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Abstract
Instance-level explanation of graph neural networks (GNNs) is a well-studied area.
These explainers, however, only explain an instance (e.g., a graph) and fail to
uncover the combinatorial reasoning learned by a GNN from the training data
towards making its predictions. In this work, we introduce GRAPHTRAIL, the first
end-to-end, post-hoc, global GNN explainer that translates the functioning of a
black-box GNN model to a boolean formula over the (sub)graph-level concepts
without relying on local explainers. GRAPHTRAIL is unique in automatically min-
ing the discriminative subgraph-level concepts using Shapley values. Subsequently,
the GNN predictions are mapped to a human-interpretable boolean formula over
these concepts through symbolic regression. Extensive experiments across diverse
datasets and GNN architectures demonstrate significant improvement over existing
global explainers in mapping GNN predictions to faithful logical formulae. The ro-
bust and accurate performance of GRAPHTRAIL makes it invaluable for improving
GNNs and facilitates adoption in domains with strict transparency requirements.

1 Introduction and Related Works
GNNs have witnessed widespread adoption for graph-level prediction tasks due to their impressive
performance [35, 14, 46, 11, 41, 18, 38, 32, 5, 12, 53, 22]. Unfortunately, like other deep-learning
models, GNNs are considered black boxes due to their lack of transparency and interpretability. This
lack of interpretability presents a significant barrier to their adoption in critical domains such as
healthcare, finance, and law enforcement. Additionally, the ability to explain predictions is crucial
for understanding potential flaws in the model and generating insights for further refinement.

Existing Works: To introduce interpretability of GNNs, several algorithms have been proposed in
the literature [23]. Fig. G in the Appendix, which was originally presented in [23], and now updated
by us with more recent works, presents the taxonomy of GNN explainability research. As observed, a
vast majority of explainers focus on instance-level explanations.

Instance-level (or local) explainers [55, 29, 42, 58, 15, 57, 27, 45, 25, 3, 1, 51, 47, 26, 6, 19] take
a graph as input and identify components within this graph—-such as a subgraph—that maximally
influence the prediction made by a model. This instance-level focus limits its ability to extract
patterns utilized by GNNs at a global level across a multitude of graphs and how these patterns are
combined into a single decision-making rule. The objective of our work is to develop an end-to-end
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global explainer that (1) mines the subgraph concepts used by a black-box GNN model, and then (2)
uncovers the boolean logic used by the GNN over these concepts to make its predictions.

Works on global GNN explainers are limited [56, 16, 54, 2]. XGNN [56] and GNNInterpreter [50]
are generative-modeling based global explainers. Both generate a graph that maximally aligns with a
specified class label. While this generated graph likely contains important features used by the GNN
in making its predictions, it may not actually be present in the dataset, limiting its utility for analyzing
specific predictions. Additionally, it does not produce a human-interpretable rule explaining the class
attributions made by the GNN. Finally, XGNN [56] requires domain-specific validity-rules as input,
which affects its generalizability and results in inferior performance [2]. Another work [54] evaluates
which base concepts are detected by the neurons of a GNN model during predictions and their relative
importance. These concepts can be subgraphs or node-level properties, such as degrees. However,
this method lacks the ability to automatically mine the concepts. More importantly, this method
also does not generate a human-interpretable rule for the decision-making process of the GNN.

The closest work to ours is GLGEXPLAINER [2], which shares the objective of providing a global
explanation of the GNN through a boolean formula over subgraph-level concepts. However, there are
significant limitations that need to be addressed:

• Dependency on instance-level explainers: GLGEXPLAINER does not mine the subgraph concepts
in an end-to-end manner. Instead, it relies on an instance-level explainer (e.g. PGEXPLAINER [29])
to provide these concepts, over which it searches for the combinatorial formula mapping to the GNN
predictions. This dependency creates a disconnect with the objective, as instance-level explainers
lack a global understanding of the model. Our proposed approach develops an end-to-end pipeline
that mines concepts based on global trends.

• Lack of interpretability due to vector-level concepts: In GLGEXPLAINER, each concept in
the formula corresponds to a feature vector and not a subgraph. These vectors represent the
embedding of a cluster of subgraphs generated by the instance explainer. Hence, in its original
form, the formula is not human-interpretable. To convert into a human-interpretable formula,
GLGEXPLAINER randomly selects a subgraph from the cluster, assuming all subgraphs in a
cluster are similar. Our investigation (§ 4) reveals that this assumption is rarely true in practice,
compromising both interpretability and efficacy.

• Lack of robustness: GLGEXPLAINER shows significant variation in the formula based on the
training split used. As our analysis in § 4 reveals, due to the reliance on instance-level explanations,
even when data are drawn from the same distribution, the base concept candidates vary, and
consequently so does the eventual formula.

At this juncture, we note that our work is distinct from the line of research on explainable GNNs [61,
10, 34]. Explainable GNNs are designed to make explainable predictions rather than explaining the
predictions of a black-box GNN.

Contributions: In this work, we present an end-to-end, post-hoc, global GNN explainer called
GRAPHTRAIL (TRAnslating GNN Prediction into human-Interpretable Logical Rules)1, which
addresses the limitations outlined above. Specifically,

• Problem formulation: We formulate the problem of translating a message-passing GNN model
for graph classification into a human-interpretable logic formula over subgraph concepts. Unlike
existing works, in our formulation, the concepts are not assumed to be an input generated through a
decoupled algorithm.

• Novel methodology: We develop GRAPHTRAIL, which uses a mix of several innovative insights.
First, GRAPHTRAIL exploits the fact that a message passing GNN decomposes a graph into a set
of computation trees. This enables GRAPHTRAIL to limit the exploration of concepts from an
exponential subgraph search space to a linear space of computation trees. The global impact of
computation trees is assessed using Shapley values, and then mapped to a boolean formula over
concepts using symbolic regression.

• Empirical analysis: Extensive experiments across a diverse set of datasets, GNN architectures and
pooling function, demonstrate GRAPHTRAIL to significantly surpass existing global explainers in
efficacy, human-interpretability, data efficiency, and robustness.

1Trail also implies a pathway of clues, which aligns with our problem
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2 Preliminaries and Problem Formulation
Definition 1 (Graph). A graph is defined as G = (V, E ,X) over a node set V , edge set E = {(u, v) |
u, v ∈ V} and a node feature matrix X = {xv | v ∈ V} where xv ∈ Rd is the set of features
characterizing each node.

Two graphs are termed identical if they are isomorphic to each other.

Definition 2 (Graph Isomorphism). Graph G1 is isomorphic to graph G2 (denoted as G1
∼= G2)

if there exists a bijection between their node sets that preserves the edge connectivity and node
features. Specifically, G1

∼= G2 ⇐⇒ ∃f : V1 → V2 such that: (1) f is a bijection, (2) xv =
xf(v), where xv ∈ V1,xf(v) ∈ V2 and (3) (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2.

Graph G1 is subgraph isomorphic to G2, denoted as G1 ⊆ G2, if f is an injection and condition (3) is
modified to (u, v) ∈ E1 if (f(u), f(v)) ∈ E2.

Definition 3 (Graph Classification). In graph classification, we are given a set of train graphs
Dtr = {G1, · · · ,Gm}, where each graph Gi is tagged with a class label Yi from the set {Y1, · · · ,Yc}.
The objective is to train a GNN model Φ such that given a graph with an unknown class label, the
label prediction error is minimized.

Error may be measured using any of the known metrics such as cross-entropy loss, negative log-
likelihood, etc. Hereon, we implicitly assume Φ to be a message-passing GNN [22, 14, 46, 53]. We
assume the GNN Φ returns a c-dimensional distribution over the class labels, where Φ(G)j is the prob-
ability of the j-th class, and Φ(G)∗ = argmaxj∈{1,2,··· ,c}{Φ(G)j} denotes the predicted class label.

Definition 4 (Concepts [2, 21]). Concepts refer to semantically meaningful units of information
within the data that humans use to analyze and make decisions about that dataset. In the context of
graph classification, these concepts correspond to subgraphs.

Problem 1 (Global GNN explanation through boolean logic over concepts). Let D be a set of graphs,
where each graph is labeled with a class from the set {Y1, · · · ,Yc}. Given a trained GNN Φ, our
objective is to learn a set of c boolean formulas {f1, · · · , fc}, over subgraph-level concepts such
that for any graph G, if Φ(G)∗ = Yi, then fi(G) =TRUE and ∀j ̸= i, fj(G) =FALSE. The candidate
space of concepts includes all unique subgraphs of the dataset, i.e., C = {S | S ⊆ G,G ∈ D}.

The proposed problem formulation surfaces two key challenges:

1. How do we extract the concepts? Concept extraction poses a significant challenge due to the
exponential size of the candidate space. In the worst case, a graph with n nodes can have 2n

possible subgraphs. Furthermore, if there are n subgraphs in the dataset, identifying the unique
subgraphs requires performing O(n2) graph isomorphism tests. The computation cost of graph
isomorphism grows exponentially with graph size.

2. How do we uncover the boolean logic over the concepts? The number of boolean formulas
associated with a set of symbols (concepts) increases exponentially with the size of the set. Hence,
the scalability challenge is further exacerbated.

3 GRAPHTRAIL: Proposed Global Explainer
Fig. 1 presents the pipeline of GRAPHTRAIL. GRAPHTRAIL builds on the observation that any
message passing GNN decomposes a graph of n nodes into n computation trees. Consequently,
only the subgraphs corresponding to these computation trees are processed by the GNN and the
rest of the subgraphs are irrelevant to the GNN’s predictions. This property allows us to reduce the
candidate space size from exponential to linear. Subsequently, the impact of each of the computation
trees is assessed through its Shapley Value [43], and the top-k trees are sent to the logic formulator.
The Boolean logic is revealed by the symbolic regression over these computation trees. Symbolic
regression aims to discover concise closed-form mathematical equations that best fit a given set
of data [24, 31]. In our context, we constrain the regressor over computation trees with boolean
operators and fit to the predictions of GNN. We next elaborate on each of these steps.

3.1 Computation Framework of Message-passing GNNs

GNNs aggregate messages layer by layer. If xv ∈ R|F | is the input feature vector for node v ∈ V ,
then the 0th layer representation of node v is set to h0

v = xv. In each of the subsequent layers ℓ,
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Figure 1: Pipeline of the GRAPHTRAIL algorithm.

GNNs draw messages from their neighbors Nv = {u | (u, v ∈ E)} and aggregate as follows:

mℓ
v(u) = MSGℓ(hℓ−1

u ,hℓ−1
v ) (1)

mℓ
v = AGGREGATEℓ({{mℓ

v(u),∀u ∈ Nv}}) (2)

hℓ
v = MLPℓ(hℓ−1

v ,mℓ
v) (3)

Here, MSGℓ and AGGREGATEℓ can be either pre-defined functions (e.g., MEANPOOL) or neural
networks (e.g., GAT [46]). {{·}} denotes a multi-set since the same message may be received from
multiple nodes. The ℓth-layer representation of node v is the embedding generated by passing the
aggregated messages through an MLP. Finally, the representation of the entire graph is computed as:

hG = POOL
({

hL
v | ∀v ∈ V

})
(4)

Here, POOL could represent aggregation functions such as MEANPOOL, SUMPOOL, etc., and L is
the total number of layers in the GNN. Following the computation of the graph embedding, it is
mapped to a distribution Φ(G) over all class labels by passing hG through an MLP.

3.2 Mapping Concepts to Rooted Computation Trees

The message passing architecture of GNNs limits the embedding computation of a node v within the
computation tree rooted at v.
Definition 5 (Rooted Computation Tree T L

v ). A computation tree, also known as a receptive field,
is a fundamental concept in GNNs that describes how information propagates through the graph
during the neural network’s operation. Formally, given a graph G = (V, E ,X), a node v ∈ V , and
the number of layers L in the GNN, the computation tree T L

v rooted at v is defined as follows:

• Enumerate all paths (including those with repeated vertices) starting from v and extending up to L
hops away.

• Merge these paths into a tree structure where: i) the root is always v, and ii) two nodes from
different paths are merged if: a) they are at the same depth in their respective paths, and b) all their
ancestors in the paths have already been merged. This tree represents how information flows to
node v during L rounds of message passing in the GNN.

Fig. 2 illustrates the process of constructing the computation trees. We now highlight their properties
that enable us to compress and process the concept space in a tractable manner.
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Figure 2: The figure illustrates the process of constructing the computation trees of nodes v1 ∈ G1

and u1 ∈ G2 for L = 2. The colors of the nodes represent the node labels. Note that although v1 and
u1 are embedded in non-isomorphic L-hop neighborhoods, their computation trees are isomorphic.

Lemma 1. In an L-layered GNN, the computation tree T L
v is sufficient to compute node embedding

hL
v , ∀v ∈ V .

Proof. In a single layer of message-passing, a node v receives messages from each of its immediate
neighbors. Over L layers, v collects messages from nodes within L hops. The computation tree T L

v
contains all such paths of length up to L and hence is sufficient to compute hL

v .

Lemma 2. T L
v

∼= T L
u =⇒ hL

v = hL
u .

Proof. The expressive power of a message-passing GNN is upper bounded by the Weisfeiler-Lehman
test (1-WL) [53]. This implies that if the L-hop neighborhoods of two nodes are indistinguishable by
1-WL, then their representations will be the same. The 1-WL test cannot differentiate between nodes
with identical computation trees [44].

Owing to Lemma 1 and Lemma 2, given a graph G = (V, E ,X), we can decompose it into a multiset
of computation trees TG = {{T L

v | v ∈ V}}, compute node embeddings hL
v , ∀v ∈ V , and then

aggregate them into graph embedding hG (Eq. 4) without incurring any loss of information. This
computation structure enables us to shrink the candidate space of concepts, originally defined in
Prob. 1, to the set of unique computation trees, i.e., C =

⋃
G∈D TG . The reformulation of the concept

space imparts several desirable side-effects.

• First, the size of the candidate space of concepts reduces from exponential to
∑

∀G∈D |V|, which is
linear to the graph size (i.e., number of nodes) and the number of graphs in the dataset.

• Second, while graph isomorphism has a computational cost exponential to the graph size, rooted-tree
isomorphism can be performed in time linear to the number of edges in the tree (See App. A for de-
tails). Therefore, distilling all computation trees to only the unique ones can be done in linear time.

• Third, GNNs may map non-isomorphic L-hop node neighborhoods (subgraphs) to isomorphic
computation trees (See Fig. 2). This further reduces the number of concept candidates and,
consequently, the computational burden.

3.3 Mining Concepts
To mine concepts from the candidate space, we assess their Shapley values. Shapley value [43] is a
co-operative game theoretic technique where players form coalitions and receive payouts based on
their contribution to the outcome. Mathematically, the Shapley value ψi(Φ) of player i is its average
marginal contribution across all possible combinations of features.

ψi(V ) =
∑

S⊆{1,···p}\{i}

|S|! (p− |S| − 1)!

p!
(V (S ∪ {i})− V (S)) (5)

Here, p is the total number of players, S represents a subset of players excluding player i and the
value function V (.) quantifies the outcome.

With the hypotheses that some combination of computation trees is responsible for GNN’s predictions,
we aim to leverage Shapley values in identifying this combination. Consequently, the players
correspond to computation trees, and the value function corresponds to the performance of the GNN
when restricted to the chosen subset of computation trees. We set the value function as the negated
cross-entropy error of GNN Φ’s prediction (one may use other accuracy measures as well). Thus,
Eq. 5 is re-expressed as:
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ψi(Φ) =
∑

∀S,S⊆C\{Ci}

|S|! (|C| − |S| − 1)!

|C|!
(V (S ∪ {Ci})− V (S)) (6)

where, V (S) =
∑

∀G∈D

c∑
j=1

YG
j log

(
Φ
(
GS

)
j

)
(7)

In Eq. 6, C = {C1, · · · , Cm} is the set of unique computation trees, and Ci denotes the i-th one. Eq. 7
represents the negated cross-entropy error. In Eq. 7, we slightly overload the notation introduced in
Def. 3 as follows: we assume that the class label information is maintained as a c-dimensional one-hot
vector. Thus, YG

j is 1 if the true class label of G is j-th label. The GNN Φ returns a distribution
over the class labels, where Φ(GS)j is the probability of the j-th class, when G is embedded by only
considering the computation trees within S. Mathematically, this means modifying Eq. 4 as follows:

hS
G = POOL

({
hL
v | ∀v ∈ V and T L

v ∈ S
})

(8)

Finally, we select the top-k computation trees with the highest Shapley value as concepts. We discuss
our procedure for selecting k in the next section (§ 3.4).

3.3.1 Computational Tractability
While we are able to map the problem of concept mining to Shapley Value computations, several
computational challenges arise. Firstly, Shapley value computation necessitates sampling all possible
subsets of players (computation trees), leading to exponential computation complexity. Secondly, we
need to compute hS

G , i.e., the graph embedding corresponding to each subset of trees S. The naïve
approach involves: (1) enumerating computation trees rooted in each node, which consumes O(|E|)
time, (2) performing O(|S||V|) tree isomorphisms to detect computation trees contained within S
and then (3) computing Eq. 8. Given that Shapley computation requires drawing multiple samples of
S (Eq. 6), the above pipeline for each sample S is prohibitively slow.

Fortunately, there are works to circumvent the first challenge via sampling a small set of coalitions
with probabilistic approximations [59, 33]. We use the sampling strategy outlined in [28] (see App.
B for details).

The second challenge is unique since computing Shapley on computation trees of GNNs has not been
studied. GraphShap [36], the only other work to study Shapley value in the context of explaining
graph classification, looks at the specific class of identity-aware graphs, where nodes with unique
identities recur across multiple graph views. More importantly, GraphShap is not customized for
GNNs and hence the context of computation tree does not arise.

To address the bottleneck of computing Eq. 8, we project each graph into a concept vector.
Definition 6 (Concept vector). Let C = {C1, · · · , Cm} be the set of unique computation trees. The
concept vector CG ∈ Zm

≥0 of graph G = (V, E ,X) is an m-dimensional vector where the i-th
dimension represents the number of computation trees in G that are isomorphic to the i-th concept
candidate Ci ∈ C. Mathematically, CG [i] = |{v ∈ V | T L

v
∼= Ci}|.

The “concept encoding” box in Fig. 1 illustrates this operation. From Lemma 1, the embedding
of the root node of Ci depends solely on Ci. Hence, we pre-compute and map each Ci ∈ C into
an embedding hi. By combining Lemma 2 with Eq.4, we deduce that for both MEANPOOL and
SUMPOOL, the two most common aggregators can be computed in O(|S|) time. Specifically,

For SUMPOOL, hS
G =

∑
Ci∈S

CG [i]× hi (9)

For MEANPOOL, hS
G =

1

|V|
∑
Ci∈S

CG [i]× hi (10)

Owing to Lemma 1 and Lemma 2, computing the graph embedding simply involves |S| look-ups of
vectors instead of fresh rounds of message-passing.

3.4 Generation of Logical Rules through Symbolic Regression

Let us denote the top-k computation trees with the k highest Shapley values as C∗. To discover logical
rules over C∗, we perform symbolic regression. Symbolic regression is a branch of regression analysis
that aims to discover symbolic expressions from experimental data [31]. Formally, given a set of n
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input-output pairs {(xi, yi)}ni=1, where xi ∈ Rd is an input vector, and yi ∈ R is the output value
(or label), and a set of operators, such as addition, subtraction, logarithm, trigonometric functions,
boolean logic, etc., the goal is to find a symbolic equation e and corresponding function fe such that
∀i, yi ≈ fe(xi).

To perform symbolic regression over computation trees, we first project the concept vector of each
graph G = (V, E ,X) on the top-k trees C∗. This distilled concept vector is denoted as C∗

G ∈ Zk
≥0,

where C∗
G [i] = |{v ∈ V | T L

v
∼= Ci}|, with Ci representing the ith ranked computation tree in C∗

based on Shapley value. While symbolic regression can accommodate a wide array of operators,
mathematical operations such as addition or multiplication are not meaningful when applied to
computation trees. Hence, to facilitate human interpretability, we restrict to the boolean operators:
conjunction (∧), disjunction (∨), negation (¬), and XOR (⊕). We aim to learn a symbolic function fc
for each class label c predicted by the GNN. Let Dc = {G ∈ D | Φ(G)∗ = c} be the subset of graphs
where the predicted label is c. The symbolic function fc is identified by minimizing a multi-objective
loss function that balances prediction error and model complexity. Formally,

L (fc) = Error(fc) + (α)Complexity(fc) (11)

Complexity(fc) corresponds to the number of boolean operators and variables in fc. α is a weighting
hyper-parameter. Error corresponds to the number of disagreements with the GNN. Formally,

Error (fc) =
∑

∀G∈Dc

1− fc(G) +
∑

∀G′∈D\Dc

fc(G) (12)

Since fc is a boolean function, it returns either TRUE (equivalently 1) or FALSE (0).

Symbolic regression poses a combinatorial optimization challenge, as the number of potential
functions increases exponentially with the number of symbols, which is k in our case. Fortunately,
the area is rich with several studies [31]. We use [8], which leverages a multi-population evolutionary
algorithm to efficiently optimize and identify symbolic expressions (See App. C for details).

As depicted in Fig. 1, following the generation of boolean functions, GRAPHTRAIL concludes.

Identifying k – the number of concepts: The higher the value of k, the more expressive symbolic
regression is to fit to the prediction data by GNN. On the other hand, the computation cost grows
monotonically with k. To optimize this balance, we start with a small value of k, and incrementally
increase it until the accuracy plateaus, similar to using the patience parameter to determine the number
of epochs in machine learning model training.

4 Experiments
In this section, we evaluate GRAPHTRAIL and benchmark its performance in translating predictions of
various GNN architectures across diverse datasets and pooling layers. More experiments can be found
in the appendix. The codebase of GRAPHTRAIL is shared at https://github.com/idea-iitd/GraphTrail.

4.1 Experimental Setup
Baselines: As discussed in § 1, GLGEXPLAINER [2] is the only existing algorithm that fits a logical
formula to GNN predictions, making it our primary baseline. Recall, GLGEXPLAINER generates a
formula over vectors representing embeddings of subgraph clusters rather than individual subgraphs,
rendering it non-interpretable. The formula is applied to an input graph by first processing it through
an instance-level explainer, embedding the explanation subgraphs into feature space, and assigning
them to the closest cluster. These cluster vectors are then considered present in the input graph. To
make the formula interpretable, each cluster vector is replaced by the subgraph closest to the cluster
representation in the embedding space. A subgraph (concept) GS in the formula is considered present
in an input graph G if GS ⊆ G. We term this version GLGEXPLAINER-iso.

We use the authors’ implementation of GLGEXPLAINER with the recommended parameters and
employ PGEXPLAINER [29] as the instance-level explainer, as suggested. The implementation of
PGEXPLAINER is available in Pytorch Geometric.

GRAPHTRAIL-S: Shapley value computation brings the computational bottleneck in the pipeline,
which involves calculating the global Shapley value for each computation tree on each graph. This
process can become impractical for datasets with a large number of graphs. To address this issue,
we propose GRAPHTRAIL-S, an efficient version of GRAPHTRAIL. Note that we are interested
in the ranking according to the Shapley values and not the values themselves. If a subset of the

7
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BAMultiShapes MUTAG Mutagenicity NCI1
GLG 0.48 ± 0.02 0.74 ± 0.10 0.62 ± 0.03 0.57 ± 0.04

GLG-iso 0.00 ± 0.00 0.61 ± 0.20 0.53 ± 0.06 0.49 ± 0.05
G-TRAIL-S 0.86 ± 0.01 0.78 ± 0.08 0.72 ± 0.01 0.72 ± 0.02
G-TRAIL 0.87 ± 0.02 0.82 ± 0.09 0.72 ± 0.01 0.72 ± 0.02

Table 1: Average fidelity of the formulae across three seeds. The best and second best results
are shown in bold and underlined, respectively. G-TRAIL and GLG represents GRAPHTRAIL and
GLGEXPLAINER respectively.

GNN Architecture POOL

GCN GAT GIN SUM MEAN MAX

G-TRAIL GLG G-TRAIL GLG G-TRAIL GLG G-TRAIL GLG G-TRAIL GLG G-TRAIL GLG
BAMultiShapes 0.81 0.49 1.00 0.93 0.87 0.48 0.87 0.48 0.88 0.50 0.89 0.52
MUTAG 0.87 0.80 0.82 0.74 0.87 0.55 0.82 0.74 0.77 0.54 0.78 0.74
Mutagenicity 0.72 0.63 0.72 0.62 0.73 0.64 0.72 0.62 0.70 0.62 0.69 0.68
NCI1 0.75 0.59 0.73 0.65 0.72 0.57 0.72 0.57 0.70 0.59 0.66 0.62

Table 2: Comparison of Fidelity across GNN architectures and POOL layers. The best result in each
dataset and category is highlighted in bold.

dataset can emulate the entire dataset, the generated ranking is expected to remain the same. Thus,
GRAPHTRAIL-S creates a stratified split of the training dataset that maintains the class ratios and
computes the global Shapley values using this subset. The rest of the pipeline remains unchanged,
allowing for a more efficient yet effective method. This is also shown in the results from Table 1
where GRAPHTRAIL-s is slightly inferior to GRAPHTRAIL.

Datasets: We use four benchmark datasets listed in Table C (App. D). While NCI1 [49], MUTAG [17],
and Mutagenicity [39, 20] are collections of molecules, BAMultiShapes [55] is a synthetic dataset
specifically curated to benchmark global GNN explainers and associated with ground truth logical
explanations. Further details are presented in App. D.

Evaluation framework: While we benchmark against various GNN architectures and POOL layers
(Eq. 4), the default architecture is set to GAT for MUTAG and Mutagenicity and GIN for the other
two. We use SUMPOOL as the default across datasets. The accuracies of the GNN architectures
across all POOL choices are presented in Table D in the Appendix. Details on the hardware platform,
train-val-test splits and other parameters are provided in App. E. All experiments have been repeated
with three seeds and we report the means and standard deviations.

Metrics: We evaluate explainer faithfulness using Fidelity; the ratio of graphs where the logical
formula matches the GNN class label. Additional metrics can be found in the appendix.

4.2 Fidelity
Is GRAPHTRAIL faithful in translating GNN through logical rules? Table 1 provides the answer
with several key observations.

First, both GRAPHTRAIL and GRAPHTRAIL-s significantly outperform GLGEXPLAINER. GRAPH-
TRAIL computes Shapley values by evaluating all subsets of concepts, while GRAPHTRAIL-s employs
a faster, sampling-based method. The key reason for the superior performance of GRAPHTRAIL and
GRAPHTRAIL-s over GLGEXPLAINER lies in aligning the concept definitions with the fundamental
computational units of a GNN, namely computational trees. GRAPHTRAIL then mines these concepts
with a global perspective by analyzing their Shapley values. In contrast, GLGEXPLAINER depends
on instance-level explainers, which lack the ability to detect global patterns.

Second, GLGEXPLAINER-iso consistently underperforms compared to GLGEXPLAINER. This
is because the clusters of instance-level subgraph explanations in GLGEXPLAINER-iso are not
pure (See App. I). Although they are grouped based on embedding distance, their structures vary
significantly. Representing a cluster by an exemplar subgraph fails to capture the diversity effectively.

Finally, GLGEXPLAINER results do not match the original results reported in [2]. In App. H, we
discuss the causes, including the identification of test data leakage in the Mutagenicity data set.

4.3 Robustness
Varying architectures and pooling mechanisms. In Table 2, we present the robustness of GRAPHTRAIL
and GLGEXPLAINER across various GNN architectures and POOL layers. GRAPHTRAIL achieves
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higher fidelity than GLGEXPLAINER across all scenarios. This result further substantiates the
superior ability of GRAPHTRAIL in faithfully translating GNN outcomes.

5 10 50 10
0

20
0

k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 F
id

el
it

y

BAMultiShapes
NCI1
MUTAG
Mutagenicity

Figure 3: Impact of k (number of
concepts) on Fidelity.

Varying k. Fig. 3 explores the relationship between the number
of mined concepts (k) and the fidelity achieved by GRAPHTRAIL
across various datasets. Recall that higher values of k allow for
greater expressivity in symbolic regression. Consistent with this,
the results exhibit an increasing trend, with fidelity approaching
saturation at k = 50 for most datasets.

4.4 Data Efficiency
In Fig. 4, we assess the explainers’ effectiveness in low-data
regimes by varying the train data volume on the x-axis and mea-
suring Fidelity on the y-axis. We expect Fidelity to decrease with
lesser data. In GRAPHTRAIL, the decrease in Fidelity with lesser
data is minor, indicating robust efficacy even with limited data and
that it can be used in low-resource settings. Notably, the higher
average Fidelity and lower standard deviation in GRAPHTRAIL
across sizes indicate enhanced stability.
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Figure 4: Results on the test set fidelity averaged over three seeds while varying the training data size.

4.5 Visual Analysis of Rules
Fig. 5 presents the rules inferred by GRAPHTRAIL and GLGEXPLAINER for the datasets MUTAG,
Mutagenicity, and BAMultiShapes.

MUTAG: According to [9], compounds with rings and electron-attracting group elements conjugated
with nitro groups enhance mutagenicity. GRAPHTRAIL identifies both the ring structures as well as
the nitro group as identifiers of mutagenicity in this dataset. In contrast, GLGEXPLAINER fails to
identify the ring structure.

Mutagenicity: Prior work [55, 45, 29, 2] often limits the mutagenic behavior in this dataset to NO2

and NH2, i.e., the nitro and amine groups. However, in [20], eight general toxicophores are capable
of identifying 75% of all mutagens in the dataset (see Fig. F [20]). As seen in Fig. 5, without any
supervision, GRAPHTRAIL identifies and incorporates six of them in its formula, viz. aromatic nitro,
aromatic amine, nitroso, unsubstituted heteroatom-bonded heteroatom, azo-type, and polycyclic
aromatic systems. The azo-type and the unsubstituted heteroatom-bonded heteroatom groups have
not been identified explicitly but are potential extensions of two of the identified structures.

BAMultiShapes: BAMultiShapes has known ground truth logical rules for its class labels. While
GRAPHTRAIL does not perfectly recover these rules, GRAPHTRAIL’s inferred concepts and their
logical combination exhibit greater similarity to the ground truth compared to GLGEXPLAINER’s
results. It should be noted that explainers try to find what the model has learned rather than the ground
truth. One striking observation is that GLGEXPLAINER’s extracted concepts bear no similarity to the
ground truth and two of the prototypes have no graphs in their clusters and are therefore empty. In
contrast, GRAPHTRAIL identifies concepts that are isomorphic to the grid and house motifs present
in the ground truth.

5 Conclusions, Limitations and Future Directions
In this work, we have designed an end-to-end, post-hoc, global graph neural network (GNN) explainer
called GRAPHTRAIL. We have formulated the problem of translating a message-passing GNN model

9



Figure 5: Visual inspection of the formulae generated by GRAPHTRAIL and GLGEXPLAINER. The
encircled numbers in Mutagenicity are toxicophore IDs from Fig. F (in Appendix). The structures
with two IDs in Mutagenicity can be extended to both toxicophores.

for graph classification into a human-interpretable logic formula over subgraph concepts without
assuming the concepts are pre-generated through a separate algorithm. GRAPHTRAIL leverages
several novel insights such as the decomposition of graphs into computation trees by message-passing
GNNs, which reduces the search space for concepts from exponential number of all possible subgraphs
to a linear space of computation trees. GRAPHTRAIL evaluates the impact of these computation
trees using Shapley values and then creates a boolean formula via symbolic regression only with the
important ones. Extensive empirical analyses across diverse datasets and different GNN architectures
demonstrate GRAPHTRAIL’s effectiveness in capturing the underlying logical relationships within
complex GNN models for a wide range of scenarios in a human-interpretable form.

Limitations: While both GRAPHTRAIL and GLGEXPLAINER express rules as logical combinations
of concept’s presence or absence, they currently lack the ability to capture the multiplicity of a
concept’s occurrence within a graph. Finally, we believe attempting to interpret GNNs with subgraph
level concepts creates a dilemma between interpretability and faithfulness to the computational
mechanism of GNNs. To elaborate, in GRAPHTRAIL, since symbolic regression generates the
formula over computation trees, we map it back to the graph space, by replacing each computation
tree with the most frequent L-hop ego graph that generates this tree. Note, GNNs operate at the level
of computation trees. Given any formula at a subgraph level, a new formula can be generated with
identical fidelity, by simply replacing each subgraph concept with one that produces the same set
of computation trees (recall Fig. 2). However, when concepts are lowered to computation tree level,
human interpetability is compromised. It is worth exploring how the best balance between human
interpretability [13] and staying faithful to GNN computation structure can be obtained.
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Appendix

Figure F: The eight toxicophores in the Mutagenicity dataset that are capable of identifying 75% of
all mutagens in the dataset [9]. “aro” indicates an aromatic atom. "arom. rings" indicates an atom that
is part of multiple aromatic rings. The toxicophores identified by GRAPHTRAIL are colored green.
Toxicophores 5 and 6 are underlined as they are not explicitly identified but are potential extensions
to two of the identified structures in Fig. 5.
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Figure G: Taxonomy of research conducted on explaining GNN predictions. Gradient: SA [4] ,
Guided-BP [4] , Grad-CAM [37]; Decomposition: Excitation-BP [37], GNN-LRP [40], CAM [37],
GOAT [26]; Perturbation: GNNExplainer [55], PGExplainer [29], SubgraphX [58], GEM [25],
TAGExplainer [52], CF2 [45], RCExplainer [3],CF-GNNexplainer [27], CLEAR [30], InduCE [47];
Surrogate: GraphLime [15], Relex [60], PGM-Explainer [48]; Global: XGNN [56], GLG-Explainer
[2], Xuanyuan et al. [54], GCFExplainer [16].

A Rooted Tree Isomorphism

To identify the set of unique computation trees GRAPHTRAIL performs rooted tree-isomorphism.
An efficient method for this task involves using canonical labels. The canonical label of a graph G
is a unique representation that remains unchanged under isomorphism, i.e., two graphs G1 and G2

have the same canonical label if and only if they are isomorphic. We construct the canonical label
of a rooted computation tree through Depth-First Canonical Labeling (DFCF) [7]. From a labelled
rooted unordered tree we can derive many labelled rooted ordered trees as shown in Fig. H. There is a
one-to-one correspondence between a labelled rooted ordered tree and its depth-first string encoding.
The ordering of the strings orders the trees and the minimum in the ordering is the canonical label.
Each string is a depth-first (preorder) traversal that uses $ to represent a backtrack and # to represent
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Figure H: Four rooted ordered trees obtained from the same rooted unordered tree. The alphabets
denote the node labels. The strings below each tree are their depth-first traversals.

Figure I: Example of constructing a Depth-First-Canonical-Form of a rooted tree. Each vertex is
labeled with its identifier and, within parentheses, the ranks of its children, ending with a “hash
symbol” to denote the end of the encoding. The rank of the vertex at its level is placed before the
parentheses. After sorting all levels, the tree is then scanned from the top down, beginning with the
root, and the children of each vertex are rearranged according to the established order.

the end of the string encoding. In sorting, # is greater than $ and both these symbols are greater
than other labels. The Depth-First Canonical Form is constructed by sorting the vertices of a rooted
unordered tree level by level. At each level, the vertices are sorted first by their labels and then by the
ranks of their children at respective levels. Fig. I illustrates the process.

B Shapley Values

SHAP [28] represents the Shapley value explanation (SV) [43] as an additive feature attribution
method and fits a weighted linear regression model to approximate the model’s output. The weights
in this model correspond to the SVs (contribution of features). It specifies the explanation as

g(z) = ϕ0 +

M∑
j=1

ϕjzj

where g is the model, z ∈ {0, 1}M is the coalition vector, M is the maximum coalition size, and
ϕj ∈ R is the SV for feature j. Kernel-SHAP [28] is a SHAP variant to estimate SVs. It calculates
SVs via:

• Coalition Sampling: It randomly selects subsets of features, coalitions (zk). It assigns weights to
each coalition using the SHAP kernel where M = total features, |z| = coalition size:

π(z) =
(M − 1)(

M
x

)
|z|(M − |z|)

• Predictions: For each coalition, Kernel-SHAP maps the coalition back to the original features and
obtains a prediction afterwards.
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• Fitting: Using the calculated weights and predictions, Kernel-SHAP fits a linear model.

C Symbolic Regression

In symbolic regression, given a set of n input-output pairs (xi, yi)ni=1, where xi ∈ Rd is an input
vector, and y ∈ R is the output value (or label), and a set of operators, such as addition, subtraction,
etc., the goal is to find a symbolic equation e and corresponding function fe such that ∀i : yi ≈ fe(xi),
while also reducing the complexity (number of operators and variable) of the formula. The loss
function is presented in Eq. 11. Finding the optimal formula is not computationally tractable since the
number of formulas grows exponentially with the number of variables and operations. Hence, from
the various approximation strategies in the literature [31] we use [8], which leverages an evolutionary
algorithm.
The process begins by initializing np populations, each with L random expressions of complexity C
(3 in our experiments). For each Pi, a set Mi is created to store the expressions with the smallest loss
(Eq. 11) at each complexity level within that population. Additionally, a global set H is maintained
to store the expressions with lowest loss at each complexity across all populations. The algorithm
iterates over each population Pi for a fixed number of epochs, allowing them to evolve. Evolution is
driven by running tournaments within each population, where the expression E with lowest loss is
declared the winner. A copy of the winner is created and chosen for mutation or crossover, forming
E∗. Mutating an expression involves repeatedly applying random operations from a set of operations,
e.g., replacing/adding operators and variables. Crossover selects the two best expressions, E1, E2

from the population and swapping random sub-expressions between them, forming E∗
1 , E

∗
2 . The

newly formed expression(s) replace the oldest expression(s) in the population.
Once evolution within each population is complete, the sets Mi and H are updated with the best
expressions. When the set number of epochs are complete, the expression from H with minimum
loss is returned.

D Dataset details

Table C presents four benchmark datasets used in our experiments. NCI1 [49], MUTAG [17], and
Mutagenicity [39, 20] are collections of molecules. The nodes represent different atoms, and the
edges are chemical bonds between them. The molecules are classified by whether they are anticancer
(NCI1) or mutagenic (MUTAG and Mutagenicity). In MUTAG, Class 1 is the mutagenic class while
in Mutagenicity, Class 0 is mutagenic. BAMultiShapes [55] is a synthetic dataset. The dataset is
composed of 1,000 Barabasi-Albert (BA) graphs with network motifs attached in random positions.
These motifs include house, grid, and wheel structures. Class 0 includes plain BA graphs as well as
BA graphs augmented with a house, a grid, a wheel, or all three motifs combined. Class 1 consists of
BA graphs enriched with combinations of two motifs: a house and a grid, a house and a wheel, or a
wheel and a grid.

BAMultiShapes Mutagenicity MUTAG NCI1

#Graphs 1000 4337 188 4110
Avg. |V| 40 30.32 17.90 29.87
Avg. |E| 87.00 30.77 39.60 32.30

#Node features 10 14 7 37

Table C: Statistics of the datasets.

E Further details of empirical framework

All experiments are performed on an Intel Xeon Gold 6248 processor with 96 cores and 1 NVIDIA
A100 GPU with 40GB of memory and 377 GB RAM with Ubuntu 18.04.

Each dataset is split into train-validation-test sets in the proportion of 70:10:20. The accuracies of
all GNN architectures are reported in Table D. All GNNs have been trained with L = 3 layers. We
use Adam optimizer with a learning rate set to 0.001. Training stops early after a warm-up of 90
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epochs if validation accuracy doesn’t increase for 100 epochs or a total of 1000 epochs elapse. The
explainers are evaluated on the test splits.

GCN GIN GAT

Sum Mean Max Sum Mean Max Sum Mean Max
BAMultiShapes 0.83 0.83 0.82 0.94 0.93 0.91 0.5 0.5 0.5

MUTAG 0.84 0.79 0.74 0.82 0.84 0.87 0.82 0.85 0.71
Mutagenicity 0.79 0.77 0.77 0.79 0.80 0.77 0.77 0.78 0.75

NCI1 0.76 0.76 0.76 0.77 0.78 0.76 0.74 0.74 0.74

Table D: Model accuracy across different GNN architectures and pooling layers for aggregating node
embeddings into graph embedding (Eq. 4).

Figure J: Code snippet of instance explainer restricting train set to only those graphs that contain the
explanation motifs.

F Contribution of Shapley values

To highlight the impact of using Shapley values for selecting the important computation trees, we
compare the GRAPHTRAIL’s fidelity when the computation trees are chosen based on the Shapley
values versus when they are chosen at random. As evident from Table E, choosing random trees
significantly deteriorates the fidelity, indicating the value of Shapley-based selection.

G Additional Experiments

In this section, we present additional experiments to further validate our findings. The results are
summarized in Tables F, G, H, I, each highlighting different aspects of the derived formulae. Each
metric is the weighted average across the classes. These tables provide deeper insights and reinforce
the conclusions drawn from our initial analysis.

BAMultiShapes MUTAG Mutagenicity NCI1
Random 0.54 ± 0.03 0.68 ± 0.04 0.55 ± 0.01 0.54 ± 0.02
Shapley 0.86 ± 0.02 0.82 ± 0.09 0.72 ± 0.01 0.72 ± 0.02

Table E: The impact of selecting computation trees by considering Shapley values versus random
selection.
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Method BAMultiShapes MUTAG Mutagenicity NCI1

GLG 0.39 ± 0.11 0.70 ± 0.05 0.64 ± 0.03 0.49 ± 0.16

G-TRAIL 0.87 ± 0.01 0.83 ± 0.09 0.74 ± 0.01 0.74 ± 0.01

Table F: Weighted average precision of the generated formulas against the GNN output

Method BAMultiShapes MUTAG Mutagenicity NCI1

GLG 0.48 ± 0.02 0.74 ± 0.10 0.62 ± 0.03 0.57 ± 0.04

G-TRAIL 0.86 ± 0.02 0.82 ± 0.09 0.72 ± 0.01 0.72 ± 0.02

Table G: Weighted average recall of the generated formulas against the GNN output

Method BAMultiShapes MUTAG Mutagenicity NCI1

GLG 0.41 ± 0.06 0.68 ± 0.11 0.61 ± 0.03 0.49 ± 0.11

G-TRAIL 0.86 ± 0.02 0.82 ± 0.08 0.72 ± 0.02 0.70 ± 0.03

Table H: The weighted average F1-score of the generated formulas. The weighted version accounts
for label imbalance and can result in an F1-score that is not between precision and recall.

Method BAMultiShapes MUTAG Mutagenicity NCI1

GLG 0.46 ± 0.03 0.68 ± 0.00 0.55 ± 0.03 0.56 ± 0.04

G-TRAIL 0.83 ± 0.03 0.72 ± 0.05 0.65 ± 0.01 0.67 ± 0.02

Table I: Accuracy of the generated formulae against ground-truth labels

H Reproducibility Analysis of GLGEXPLAINER

Our analysis reveals inconsistencies between the findings reported in [2] and our own observations
with GLGEXPLAINER. Specifically, the reported results in [2] for Mutagenicity dataset might
be inflated due to test data leakage. In this dataset, the presence of NO2 and/or NH2 motifs is
indicative of a positive class label [55]. However, GLGEXPLAINER utilizes PGEXPLAINER [29] to
generate instance explanations. Within GLGEXPLAINER, these explanations are created by excluding
training graphs that lack these motifs (see Fig. J for the relevant code snippet from PGEXPLAINER’s
repository https://github.com/flyingdoog/PGExplainer/blob/master/MUTAG.ipynb). This approach
results in biased explanations that overemphasize specific motifs. When all training graphs are
included, GLGEXPLAINER produces a wider variety of explanations, leading to a decrease in its
overall performance.

For other datasets, GLGEXPLAINER offers instance explanations but lacks transparency regarding the
specific PGEXPLAINER settings used to generate them. Despite employing all recommended settings
and extensive parameter tuning for PGEXPLAINER, we were unable to replicate the instance explana-
tions presented by the authors of GLGEXPLAINER. Our email to the authors of GLGEXPLAINER
pointing out these inconsistencies did not receive a response.

I Cluster Impurity of GLGEXPLAINER

In GLGEXPLAINER, the formulae are vectors that are called prototypes. Prototypes are representa-
tives of clusters of local explanations, and it is assumed that the clusters are pure. This essentially
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means that most of the elements in the same clusters will be similar. To verify this claim, we evaluate
random graphs from each cluster for both classes across different seeds. Figures K, L, M, and N show
the results in all four datasets across different seeds. We make two important observations. First, the
clusters are not pure, and the graphs are not similar in the same cluster. For instance, in seed 45 of
MUTAG (Fig. K), class 0 has four types of graphs among five. Second, across classes, there exist
similar graphs, which is undesired. For example, in the same figure, seed 729 shows three graphs that
are similar across classes.

Seed 357

Seed 729

Seed 45

Figure K: A visual depiction of the impure clusters of GLGEXPLAINER in MUTAG.
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Seed 357

Seed 729

Seed 45

Figure L: A visual depiction of the impure clusters of GLGEXPLAINER in Mutagenicity.
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Seed 357

Seed 796

Figure M: A visual depiction of the impure clusters of GLGEXPLAINER in BAMultiShapes.
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Seed 1225

Seed 1983

Seed 45

Figure N: A visual depiction of the impure clusters of GLGEXPLAINER in NCI1.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/

CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be possible,
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