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Abstract
Language model (LLM) post-training, from DPO
to distillation, can refine behaviors and unlock
new skills, but the open science supporting these
post-training techniques is still in its infancy. One
limiting factor has been the difficulty of conduct-
ing large-scale comparative analyses of synthetic
data generating models and LLM judges. To
close this gap, we introduce WILDCHAT-50M,
the largest public chat dataset to date. We ex-
tend the existing WildChat dataset to include re-
sponses not only from GPT, but from over 50 dif-
ferent open-weight models, ranging in size from
0.5B to 104B parameters. We conduct an exten-
sive comparative analysis and demonstrate the
potential of this dataset by creating RE-WILD,
our own public SFT mix, which outperforms the
recent Tulu-3 SFT mixture from Allen AI with
only 40% as many samples. Our dataset, samples
and code are available at https://github.
com/penfever/wildchat-50m.

1. Introduction
Large language model (LLM) post-training encompasses a
broad suite of algorithmic techniques, and is an active area
of current research. Improvements in LLM post-training
have led to many breakthrough accomplishments, ranging
from recent developments in test-time scaling from OpenAI
and Deepseek (OpenAI et al., 2024; DeepSeek-AI et al.,
2025) to new algorithms for efficiently aligning LLMs to
human preferences (Rafailov et al., 2024). All of them
rely on synthetic data during post-training, sometimes in
the form of judgments through LLM judges or pairwise
comparative outputs. More recently, simple SFT on large
model outputs (also called distillation) has proven a pow-
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erful tool enabling reasoning models (DeepSeek-AI et al.,
2025). Unfortunately, the open source ecosystem supporting
post-training in general, and data curation in particular, is in
its infancy, with industry labs’ capabilities far outstripping
that of most academic labs (Weber et al., 2024; Feuer et al.,
2024b; Ivison et al., 2023).

A stark challenge for smaller labs, especially in academia,
has been the difficulty of acquiring publicly available syn-
thetic datasets at large scale. This has posed barriers for
researchers who are interested in conducting careful com-
parative analyses of the synthetic data quality (SDQ) of
data generating models (DGMs), as measured by standard
academic ground-truth and LLM-as-a-judge benchmarks.

To close this gap and better understand the downstream
effects of DGM choice on synthetic data quality, we develop
WILDCHAT-50M, which is the largest and most diverse
publicly available dataset of chat transcripts to date. We also
show that WILDCHAT-50M is a particularly effective source
for post-training data for LLMs. Our core contributions in
this work are as follows:

1. We introduce WILDCHAT-50M, the largest publicly
available dataset of chat transcripts. Our dataset consists
a vast corpus of synthetically generated chat transcripts
using 50 different open-weight models. ranging in size
from 0.5B to 104B parameters, each participating in over
1M multi-turn conversations. Each model participates
in 2 or 3 turns per conversation on average, resulting
in approximately a dataset comprising over 125 million
chat transcripts in aggregate.

2. We conduct a thorough comparative analysis on the run-
time and VRAM efficiency of these models, as well as
analyze the distinctive qualities of different model out-
puts. Our analysis may inform researchers on how to
scale up post-training data even further in the future.

3. We demonstrate the power of our dataset by using it as
the basis of RE-WILD, a novel data mix for supervised
fine-tuning (SFT) of LLMs. When we fine-tune Llama-
3.1 8B Base on RE-WILD, we show that our models
outperform the SFT mix proposed in Tulu-3 (Lambert
et al., 2024), along with several other existing, strong
SFT baselines on a range of post-training benchmarks.
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The rest of this paper is organized as follows. Sec-
tion 2.1 describes high-level details of how the WILDCHAT-
50M dataset was constructed. Section 2.2 provides a deep
dive into the generation process of this dataset, along with
technical aspects such as model response similarity and
throughput efficiency. Section 3 lists and analyzes the re-
sults of our SFT experiments. Section 4 overviews related
work, and Section 6 gives a concluding discussion.

2. The WILDCHAT-50M Dataset
2.1. Data Collection

We begin with a brief description of the data collection pro-
cess for WILDCHAT-50M, detailing our source of prompts
and the technical details of how responses were collected.

Although, to our knowledge, there are no large-scale diverse
chat transcripts dataset of synthetically generated LLM re-
sponses, there are at least two recent large chat datasets
available on which one could potentially base such a dataset:
WildChat-1M from AllenAI, and LMSys-Chat-1M from
LMSys (Zhao et al., 2024b; Zheng et al., 2024). Although
both have their strengths, we chose to focus on the former
because of its rich variety of use-cases (including those
which are potentially toxic), its diverse regional and tempo-
ral dimensions, and its relatively low levels of contamination
for commonly used test sets (Zhao et al., 2024b; Lambert
et al., 2024).

Technical details. Our data collection process was con-
ducted over a period of approximately two months on a
12x8 H100 shared research cluster. We estimate the total
GPU costs of our data collection at 10,000 H100-hours. The
homogeneity of the nodes in our study and codebase allow
us to make controlled comparisons on important consider-
ations, such as the VRAM efficiency and runtime of each
model.

All responses and judgments are generated using VLLM
(Kwon et al., 2023), a highly performant and stable frame-
work for LLM inference. Models are distributed across up
to 8 GPUs; we do not conduct infererence using more than
one node for any model. We first minimize the number of
GPUs required per model, and then heuristically maximize
the size of the context window given that number of GPUs
and the capacity of the model, resulting in a wide range
of context windows, depending on the model architecture
(2048 tokens to 20,000 tokens).

The largest models in our data collection process were
queried using FP8 quantization, with checkpoints provided
by Neural Magic (Kurtic et al., 2023). All other models
were run in bfloat16, using their native checkpoints. We
do not further ablate the effect of this quantization on out-
put quality, as this has been studied and reported in prior

work (Jin et al., 2024).

2.2. Dataset Analysis

WILDCHAT-50M collects data from 19 unique pre-trained
models (each of which is post-trained) and 35 post-trained
model variants (with non-unique pre-trained models). This
yields a total of 54 DGMs represented. With the exception
of the responses in the original WildChat dataset, which
are sourced from various GPT checkpoints, all responses
in WILDCHAT-50M are derived from models sourced from
HuggingFace; the release dates range from July 2023 to
November 2024, and the parameter counts range from 0.5B
to 104B. For a comprehensive list of all the LLMs we used
in the study, please refer to Sec. C. We attempted to select
a diverse set of models; our main limiting factor was com-
patibility with our hardware setup, and with VLLM as an
inference engine. The resulting public artifact is more than
50 times larger than the next largest public chat datasets of
which we are aware, WildChat-1M and LMSys-Chat-1M.

Naming Conventions. In order to make this paper more
readable, we will employ certain naming conventions for
the models and datasets generated using DGMs described in
this paper. The aforementioned conventions are enumerated
below.

• We will sometimes utilize abbreviations for some par-
ticularly common model names: Qwen2.5-72B-Instruct
:= Q72, Llama-3.1-8B-Instruct := L8I, Llama-3.3-70B
:= L70, Qwen2-7B-Instruct := Q7, Cohere-Command-R-
Plus-104B := CRP, AI21-Jamba-Mini-1.5-52B := JMB.

• Our model names will follow the following general con-
vention: {SFT target : DGM}.

• Sometimes we will not specify the SFT target model
name; in that case, it will always be Llama-3.1-8B-Base
:= L8B.

• Several times, we just report benchmarks for a model as
is and not do any model post-training; in this case, the
naming convention is just { Model name }: None.

• Most of our experiments were conducted on SFT models
trained on 250,000 (250k) conversations. If we used a
quantity other than 250k, we note it in the model name.

Analysis of Throughput Efficiency. Our first comparison
describes the relative efficiency of inference across the mod-
els in our study. We consider two measures of throughput
efficiency; average combined input and output tokens per
second (Tok/s), and average time elapsed in seconds per
1000 conversations processed (Time). We compute our
averages over a random subset of 5000 conversations.

The slowest model in our study is Qwen2.5-72B-Instruct
with a context window length of 20,000, averaging 3,163
Tok/s, and the fastest is Llama-2-7B-Chat, with a con-
text window of 2,048, averaging 37,357 Tok/s, more than
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10 times faster. Input is significantly faster than output;
the mean ratio over all unique pretrained models is 4.68
to 1, with a large standard deviation of 3.3. Both Time
(σ = 0.90, ρ = 0.73) and Tok/s (σ = −0.41, ρ = −0.80)
are strongly correlated with a simple proxy for model effi-
ciency, the product of context window length and number
of parameters.

Analysis of Response Similarity. To the best of our knowl-
edge, the degree of similarity between diverse human re-
spondents to LLM chat prompts has not been rigorously
quantified at scale. However, this problem has been stud-
ied in the domain of abstractive summarization, where it
can be assumed that the similarity would be considerably
higher (Maynez et al., 2020; Iskender et al., 2021; Lin &
Hovy, 2002; van Halteren & Teufel, 2003; Jing et al., 1998).
For summarization tasks, there is no “one truth”, evidenced
by a low agreement between humans in producing gold
standard summaries by sentence selection, low overlap mea-
sures between humans when gold standard summaries are
created by reformulation in the summarizers’ own words,
and assigning information overlap between them.

It would be natural to assume, therefore, that LLMs that do
not entirely share either pre-training or post-training data
would likewise produce substantively different responses
to prompts. However, our results show that this does not
appear to be the case; LLM responses are unusually similar
to one another. See Sec. A for a deeper analysis of this result,
as well as every score (with associated standard deviation)
for every model.

3. SFT Experiments
We now show that WILDCHAT-50M can be leveraged by
researchers as a very valuable dataset for studying data
curation strategies for LLMs post-training. Our core experi-
ments focus on the SFT stage of post-training (also referred
to as instruction tuning). While other forms of post-training
(such as tuning to human preferences) are also interesting,
we leave their thorough analysis to future work.

Following recent work such as Lambert et al. (2024), we
focus on curating an SFT data mixture using a human-in-the-
loop process, in contrast with an automated curation process
such as that of Xu et al. (2023a). Unlike both of those works,
we do not curate new prompts; only new responses to them.

Our dataset, samples and code are available at https:
//github.com/penfever/wildchat-50m.

3.1. RE-WILD: A new data mixture for SFT

Following the recent work of Lambert et al. (2024), we de-
sign our SFT data mixture, that we call RE-WILD, using
a combination of WildChat data with a particularly high

Source Num. Convs

WildChat-Q72 246,750
MMLU Auxiliary Train 99,800
Tulu 3 Persona Hub Algebra 20,000

Table 1. Data blending in RE-WILD. Our data blend is sim-
pler than Tulu 3, consisting of just three sources, and is around
40% the size of the Tulu 3 SFT blend. The datasets were chosen
heuristically to emphasize complementary skillsets (math, world-
knowledge, and chat/instruction following). MMLU Auxiliary
Train data is from Hendrycks et al. (2021), Tulu 3 Persona Hub
Algebra is from Lambert et al. (2024).

quality DGM that generates the responses and datasets de-
signed to boost performance on world knowledge bench-
marks. Later in this section, we describe the empirical
process by which we determined which DGMs had high
SDQ, and how.

The specific composition of our mix can be found in Tab. 1;.
The datasets in this composition were chosen heuristi-
cally to emphasize complementary skillsets (math, world-
knowledge, and chat/instruction following).

Training. We conduct our SFT experiments using a modi-
fied version of the Axolotl framework (Lian, 2025). We use
the AdamW optimizer (Loshchilov & Hutter, 2017) with a
learning rate of 2e-5, a single epoch, and a cosine learning
rate scheduler, with eight steps of gradient accumulation, in
bf16 precision. We also utilize several techniques to opti-
mize training speed, such as gradient checkpointing, flash
attention, and in some cases, FSDP (full shard, autowrap).
The base model trained is always llama 3.1 8B (for us and
baselines). All artifacts are available on our GitHub repo.
Each of our SFT runs utilizes one 4xH100 node. The av-
erage time to fine-tune a model for 250,000 conversations
takes approximately 5.5 hours.

Evaluation. Benchmarking LLM alignment is a challeng-
ing task, because of the open-ended nature of the objective
and the large number of potential confounds (Lambert et al.,
2024), as well as the fact that evaluation hyperparameters
are not generally standardized across reported results. To
deal with the latter issue, we employ Evalchemy, a recently
introduced evaluation framework that is standardized, pop-
ular, reliable, and validated by reproduction reports for all
benchmarks (Guha et al., 2024). Evalchemy itself utilizes
the LM Evaluation Harness from Eleuther AI (Gao et al.,
2024).

In order to make comparisons with past and future work
easier, we select benchmarks which are popular and promi-
nent in the recent research literature. We break down the
concept of alignment into subcategories such as generalist
chat capability, world knowledge, and instruction follow-
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Figure 1. RE-WILD outperforms strong baselines, on average, across nine benchmarks. In particular, it exhibits strong performance
on generalist chat and instruction following benchmarks. MT Bench scores here are divided by 10, so that the scale is similar to our other
evaluations. For the exact numeric scores for all models, please refer to our GitHub repository. Figure best viewed in color.

Model MTBench AlpacaEval BBH GPQA MATH MUSR IFEval MMLU Pro MixEval

Q72 6.86 41.00 0.48 ± 0.01 0.29 ± 0.04 0.06 ± 0.00 0.40 ± 0.04 0.37 ± 0.04 0.30 ± 0.01 0.65 ± 0.01
L8I 6.26 21.12 0.46 ± 0.01 0.30 ± 0.04 0.04 ± 0.00 0.37 ± 0.03 0.38 ± 0.04 0.33 ± 0.01 0.65 ± 0.01
L70 6.23 24.91 0.47 ± 0.01 0.30 ± 0.04 0.04 ± 0.00 0.39 ± 0.04 0.34 ± 0.04 0.31 ± 0.01 0.65 ± 0.01
Q7 6.03 17.26 0.49 ± 0.01 0.30 ± 0.04 0.03 ± 0.00 0.42 ± 0.04 0.29 ± 0.04 0.30 ± 0.01 0.61 ± 0.02
CRP 6.05 13.44 0.49 ± 0.01 0.31 ± 0.04 0.04 ± 0.00 0.39 ± 0.04 0.28 ± 0.04 0.32 ± 0.01 0.60 ± 0.02
JMB 6.05 25.14 0.47 ± 0.01 0.28 ± 0.04 0.04 ± 0.00 0.38 ± 0.04 0.26 ± 0.04 0.29 ± 0.01 0.57 ± 0.02

Table 2. The choice of data generating model has strong and unpredictable effects on downstream benchmark performance. We
compare the performance of six different DGMs from four different model families, ranging in size from 0.5B to 104B parameters, each
fine-tuned on 250k samples from a DGM. We find a large degree of variance in benchmark performance, with no one model dominating.
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ing. Following recent work, we select a mix of ground-truth
benchmarks and LLM-judge benchmarks, in order to bal-
ance out the potential confounds inherent to each evalua-
tion method (Feuer et al., 2024a; White et al., 2024). For
generalist chat capabilities, we use MixEval, AlpacaEval2,
and MTBench with GPT-4o-mini as the judge LLM (Ni
et al., 2024; Dubois et al., 2024; Zheng et al., 2023). In
some cases, we also report the average score over all of our
benchmarks. For AlpacaEval2, we report length-controlled
win rate. For instruction following and world knowledge,
we utilize the recent HuggingFace OpenLLM Leaderboard
2 (Fourrier et al., 2024). For IFEval, we report prompt-level
strict accuracy because it is more challenging and therefore
better exhibits separation between models; however, we
also include instance-level loose accuracy in our artifacts,
where we observe generally similar trends. Finally, in some
figures and tables, we report the average performance for
all benchmarks (MixEval, AlpacaEval2-LC, MTBench /
10, OpenLLM LB 2) as Avg. Where possible, we include
95% confidence intervals using the normal approximation
method.

Baselines. Following (Lambert et al., 2024), we utilize
strong baseline checkpoints also utilized in that paper; Tulu
3 SFT, Magpie Align SFT from Xu et al. (2024), and Ultra-
chat from (Cui et al., 2023).

3.2. Key Findings

RE-WILD is a strong SFT data mix. Our first result is that
RE-WILD constitutes a particularly attactive data mixture
for SFT. In the spider chart shown in Fig. 1, we show that
RE-WILD outperforms several strong SFT baselines on
aggregate; in particular, it excels on generalist chat tasks as
well as instruction following tasks. Because prior work has
shown that LLM judges can introduce implicit biases into
their judgments, we include a mix of ground truth and LLM
judged benchmarks (Feuer et al., 2024a). We find that RE-
WILD performs well on both measures, indicating robust
support for the claim that RE-WILD provides a superior
model for generalist chat and instruction following.

How much data from WILDCHAT-50M should be used?
Scaling up dataset size is a generally acceptable method
for improving SFT model performance in most settings.
But what sort of scaling laws apply for partially synthetic
datasets such as WILDCHAT-50M? We ablate the effect
of data scaling at 100k, 250k and 500k samples across
four DGMs. In Fig. 2, we see that average performance
steadily improves with scale, as expected, for most models.
In this figure, GPT is used to denote the original WildChat
dataset, which were generated using a blend of different
GPT checkpoints, primarily 3.5. The upper asymptote for
performance (if it exists) is beyond the maximum we have
encountered in our experiments.

GPT L70 L8I Q72
0.33

0.36

Av
g

Quantity
100k
250k
500k

Figure 2. Data scaling improves SFT performance. The effect
is, however, somewhat dependent on SDQ – for DGMs such as
GPT 3.5, the benefits taper off relatively quickly, but for the other
three DGMs we consider, they continue to increase. Avg is the
average performance over (MixEval, AlpacaEval2-LC, MTBench
/ 10, OpenLLM LB 2).

How much does the choice of data generating model im-
pact downstream performance? Can we be certain that
it is not the prompts, or perhaps some quirk of our training
procedure, that have led to improved SFT performance us-
ing RE-WILD? To evaluate this concern, we compare the
performance of six unique pretrained models from four dis-
tinct model families, including Qwen-2.5-72B-Instruct from
Alibaba, Llama-3.3-70B-Instruct from Meta, Command-R-
Plus from Cohere, and Jamba-1.5-Mini from AI21 (Qwen
Team, 2024; Dubey et al., 2024; Gomez; Lieber et al., 2024).
The models range from 7B to 104B active parameters. The
choice of DGM has a large effect, even when controlling
for potential confounds such as the number of parameters
for the model and the size of the context window. Fur-
thermore, we find that no model dominates the benchmark,
and that parameter count is not a perfect indicator of data
quality. On three of the nine benchmarks we consider, the
best performing model has fewer than 10B parameters. See
Tab. 2.

How much does the length of the context window im-
pact performance? Qwen-2.5-72B supports a large context
window of over 131K tokens, which we were able to take
advantage of during data generation. We experiment with
truncating all Qwen-2.5-72B responses so that they are no
longer than Llama-3.3-70B responses (with a context win-
dow of 8,192 tokens compared to 20,000 for Qwen in our
experiments). Surprisingly, we find that the effect on the
SFT model is slightly positive (.404 vs .400 averaged over 9
benchmarks). This is perhaps because we use a context win-
dow of 8,192 tokens in our SFT base model, Llama-3.1-8B.
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Do models benefit from blending DGMs? One impetus
behind creating a very large prompt-response dataset like
that of Zhao et al. (2024b) is the intuition that more samples
and more interactions will generally lead to better models.
In the case of prompt diversity, this appears to be true (Feuer
et al., 2024a), perhaps because it makes the model more ro-
bust to inconsistencies in prompting. But do the benefits of
heterogeneous scaling extend to responses? In other words,
do models trained on blended DGM responses outperform
the sum of their parts? We conduct experiments to test this
hypothesis, the results of which can be found in Sec. D,
summarized here. We find that blending offers no benefit;
the whole behaves almost exactly as the sum of its parts.
This finding indicates that the dependencies on prompt di-
versity discovered in prior work do not extend to the space
of model responses even for a large set of benchmarks. It is
therefore most effective to optimize, rather than generalize,
responses.

Are models with strong performance on certain bench-
marks better teachers for those benchmarks? We evalu-
ate this question by comparing a Llama-3.18B-Base model
that is fine-tuned on Qwen-2.5-72B responses, to a Llama-
3.1 8B-Base model fine-tuned on Llama-3.3-70B responses,
and then comparing the two source models directly. We
report the agreement rate between model checkpoints; we
say that there is agreement if the fine-tuned model and the
base model are both better or both worse than their coun-
terparts, and there is not agreement otherwise. Across six
benchmarks, we report an agreement rate of .5, which is
at chance level, indicating that fine-tuned models do not
necessarily inherit the strengths and weaknesses of their
synthetic data generators.

Is styling inherited during SFT? Effective use of presen-
tational styling elements such as HTML tags, attributes
and inline properties can have a strong effect on a text’s
readability and clarity. We investigate whether such formal
styling behaviors are inherited from the DGM during the
SFT process. We select a subset of 80 turns from MTBench
and examine the behavior of two DGMs (Qwen 2.5 72B
and Llama 3.3 70B) and their finetunes. We convert the
model responses from Markdown (which they commonly
use in their responses) to HTML and report the absolute
and proportional frequency of each styling tag. Absolute
frequency is the raw count for each feature (see Tab. 3 rows
1:4). Proportional frequency, for rows A, B, and feature F ,
is given by A[F ] ÷ B[F ]. The closer this quantity is to 1,
the more similar the model responses.

We report the raw results from this experiment in Tab. 3.
Overall, we observe that SFTs track the styling of their
DGMs very closely indeed; across all style features, the
mean proportional frequency (MPF) of Qwen SFT com-
pared to Qwen-2.5-72B is .91 across all features, and for

Llama, this score is 1.05. When we compare the SFTs
to each other, by contrast, it is 2.61, indicating that the
responses are much less similar.

Do models learn better from DGMs in the same model
family? Recent work from Tajwar et al. (2024) has shown
that approaches that use on-policy sampling or attempt to
push down the likelihood on certain responses (i.e., employ
a “negative gradient”) outperform offline and maximum
likelihood objectives. In this section, we inquire whether
this finding extends not only to direct on-policy sampling,
but something we might call approximate on-policy sam-
pling, where a pretrained base model is fine-tuned on its
own post-trained outputs, or those of a model from a similar
family. Indeed, when we experiment with Qwen-2-7B and
Llama-3-8B, we find that this approach produces stronger
benchmark results when controlling for dataset size, and
appears also to extend to a larger post-trained checkpoint in
the same model family; see Sec. B for the complete results.
We acknowledge that our experiments here are limited in
scope, and consider this an important area of future study.

3.3. Why do some models outperform others as sources
of synthetic data?

We showed above that the choice of DGM can have a dra-
matic effect on the performance of downstream LLMs fine-
tuned on their responses. We now explore possible expla-
nations for why SDQ varies so dramatically, even between
superficially similar models.

We begin by eliminating some of the more obvious explana-
tions. For example, we showed above that model parameter
count and response length is not reliably predictive of perfor-
mance, so these are likely not primary factors contributing
to data quality.

Inspection of the benchmark results in Tab. 2 shows a greater
variance in performance on chat-quality and instruction fol-
lowing benchmarks (such as IFEval, MixEval, MTBench,
and AlpacaEval). A natural explanation for this observation
would be that SDQ is domain-specific, and is inherited from
the DGM. If this was the case however, then benchmark
performance of fine-tunes would generally agree with those
of the DGMs on those benchmarks. In reality, benchmark
performance is not reliably inherited from the DGM. On the
AlpacaEval leaderboard, Qwen 2.5-72B and Llama 3.3-70B
are essentially tied; but Qwen 2.5-72B is a superior DGM
(as measured by AlpacaEval performance) (Dubois et al.,
2024).

A potential resolution to this phenomenon lies in noting
that LLM judges utilize a range of judgment criteria, both
explicit and implicit (Feuer et al., 2024a). Therefore, it is
possible that supervised fine-tuning can significantly im-
prove a model’s (generalist) benchmark score by improving
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Model Strong Em Ol Ul h1 h2 h3 h4 p len

Q72 : None 741 53 83 230 24 0 135 26 1217 6492
L70 : None 406 38 76 116 30 38 22 4 1222 6411
L8B : L70 331 34 75 109 27 13 32 3 1210 6207
L8B : Q72 808 60 77 260 20 0 149 33 1237 6585
PF ∥ L8B : L70, L70 : None 0.815 0.895 0.987 0.940 0.900 0.342 1.455 0.750 0.990 0.968
PF ∥ L8B : Q72, Q72 : None 1.090 1.132 0.928 1.130 0.833 1.000 1.104 1.269 1.016 1.014
PF ∥ L8B : Q72, L8B : L70 2.441 1.765 1.027 2.385 0.741 0.000 4.656 11.000 1.022 1.061

Table 3. SFT models strongly inherit formal stylistic elements from their DGMs. This table indicates how frequently certain Markdown
stylistic elements appear in LLM responses (converted to HTML tags for greater clarity). The columns are names of HTML tags and
inline properties, and the cells are frequency counts. PF stands for proportional frequency, the ratio of the first and second model listed
(order here is presumed to be arbitrary).

on only one or two criteria (e.g., comprehensiveness and
readability), while its DGM, whose overall score may be
already higher, comparatively underperforms because of
limitations in some other criteria such as factuality.

In order to determine whether this is indeed the case in our
evaluations, we conduct an experiment using 80 turns from
MT Bench drawn from four models — (i) Q72 : None, (ii)
L70 : None (DGMs), (iii) L8B : Q72, and (iv) L8B : L70
— each fine-tuned on 500k samples from WILDCHAT-50M.
We provide the complete conversations in the appendix for
reference.

In Tab. 4, we provide raw results in the form of MTBench
score as well as PrefRt, which stands for Preference Rate,
or the rate at which a model’s responses are preferred over
another’s (100 means always preferred, 0 means never pre-
ferred). L8L is the rate at which a model’s response is pre-
ferred over L8B : L70, L8Q is the rate at which a model’s
response is preferred over L8B : Q72, L70B is the rate at
which a model’s response is preferred over L70: None, and
Q72B is the rate for Q72 : None.

We can see that L8B : Q72 outperforms L8B : L70, and Q72
: None outperforms L70 : None, both in terms of average
MTBench score, and in terms of win rate. Interestingly, the
proportional improvement is similar in both comparisons,
suggesting a degree of heritability to LLM judge preferences.
When we manually inspected a random sample of model
outputs, we often agreed with the judge (the reader may
form their own opinions by referring to examples in Sec. E).
The MT bench prompts, responses and complete judgments
are available in our GitHub repository.

When we include the DGMs themselves in the comparisons,
the conclusions are somewhat different. L70 : None out-
performs L8B : Q72 on both metrics. In particular, on 5
of the 80 turns, L70 : None flips the ranking (rather than
simply breaking a tie), compared to L8B : L70. We note
first that such judgment flips are quite rare. We manually
inspect these 5 flips and find that on 4 of the 5, the LLM
judge cited factuality as a key reason for L8B : L70’s low

score. In other words, even though the style of L8B : Q72 is
still generally preferred by the judge, the superior factuality
of L70 : None drives an overall change in rank.

We analyze the same phenomenon through another lens
in Fig. 3 and Fig. 4). Here, we visualize the frequency of
common words in the judgments where the score differed be-
tween models. Common negations of words were counted
separately (although these were rare). We discover that
L8B : L70 responses are more commonly associated with
words such as “lacks”, “few”, “misleading” and “concise”,
whereas L8B : Q72 responses are more commonly associ-
ated with words such as “appropriate”, “comprehensive”,
“complete” and “detailed”.

One limitation of this analysis is that it fails to capture
common context that tends to accompany these words in the
judgments; for example, the reason that “clearer” is more
common in L8B : L70 judgments is that the judge frequently
employed semantic variations of phrases like ”could have
been clearer”, not because the responses themselves were
”clearer”. The same applies to ”critical”.

Figure 3. Key words more common in L8B : L70 judgments.
The more negative tone of these judgments emphasizes words like
clearer (as in, “could have been clearer”), lacks, convoluted and
repetitive.

From these results, it seems that SDQ on a set of generalist
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Figure 4. Key words more common in L8B : Q72 judgments.
These judgments tended to be more positive; emphasis was placed
on words like appropriate, necessary, comprehensive and accurate.

Model MTBench PrefRt-L8L PrefRt-L8Q PrefRt-L70B PrefRt-Q72B FlipCt

L8B : L70 6.38 N/A 22.5 8.75 15 N/A
L8B : Q72 6.72 40 N/A 16.25 13.75 N/A
L70 : None 7.64 52.5 38.75 N/A 21.25 5
Q72 : None 7.83 61.25 43.75 25 N/A 6

Table 4. LLM judge preferences for DGMs and SFTs. For
column name definitions, we refer the reader to the main text,
section Sec. 3. Overall, we observe that Qwen responses are
generally preferred by LLM judges, and that the rate at which they
are preferred is similar from DGM to SFT. Last but not least, we
note that reversals of judgment from SFT to DGM (FlipCt) are
uncommon.

chat prompts such as WildChat is largely a function of
domain-agnostic factors, such as the comprehensiveness
of the model response, the clarity of the structure, and the
tone and stylistic tendencies of the language.

4. Related Work
Our work explores LLM post-training, a research area which
has witnessed dynamic growth since 2022. SFT, sometimes
referred to as instruction tuning (Mishra et al., 2022; Wei
et al., 2022; Sanh et al., 2022; Wang et al., 2022; Long-
pre et al., 2023), in which language models are trained on
samples including task instructions and their corresponding
responses, has been shown to allow LLMs to generalize
better to unseen tasks. Initially those samples were drawn
from traditional NLP tasks with verified ground truth an-
swers (Wang et al., 2023b). However, over time, it has
become clear that a more heterogeneous approach, both to
prompt and model responses, tends to lead to superior out-
comes, and that combining instruction tuning datasets, either
strategically or randomly, can lead to strong results (Taori
et al., 2023; Conover et al., 2023; Wang et al., 2023a).

Unfortunately, post-training is an area where open science
continues to trail closed advances made in frontier indus-

try labs (Chiang et al., 2024). Models trained on open
data underperform those trained on closed data, both in
the pretraining and in the post-training stage. Numerous
algorithmic advances have been introduced into the recent
literature which attempt to serve as scalable instruction tun-
ing methods (Tunstall et al., 2023; Xu et al., 2023b; Zhou
et al., 2023; Yasunaga et al., 2024).

Despite the variety (and abundance) of algorithmic ap-
proaches, many fail to scale to the high-data regime (Feuer
et al., 2024a). Therefore, in this work we turn to the more
basic question of the quality of datasets used in post-training.
While there is still considerable ground to be covered, we
hope that the size and diversity of our dataset, combined
with its strong performance on SFT benchmarks, will en-
courage researchers to use it as a basis for future work.

Recently, Zhao et al. (2024a) introduced WildChat-1M, a
dataset containing 1 million ChatGPT interaction logs col-
lected in real-world settings. Their work takes a different
approach to ours by focusing on capturing authentic human-
AI interactions rather than generating synthetic conversa-
tions. WildChat-1M leverages multiple GPT model variants,
with 76% of conversations using the GPT-3.5-Turbo API
(including versions 3.5-turbo-0613, 3.5-turbo-0301, and 3.5-
turbo-0125) and 24% utilizing the GPT-4 API (including
4-1106-preview, 4-0314, and 4-0125-preview). For human
prompt acquisition, they deployed chatbot services on Hug-
ging Face Spaces and implemented a two-step consent pro-
cess, collecting anonymized data from users who explicitly
opted into the research. While WildChat-1M offers valuable
insights into real-world chatbot interactions across multiple
languages, our approach with WildChat-50m explores the
complementary direction of high-volume synthetic data for
post-training.

5. Limitations
There are a few key limitations of this work which we
wish to highlight here. Because of practical constraints,
we were not able to report results using other post-training
approaches other than SFT. It is likely that the relative effect
of DGM choice would differ depending on the post-training
regime. Although our benchmark suite is standardized, bal-
anced and large, it does not encompass all use cases. In
particular, we did not evaluate performance on highly spe-
cialized tasks, such as coding or legal reasoning. We con-
sider both of these limitations as pointing towards useful
directions for future work. It might also be beneficial to
consider the differential advantages and disadvantages of
diversifying DGMs on smaller, more focused datasets, with
and without ground truth.
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6. Conclusions
In this work, we make several valuable practical and empir-
ical contributions to the field’s understanding of synthetic
data. In particular, we provide robust empirical evidence
that the choice of DGM is an extremely important factor
in downstream SFT model performance on generalist chat
benchmarks; simply by selecting a good DGM, we compen-
sate for a small dataset size and outperform more complex
methods and carefully curated SFT mixes.

Equally important, we provide novel insight into why certain
DGMs produce much higher SDQ than others; our exper-
iments indicate that comprehensiveness, clarity, tone and
prompt responsiveness are highly heritable during the SFT
process, even on generalist data, unlike skills such as world
knowledge or mathematics, which are heritable only when
data is curated for that particular purpose.

Finally, we provide novel comparative insights into LLMs,
reporting a high degree of similarity in the prompt responses
of diverse LLMs. Taken together with the prior observation,
the distinction between high and low SDQ may be subtle,
and worthy of future research.
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Model avg rouge1 std rouge1 avg rougeL std rougeL avg meteor std meteor

Mixtral-8x7B-Instruct 0.37 0.11 0.19 0.06 0.20 0.05
Llama-3.1-Nemotron-70B-Instruct 0.37 0.06 0.23 0.05 0.20 0.05
Qwen2.5-72B-Instruct 0.34 0.09 0.17 0.05 0.17 0.05
Mistral-7B-wizardlm 0.34 0.07 0.22 0.06 0.16 0.05
Mistral-7B-sharegpt-vicuna 0.34 0.06 0.18 0.03 0.18 0.04
Mistral-7B-Base-SFT-IPO 0.33 0.11 0.17 0.05 0.19 0.06
internlm2 5-20b-chat 0.33 0.08 0.15 0.03 0.20 0.06
Llama-3.1-70B-Instruct 0.33 0.10 0.16 0.05 0.16 0.06
Llama-3.3-70B-Instruct 0.33 0.09 0.17 0.04 0.20 0.05
Llama-2-7b-chat-hf 0.32 0.09 0.19 0.07 0.20 0.06
Mistral-7B-Base-SFT-CPO 0.32 0.07 0.17 0.04 0.18 0.05
Qwen2-7B-Instruct 0.32 0.08 0.15 0.04 0.17 0.06
Llama-3-8B-ShareGPT-112K 0.31 0.09 0.18 0.07 0.15 0.06
Qwen2.5-Coder-32B-Instruct 0.31 0.10 0.15 0.05 0.18 0.05
Llama-3-8B-Magpie-Pro-SFT-200K 0.30 0.15 0.18 0.09 0.17 0.09
google gemma-2-9b-it 0.30 0.10 0.16 0.06 0.14 0.06
AI21-Jamba-1.5-Mini 0.29 0.13 0.17 0.08 0.14 0.06
OpenHermes-2-Mistral-7B 0.28 0.09 0.16 0.06 0.15 0.07
Llama-3-Base-8B-SFT-ORPO 0.27 0.07 0.14 0.03 0.22 0.05
google gemma-2-27b-it 0.27 0.04 0.13 0.02 0.15 0.03
OpenHermes-2.5-Mistral-7B 0.27 0.06 0.15 0.04 0.13 0.04
Mistral-7B-Base-SFT-SLiC-HF 0.26 0.13 0.14 0.07 0.13 0.07
Mistral-7B-Base-SFT-KTO 0.25 0.05 0.13 0.04 0.11 0.04
Ministral-8B-Instruct-2410 0.24 0.13 0.12 0.07 0.13 0.09
Llama-3-Base-8B-SFT-RDPO 0.23 0.06 0.13 0.03 0.19 0.03
Mistral-7B-Base-SFT-RRHF 0.19 0.06 0.08 0.02 0.16 0.04

Table 5. Intra-LLM response similarity in RE-WILD. Here we report intra-llm response similarity scores. The method we use to obtain
these scores is described in Sec. 2.2.

A. Intra-LLM Response Similarity
In our experiment, we collect 500 responses from 25 randomly selected models and compute their similarity to a set of
reference responses (randomly sampled from 4 other models in the set of 25) using three traditional NLP similarity metrics:
ROUGE-1, ROUGE-L, and METEOR (Banerjee & Lavie, 2005; Ganesan, 2018). These metrics are computed as F1-score
over unigrams, F1-score using the longest common subsequence, and weighted F1-score giving 9:1 weightage for precision
over recall with a chunking penalty. In Tab. 5, we include the extended results for response similarity. To see a relevant
citation for any particular model in this table, please refer to Sec. C.

Overall, we find high similarity across models, albeit with a fairly high degree of variance; for example, Mixtral-8x7B-
Instruct has a high ROUGE-1 similarity of 0.37, while Ministral-8B-Instruct-2410 has 0.24, among the lowest scores.
Considering the diversity of both prompts and models, this level of similarity suggests that LLMs produce much more
regular and predictable output than humans. On a model-by-model level, we can interpret measures like these as signal as to
“how generic” and “how consensus-driven” any particular LLM’s response is. We also observe that the larger models tend to
generate more similar responses; in some sense, they are closer to a consensus response to the prompt.

B. Ablation on the Effect of On-Policy DGMs
In Tab. 6, we provide extended results on the effects of fine-tuning using DGMs that are highly similar to the fine-tune
targets (and therefore, in some limited sense, on-policy). For the analysis of the results here, please refer to our main paper,
Sec. 3. The naming convention used in this table is described in Sec. 2.2, with one new abbreviation; Qwen-2-7B-Base :=
Q7B.
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Model MTBench AlpacaEval BBH GPQA MATH MUSR IFEval MMLU Pro MixEval Avg

L8B : L8I 6.26 21.12 0.46 ± 0.01 0.30 ± 0.04 0.04 ± 0.00 0.37 ± 0.03 0.38 ± 0.04 0.33 ± 0.01 0.65 ± 0.01 0.36
L8B : Q7 6.03 17.26 0.49 ± 0.01 0.30 ± 0.04 0.03 ± 0.00 0.42 ± 0.04 0.29 ± 0.04 0.30 ± 0.01 0.61 ± 0.02 0.35
L8B : L70 6.23 24.91 0.47 ± 0.01 0.30 ± 0.04 0.04 ± 0.00 0.39 ± 0.03 0.34 ± 0.04 0.31 ± 0.01 0.65 ± 0.01 0.36
Q7B : L8I 6.51 15.87 0.51 ± 0.01 0.29 ± 0.04 0.17 ± 0.01 0.43 ± 0.04 0.35 ± 0.04 0.39 ± 0.01 0.61 ± 0.02 0.39
Q7B : Q7 6.69 27.09 0.54 ± 0.01 0.31 ± 0.04 0.19 ± 0.01 0.45 ± 0.04 0.40 ± 0.04 0.42 ± 0.01 0.69 ± 0.01 0.43
Q7B : Q72 7.25 36.68 0.54 ± 0.01 0.32 ± 0.04 0.21 ± 0.01 0.43 ± 0.04 0.34 ± 0.04 0.43 ± 0.01 0.65 ± 0.01 0.42
Q7 : None 7.17 33.14 0.55 ± 0.01 0.33 ± 0.04 0.19 ± 0.01 0.45 ± 0.04 0.42 ± 0.04 0.40 ± 0.01 0.73 ± 0.01 0.44
L8I : None 7.20 30.84 0.51 ± 0.01 0.33 ± 0.04 0.12 ± 0.01 0.40 ± 0.03 0.42 ± 0.04 0.38 ± 0.01 0.74 ± 0.01 0.41

Table 6. Models learn more effectively from highly similar DGMs. In this table, we report the complete, extended results from our
experiments on the effect of diversifying both DGM and SFT-target. Both Llama and Qwen benefit from more similar upstream models.

C. List of All LLMs in the Study, with Citations
We attempt to use model naming conventions consistent with those on HuggingFace; that way, in order to find any particular
model, it should only be necessary to Google its name. We do not include the complete HuggingFace links because they
might de-anonymize this work. Where available, we include a citation to the work where the model was first introduced into
the literature.

• NVLM-D-72B, from Dai et al. (2024)

• Llama-3.3-70B-Instruct, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct from Dubey et al. (2024)

• Yi-1.5-34B-Chat, from AI et al. (2025)

• c4ai-command-r-plus-08-2024, from Gomez

• mistral-7b-sft-beta, from Tunstall et al. (2023)

• Llama-3-8B-Magpie-Align-v0.2, Llama-3-8B-Magpie-Pro-SFT-200K-v0.1, Llama-3-8B-OpenHermes-243K, Llama-
3-8B-ShareGPT-112K, Llama-3-8B-Tulu-330K, Llama-3-8B-Ultrachat-200K, Llama-3-8B-WildChat, Llama-3-8B-
WizardLM-196K, from Xu et al. (2024)

• Athene-70B, from NexusFlow AI (2025)

• Qwen2-7B-Instruct, Qwen2.5-14B-Instruct, Qwen2.5-72B-Instruct, Qwen2.5-Coder-32B-Instruct from Qwen Team
(2024)

• glm-4-9b-chat from GLM et al. (2024)

• AI21-Jamba-1.5-Mini from Lieber et al. (2024)

• gemma-2-27b-it, gemma-2-9b-it from Team et al. (2024)

• internlm2 5-20b-chat from Cai et al. (2024)

• Llama-2-7b-chat-hf, Llama-2-13b-chat-hf from Touvron et al. (2023)

• Ministral-8B-Instruct-2410, Mistral-Nemo-Instruct-2407, Mixtral-8x7B-Instruct-v0.1 from Mistral (2024); Jiang et al.
(2023)

• Llama-3.1-Nemotron-70B-Instruct-HF from Adler et al. (2024)

• Mistral-7B-magpie-v1.0, Mistral-7B-sharegpt-vicuna-v1.0, Mistral-7B-tulu, Mistral-7B-wizardlm-v1.0 from Feuer
et al. (2024a)

• Llama-3-Base-8B-SFT-CPO, Llama-3-Base-8B-SFT-DPO, Llama-3-Base-8B-SFT-IPO, Llama-3-Base-8B-SFT-KTO,
Llama-3-Base-8B-SFT-ORPO, Llama-3-Base-8B-SFT-RDPO, Llama-3-Base-8B-SFT-RRHF, Mistral-7B-Base-SFT-
CPO, Mistral-7B-Base-SFT-DPO, Mistral-7B-Base-SFT-IPO, Mistral-7B-Base-SFT-KTO, Mistral-7B-Base-SFT-
RDPO, Mistral-7B-Base-SFT-RRHF, Mistral-7B-Base-SFT-SLiC-HF, Mistral-7B-Base-SFT-SimPO from Meng et al.
(2024)
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• OpenHermes-2-Mistral-7B, OpenHermes-2.5-Mistral-7B from Teknium et al. (2024)

D. Ablations on Blending Data-Generating Models
Our extended results on the effect of blending DGMs can be found at Tab. 7. The analysis of this table can be found in our
main paper, as well as explanations of the abbreviation conventions for model names.

Model MTBench Alpaca Eval (LC) BBH GPQA MATH MUSR IFEval MMLU Pro MixEval Avg

L8B : Q7 (500k) 6.33 19.51 0.48 ± 0.01 0.28 ± 0.04 0.04 ± 0.00 0.40 ± 0.03 0.33 ± 0.04 0.30 ± 0.01 0.64 ± 0.01 0.35
L8B : L8I (500k) 6.52 21.03 0.46 ± 0.01 0.32 ± 0.04 0.05 ± 0.00 0.39 ± 0.03 0.42 ± 0.04 0.32 ± 0.01 0.66 ± 0.01 0.37
L8B : L8I + Q7 (500k) 6.43 18.57 0.47 ± 0.01 0.28 ± 0.04 0.05 ± 0.00 0.41 ± 0.04 0.34 ± 0.04 0.32 ± 0.01 0.64 ± 0.01 0.36
L8B : Q72 (500k) 6.51 41.67 0.48 ± 0.01 0.29 ± 0.04 0.05 ± 0.00 0.39 ± 0.03 0.39 ± 0.04 0.30 ± 0.01 0.66 ± 0.01 0.37
L8B : L70 (500k) 6.39 27.38 0.46 ± 0.01 0.31 ± 0.04 0.04 ± 0.00 0.36 ± 0.03 0.38 ± 0.04 0.32 ± 0.01 0.65 ± 0.01 0.36
L8B : Q72 + L70 (500k) 6.82 39.93 0.48 ± 0.01 0.29 ± 0.04 0.04 ± 0.00 0.38 ± 0.03 0.38 ± 0.04 0.31 ± 0.01 0.65 ± 0.01 0.36

Table 7. Effects of blending DGMs. Where we blend models, we always draw a random sample of approximately equal size from each
DGM, and denote the mixture as DGM A + DGM B. e.g., L8I + Q7. In this table, it can be seen that blends benchmark between their
DGMs, not above them (as measured by Avg).

E. Output Samples
In this appendix section, we provide complete sample responses from a pair of DGMs in conveniently human-readable
format, along with the prompt(s) in the conversation; Llama-3.3-70B and Qwen-2.5-72B-Instruct are the models shown
here. For more samples, including sample judgments, please refer to our GitHub repository. The responses may be more
convenient to read in the repository than they are in this document, as they are HTML formatted; however, we include them
here so as not to inconvenience the reader.

Please note that some of the output samples may contain statements that are offensive, toxic or otherwise distasteful to some
readers. Please exercise caution when reading both prompts and responses. The content of the prompts and responses does
not necessarily reflect the beliefs of the authors.
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Shared Prompt:

Describe gas giant with gothic colors. Including chemistry composition.

allenai_WildChat-1M-Full-meta-llama_Llama-3.3-70B-
Instruct

🤖🤖 ASSISTANT (Lang: English | Finish: stop)

The somber, mystical realm of the gas giant. Shrouded in an
eerie, dark ombré,
like the mourning veil of a bereaved widow. The hue of the
sky is a deep,
foreboding indigo, gradating into a sickly, yellowish-green
towards the horizon,
as if tainted by the faint glow of luminescent decay.

The atmosphere itself is a noxious brew of hydrogen (H2) and
helium (He), with
wispy tendrils of methane (CH4) and ammonia (NH3) wafting
through the upper
strata, like the ghostly whispers of forgotten souls. These
gases writhe and
twist in torment, forming swirling storm systems that churn
with a maddening
fury, as if fueled by the very essence of despair.

As we delve deeper into the heart of the gas giant, the
pressure and temperature
escalate, forging an environment that is at once both
beautiful and terrifying.
The chemistry composition shifts, with hydrogen and helium

allenai_WildChat-1M-Full-Qwen_Qwen2.5-72B-
Instruct

🤖🤖 ASSISTANT (Finish: stop)

Certainly! Imagine a gas giant that embodies the essence of
gothic aesthetics, a
celestial body that is both majestic and foreboding, shrouded
in deep, dark hues
and enveloped in a mysterious, almost sinister atmosphere.

Appearance

The gas giant's atmosphere is a hauntingly beautiful tapestry
of gothic colors.
The sky is dominated by deep purples, rich blacks, and dark
blues, with
occasional streaks of blood-red and silver. The clouds, thick
and swirling, are
tinged with a murky, almost metallic sheen. Lightning storms,
rare but intense,
illuminate the atmosphere with flashes of electric blue and
green, casting eerie
shadows across the gas giant's surface.

Chemistry Composition

1. Hydrogen (H₂): The primary component of the gas
giant's atmosphere, hydrogen makes up approximately



succumbing to the
crushing force, and heavier elements such as carbon,
nitrogen, and oxygen
beginning to assert their dominance. Water, ammonia, and
methane ices form, like
the frozen tears of the damned, suspended in a sea of liquid
hydrogen and
helium.

The planet's core, a glowing, hellish ember, pulsates with an
otherworldly
energy, as if fueled by the very essence of darkness itself.
The magnetic field
that surrounds it is a twisted, nightmarish latticework,
crackling with
electrical energy, and weaving a spell of eerie, gothic power.

In this forsaken realm, the winds howl like a chorus of the
doomed, while the
lightning flashes with an eldritch, greenish-blue glow, casting
an eerie,
macabre light upon the churning clouds. The gas giant is a
world of twisted,
gothic horror, a place where the very fabric of reality seems
to be warped and
distorted, and where the darkness reigns supreme.

Chemical Composition:
- Hydrogen (H2): 75-80%
- Helium (He): 20-25%
- Methane (CH4): 1-5%
- Ammonia (NH3): 0.1-1%
- Water (H2O): 0.1-1%
- Carbon, nitrogen, and oxygen compounds: 0.01-0.1%

90% of the atmosphere by volume. It appears as a deep,
almost black hue due to the presence of various
compounds and the thick, absorbing nature of the upper
atmosphere.

2. Helium (He): The second most abundant element,
helium comprises about 9%
of the atmosphere. It contributes to the overall density
and opacity of the
atmosphere, enhancing the gothic, shadowy appearance.

3. Methane (CH₄): Methane, present in lesser amounts,
gives the planet its
deep blue and purple hues. The methane molecules
absorb red light, leaving the
atmosphere with a predominantly blue and purple
coloration. In the upper layers,
methane condenses into clouds, contributing to the
gothic, stormy appearance.

4. Ammonia (NH₃): Ammonia is present in the form of ice
particles and
clouds, adding to the planet's dark, stormy appearance.
These clouds are often
tinged with dark red and black, creating a moody and
dramatic effect.

5. Water (H₂O): Water vapor is also present, contributing to
the planet's
atmospheric complexity. Water ice and vapor form high-
altitude clouds that can
appear as ghostly, translucent layers, enhancing the
gothic aesthetic.

6. Sulfur Compounds: Sulfur dioxide (SO₂) and hydrogen



Colors:
- Deep indigo (#3B3F54) to sickly yellowish-green
(#8B9467)
- Faint, glowing blue-green (#34A8FF) of luminescent decay
- Hellish, ember-like glow of the core (#FF9900)
- Eerie, greenish-blue lightning flashes (#33CCFF)

This gas giant is a place of dark, gothic beauty, where the
boundaries between
reality and nightmare are blurred, and the very essence of the
universe seems to
be twisted and distorted.

sulfide (H₂S) are
minor but significant components. These compounds
contribute to the planet's
reddish and brownish hues, creating a contrast that adds
depth and forebroadness
to the atmosphere.

7. Phosphine (PH₃): Phosphine is a trace gas that can
create spectacular,
bioluminescent clouds and lightning storms. During these
storms, the phosphine
reacts with other chemicals, producing flashes of electric
blue and green,
adding to the eerie, gothic ambiance.

8. Metallic Hydrogen: Deep within the planet, under
immense pressure and
temperature, hydrogen exists in a metallic state. This
metallic hydrogen is
responsible for the planet's strong magnetic field and
contributes to its
overall energy and dynamism.

Additional Features

• Rings: The gas giant is encircled by dark, narrow rings
composed of small, rocky debris and ice particles. These
rings reflect the deep, moody colors of the planet, adding
to the gothic atmosphere.

• Moons: The planet has several moons, each with its own
gothic charm. Some moons are shrouded in dark, icy
surfaces, while others have volcanic activity that
produces plumes of sulfur and other volatiles, creating a
stark, surreal landscape.

This gas giant, with its gothic colors and complex chemistry,
is a mesmerizing



and haunting sight, a true marvel of the universe.



Shared Prompt:

[Response must be written as a short blurb.]
As of 2023, what is the copyright status of Oswald the Lucky Rabbit?

allenai_WildChat-1M-Full-meta-llama_Llama-3.3-70B-
Instruct

🤖🤖 ASSISTANT (Lang: English | Finish: stop)

As of 2023, Oswald the Lucky Rabbit is now in the public
domain in the United
States, having been created in 1927 and the original
copyright expiring after 95
years.

👤👤 USER (Lang: English)

What is the different between a tax queen and welfare
queen? Is tax queen a less
racially/ethnically pejorative term?

🤖🤖 ASSISTANT (Lang: English | Finish: stop)

A "welfare queen" typically refers to a pejorative stereotype
of a person, often
a woman of color, who allegedly abuses the welfare system
by collecting
excessive benefits while not working. In contrast, a "tax
queen" is not a
commonly used term, but it could potentially refer to
someone who takes
advantage of tax loopholes or deductions to minimize their

allenai_WildChat-1M-Full-Qwen_Qwen2.5-72B-
Instruct

🤖🤖 ASSISTANT (Finish: stop)

As of 2023, Oswald the Lucky Rabbit, created by Walt Disney
and Ub Iwerks, is in
the public domain. This means that anyone can use the
character without
infringing on copyright laws, providing a wide range of
creative opportunities
for artists and producers.

👤👤 USER

What is the different between a tax queen and welfare
queen? Is tax queen a less
racially/ethnically pejorative term?

🤖🤖 ASSISTANT (Finish: stop)

The terms "tax queen" and "welfare queen" are both used to
describe individuals
who allegedly manipulate the system to their advantage, but
they refer to
different aspects of public assistance and have different
connotations.



tax liability.

While "tax queen" may seem like a less racially or ethnically
pejorative term,
it's essential to consider the context in which it's used. If the
term is
applied primarily to individuals from marginalized groups, it
could still
perpetuate negative stereotypes. However, if used to
describe individuals of any
background who exploit tax laws, it might be seen as more
neutral. Nonetheless,
the term "welfare queen" has a well-documented history of
being used to
stigmatize and demean low-income communities, particularly
communities of color,
making it a more loaded and problematic term.

👤👤 USER (Lang: English)

Is it illegal in a British-style constitutional monarchy for a
monarch to use
their royal status to avoid paying taxes?

🤖🤖 ASSISTANT (Lang: English | Finish: stop)

In a British-style constitutional monarchy, the monarch's tax
status can be
complex. While the monarch is not above the law, they may
be exempt from certain
tax obligations due to historical or customary arrangements.
However, using
royal status to deliberately avoid paying taxes would be
considered unethical
and potentially illegal. In the UK, for example, the Queen

Welfare Queen:
- Definition: A "welfare queen" is a derogatory term used to
describe someone, often a woman, who is perceived to be
gaming the welfare system to receive benefits fraudulently or
excessively.
- Connotations: The term has a strong negative and often
racially charged history, particularly in the United States,
where it has been used to stereotype and stigmatize poor,
often Black, women. It gained prominence in the 1970s and
has been associated with racial and class biases.

Tax Queen:
- Definition: A "tax queen" is a more recent and less
common term that typically refers to an individual, often a
wealthy person, who uses legal loopholes and strategies to
minimize or avoid paying taxes.
- Connotations: The term "tax queen" is generally not as
racially or ethnically charged as "welfare queen." It is more
likely to be used in financial or political contexts to criticize
the exploitation of tax laws by the wealthy.

Comparison:
- Racial and Ethnic Connotations: "Welfare queen" is
heavily laden with racial and ethnic stereotypes, particularly
targeting minority groups. "Tax queen," while still derogatory,
is less likely to carry the same racial overtones and is more
focused on the manipulation of tax laws by affluent
individuals.
- Social and Political Context: "Welfare queen" is often
used to advocate for stricter welfare regulations and to
stigmatize recipients, whereas "tax queen" is used to
highlight issues of tax fairness and inequality, often in the
context of advocating for tax reform.



voluntarily pays
income tax and capital gains tax on her private income, but
the extent of her
tax liability is not publicly disclosed. If a monarch were to
abuse their
position to evade taxes, it could be seen as a breach of their
constitutional
duties and potentially lead to parliamentary scrutiny or even
legal action.

👤👤 USER (Lang: English)

Is the President of the United States obliged to pay taxes?

🤖🤖 ASSISTANT (Lang: English | Finish: stop)

The President of the United States is not exempt from paying
taxes. Like all
U.S. citizens, the President is required to pay income taxes
on their earnings,
including their presidential salary. The President's tax returns
are subject to
audit by the Internal Revenue Service (IRS), just like any other
taxpayer.

In fact, since the 1970s, U.S. presidents have voluntarily
released their tax
returns, although this is not a legal requirement. This practice
is intended to
demonstrate transparency and accountability, as the
President is a public figure
with significant influence over the country's tax policies.

It's worth noting that the President's tax situation can be
complex, as they may

In summary, while both terms are pejorative, "tax queen" is
generally less
racially and ethnically charged compared to "welfare queen."

👤👤 USER

Is it illegal in a British-style constitutional monarchy for a
monarch to use
their royal status to avoid paying taxes?

🤖🤖 ASSISTANT (Finish: stop)

In a British-style constitutional monarchy, the monarch is
typically subject to
the same tax laws as other citizens, although there are some
specific
arrangements and historical precedents. For example, in the
United Kingdom, the
monarch is technically exempt from some taxes by tradition
and historical
privilege, but Queen Elizabeth II and King Charles III have
both voluntarily
paid income tax and capital gains tax on their personal
income and assets since
1993.

However, it would generally be considered inappropriate and
potentially illegal
for a monarch to use their royal status to avoid paying taxes
that are normally
applicable to all citizens. Any such action could lead to legal
and
constitutional challenges, as well as significant public
backlash. The monarch's
role is to uphold the law and serve as a symbol of national



have various sources of income, such as investments, book
royalties, or other
business interests. Additionally, the President's tax returns
may be subject to
additional scrutiny due to their public position and potential
conflicts of
interest.

👤👤 USER (Lang: English)

Does the Tenno pay taxes?

🤖🤖 ASSISTANT (Lang: English | Finish: stop)

The Emperor of Japan, also known as the Tenno, has a
unique financial situation.
The Imperial Family's expenses are covered by the Japanese
government through
the Imperial Households' budget. This budget is used to fund
the official duties
and maintenance of the Imperial Palace, as well as personal
expenses of the
Imperial Family.

In terms of taxation, the Emperor and the Imperial Family do
not pay income
taxes in the conventional sense, as their income is derived
from the Imperial
Households' budget and is considered part of the national
treasury. However,
they do pay other types of taxes, such as property taxes on
their private
estates. The specifics of their tax obligations can be
complex, and are subject
to Japanese tax laws and regulations.

unity, and engaging
in tax avoidance or evasion would undermine this role and the
principles of a
constitutional monarchy.

👤👤 USER

Is the President of the United States obliged to pay taxes?

🤖🤖 ASSISTANT (Finish: stop)

Yes, the President of the United States is legally required to
pay federal and
state taxes, just like any other citizen. The U.S. tax system is
based on the
principle that all individuals and entities must file and pay
taxes on their
income, and this includes the President. The Internal Revenue
Code, which
governs federal taxation, applies equally to all individuals
regardless of their
position. Presidents are subject to the same tax laws and
regulations as other
Americans, and they are required to report their income and
pay applicable
taxes.

👤👤 USER

Does the Tenno pay taxes?

🤖🤖 ASSISTANT (Finish: stop)

The Emperor of Japan, known as the Tenno, is not required to
pay taxes under
Japanese law. This exemption is part of the broader legal and



👤👤 USER (Lang: English)

Did the General Secretary of the Soviet Union pay taxes?

🤖🤖 ASSISTANT (Lang: English | Finish: stop)

In the Soviet Union, the General Secretary of the Communist
Party, who was the
de facto head of state and government, did not pay taxes in
the same way that
ordinary citizens did. The Soviet Union had a system where
high-ranking
officials, including the General Secretary, received various
perks and benefits,
such as access to exclusive stores, vacation homes, and
other privileges, which
were not subject to taxation.

These benefits were considered part of their compensation
package for their
service to the state and the Communist Party. Additionally,
the concept of taxes
as understood in capitalist systems did not apply in the same
way in the Soviet
Union, where the state controlled most aspects of the
economy.

It's reported that high-ranking officials, including General
Secretaries like
Joseph Stalin, Leonid Brezhnev, and Mikhail Gorbachev,
received generous
compensation packages that were not taxed, and they often
lived in state-
provided housing and enjoyed other benefits that were not

constitutional
framework that establishes the Emperor's status as a symbol
of the state and the
unity of the Japanese people. The Emperor's official duties
and the maintenance
of the Imperial Household are funded by the government
through the annual
budget, which is approved by the Diet (the national
legislature of Japan).
Therefore, while the Emperor does not pay personal taxes,
the financial support
for the Imperial Family and their duties is indirectly provided
by the Japanese
taxpayers.

👤👤 USER

Did the General Secretary of the Soviet Union pay taxes?

🤖🤖 ASSISTANT (Finish: stop)

The General Secretary of the Soviet Union, as the leader of
the Communist Party,
was subject to the Soviet Union's tax laws. However, the tax
system in the
Soviet Union was quite different from that in capitalist
countries. The Soviet
Union had a state-controlled economy, and income was
generally lower and more
uniform across the population. Taxes were typically lower and
more
straightforward, often taking the form of social insurance
payments and taxes on
goods and services.



subject to income tax.
The details of their compensation and benefits were not
publicly disclosed, and
the lack of transparency made it difficult to determine the
exact nature of
their tax obligations or exemptions.

👤👤 USER (Lang: English)

How did the Imperial Chinese taxation system work? For
specificity, let's use
the Qing dynasty as a reference.

🤖🤖 ASSISTANT (Lang: English | Finish: stop)

The Qing dynasty's taxation system, which lasted from 1644
to 1912, was complex
and multifaceted, with various taxes imposed on different
levels of society.
Here's an overview of how it worked:

1. Land Tax (Diding): The primary source of revenue for
the Qing government was the land tax, which was based
on the amount of land owned and its productivity.
Landowners were required to pay a proportion of their
crop yields, usually in kind (grain) or in silver.

2. Head Tax (Ding): The head tax was a poll tax levied on
all adult males,
regardless of their social status or occupation. This tax
was used to finance
local government expenses, such as maintaining
irrigation systems, roads, and
public buildings.

3. Salt Tax: The Qing government monopolized the salt
industry and imposed a
tax on salt production and distribution. Salt merchants
were required to

The General Secretary, like other citizens, would have paid
whatever taxes were
required by law. However, due to their high-ranking position,
they likely had a
higher income and access to various state-provided benefits
and perquisites,
which might have reduced their need for personal expenses.
These benefits could
include housing, healthcare, and travel, which were often
provided as part of
their position rather than as direct income.

In practice, the financial details of high-ranking Soviet
officials, including
the General Secretary, were not transparent, and specific
records of their tax
payments are not widely available. Nonetheless, they were
technically subject to
the same tax laws as other Soviet citizens.

👤👤 USER

How did the Imperial Chinese taxation system work? For
specificity, let's use
the Qing dynasty as a reference.

🤖🤖 ASSISTANT (Finish: stop)

During the Qing dynasty (1644–1912), the Chinese taxation
system was complex and
underwent several reforms over the years. Here are the key
aspects of the Qing
dynasty's taxation system:

1. Land Tax (⽥賦, tián fù): This was the primary source of



purchase salt licenses from the government, which
generated significant revenue.

4. Customs Duties: The Qing government collected
customs duties on imported
and exported goods, including tea, silk, and other luxury
items.

5. Commercial Taxes: Merchants and traders were
required to pay taxes on
their businesses, including permits, licenses, and sales
taxes.

6. Tribute: The Qing government received tributes from
vassal states, such
as Mongolia, Tibet, and Korea, in the form of goods and
services.

Administration:
The taxation system was administered through a network of
provincial,
prefectural, and county-level governments, as well as local
magistrates and tax
collectors. The central government set taxation policies,
while local officials
were responsible for collection and enforcement.

Exemptions and Privileges:
Certain groups, such as Buddhist monks, Taoist priests, and
imperial family
members, were exempt from taxation. Additionally, some
regions, like the
Imperial Hunting Grounds, were also exempt from taxation.

Reforms and Changes:
The Qing taxation system underwent changes throughout its
history, including the
introduction of new taxes, such as the likin (a tax on goods in
transit), and
reforms aimed at reducing corruption and increasing

revenue for the Qing government. Landowners were
required to pay a tax based on the size and productivity
of their land. The land tax was usually collected in the
form of rice or other grains, especially in the early
periods. Later, it was often paid in silver.

2. Poll Tax (丁稅, dīng shuì): This was a per-capita tax
levied on adult
males. It was initially a fixed amount, regardless of wealth
or social status.
However, the poll tax was often criticized for being
regressive and unfair to
the poor. In the 18th century, the Yongzheng Emperor
introduced the "Ding-Yin
Zhibiao" (摊丁⼊亩, tān dīng rù mǔ) reform, which
merged the poll tax into the land
tax, making the system more equitable.

3. Salt Tax (鹽稅, yán shuì): The salt tax was a significant
revenue source.
The government maintained a monopoly on salt
production and distribution, and
merchants who sold salt had to purchase a government-
issued license (鹽引, yán
yǐn). The salt tax was often a source of corruption, as
local officials and
merchants sometimes colluded to evade taxes.

4. Commercial Taxes (商稅, shāng shuì): These included
taxes on trade and
commerce. Various fees were levied on goods at
marketplaces, ports, and along
major trade routes. The Qing government also imposed
customs duties on imported



efficiency. However, the
system remained largely intact until the fall of the Qing
dynasty in 1912.

Keep in mind that this is a simplified overview, and the actual
taxation system
was more complex, with regional variations and exemptions.
Nonetheless, this
gives you a general idea of how the Qing dynasty's taxation
system worked.

👤👤 USER (Lang: English)

[Response must be written as a short blurb.]
What is the main source of revenue for European mixed
economies and social
democracies?

🤖🤖 ASSISTANT (Lang: English | Finish: stop)

In European mixed economies and social democracies, the
main source of revenue
is typically income tax and social insurance contributions
from citizens, along
with value-added tax (VAT) on goods and services, and
corporate taxes on
businesses. These countries often have a progressive tax
system, where higher
incomes are taxed at a higher rate, to fund public services,
social welfare
programs, and infrastructure development.

👤👤 USER (Lang: English)

[Response must be written as a short blurb.]

and exported goods.

5. Miscellaneous Taxes: There were numerous other taxes
and fees, including
those on property transactions, funerals, and even the
sale of livestock. Local
governments often imposed additional levies to fund
local projects and
administration.

6. Corvée Labor (徭役, yáo yì): Although not a monetary
tax, corvée labor
required peasants to provide labor for public works
projects, such as building
roads, canals, and fortifications. This system was
gradually phased out and
replaced with monetary payments.

7. Reforms and Challenges: The Qing government faced
significant challenges
in collecting taxes, especially in times of natural
disasters, rebellion, and
economic hardship. The late 19th century saw increasing
pressure on the tax
system due to the need to fund military modernization
and other reforms. The
Boxer Rebellion and the subsequent Boxer Indemnity
further strained the
government's finances.

The Qing taxation system was characterized by a mix of
direct and indirect
taxes, with a strong emphasis on land and poll taxes.
However, the system was
often inefficient and corrupt, leading to widespread evasion



What is an income tax? Who is paying for what service?

🤖🤖 ASSISTANT (Lang: English | Finish: stop)

An income tax is a type of direct tax levied by governments
on individuals and
businesses based on their earnings. In essence, it's a fee
paid by citizens to
the government in exchange for public goods and services
such as education,
healthcare, infrastructure, defense, and social welfare
programs. The taxpayer
(individual or business) pays the government for these
services, which are then
allocated and distributed to benefit the public at large.

and resistance.
Despite reforms, the tax system remained a significant
source of social and
economic tension throughout the dynasty.

👤👤 USER

[Response must be written as a short blurb.]
What is the main source of revenue for European mixed
economies and social
democracies?

🤖🤖 ASSISTANT (Finish: stop)

In European mixed economies and social democracies, the
main source of revenue
is typically income tax, followed by value-added tax (VAT)
and social security
contributions. These taxes fund extensive public services and
social welfare
programs, ensuring a robust safety net for citizens.

👤👤 USER

[Response must be written as a short blurb.]
What is an income tax? Who is paying for what service?

🤖🤖 ASSISTANT (Finish: stop)

An income tax is a tax levied on the income earned by
individuals and
businesses. It is typically progressive, meaning that the tax
rate increases as
the taxable income increases. Individuals and corporations
pay income tax to the
government, which uses the revenue to fund public services



and infrastructure,
such as education, healthcare, defense, and social welfare
programs.



WildChat-50M

F. Common Pitfalls and Best Practices in Synthetic Data Generation
Synthetic data generation for large language model training presents numerous challenges that can significantly impact
downstream performance. Through our experience developing WILDCHAT-50M, we identified several critical pitfalls that
researchers should avoid when creating large-scale synthetic datasets.

One of the most consequential errors is bias transfer from data-generating models (DGMs). When a DGM has been trained
on biased data or exhibits systemic failures in specific domains, these issues propagate into the synthetic dataset and may be
further amplified when models are trained on this data. In our work, we observed that using a diverse mix of DGMs helps
mitigate this problem by ensuring no single model’s biases dominate the dataset. Quantitative bias evaluation should be
performed on sample generations before committing to full-scale data generation, as discovering bias issues after generating
millions of examples can necessitate discarding entire dataset subsets—a tremendously wasteful outcome in terms of both
computational resources and research timelines.

Technical configuration issues can equally undermine synthetic data quality. Inadequate context window sizing, improper
temperature settings, poor prompt engineering, and insufficient runtime validation can all produce fatally flawed datasets.
We found that temperature settings substantially influence output diversity and quality—temperatures that are too low
(¡ 0.3) lead to repetitive, generic responses while settings that are too high (¿ 1.2) frequently introduce hallucinations,
grammatical errors, and incoherence. During our data generation, we witnessed how improper prompt formatting with
missing or inconsistent system instructions caused several models to produce unusable outputs, requiring us to restart entire
batches. Another critical technical consideration is tokenization differences between models; in our collection process,
we observed that using identical maximum token limits across architecturally diverse models led to dramatically different
response lengths, necessitating model-specific calibration.

Based on our experience, we recommend the following best practices: (1) Conduct small-scale pilot runs with diverse inputs
before full production to identify potential issues; (2) Implement comprehensive runtime validation including token count
verification, response coherence checks, and completion confirmation; (3) Meticulously document all hyperparameters used
in generation across different model architectures; (4) Employ robust error handling and logging systems that can gracefully
recover from inference failures without losing progress; and (5) Include a diverse array of DGMs to prevent any single
model’s limitations from dominating the resulting dataset. Following these practices can substantially improve synthetic
data quality while avoiding costly regeneration cycles that consume valuable computational resources.
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