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Abstract
Multi-vector models, such as ColBERT, are a significant advancement in neural informa-
tion retrieval (IR), delivering state-of-the-art performance by representing queries and
documents by multiple contextualized token-level embeddings. However, this increased
representation size introduces considerable storage and computational overheads which
have hindered widespread adoption in practice. A common approach to mitigate this
overhead is to cluster the model’s frozen vectors, but this strategy’s effectiveness is fun-
damentally limited by the intrinsic clusterability of these embeddings. In this work, we
introduce CRISP (Clustered Representations with Intrinsic Structure Pruning), a novel
multi-vector training method which learns inherently clusterable representations directly
within the end-to-end training process. By integrating clustering into the training phase
rather than imposing it post-hoc, CRISP significantly outperforms post-hoc clustering at
all representation sizes, as well as other token pruning methods. On the BEIR retrieval
benchmarks, CRISP achieves a significant rate of 3x reduction in the number of vectors
while outperforming the original unpruned model. This indicates that learned clustering
effectively denoises the model by filtering irrelevant information, thereby generating more
robust multi-vector representations. With more aggressive clustering, CRISP achieves
an 11x reduction in the number of vectors with only a 3.6% quality loss.

1 Introduction
Neural embedding models are by now a foundational tool for representing data that underlie the SOTA
methods for information retrieval (IR) Zhang et al. (2016), clustering, classification Muennighoff et al.
(2022), among many other tasks. Recently, multi-vector (MV) representations, introduced by the late-
interaction framework in ColBERT Khattab & Zaharia (2020), have been shown to deliver significantly
improved performance on popular IR benchmarks. ColBERT and its variants Gao et al. (2021); Hofstätter
et al. (2022); Lee et al. (2024); Lin et al. (2024); Qian et al. (2022); Santhanam et al. (2022b); Wang
et al. (2021); Yao et al. (2021) produce multiple embeddings per query or document by generating one
embedding per token. The similarity between a query and a document is calculated via so-called Chamfer
Similarity, also known as the MaxSim operation, between the corresponding sets of vectors. This enables
a more fine-grained and expressive representation compared to using a single embedding per query or
document, in addition to enabling improved interpretability Formal et al. (2021); Wang et al. (2023) and
generalization Lupart et al. (2023); Formal et al. (2022); Zhan et al. (2022); Weller et al. (2023).

Despite these advantages, multi-vector representations are inherently more expensive than single-vector
representations. Namely, producing embeddings for every input token increases representation size by
multiple orders of magnitude. For instance, on the popular MS MARCO Nguyen et al. (2016) dataset,
the canonical ColbertV2 model Santhanam et al. (2022b) produces nearly 80 vectors per document
and 32 per query. This increase in scale has many downstream effects. Firstly, it increases the storage
requirements for indices which store multi-vector embeddings. Secondly, unlike inner product which is
used for single-vector embeddings and has a linear cost in the embedding dimensionality, the runtime of
the non-linear Chamfer Similarity scales quadratically in the number of embeddings. As a result, the cost
and quality of multi-vector retrieval algorithms depend heavily on the number of embeddings Santhanam
et al. (2022a); Dhulipala et al. (2024).

The high cost for employing multi-vector embeddings has been a significant barrier to their widespread
adoption. Thus, there has been considerable work in recent years to improve the efficiency of multi-vector
models Santhanam et al. (2022b); Engels et al. (2024); Hofstätter et al. (2022); Qian et al. (2022); Dhulipala
et al. (2024); Clavié et al. (2024); MacAvaney et al. (2025). For instance, the Colbertv2 Santhanam et al.
(2022b;a) system and successors employ aggressive centroid-based quantization strategies to reduce index
sizes, at the cost of significant complexity and tuning challenges MacAvaney & Tonellotto (2024). An
alternative and enticing direction is to reduce the number of vectors produced by the model entirely.
Several such “pruning” methods have been studied, such as removing vectors which are not as significant
to the overall query or passage; this can be done either be learned importance scores or gates Hofstätter
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et al. (2022) or by post-hoc pruning of individual vectors based on other mechanisms such as attention
weights Liu et al. (2024).

While token-level pruning can be helpful, it has the downside of completely dropping information which
fails to exceed a given relevance threshold. Instead, one could hope to learn a holistic representation of
the full data with fewer vectors directly. A partial step towards this has been the technique of clustering
the multi-vector representations post-hoc, after the model is trained Clavié et al. (2024); Dhulipala et al.
(2024). Each cluster is assigned a single pooled vector, which represents the cluster on the aggregate.
Unfortunately, this post-hoc approach is limited by the actual clusterability of the frozen embeddings,
which were not themselves trained to be clusterable.

In this work, we look beyond post-hoc clustering of multi-vector representations, and study the learnability
of clustered multi-vector representations. In essence, we question the widespread assumption that token-
level embeddings are necessary for the improved expressability of multi-vector models, and instead posit
that in fact multi-vector models may have the potential to retain significant expressive capabilities
representing data by clustered representations of their token-level embeddings. Specifically, we consider
the question:

Can multi-vector models be trained to produce inherently clusterable representations with
negligible quality loss?

1.1 Contributions
We introduce CRISP (Clustered Representations with Intrinsic Structure Pruning), a novel training
paradigm for multi-vector retrieval models. Unlike prior post-hoc clustering methods that operate on
pre-trained, frozen embeddings, CRISP integrates clustering directly into the end-to-end training process.
As a result, the model is trained to produce inherently clusterable representations, enabling a significant
reduction in representation size with minimal impact on quality, and in some cases even leading to
performance improvements. Our main contributions are summarized below.

• Significant Compression: We demonstrate that CRISP’s significantly improves representation
size with minimal drops in quality. Evaluating on the BEIR retrieval benchmark Thakur et al.
(2021), our C8x32 CRISP model surpasses the unpruned multi-vector baseline by 0.4% while
compressing document representations by 2.9x and query representations by 3.9x. Our more
aggressive C4x8 variant achieves a compression rate of 11x for documents and 7.9x for queries
with only a 3.6% drop in quality.

• Denoising Effect: In addition to compressing representations, we show that CRISP acts as
an effective denoising mechanism. By guiding the model to consolidate semantic information by
training over clustered representations, CRISP learns to filter out less relevant token-level details,
thereby generating more robust representations on datasets prone to noise. For instance, our
C4x8 model outperforms the unpruned model by 5.5% on ArguAna, 6.8% on Scidocs, and 2.7%
on NQ, all while reducing the number of document embeddings by 11x. In fact, averaged over
all BEIR datasets, our C8x32 model achieved the top score, outperforming even the unpruned
model (54.5 vs. 54.3 NDCG@10).

• Superiority over Post-Hoc Clustering: CRISP demonstrates a clear advantage over tra-
ditional post-hoc clustering techniques. To achieve parity with unpruned models, post-hoc
clustering methods achieve only a 2x compression rate limited to documents only, whereas our
C8x32 model achieves parity with superior 2.9x document and 3.9x query compression rates. At
higher compression levels CRISP’s benefits are even more pronounced. Our C4x8 variant, despite
its dramatic 11x document and 7.9x query compression rate, experiences only a 3.6% drop in
NDCG@10. This is a substantial improvement over post-hoc clustering, which reports a 9.3%
degradation limited to a 6x document-only compression Clavié et al. (2024). This underscores
CRISP’s more effective compression-quality trade-off, stemming from its end-to-end training.

2 Methodology
This section details our proposed CRISP (Clustered Representations with Intrinsic Structure Pruning)
methodology and the baseline pruning techniques against which it is compared. We begin by outlining the
challenges with standard multi-vector representations that motivate this work, followed by a description
of our base model architecture and the experimental approach to pruning.

2.1 Background and Limitations of Multi-Vector Representations
Multi-vector (MV) models learn more expressive representations than traditional single vector models by
computing one embedding per-token of the input text. This encodes queries and documents as sets of
vectors Q, D ⊂ Rd respectively. Multi-vector then scores the query-document similarity via the Chamfer
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Similarity Dhulipala et al. (2024) (also known as MaxSim Khattab & Zaharia (2020)):

Chamfer(Q, D) =
∑
q∈Q

max
x∈D

⟨q, x⟩ (1)

where ⟨·, ·⟩ is the standard inner product. Beginning with ColBERT Khattab & Zaharia (2020), these
multi-vector models have been shown to achieve significant performance improvements over single-vector
models. However, due to their increased representation size, there are several key challenges associated
with multi-vector models:

• Computational Expense: The increased number of vectors per item, combined with the
Chamfer scoring that scales quadratically with the number of vectors (O(MNd) for M query and
N document vectors), makes MV models computationally expensive and significantly increases
their memory footprint.

• Semantic Redundancy and Skewing Similarity: Repetitive tokens with similar contextual
meaning in the queries can disproportionately affect the Chamfer similarity score, since embeddings
of these tokens will appear multiple times in the similarity computation (1). This phenomenon is
likely undesirable, since query-document similarity should ideally be based on distinct concepts
in the text.

• Information Noise: Allocating uniform representational capacity (bits of information) to all
tokens, irrespective of their semantic richness, can introduce noise and degrade performance
compared to single-vector models in some cases, especially for datasets with long queries (e.g.
ArguAna). By clustering of representations, one can hope to mitigate these issues by representing
entire regions of the latent space by a single embedding, reducing the effect of outliers and
sparsely related embeddings.

Our work, CRISP, makes strides to alleviate all of the above issues by end-to-end learning clustered
multi-vector representations, thereby (1) significantly reducing the number of vectors, improving both
computational costs and memory footprint, (2) diminishing the effect of redundant query tokens on
the similarity, and (3) denoising representations by guiding the model towards representations without
outliers or spread-clusters.

2.2 Experimental Framework
Base Model Architecture:
The multi-vector models in this work utilize a dual encoder architecture with a Gemma2B backboneTeam
et al. (2024). We finetune Gemma2B with the Chamfer similarity loss (1), using the standard methodology
employed by ColBERT and models based on ColBERT Khattab & Zaharia (2020); Santhanam et al.
(2022b). Building query and document encoders by leveraging pre-trained large language models (LLMs)
as encoders has proven to be a strategy that produces high-performing embeddings for textual inputs Ni
et al. (2022); Lee et al. (2024). As in Khattab & Zaharia (2020) and Lee et al. (2024), no aggregation or
pooling was utilized, and thus our model generates token-level representations. This way, for each token
in the textual input the model produces one dense vector representing it. We chose not to project down
our representations and kept each vector at the original dimension of 2048. We use contrastive learning
based on Chamfer similarity using the large collection of training datasets from Li et al. (2025) that
includes publicly available data for retrieval, re-ranking, classification, clustering and sentence-to-sentence
similarity (STS). Our training setup includes in-batch random negatives, plus we used the hard negatives
included in the retrieval training datasets.

Training over Pruned Representation
We will compare CRISP, our clustering-based multi-vector training method, against several fixed-token
pruning methods. For all pruned models we consider, the corresponding pruning strategy is applied during
training of the embeddings; i.e., if we prune to consider only the last 4 tokens, then only these tokens
are used in when computing the Chamfer loss during training. This ensures that the model training is
aligned with its evaluation. Note that this would not be the case in, for instance, post-hoc clustering of
an unpruned model.

The pruning strategies explored in this paper fall into two main types: fixed selection methods, which
apply predefined heuristics, and clustering-based approaches, which group vectors by semantic similarity.
We now detail the specific strategies within each category.

2.3 Fixed-Token Pruning
We first describe several approaches that select a fixed subset of token vectors using predefined, content-
independent heuristics. In all cases, the model is trained with the loss function computed only over these
selected token vectors, tasking it with learning expressive representations under these constraints.
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2.3.1 Tail Pruning
This method selects only the final kq token vectors from the query’s sequence representation and kd

from the document’s, where kq is usually smaller than kd. The main considerations for this method
are twofold: first, for a pre-trained autoregressive language model, the later tokens might capture more
summary information of the whole sequence; thus, keeping the later ones might better balance the
performance-efficiency trade-off. Second, the query is usually much shorter than the document, and we
can choose a smaller kq for the query but a larger kd for the document. Since the model is trained over
the selected tokens, the goal is for the model to “learn” to move the most relevant information in the text
into the embeddings for the last kq or kd tokens. We tested two configurations:

• Tail Pruning (4x8): Selects the last 4 query vectors and last 8 document vectors.

• Tail Pruning (8x32): Selects the last 8 query vectors and last 32 document vectors.

If there are fewer tokens in the input than the above fixed size, e.g. less than kq query tokens or less than
kd document tokenss, then we simply select all tokens to train over.

Embedding Sequence:

(Example: Keeping last 4 vectors)

Figure 1: Illustration of Tail Pruning, where the last k vectors (here k = 4) are retained (shown in black),
and others are shown in white.

2.3.2 K-Spacing
This method uniformly subsamples the token vectors by selecting every K-th vector in the sequence. A key
assumption for this method is that adjacent tokens might exhibit similar feature patterns. Consequently,
we might perform pruning by sampling at a fixed interval, ensuring the remaining tokens are still evenly
distributed throughout the sequence. We tested:

• K-Spacing (k=4): Selects every 4th vector (25% density).

• K-Spacing (k=2): Selects every 2nd vector (50% density).

Embedding Sequence:

(Example: K-Spacing k=2)

Figure 2: Illustration of K-Spacing, where every k-th vector (here k = 2) is retained (shown in black),
and others are shown in white.

2.4 Clustering-Based Pruning (The CRISP Approach)
We now describe the clustering-based methods which constitute the CRISP concept. These methods
use K-means clustering to group semantically similar token vectors, and then aggregate the clusters
into a single vector by using the centroids (i.e., mean-pooling each cluster). By aggregating tokens with
similar contextual meanings into a single cluster and representing them with their centroid, CRISP
ensures that the contribution comes from distinct semantic units rather than multiple, near-identical
token representations. This dynamic grouping also allows for a more flexible allocation of representational
capacity, where densely packed semantic regions of the text are captured by individual cluster centroids,
while less informative regions might contribute to larger, more general clusters, effectively focusing the
model’s attention on the most salient aspects of the text.

The key hyperparameter is the choice of k, which is the number of clusters and thus the number of vectors
used to represent each query or document. We consider two methods of for selecting the hyperparameter
k.

Fixed-Size Clustering
K-means is applied to obtain a pre-defined number of clusters (kq for query, kd for document). We tested:

• Clustering (4x8): Uses kq = 4 query centroids and kd = 8 document centroids.

• Clustering (8x32): Uses kq = 8 query centroids and kd = 32 document centroids.
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Relative-Size Clustering
K-means is applied, but the number of clusters k is set relative to the original sequence length L. All
resulting centroids are used in scoring. We tested:

• Clustering (25%): k = ⌊0.25 × L⌋.

• Clustering (50%): k = ⌊0.50 × L⌋.

Original Vectors:

C1 C2 C3Centroids:

Figure 3: Illustration of Clustering Pruning: Original vectors (top row, styled by assigned cluster) are
mapped to their respective cluster centroids (bottom row). Here, 3 clusters (C1-C3) are used, distinguished
by white, black, and gray fills. The selected embeddings for each cluster are calculated dynamically so
they need not be adjacent.

These methods were evaluated against the baseline single-vector and full multi-vector models, as detailed
in the Experiments section.

3 Experiments
3.1 Experimental Setup
We evaluate CRISP and compare its cluster-based training mechanism with the pruning methods
described in Section 2.3. All multi-vector and single-vector models, including the pruned variants, were
built upon the Gemma2B pre-trained LLM. The models were fine-tuned for 20,000 steps using a batch of
size 128 on Cloud TPU v3 1 using the BGE2 dataset Li et al. (2025). Crucially, the pruned multi-vector
variants (4x8, 8x32, K4, K2, C4x8, C8x32, C25, C50) were fine-tuned starting from the multi-vector (‘MV’)
baseline model.

We evaluate the performance of our models over all the BEIR Thakur et al. (2021) benchmark tasks, a
standard suite for evaluating zero-shot retrieval performance. As it is standard for BEIR evaluations,
we use NDCG@10 as our metric. We compare our pruned multi-vector models against the standard
single-vector (‘SV’) and multi-vector (‘MV’) Gemma2B models. In addition, when available, we report
scores for two other models: GTRxxl Ni et al. (2022), which is a high-quality single-vector model, and
XTRxxl Lee et al. (2024), which is a SOTA multi-vector model. Both models are trained from the same
T5 backbone Raffel et al. (2020), which differs from our Gemma2B backbone, and thus the performance
numbers are not directly comparable. However, their inclusion serves to establish a reasonable performance
baseline on BEIR.

In all our multi-vector models, including the ‘MV’ baseline and all pruned variants, inference was
conducted using brute-force Chamfer similarity scoring comparing each query against every document
in the corresponding dataset corpus. This ensures precise evaluation without confounding factors from
approximate retrieval methods.

Given that the base Gemma2B model is instruction-tuned, adapting it for the varied information retrieval
tasks within the BEIR benchmark required the consistent prepending of task-specific instruction prefixes to
the input queries during both the training and inference stages. Initial experiments revealed a substantial
decline in retrieval performance when these instructions were absent, suggesting that the model relies
on this conditioning to align with the specific retrieval objectives of each task. The precise instruction
prefixes utilized for each BEIR task are detailed in Appendix B.

3.2 Results and Analysis
The performance results for all models evaluated on the BEIR tasks are presented in Table 3. The
table includes scores for our baseline single-vector (‘SV’) and multi-vector (‘MV’) models, the fixed
selection pruning methods (Tail Pruning ‘4x8’, ‘8x32’; K-Spacing ‘K4’, ‘K2’), the clustering-based methods
implementing the CRISP approach (‘C4x8’, ‘C8x32’, ‘C25’, ‘C50’), and the non-Gemma based models:
XTR Lee et al. (2024) and GTR Ni et al. (2022). Tables 1 and 2 show the size of each pruned multi-vector
representation relative to the unpruned model for both query and document representations.

1https://cloud.google.com/tpu/docs/v3
2https://huggingface.co/datasets/cfli/bge-full-data/tree/main/data
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Table 1: Candidate Representation Size (relative to full MV)

BEIR Task Avg Candidate
Tokens

Relative Size
4x8, C4x8

Relative Size
8x32, C8x32

Relative Size
K2, C50

Relative Size
K4, C25

arguana 206.68 0.039 0.155 < .50 < .25
climate_fever 142.59 0.056 0.224 < .50 < .25
dbpedia_entity 96.01 0.083 0.333 < .50 < .25
fever 142.59 0.056 0.224 < .50 < .25
fiqa 165.34 0.048 0.194 < .50 < .25
hotpotqa 77.32 0.103 0.414 < .50 < .25
msmarco 80.74 0.099 0.396 < .50 < .25
nfcorpus 331.29 0.024 0.097 < .50 < .25
nq 97.28 0.082 0.329 < .50 < .25
quora 14.75 0.542 2.169 < .50 < .25
scidocs 211.06 0.038 0.152 < .50 < .25
scifact 302.06 0.026 0.106 < .50 < .25
trec_covid 226.36 0.035 0.141 < .50 < .25
webis_touche2020 221.07 0.036 0.145 < .50 < .25
Average 165.37 0.091 0.349 0.50 0.25

Table 2: Query Representation Size (relative to full MV)

BEIR Task Avg Query
Tokens

Relative Size
for 4x8, C4x8

Relative Size
8x32, C8x32

Relative Size
K2, C50

Relative Size
K4, C25

arguana 255.48 0.016 0.031 < .50 < .25
climate_fever 44.31 0.090 0.181 < .50 < .25
dbpedia_entity 23.75 0.168 0.337 < .50 < .25
fever 28.44 0.141 0.281 < .50 < .25
fiqa 31.40 0.127 0.255 < .50 < .25
hotpotqa 39.88 0.100 0.201 < .50 < .25
msmarco 25.21 0.159 0.317 < .50 < .25
nfcorpus 21.41 0.187 0.374 < .50 < .25
nq 25.97 0.154 0.308 < .50 < .25
quora 31.32 0.128 0.255 < .50 < .25
scidocs 33.31 0.120 0.240 < .50 < .25
scifact 35.98 0.111 0.222 < .50 < .25
trec_covid 29.82 0.134 0.268 < .50 < .25
webis_touche2020 25.86 0.155 0.309 < .50 < .25
Average 46.58 0.128 0.256 0.50 0.25

Tables 1 and 2 show the average relative representation size, in terms of number of output embeddings,
for each pruned multi-vector model compared to the unpruned model. Thus, the unpruned model has a
relative size of 1, whereas C50, which outputs half as many of the embeddings, will have a relative size of
at most 50%. An average relative size of .091 thus corresponds to a compression rate of 1/.091 ≈ 11.
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Table 3: Pruning in BEIR (NDCG@10)

External Baselines
Gemma 2B-based Models

BEIR Task Unpruned Fixed Selection CRISP
XTR GTR MV SV 4x8 8x32 K4 K2 C4x8 C8x32 C25 C50

arguana 44.2 54.0 70.1 73.8 53.6 56.4 67.4 69.3 74.0 71.6 66.4 69.2
climate_fever 24.5 26.7 39.6 35.7 8.1 10.3 35.7 40.0 36.0 36.0 28.4 31.3
dbpedia_entity 44.3 40.8 42.1 35.4 17.1 29.3 32.4 40.4 37.5 38.5 39.2 37.8
fever 77.0 74.0 90.3 82.8 28.5 34.3 87.4 89.6 87.3 83.5 83.5 88.4
fiqa 43.8 46.7 49.4 45.6 16.1 25.2 42.0 47.2 47.4 50.1 46.6 49.2
hotpotqa 66.2 59.9 72.6 59.2 16.1 25.9 62.7 70.6 68.5 70.1 69.0 70.6
msmarco 46.6 44.2 25.9 39.9 13.7 17.3 23.7 29.4 41.7 42.9 42.1 43.3
nfcorpus 35.3 34.2 36.4 31.8 16.4 27.8 33.5 36.0 32.3 36.0 34.3 36.2
nq 60.9 56.8 62.0 56.8 27.5 40.0 52.7 62.5 63.7 65.2 62.6 65.2
quora 88.1 89.2 87.7 87.4 63.7 81.4 80.4 86.1 89.1 89.3 88.6 89.2
scidocs 17.1 16.1 21.9 18.8 8.8 13.7 18.1 21.7 23.4 23.2 20.9 23.8
scifact 74.3 66.2 73.8 49.5 21.6 36.3 65.6 72.3 55.5 65.8 45.7 58.9
trec_covid 78.9 50.1 63.0 53.5 22.8 29.0 54.4 60.5 52.0 63.2 50.6 48.0
webis_touche2020 30.9 23.3 25.0 28.8 8.5 18.6 22.0 24.6 23.7 27.3 25.6 24.4
Total 52.7 49.1 54.3 49.9 23.0 31.8 48.4 53.6 52.3 54.5 50.3 52.5
Avg Rel Doc Size — — 1 — .091 .349 .25 .50 .091 .349 .25 .50
Avg Rel Query Size — — 1 — .128 .256 .25 .50 .128 .256 .25 .50
cqadupstack — — 38.7 34.7 10.8 8.9 31.2 37.1 38.6 42.1 36.3 41.7
cq_android — — 45.6 43.4 20.6 16.7 39.3 44.7 46.5 50.6 47.6 50.4
cq_english — — 47.2 42.3 12.0 10.1 40.3 45.3 46.1 49.5 44.0 48.7
cq_gaming — — 50.2 49.9 10.3 3.9 40.3 48.7 54.6 57.9 51.2 59.3
cq_gis — — 34.4 28.2 6.4 4.5 25.8 32.6 34.7 39.8 31.9 37.8
cq_mathematica — — 28.7 24.4 9.9 8.5 22.7 28.0 26.2 31.8 23.5 29.3
cq_physics — — 44.1 42.4 15.5 16.0 36.9 43.1 44.2 46.4 42.6 47.7
cq_programmers — — 41.0 39.6 9.8 7.4 35.8 40.1 41.4 42.9 38.0 43.4
cq_stats — — 35.8 30.1 7.6 5.2 26.5 33.4 32.9 36.3 30.9 36.6
cq_tex — — 27.6 22.0 6.2 5.2 20.0 25.7 26.0 30.3 22.0 27.9
cq_unix — — 42.8 32.5 12.2 11.8 35.2 41.3 39.0 43.5 37.5 42.2
cq_webmasters — — 39.7 36.4 13.8 13.3 32.9 37.8 38.9 41.6 38.1 43.2
cq_wordpress — — 26.8 24.7 4.7 4.0 18.5 24.8 33.1 35.0 28.7 34.0
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Consistent with prior findings, the baseline ‘MV’ model (Avg 54.3) significantly outperforms the baseline
‘SV’ model (Avg 49.9), demonstrating the general advantage of multi-vector representations. Fixed
selection pruning methods, however, lead to a substantial degradation in performance. Both Tail Pruning
variants (‘4x8’: 23.0, ‘8x32’: 31.8) and K-Spacing (‘K4’: 48.4, ‘K2’: 53.6) score considerably lower than
the ‘MV’ baseline on average. Even ‘K2’, which retains 50% of the vectors, does not fully recover the
baseline performance.
In contrast, the CRISP models prove much more effective. CRISP is significantly better than fixed
selection in almost all BEIR tasks, particularly when compared to methods like ‘4x8’ or ‘8x32’ which
consider only a small, fixed positional subset of vectors. The best performing model overall is the CRISP
‘C8x32’ model (Avg 54.5), which slightly surpasses the performance of the full ‘MV’ baseline. Other
CRISP variants like ‘C4x8’ (52.3) ‘C25’ (50.2) and ‘C50’ (52.5) also remain competitive and substantially
outperform the fixed selection models. This suggests that K-means clustering effectively identifies and
retains the most salient semantic information within the multiple token embeddings. Further, we observed
that CRISP can indeed improve upon the vanilla multi-vector baseline in several cases (e.g., ArguAna
‘C4x8’ vs ‘MV’; FIQA ‘C8x32’ vs ‘MV’; NQ ‘C8x32’/‘C50’ vs ‘MV’; Quora ‘C8x32’ vs ‘MV’), potentially
due to a denoising effect where less informative token variations within clusters are abstracted away by the
centroid representation (discussed in Appendix A). The overall strong performance of ‘C8x32’ indicates
that the CRISP approach provides a viable path towards reducing the complexity of multi-vector models
while maintaining, and sometimes enhancing, retrieval effectiveness.
It is important to note that the effectiveness of all the models presented were found to be highly sensitive
to hyperparameter tuning. Specifically, the learning rate and L2 weight normalization played critical roles
in achieving the reported results. Furthermore, as detailed in Appendix B, the practice of prepending
task-specific instruction prefixes to the input queries during inference proved indispensable. Omitting
or poorly configuring these elements significantly degraded retrieval performance, underscoring that the
presented qualitative examples and quantitative successes are contingent upon careful optimization of
these crucial training and inference parameters.
Comparison to Post-Hoc Clustering. A primary alternative for comparison is post-hoc clustering,
where clustering is applied to a multi-vector model after its embeddings are frozen. This approach offers
a simpler training pipeline as it avoids clustering during the training phase, making it a natural baseline.
For example, post-hoc clustering was employed to enhance retrieval latency in Dhulipala et al. (2024),
and is the main focus of Clavié et al. (2024), which explores clustering methods such as k-means and
Hierarchical Clustering for pruning multi-vector representations. They found Hierarchical clustering to be
the best performing method when evaluated over a subset of the BEIR retrieval tasks. Specifically, they
showed that, compared to the unpruned multi-vector model, this method yields: a 2x compression with a
0.6% NDCG@10 improvement, a 4x compression with a 3% NDCG@10 decrease, and a 6x compression
with a 9.3% NDCG@10 decrease. Notably, in Clavié et al. (2024) the authors applying pruning to the
document representations only, leaving the query embeddings unchanged.
CRISP’s cluster-based training, however, presents considerably more favorable compression-quality trade-
offs. The C8x32 CRISP model, for instance, achieves 2.9x document token compression, in addition to a
3.9x query token compression, while improving NDCG@10 by 0.4%. Furthermore, the more aggressive
C4x8 CRISP model delivers 11x document token and 7.9x query token compression with only a 3.6%
decrease in NDCG@10. Therefore, CRISP not only yields better document compression rates with
comparable or superior quality retention than post-hoc clustering, but crucially also enables substantial
query-token compression simultaneously — a benefit not achieved in Clavié et al. (2024). We emphasize
that compressing query tokens has significant impact on downstream task, such as reducing retrieval
latency, as demonstrated in Dhulipala et al. (2024) where pre-clustering query tokens markedly sped up
retrieval, and in Santhanam et al. (2022a) where each query vector necessitates a separate vector-index
query.

4 Other Related Work
The seminal ColBERT model Khattab & Zaharia (2020) introduced multi-vector models as a way to
improve passage and document search via token-level interactions and representations of textual inputs.
Since then, significant effort has been devoted to developing improved and optimized multi-vector models
and retrieval methods Santhanam et al. (2022b;a); Gao et al. (2021); Hofstätter et al. (2022); Lee et al.
(2024); Lin et al. (2024); Qian et al. (2022); Santhanam et al. (2022b); Wang et al. (2021); Yao et al. (2021);
Dhulipala et al. (2024). Nevertheless, multi-vector models still require non-trivial computational overheads
when compared to single-vector models. To address these efficiency issues, MacAvaney et al. (2025) use a
fixed number of vectors irrespective of the length of the queries or the documents and demonstrated that
they are able to retain the performance of ColBERT-v2 Santhanam et al. (2022b) after reduction. In
contrast, Lee et al. (2024) trained the multi-vector model to purposely use during retrieval the vectors
that represent the most salient parts of the queries and the documents. ALIGNER Qian et al. (2022)
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introduced linear programming for sparse query-document alignments and per token-salience. ColBERTer
Hofstätter et al. (2022) followed up with a vector reduction approach based on pooling embeddings
of tokens within the same word, as well as pruning by removing stop words. However, this pooling is
fixed in advance and not learned based on the neural representations of the input tokens. In contrast
to these prior approaches, CRISP is the first method to learn a pooling (i.e. clustering) of the token
representations during training time, allowing the model to couple the learning of the representations to
the learning of the pooling.

5 Conclusion
In this paper, we introduced CRISP (Clustered Representations with Intrinsic Structure Pruning), a
novel multi-vector model method that learns inherently clusterable representations during end-to-end
training, thereby significantly reducing the representation size of multi-vector models. CRISP produces
pruned models that actually outperform the original unpruned models, while compressing document
representations by 3x, as well as offering an improved 11x compression at the cost of a small drop
in performance. By learning clusters during training, CRISP also significantly outperforms post-hoc
clustering methods that operate on frozen embeddings. Thus, CRISP offers a significant step towards
bridging the efficiency gap between multi-vector and single-vector models.
Broader Impacts and Limitations:
Our work primarily focuses on improving the quality-efficiency trade-off of neural information retrieval
(IR) systems. Improved quality of IR systems has the potential benefit of improving user experience by
improving the quality of IR queries. While search products themselves may have some negative societal
impacts, it is unlikely that our work will have any direct path to negative applications or an affect on these
impacts. As for limitations, a primary limitation CRISP is that it fixes the maximum number of clusters
k to be used during training in advance. This prevents the model from learning the optimal number
of clusters to use for a given query or document, which is a benefit of unpruned multi-vector models.
We leave the exploration of methods which adapt the number of clusters, as well as the exploration of
alternative clustering mechanisms, to future work.
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A Appendix: Qualitative Clustering Examples

To offer qualitative insights into the behavior of K-means clustering on token embeddings, this appendix
presents two examples selected from the ArguAna dataset Wachsmuth et al. (2018), where the task is
to retrieve a counterargument for a given argument query. Each example includes the query text, the
corresponding gold counterargument document, with some highlighted tokens that belong to the same
cluster. In each case, CRISP was able to retrieve the top matching document. The matching highlighted
cluster in the document reflects the document cluster that achieved the highest multi-vector similarity
(Chamfer) with that particular query cluster. These visual examples highlight a recurring pattern:
K-means clustering frequently isolates semantically lighter tokens, such as stopwords, punctuation, and
generic terms, into distinct clusters.

Task Description Given a claim, find documents that refute the claim.

A.1 Example 1

Query Text

Given a claim , find documents that refute the claim . | query : A UN standing
army is simply impossible to form . A standing army for the United Nations
has an existing legal framework ; it has never been attempted in practice
because it would be impossible to create . Article 4 3 of the original UN
Charter specifies that all member states are expected , upon the signing of
a future UN agreement , to provide ‘forces , assistance and facilities ’ for the
maintenance of international peace and security 1 . That it is has never been
attempted is the direct result of its sheer impracticality ; who would contribute
the troops ? How would they be trained , and ensure that troops trained in
one state would not be asked to thereafter fire on their own colleagues ?
Furthermore , where would the U . N. standing army be located , for the United
Nations has no land , and the United States would not take kindly to a
reprisal attack on the UN Army at the United Nations Headquarters . And who
would fund this army ? The United States hasn ’ t paid its bills to the United
Nations in years due to their opposition to some of its actions / What is
there in place to prevent that continuing ? Lastly , and most importantly , whose
will would they be implementing , for the United Nations is not a single voice
but the aggregated noise of its member states ? The Security Council , which
currently dictates the form that U . N. peacekeeping operations take , are not a
group to whom impartiality can be attributed . A U . N . standing army at
the be hest of the Security Council would be used sparingly at best and only
in regions and conflicts for whom all the P5 had a vested interest in the
maintenance of peace . Any impartiality that the U . N . standing army had in
theory would be lost in practice . 1 . U . N. Charter , ( 1 945)
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Document Text (Refutation)

global politics defence war peace house would create UN standing army A
U . N . standing army is not impossible to form . The United Nations has
already conclusively proved , in numerous peacekeeping among other missions , its
ability to play a constructive , effective military role in interventions ; a standing
army would merely replace the top level of command . Instead of taking orders
from the top brass in a national military , the orders would come from United
Nations commanders . For soldiers trained to listen and respond to commands ,
this would constitute merely a subtle shift that would not alter their operational
effectiveness . Furthermore , funding would be provided through similar streams to
how peacekeeping forces are funded contemporaneously ,; however , once the U .
N . standing army has proved itself capable , funding will surely come from those
states who recognize that pooling resources to form a U . N . army is more
prudent than scratching together a under-resourced , native army .

A.2 Example 2
Query Text

Given a claim , find documents that refute the claim . | query : The law is
hypocritical In most countries where drugs are illegal , tobacco and alcohol ,
which arguably have equally devastating consequences in society , are legal . In
a UK study , alcohol was shown to have the worst effects of any drug , yet
the current law recognises that people should be able to choose whether they
drink or not . [ 1 ] The same should be true of drugs . [ 1 ] Professor
David Nutt , ‘ Drug Harms in the UK : a multicriteria decision analysis ’,
The Lancet , Vol 376 , Issue 9752 , pp . 1558-1565 , 6th November

2010 ,

Document Text (Refutation)

th addiction health general law crime policing house supports legal isation drugs
Perhaps alcohol and tobacco should also be illegal . However , one of the
reasons why alcohol ranks so badly in such studies is because of its legality ;
if other drugs were legal , we would see their usage go up and therefore the
negative social effects they produce rise as well .

A.3 Discussion of Clustering Examples
The examples presented (Example 1, Example 2) provide a qualitative view into the behavior of K-means
clustering on token embeddings. A recurring observation is that certain clusters tend to aggregate tokens
with lower semantic weight, such as punctuation, common stopwords (e.g., ‘a’, ‘the’, ‘of’, ‘and’, ‘that’,
‘would’), or formatting elements (e.g., ‘|’, ‘,’, ‘.’, ‘;’, ‘?’). For instance, in Example 1, the highlighted
cluster contains mostly punctuation, single letters, and generic query/instruction tokens like ‘Given’,
‘find’, ‘query’. In the corresponding Document Text, the matching cluster also consists mostly of stop
words and punctuation.
Note that the prompt prefix used in this particular dataset is prepended to the queries, and the document
title, consisting of buzz words provided with the dataset, is prepended to the documents. These instruction
words are usually grouped together in a single cluster or together with other semantically light tokens
(consider the highlighted cluster in Example 2 and the matching document cluster).
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This behavior aligns with the hypothesis behind CRISP: that clustering can serve as a denoising
mechanism. During the Chamfer similarity (i.e. MaxSim) calculation inherent in multi-vector retrieval,
query clusters dominated by these low-content tokens are less likely to find strong matches within
the document’s token embeddings, or more precisely these clusters will show no strong preference for
one document over another, effectively reducing their contribution to the final similarity score. In the
document representation, these clusters often group similarly generic tokens. As Chamfer focuses on the
maximum similarity for each query token (or centroid), document clusters containing only stopwords are
less likely to be the maximal match for query clusters containing substantive terms. Consequently, the
influence of these ubiquitous but often irrelevant tokens is mitigated in both the query and document
representations, potentially leading to a clearer signal for relevance matching based on more meaningful
terms, which helps explain why CRISP (via these trained clustering configurations) can sometimes
outperform the full multi-vector baseline. If we removed these tokens altogether from the similarity
computation we would likely find even a further increase in performance.

B Appendix: Task Instruction Prefixes for BEIR Datasets
The base model used in our experiments, Gemma2B, is primarily instruction-tuned for conversational tasks.
To adapt this model effectively for the diverse retrieval tasks within the BEIR benchmark, we found
it necessary to prepend task-specific instruction prefixes to the input queries during both training and
inference. Preliminary experiments indicated that omitting these instructions significantly degraded
retrieval performance, likely due to the model not being optimally conditioned for the specific retrieval
goal of each dataset.

The instruction prefixes in Table 4 were used for each corresponding BEIR dataset.

Table 4: Task Instruction Prefixes for BEIR Datasets

Dataset Instruction Prefix
arguana Given a claim, find documents that refute the claim.
climate-fever Given a claim about climate change, retrieve documents that support or refute

the claim.
dbpedia-entity Given a query, retrieve relevant entity descriptions from DBPedia.
fever Given a claim, retrieve documents that support or refute the claim.
fiqa Given a financial question, retrieve user replies that best answer the question.
hotpotqa Given a multi-hop question, retrieve documents that can help answer the question.
msmarco Given a web search query, retrieve relevant passages that answer the query.
nfcorpus Given a question, retrieve relevant documents that best answer the question.
nq Given a question, retrieve Wikipedia passages that answer the question.
quora Given a question, retrieve questions that are semantically equivalent to the given

question.
scidocs Given a scientific paper title, retrieve paper abstracts that are cited by the given

paper.
scifact Given a scientific claim, retrieve documents that support or refute the claim.
trec-covid Given a query, retrieve documents that answer the query.
webis-touche2020 Given a question, retrieve detailed and persuasive arguments that answer the

question.
cqadupstack Given a question, retrieve detailed question descriptions from Stackexchange that

are duplicates to the given question.

Applying these specific instructions helps align the conversational base model with the target retrieval
task for each dataset.

C Appendix: Dataset Licenses
In the main body of the paper we cite references for both our training Li et al. (2025) and evaluation
Thakur et al. (2021) datasets. We include the URL where the training datasets are available. Regarding
the evaluation datasets, we refer to the licensing information disclosed in page 20 of Thakur et al. (2021).
Regarding the training dataset, our investigation about the licensing of the BGE training data shows the
following heterogeneous licensing overview:

• SQuAD: CC BY-SA 4.0.3

3https://rajpurkar.github.io/SQuAD-explorer/
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• FEVER: Licensed by a combination of Wikipedia Copyright Policy and CC-BY-SA 3.0.4

• NQ: Provided under CC BY-SA 3.0 license.5

• NLI - SNLI under CC BY-SA 4.0,6 MNLI under a combination of the OANC’s license, CC BY-SA
3.0, CC BY 3.07 with preparation code licensed under MIT license8

• FiQA: Unknown.9

• Emotion-Classification educational and research use only.10

• MTOPIntent-Classification CC BY-SA 4.0.11

• StackOverFlowDupQuestions (LinkSO) Unknown.12

• ArguAna,13 SciDocsRR,14 Banking77-Classification15: Provided under CC BY 4.0 license.
• ArxivClustering annotations licensed under CC016 with content under one of the following: CC

BY-SA 4.0, CC BY-NC-SA 4.0, CC BY-NC-ND 4.0, arXiv.org perpetual, non-exclusive license
1.0, or CC Zero.17

• Biorxiv content under one of the following: no reuse/adaptation without permission, CC-BY-NC-
ND, CC-BY-ND, CC-BY-NC, CC-BY, or CC0.18

• Medrxiv content under one of the following: no reuse/adaptation without permission, CC-BY-
NC-ND, CC-BY-ND, CC-BY-NC, CC-BY, or CC0.19

• RedditClustering and StackExchangeClustering Unknown.20

• TwentyNewsgroupsClustering CC BY 4.0.21

• STS12 Unknown/mixed with some data licensed under Microsoft Research licenses.22

• TriviaQA Unknown - passages sourced from web documents and Wikipedia.23

• AmazonCounterfactualClassification CC BY-SA 4.0.24

• TweetSentimentExtractionClassification CC BY 4.0.25

• IMDB-Classification Unknown.26

• ToxicConversationsClassification cc0-1.027

• ELI5: Unknown - harvested from Reddit comments.28

• HotpotQA: Provided under the CC BY-SA 4.0 license.29

4https://fever.ai/download/fever/license.html
5https://ai.google.com/research/NaturalQuestions/download
6https://nlp.stanford.edu/projects/snli/
7https://huggingface.co/datasets/nyu-mll/multi_nli
8https://github.com/princeton-nlp/SimCSE
9https://sites.google.com/corp/view/fiqa/home

10https://github.com/dair-ai/emotion_dataset
11https://fb.me/mtop_dataset link downloads dataset.
12https://sites.google.com/corp/view/linkso
13https://zenodo.org/records/3973258
14https://github.com/allenai/scidocs/blob/master/LICENSE
15https://github.com/PolyAI-LDN/task-specific-datasets
16https://www.kaggle.com/datasets/Cornell-University/arxiv
17https://info.arxiv.org/help/license/index.html
18https://www.biorxiv.org/about/FAQ
19https://www.medrxiv.org/about/FAQ
20https://github.com/UKPLab/TWEAC-qa-agent-selection
21https://archive.ics.uci.edu/dataset/113/twenty+newsgroups
22https://web.archive.org/web/20201029123711/https://www.cs.york.ac.uk/semeval-2012/task6/,

http://ixa2.si.ehu.eus/stswiki/
23https://nlp.cs.washington.edu/triviaqa/
24https://github.com/amazon-science/amazon-multilingual-counterfactual-dataset
25https://www.kaggle.com/competitions/tweet-sentiment-extraction/overview
26http://ai.stanford.edu/ amaas/data/sentiment/index.html
27https://huggingface.co/datasets/google/jigsaw_unintended_bias
28https://facebookresearch.github.io/ELI5/
29https://hotpotqa.github.io/
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• AmazonReviewsClassification: academic research use dataset license.30

• Quora Duplicate Questions Detection: Unknown.31

• MSMARCO passage and document ranking is distributed for non-commercial resource purposes
by Microsoft, but not extending any license or other intellectual property rights.32

• STS22: Unknown - harvested news articles.33

• STSBenchmark: Unknown - aggregation of datasets from SemEval STS shared tasks from
2012-2017.34

30https://github.com/awslabs/open-data-docs/tree/main/docs/amazon-reviews-ml
31https://www.kaggle.com/c/quora-question-pairs
32https://microsoft.github.io/msmarco/Datasets.html
33https://competitions.codalab.org/competitions/33835
34http://ixa2.si.ehu.eus/stswiki/
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