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Abstract

In recent years, machine translation has evolved001
with the integration of multimodal informa-002
tion. Infusion of multi-modality into trans-003
lation tasks decreases disambiguation and en-004
hances translation scores. Common modalities005
include images, speech, and videos, which pro-006
vide additional context alongside the text to be007
translated. While multimodal translation with008
images has been extensively studied, video-009
guided machine translation (VMT) has gained010
increasing attention, particularly since (Wang011
et al., 2019) first explored this task. In this012
paper, we provide a comprehensive overview013
of VMT, highlighting its unique challenges,014
methodologies, and recent advancements. Un-015
like previous surveys that primarily focus on016
image-based multimodal translation, this work017
explores the distinct complexities and opportu-018
nities introduced by video as a modality.019

1 Introduction020

Multimodal Machine Translation (MMT) improves021

translation by incorporating more context. This022

context can be in the form of images, audio and023

video. This infusion of extra context helps in dis-024

ambiguation of translated text and make it more025

meaningful and accurate. MMT often mimics the026

way human translators annotated data. They take027

into account all information that emanates from all028

modalities while translating the sentence in source029

language to target language. While MMT mostly030

focuses on images being the additional modality031

to the source text sentence, Video-guided machine032

translation has been picking immense interest as033

compared to other MMT techniques due to its abil-034

ity to provide richer, more dynamic contextual in-035

formation than images.036

VMT takes advantage of the temporal and mul-037

timodal nature of videos, which combine visual,038

auditory, and textual data into a single cohesive039

source of information. Unlike static images, videos040

capture sequences of events, actions, and interac- 041

tions, offering a more comprehensive understand- 042

ing of the context. This makes video-based MMT 043

particularly effective for tasks such as translating 044

instructional videos, movies, or multimedia con- 045

tent, where temporal alignment and multimodal 046

fusion are critical. For example, in a cooking video, 047

the translation of a spoken instruction (e.g., "chop 048

the onions") can be disambiguated by the visual 049

demonstration of the action, ensuring the transla- 050

tion is both accurate and contextually appropriate. 051

The importance of video-based MMT lies in its abil- 052

ity to address several limitations of traditional text- 053

based and image-based translation systems. Videos 054

provide temporal continuity, enabling models to 055

capture the progression of events and actions over 056

time. Second, the integration of multiple modalities 057

(text, audio, and video) allows for more robust dis- 058

ambiguation of ambiguous terms or phrases. VMT 059

has practical applications in real-world scenarios, 060

such as cross-lingual video captioning, multimedia 061

content localization, and assistive technologies for 062

the hearing impaired. 063

In this paper, we provide a comprehensive sur- 064

vey of video-based multimodal machine translation, 065

focusing on its methodologies, challenges, and ad- 066

vancements. Unlike previous surveys that primarily 067

focus on image-based MMT, this work highlights 068

the unique aspects of video-guided MMT and its 069

growing importance in the field. We systematically 070

categorize and analyze state-of-the-art approaches, 071

datasets, and evaluation metrics, while also iden- 072

tifying key open problems and future research di- 073

rections. By bridging the gap between traditional 074

text-based translation and video-based MMT, this 075

survey aims to serve as a valuable resource for 076

researchers. 077
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2 Background and Preliminaries078

Multimodal Machine Translation (MMT) incorpo-079

rates multiple modalities, such as images, speech,080

or videos, to improve translation quality. Image-081

guided machine translation (IMT), which uses vi-082

sual information as an additional modality, gained083

momentum with the introduction of the Multi30K084

dataset by (Elliott et al., 2016). However, the085

scarcity of paired image-text datasets led to alter-086

native approaches such as retrieval-based image087

machine translation (Fang and Feng, 2022; Tang088

et al., 2022; Zhang et al., 2020), which retrieves089

relevant images, and text-to-image-based machine090

translation (Calixto et al., 2019; Li et al., 2022a;091

Long et al., 2021; Yuasa et al., 2023; Guo et al.,092

2023), where synthetic images are generated from093

text. Beyond IMT, text-in-image machine trans-094

lation (Chen et al., 2023; Lan et al., 2023; Ma095

et al., 2022, 2024, 2023) focuses on translating096

text embedded within images. Another develop-097

ment in MMT is simultaneous machine translation098

(SiMT) (Haralampieva et al., 2022; Imankulova099

et al., 2020; Ive et al., 2021), which generates trans-100

lations before receiving the full input to reduce101

latency while maintaining quality. More recently,102

video-based machine translation has emerged, in-103

corporating temporal information alongside visual104

and textual data for improved translation accuracy.105

3 Problem Formulation106

The task of {video-guided multimodal machine107

translation (VMT) involves generating accurate and108

contextually appropriate translations of source lan-109

guage text by leveraging additional modalities such110

as video and audio. Formally, given a source lan-111

guage text S = {s1, s2, . . . , sn} and a correspond-112

ing video frame sequence V = {v1, v2, . . . , vm}113

(which may include associated audio A =114

{a1, a2, . . . , ak}), the goal is to produce a target115

language translation T = {t1, t2, . . . , tp} that is116

linguistically accurate and contextually aligned117

with the multimodal input. The objective of video-118

guided MT is to learn a mapping function f that119

maximizes the likelihood of the target translation120

T given the source text S, video V , and audio A,121

expressed as122

f(S, V,A) = argmax
T

P (T | S, V,A).123

This involves optimizing model parameters to min-124

imize the discrepancy between the predicted trans-125

lation T̂ and the ground truth T , typically using126

cross-entropy loss or other sequence-level objec- 127

tives. The integration of video and audio modali- 128

ties introduces unique challenges, such as temporal 129

alignment, modality heterogeneity, and scalability, 130

which distinguish video-based MT from traditional 131

text-based or image-based MT and necessitate spe- 132

cialized approaches to effectively harness the rich, 133

dynamic information provided by multimodal in- 134

puts. 135

4 Video Guided Machine Translation. 136

Video-guided multimodal MT leverages multiple 137

modalities (text, video, and audio) to improve trans- 138

lation quality. The approaches can be broadly cate- 139

gorized based on how they handle modality fusion. 140

Below and in Fig. 1, we present a taxonomy of 141

these approaches, focusing on Late Fusion, Early 142

Fusion, and Hybrid Fusion. 143

4.1 Late Fusion 144

The early approaches in VMT utilized separate en- 145

coders for video and text modalities and combined 146

them at a later stage in the VMT pipeline. 147

(Wang et al., 2019) designed a multimodal se- 148

quence to sequence model with temporal attention 149

and source attention for videos and text embed- 150

dings respectively. 151

(Hirasawa et al., 2020) introduce a novel ap- 152

proach to video representation in machine transla- 153

tion by incorporating positional encodings, making 154

the model aware of the temporal order of frames. 155

They further enhance the video representation by 156

distinguishing between two types of features: ac- 157

tion and appearance. The action features, captured 158

by a dedicated video encoder, focus on motion in- 159

formation crucial for disambiguating verbs in the 160

translation process. Conversely, appearance fea- 161

tures, extracted by an image encoder, provide de- 162

tailed information about objects and scenes within 163

each frame, aiding in the disambiguation of nouns. 164

This dual-feature approach allows the model to bet- 165

ter align visual cues with textual elements. 166

(Gu et al., 2021) introduce a novel approach to 167

video representation inspired by Hierarchical At- 168

tention Networks (HAN) (Miculicich et al., 2018). 169

Their model divides video input processing into 170

two distinct components: motion representation 171

and spatial representation. For capturing motion 172

dynamics, they employ a pretrained I3D (Carreira 173

and Zisserman, 2017) network. The spatial aspect 174

is handled by a specialized HAN, which constructs 175
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Figure 1: Taxonomy for Video Guided Machine Translation

a multi-level representation hierarchy: object-level,176

frame-level, and video-level. In this special HAN,177

each successive level of representation serves as178

a helper for the higher level, allowing for a pro-179

gressively more comprehensive understanding of180

the video’s spatial content. The object-level fea-181

tures inform the frame-level representation, which182

in turn contributes to the overall video-level under-183

standing. This hierarchical approach enables the184

model to capture both fine-grained spatial details185

and broader contextual information. For generat-186

ing the translated sentence, the authors utilize a187

GRU (Gated Recurrent Unit) (Chung et al., 2014)188

network as the decoder.189

4.2 Early Fusion190

Where different modalities are embedding tigether191

befre being passed on to a shared encoder:192

(Kang et al., 2023)introduces a cross-modal en-193

coder that jointly processes video and text represen-194

tations. The model enhances video features with195

positional encodings to capture temporal informa-196

tion. This cross-modal architecture enables the197

model to focus on relevant parts of both text and198

video inputs, facilitating more effective multimodal199

understanding. The training process incorporates200

two key objectives: cross-entropy loss in the de-201

coder for sequence generation, and a novel cross-202

modal contrastive learning (CTR) objective. The203

CTR objective is designed to learn shared seman-204

tics between video and text modalities, encouraging205

similar video-text pairs to have closer representa-206

tions while pushing dissimilar pairs apart in the207

embedding space.208

(Guan et al., 2025) introduces the FIAT archi-209

tecture, a uni-modal encoder that integrates mul- 210

tiple fine-grained inputs for video-guided transla- 211

tion. The model incorporates various types of tags, 212

including entities, audio sentiments, locations, ex- 213

pressions, and video captions, alongside source sub- 214

titles. This rich set of inputs enables a more com- 215

prehensive understanding of the video content. The 216

cross-modal encoder processes these diverse inputs 217

jointly, allowing for complex interactions between 218

different modalities. To capture nuanced speech 219

information, the architecture employs a soft atten- 220

tion mask that incorporates stress patterns from the 221

audio. This attention mechanism helps the model 222

focus on emphasized parts of speech, potentially 223

improving the accuracy and naturalness of transla- 224

tions. 225

4.3 Hybrid Fusion 226

(Li et al., 2023) introduce SAFA (Selective Atten- 227

tion with Frame Attention), a novel approach for 228

video-guided machine translation that integrates 229

two key innovations: frame attention and selective 230

attention. The frame attention mechanism, inspired 231

by gated fusion techniques, encourages the model 232

to focus on the most relevant video frames, par- 233

ticularly central frames where subtitles typically 234

appear, implemented through a frame attention 235

loss. The selective attention component dynam- 236

ically determines when to leverage visual informa- 237

tion for translation, especially useful for handling 238

ambiguous text. To further enhance the model’s 239

ability to handle ambiguity, SAFA incorporates an 240

ambiguity-aware loss, encouraging heavier reliance 241

on video information for ambiguous text while pri- 242

oritizing textual cues for non-ambiguous cases. 243
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4.4 Datasets244

Table 1 presents all the datasets used in Video-245

guided machine Translation. Detailed analysis of246

the dataset in given in Appendix A247

Dataset Language Domain # Clip
How2 En-Pt instruction 189K
VATEX EN-Zh caption 41K
VISA En-Ja subtitle 40K
EVA En-Zh/Ja subtitle 1.4M
BigVideo En-Zh subtitle 3.3M
MAD-VMT En-Zh caption 193K
TriFine En-Zh subtitle 2.4M

Table 1: Dataset Information of Various VMT datsets
as in (Guan et al., 2025)

5 Challenges and Future Directions248

This section discusses about various challenges249

in VMT and also points towards possible future250

research directions251

5.1 Challenges252

Information Redundancy and Computational253

Overhead According to (Guan et al., 2025),254

VMT requires selecting multiple frames to ex-255

tract coarse-grained visual features. However, not256

all frames contribute equally to translation qual-257

ity, leading to increased computational overhead.258

The inclusion of redundant frames can also intro-259

duce regularization issues, impacting model perfor-260

mance.261

Audio Integration in VMT While VMT primar-262

ily relies on visual cues for translation, incorporat-263

ing audio is crucial. Audio provides essential con-264

textual information, such as speaker intent, tone,265

and background sounds, which significantly en-266

hance translation accuracy. However, effectively267

fusing audio with video representations remains a268

challenge. (Guan et al., 2025) has only introduced269

a trimodal dataset with audio and fine grained tags.270

Data Scarcity in Low-Resource Languages271

VMT models require triplet data—video, source272

text, and target text—for training. However, such273

datasets are scarce, particularly for low-resource274

languages and underrepresented language families.275

This data bottleneck limits the scalability and gen-276

eralization of VMT models.277

5.2 Future Directions 278

Integrating World Knowledge Enhancing VMT 279

with external world knowledge, such as named enti- 280

ties (famous personalities, cultural references) and 281

idiomatic expressions, could improve translation 282

accuracy. Techniques like knowledge graph inte- 283

gration or retrieval-augmented generation could be 284

explored. 285

Leveraging Large Multimodal Models Pre- 286

trained large-scale multimodal models, trained on 287

extensive text-image corpora, could be fine-tuned 288

for VMT. These models inherently capture rich 289

cross-modal representations, making them valuable 290

for video-based translation tasks. 291

High-Quality Multilingual and Domain-Specific 292

Datasets Developing large-scale, high-quality 293

datasets across multiple language families and di- 294

verse domains is essential for improving VMT. 295

This would address current data scarcity challenges 296

and enhance translation performance in various 297

contexts. 298

Real-Time Translation with Low Latency 299

Achieving real-time video-based translation with 300

minimal latency is a key goal. Optimizations such 301

as efficient frame selection, lightweight transformer 302

architectures, and parallelized inference pipelines 303

could be explored to enable low-latency, high- 304

accuracy translations. 305

6 Conclusion 306

In this paper, we provide a comprehensive overview 307

of video-guided machine translation (VMT). We 308

begin by discussing the background and evolution 309

of multimodal machine translation (MMT) to VMT. 310

Next, we present a taxonomy of various VMT ap- 311

proaches based on their model design. We then 312

review the datasets commonly used for VMT re- 313

search. Finally, we discuss the key challenges in 314

VMT and explore potential future directions for 315

advancing this task. 316

Limitations 317

Since video-guided machine translation is an 318

emerging field, any survey on this topic must be 319

continuously updated to reflect new research de- 320

velopments. As new datasets, models, and ap- 321

proaches are introduced, the landscape of VMT 322

evolves rapidly, making it challenging to maintain 323

a comprehensive and up-to-date overview. 324
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A Dataset Details 507

Vatex datset introduced in (Wang et al., 2019) is 508

one of the most widely used benchmarks for video- 509

based multimodal machine translation. It consists 510

of multilingual video descriptions and is designed 511

to facilitate research in video captioning and trans- 512

lation. The dataset contains over 41,000 videos 513

collected from the MSR-VTT (Xu et al., 2016) 514

dataset, with each video annotated with 10 English 515

descriptions and their corresponding translations 516

in Mandarin Chinese. The videos cover a diverse 517

range of topics, including sports, music, and ev- 518

eryday activities, making it a robust resource for 519

training and evaluating multimodal MT models. 520

EVA (Li et al., 2023) is a more recent dataset 521

focused on educational videos, designed to support 522

research in translating instructional content. It in- 523

cludes videos from online educational platforms, 524

annotated with {source text (English) and target 525

translations (multiple languages). EVA is partic- 526

ularly useful for studying the translation of domain- 527

specific content, such as lectures, tutorials, and 528

demonstrations. Key features of EVA include its 529

focus on educational content, multilingual transla- 530

tions for diverse target languages, and high-quality 531

audio and visual data. However, it poses challenges 532

such as the need for domain-specific knowledge 533

to handle technical terminology and complex sen- 534

tence structures. EVA is widely used for translating 535

instructional and educational videos, as well as for 536

domain adaptation in multimodal MT. 537

How2 (Sanabria et al., 2018) was one of the 538

first datasets addressing multimodal language un- 539

derstanding. It contains 79,114 instructional videos 540

along with English subtitles and aligned Portuguese 541

subtitles. All the clips contain the summary of the 542

event occurring in the clip. 543

VISA (Li et al., 2022b) contains clips from 544

movies and TV along with parallel subtitles in En- 545
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glish and Japanese. All subtitles are ambiguous and546

fall into either the "Polysemy" or "Ambiguous" cat-547

egory. Hence, any translation task involving these548

subtitles must rely on the corresponding video clip549

for context.550

BigVideo (Kang et al., 2023)is a large-scale551

dataset specifically focusing on video subtitle trans-552

lation. It contains 4.5 million English-Chinese sen-553

tence pairs aligned with 156,000 unique videos,554

totaling 9,981 hours of content. It is currently the555

largest video-guided machine translation dataset556

available. BigVideo contains two specially anno-557

tated test sets: Ambiguous and Unambiguous. The558

Ambiguous set contains source inputs that require559

video context for accurate translation, while the Un-560

ambiguous set includes self-contained text suitable561

for translation without visual cues.562

The MAD-VMT (Shurtz et al., 2024) (Movie563

Audio Descriptions for Video-guided Machine564

Translation) dataset is derived from the MAD565

dataset, which contains transcribed audio descrip-566

tions of movies typically used for visually impaired567

audiences. To create MAD-VMT, the English tran-568

scriptions from MAD were machine-translated into569

Chinese using Google Translate. This approach570

was adopted to increase the amount and lexical571

diversity of both source and target language pre-572

training data for video-guided machine translation573

tasks. The dataset underwent quality control using574

the COMET-QE metric, resulting in approximately575

193,130 sentence pairs (about 69% of the origi-576

nal size) after filtering. Unlike the original MAD577

dataset, MAD-VMT includes character names in578

the training set instead of replacing them with579

generic tokens, making it more suitable for transla-580

tion tasks where the source text can provide context581

for character names.582

Trifine (Guan et al., 2025) is a comprehensive583

tri modal dataset designed for vision-audio-subtitle584

analysis and translation tasks. It features a parallel585

corpus of English-Chinese subtitles, complemented586

by fine-grained audio labels such as audio senti-587

ment and stress, as well as video labels including588

location, entities, expressions, and actions.589
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