.

12
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Figure 2: Invariant GWL Test. IGWL cannot distinguish G1 and G2 as they are 1-hop
identical: The G-orbit of the 1-hop neighbourhood around each node is the same,
and IGWL cannot propagate geometric orientation information beyond 1-hop
(here G = O(d)).

Proposition 13 Any number of iterations of IGWL cannot distinguish any 1-hop identical
geometric graphs G1 and G2 where the underlying attributed graphs are isomorphic.

Proof [Proof of Proposition 4] Each iteration of IGWL identifies the G-orbit of the 1-

hop local neighbourhood N (k=1)
i at each node i, but cannot identify G-orbits beyond 1-

hop by the construction of IGWL as no geometric information is propagated. G1 and G2

being 1-hop identical implies that for all bijections b and all nodes i ∈ V1, b(i) ∈ V2, the

corresponding 1-hop local neighbourhoods N (k)
i and N (k)

b(i) are identical up to group actions.

Thus, the G-orbits of the corresponding geometric multisets g
(1)
i and g

(1)
b(i) overlap, i.e.

OG(g
(1)
i ) = OG(g

(1)
b(i)) ⇒ c

(k)
i = c

(k)
b(i). Thus, any number of IGWL iterations cannot

distinguish G1 and G2.

Proposition 14 Assuming geometric graphs are constructed from point clouds using ra-
dial cutoffs, GWL can distinguish any geometric graphs G1 and G2 where the underlying
attributed graphs are non-isomorphic. At most kMax iterations are sufficient, where kMax is
the maximum graph diameter among G1 and G2.

Proof [Proof of Proposition 5] We assume that a geometric graph G = (A,S,
−→
V ,

−→
X) is

constructed from a point cloud (S,
−→
V ,

−→
X) using a predetermined radial cutoff r. Thus, the

adjacency matrix is defined as aij = 1 if ∥−→x i − −→x j∥2 ≤ r, or 0 otherwise, for all aij ∈ A.
Such construction procedures are conventional for geometric graphs in biochemistry and
material science.

Given geometric graphs G1 and G2 where the underlying attributed graphs are non-
isomorphic, identify kMax the maximum of the graph diameters of G1 and G2, and chose any

arbitrary nodes i ∈ V1, j ∈ V2. We can define the kMax-hop subgraphs N (kMax)
i and N (kMax)

j
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Figure 3: Geometric Computation Trees for GWL and IGWL. A computation tree

T (t)
i represents the maximum information contained in GWL/IGWL colours or

GNN features at iteration t by an ‘unrolling’ of the message passing procedure.
Unlike GWL, geometric orientation information cannot flow from the leaves to
the root in IGWL, restricting its expressive power. IGWL cannot distinguish G1

and G2 as all 1-hop neighbourhoods are computationally identical.

at i and j, respectively. Thus, N (kMax)
i = V1 for all i ∈ V1, and N (kMax)

j = V2 for all j ∈ V2.

Due to the assumed construction procedure of geometric graphs, N (kMax)
i and N (kMax)

j must

be distinct. Otherwise, if N (kMax)
i and N (kMax)

j were identical up to group actions, the sets

(S1,
−→
V 1,

−→
X1) and (S2,

−→
V 2,

−→
X2) would have yielded isomorphic graphs.

The kMax-th iteration of GWL identifies theG-orbit of the kMax-hop subgraphN (kMax)
i at

each node i via the geometric multiset g
(kMax)
i . As N (kMax)

i and N (kMax)
j are distinct for any

arbitrary nodes i ∈ V1, j ∈ V2, the G-orbits of the corresponding geometric multisets g
(kMax)
i

and g
(kMax)
j are mutually exclusive, i.e. OG(g

(kMax)
i )∩OG(g

(kMax)
j ) ≡ ∅ ⇒ c

(kMax)
i ̸= c

(kMax)
j .

Thus, kMax iterations of GWL are sufficient to distinguish G1 and G2.

Theorem 6 GWL is strictly more powerful than IGWL.

Proof [Proof of Theorem 6]

Firstly, we can show that the GWL class contains IGWL if GWL can learn the identity

when updating gi for all i ∈ V, i.e. g
(t)
i = g

(t−1)
i = g

(0)
i ≡ (si,

−→v i). Thus, GWL is at least
as powerful as IGWL, which does not update gi.

Secondly, to show that GWL is strictly more powerful than IGWL, it suffices to show
that there exist a pair of geometric graphs that can be distinguished by GWL but not
by IGWL. We may consider any k-hop distinct geometric graphs for k > 1, where the
underlying attributed graphs are isomorphic. Proposition 1 states that GWL can distinguish
any such graphs, while Proposition 4 states that IGWL cannot distinguish them. An
example is the pair of graphs in Figures 1 and 2.
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Proposition 15 IGWL has the same expressive power as GWL for fully connected geo-
metric graphs.

Proof [Proof of Proposition 7] We will prove by contradiction. Assume that there exist a
pair of fully connected geometric graphs G1 and G2 which GWL can distinguish, but IGWL
cannot.

If the underlying attributed graphs of G1 and G2 are isomorphic, by Proposition 1 and
Proposition 4, G1 and G2 are 1-hop identical but k-hop distinct for some k > 1. For all

bijections b and all nodes i ∈ V1, b(i) ∈ V2, the local neighbourhoods N (1)
i and N (1)

b(i) are

identical up to group actions, and OG(g
(1)
i ) = OG(g

(1)
b(i)) ⇒ c

(1)
i = c

(1)
b(i). Additionally, there

exists some bijection b and some nodes i ∈ V1, b(i) ∈ V2 such that the k-hop subgraphs N (k)
i

and N (k)
b(i) are distinct, and OG(g

(k)
i ) ∩ OG(g

(k)
b(i)) ≡ ∅ ⇒ c

(k)
i ̸= c

(k)
b(i). However, as G1 and

G2 are fully connected, for any k, N (1)
i = N (k)

i and N (1)
b(i) = N (k)

b(i) are identical up to group

actions. Thus, OG(g
(1)
i ) = OG(g

(k)
i ) = OG(g

(1)
b(i)) = OG(g

(k)
b(i)) ⇒ c

(1)
i = c

(k)
i = c

(k)
b(i) = c

(k)
b(i).

This is a contradiction.
If G1 and G2 are non-isomorphic and fully connected, for any arbitrary i ∈ V1, j ∈ V2

and any k-hop neighbourhood, we know that N (1)
i = N (k)

i and N (1)
j = N (k)

j . Thus, a single
iteration of GWL and IGWL identify the same G-orbits and assign the same node colours,

i.e. OG(g
(1)
i ) = OG(g

(k)
i ) ⇒ c

(1)
i = c

(k)
i and OG(g

(1)
j ) = OG(g

(k)
j ) ⇒ c

(1)
j = c

(k)
j . This is a

contradiction.

Appendix D. Proofs for equivalence between GWL and Geometric GNNs

Our proofs adapt the techniques used in (Xu et al., 2019; Morris et al., 2019) for connecting
1-WL with GNNs. Note that we omit including the relative position vectors −→x ij =

−→x i−−→x j

in GWL and geometric GNN updates for brevity, as relative positions vectors can be merged
into the vector features.

Theorem 8 Any pair of geometric graphs distinguishable by a G-equivariant GNN is also
distinguishable by GWL.

Proof [Proof of Theorem 8]
Consider two geometric graphs G and H. The theorem implies that if the GNN graph-

level readout outputs f(G) ̸= f(H), then the GWL test will always determine G and H to
be non-isomorphic, i.e. G ̸= H.

We will prove by contradiction. Suppose after T iterations, a GNN graph-level readout
outputs f(G) ̸= f(H), but the GWL test cannot decide G and H are non-isomorphic, i.e.
G and H always have the same collection of node colours for iterations 0 to T . Thus,
for iteration t and t + 1 for any t = 0 . . . T − 1, G and H have the same collection of

node colours {c(t)i } as well as the same collection of neighbourhood geometric multisets{
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

}
up to group actions. Otherwise, the GWL test would

have produced different node colours at iteration t + 1 for G and H as different geometric
multisets get unique new colours.
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We will show that on the same graph for nodes i and k, if (c
(t)
i , g

(t)
i ) = (c

(t)
k , g · g(t)

k ), we

always have GNN features (s
(t)
i ,−→v (t)

i ) = (s
(t)
k ,Qg

−→v (t)
k ) for any iteration t. This holds for

t = 0 because GWL and the GNN start with the same initialisation. Suppose this holds for

iteration t. At iteration t+ 1, if for any i and k, (c
(t+1)
i , g

(t+1)
i ) = (c

(t+1)
k , g · g(t+1)

k ), then:{
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

}
=

{
(c

(t)
k , g · g(t)

k ) , {{(c(t)j , g · g(t)
j ) | j ∈ Nk}}

}
(14)

By our assumption on iteration t,{
(s

(t)
i ,−→v (t)

i ) , {{(s(t)j ,−→v (t)
j ) | j ∈ Ni}}

}
=

{
(s

(t)
k ,Qg

−→v (t)
k ) , {{(s(t)j ,Qg

−→v (t)
j ) | j ∈ Nk}}

}
(15)

As the same aggregate and update operations are applied at each node within the GNN,
the same inputs, i.e. neighbourhood features, are mapped to the same output. Thus,

(s
(t+1)
i ,−→v (t+1)

i ) = (s
(t+1)
k ,Qg

−→v (t+1)
k ). By induction, if (c

(t)
i , g

(t)
i ) = (c

(t)
k , g · g(t)

k ), we always

have GNN node features (s
(t)
i ,−→v (t)

i ) = (s
(t)
k ,Qg

−→v (t)
k ) for any iteration t. This creates valid

mappings ϕs, ϕv such that s
(t)
i = ϕs(c

(t)
i ) and −→v (t)

i = ϕv(c
(t)
i , g

(t)
i ) for any i ∈ V.

Thus, if G and H have the same collection of node colours and geometric multisets, then
G and H also have the same collection of GNN neighbourhood features{
(s

(t)
i ,−→v (t)

i ) , {{(s(t)j ,−→v (t)
j ) | j ∈ Ni}}

}
=

{
(ϕs(c

(t)
i ), ϕv(c

(t)
i , g

(t)
i )) , {{(ϕs(c

(t)
j ), ϕv(c

(t)
i , g

(t)
i )) | j ∈ Ni}}

}
Thus, the GNN will output the same collection of node scalar features {s(T )

i } for G and
H and the permutation-invariant graph-level readout will output f(G) = f(H). This is a
contradiction.

Proposition 16 G-equivariant GNNs have the same expressive power as GWL if the fol-
lowing conditions hold: (1) The aggregation Agg is an injective, G-equivariant multiset
function. (2) The scalar part of the update Upds is a G-orbit injective, G-invariant multi-
set function. (3) The vector part of the update Updv is an injective, G-equivariant multiset
function. (4) The graph-level readout f is an injective multiset function.

Proof [Proof of Theorem 9]
Consider a GNN where the conditions hold. We will show that, with a sufficient number

of iterations t, the output of this GNN is equivalent to GWL, i.e. s(t) ≡ c(t).
Let G and H be any geometric graphs which the GWL test decides as non-isomorphic

at iteration T . Because the graph-level readout function is injective, i.e. it maps distinct
multiset of node scalar features into unique embeddings, it suffices to show that the GNN’s
neighbourhood aggregation process, with sufficient iterations, embeds G andH into different
multisets of node features.

For this proof, we replace G-orbit injective functions with injective functions over the
equivalence class generated by the actions of G. Thus, all elements belonging to the same
G-orbit will first be mapped to the same representative of the equivalence class, denoted by
the square brackets [. . . ], followed by an injective map. The result is G-orbit injective.
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Let us assume the GNN updates node scalar and vector features as:

s
(t)
i = Upds

([
(s

(t−1)
i ,−→v (t−1)

i ) , Agg
(
{{(s(t−1)

i , s
(t−1)
j ,−→v (t−1)

i ,−→v (t−1)
j ) | j ∈ Ni}}

)])
(16)

−→v (t)
i = Updv

(
(s

(t−1)
i ,−→v (t−1)

i ) , Agg
(
{{(s(t−1)

i , s
(t−1)
j ,−→v (t−1)

i ,−→v (t−1)
j ) | j ∈ Ni}}

))
(17)

with the aggregation function Agg being G-equivariant and injective, the scalar update
function Upds being G-invariant and injective, and the vector update function Updv being
G-equivariant and injective.

The GWL test updates the node colour c
(t)
i and geometric multiset g

(t)
i as:

c
(t)
i = hs

([
(c

(t−1)
i , g

(t−1)
i ) , {{(c(t−1)

j , g
(t−1)
j ) | j ∈ Ni}}

])
, (18)

g
(t)
i = hv

(
(c

(t−1)
i , g

(t−1)
i ) , {{(c(t−1)

j , g
(t−1)
j ) | j ∈ Ni}}

)
, (19)

where hs is a G-invariant and injective map, and hv is a G-equivariant and injective oper-
ation (e.g. in equation 2, expanding the geometric multiset by copying).

We will show by induction that at any iteration t, there always exist injective functions

φs and φv such that s
(t)
i = φs(c

(t)
i ) and −→v (t)

i = φv(c
(t)
i , g

(t)
i ). This holds for t = 0 because

the initial node features are the same for GWL and GNN, c
(0)
i ≡ s

(0)
i and g

(0)
i ≡ (s

(0)
i ,−→v (0)

i )
for all i ∈ V(G),V(H). Suppose this holds for iteration t. At iteration t + 1, substituting

s
(t)
i with φs(c

(t)
i ), and −→v (t)

i with φv(c
(t)
i , g

(t)
i ) gives us

s
(t+1)
i = Upds

([
(φs(c

(t)
i ), φv(c

(t)
i , g

(t)
i )) , Agg

(
{{(φs(c

(t)
i ), φs(c

(t)
j ), φv(c

(t)
i , g

(t)
i ), φv(c

(t)
j , g

(t)
j )) | j ∈ Ni}}

)])
−→v (t+1)

i = Updv

(
(φs(c

(t)
i ), φv(c

(t)
i , g

(t)
i )) , Agg

(
{{(φs(c

(t)
i ), φs(c

(t)
j ), φv(c

(t)
i , g

(t)
i ), φv(c

(t)
j , g

(t)
j )) | j ∈ Ni}}

))
The composition of multiple injective functions is injective. Therefore, there exist some
injective functions gs and gv such that:

s
(t+1)
i = gs

([
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

])
, (20)

−→v (t+1)
i = gv

(
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

)
, (21)

We can then consider:

s
(t+1)
i = gs ◦ h−1

s hs

([
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

])
, (22)

−→v (t+1)
i = gv ◦ h−1

v hv

(
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

)
, (23)

Then, we can denote φs = gs◦h−1
s and φv = gv ◦h−1

v as injective functions because the com-
position of injective functions is injective. Hence, for any iteration t+1, there exist injective

functions φs and φv such that s
(t+1)
i = φs

(
c
(t+1)
i

)
and −→v (t+1)

i = φv

(
c
(t+1)
i , g

(t+1)
i

)
. At the

T -th iteration, the GWL test decides that G and H are non-isomorphic, which means the

multisets of node colours {c(T )
i } are different for G and H. The GNN’s node scalar features

{s(T )
i } = {φs(c

(T )
i )} must also be different for G and H because of the injectivity of φs.
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