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Abstract

Algorithmic decision-making systems increasingly guide
consequential judgments in domains such as criminal justice,
credit scoring, and healthcare. Yet, their legitimacy is under-
mined by predictive inconsistency. When the same person
receives different risk scores depending on which data and
modeling pipeline is used, even when all paths are reasonable,
individuals with highly variable predictions might face un-
fair treatment. While prior research conceptualized this mul-
tiplicity issue and proposed multiverse analysis (specifica-
tion curves) to expose variability, existing tools remain in-
accessible to non-technical stakeholders who rely on algo-
rithmic predictions in high-stakes decisions. This study intro-
duces an interactive multiverse visualization dashboard that
translates complex pipeline variability into interpretable in-
sights for decision-makers, using regression trees in the back-
end. Unlike conventional explainability tools that focus on
how one model treats different individuals, our framework
explores how one individual can yield multiple algorithmic
outcomes across plausible analytical pipelines. The dash-
board integrates three innovations: (1) interactive specifica-
tion curves adapted for predictive outcomes, (2) a regression
tree-driven engine to help identify which modeling decisions
most influence prediction variability, and (3) profile compar-
ison that visual counterfactual exploration of feature varia-
tions. Through these features, we provide an evidence-based
support tool to inform decision-makers in various high-stake
domains.

Code — https://github.com/fifi-ding/basic_multiverse

Introduction

Algorithmic decision-making (ADM) systems shape impor-
tant decisions across society, determining who receives bail,
who qualifies for credit, and who gains access to health-
care coverage. Operating through machine learning algo-
rithms (Brynjolfsson and Mitchell 2017; Newell and Mara-
belli 2015), these systems have become pervasive in high-
stakes domains including criminal justice (Monahan and
Skeem 2016; Garrett and Monahan 2019), credit scoring
(Hand and Henley 1997; Authority 2019) , and health in-
surance (Cumming et al. 2002). These tools generate risk
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scores or probabilities indicating the likelihood an individ-
ual will experience a specific outcome such as loan default,
criminal recidivism, or healthcare utilization, which directly
inform consequential decisions about support or punishment
(Berk, Berk, and Drougas 2019; Siddiqi 2012). Yet despite
widespread deployment, their legitimacy is questionable:
identical individuals can receive dramatically different risk
assessments depending on which modeling pipeline choices
system designers make.

Greene et al. (2022) conceptualize this phenomenon as
predictive inconsistency, referring to situations where identi-
cal individuals receive different predicted scores because of
conceptually justified yet technically distinct pipeline mod-
eling choices (see Figure 1). Such choices include using
different sources of data, measuring variables in different
ways, and processing data through different techniques. In
practice, these decisions manifest in numerous ways: prac-
titioners routinely determine which risk factors to include
(DeMichele et al. 2020; Duncan 2011; Metz et al. 2019),
what predictive models to implement (Abdou and Pointon
2011; Ash et al. 2000), and how prediction quality should be
evaluated (Bhatore, Mohan, and Reddy 2020). While these
are relatively visible modeling decisions, they represent only
part of the challenge. Less transparent are the processing
choices that often go unreported, including data bias intro-
duced during collection (Barocas and Selbst 2016; Caton
and Haas 2024), subtle variations in questionnaire wording
(Duncan 2011), and inconsistencies in defining key terms
(Thomas 2000; Garrett and Monahan 2019). Taken together,
both visible and hidden modeling choices contribute to pre-
dictive inconsistency and lead to the Rashomon effect, where
different models may exhibit similar minimum error rates
despite arriving at various outcomes (Breiman 2001).

This often unreported variation creates parallel versions
of the same individual with divergent predicted outcomes
(Wynand, De Ven, and Ellis 2000), challenging the core re-
quirements of procedural consistency and fairness in high-
stakes decision-making contexts (Lee et al. 2019). One way
to understand this is to imagine an individual existing within
multiple algorithmic universes simultaneously, where dif-
ferent modeling pipeline approaches applied to that same
individual’s profile produce significantly varying risk out-
comes. These inconsistencies mirror a broader challenge in
scientific research: the problem of analytical flexibility and
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Figure 1: Sources of predictive inconsistency. Yellow nodes show flexible data-processing stages; blue nodes show post-
deployment stages with less design control. (Adapted from Greene et al. (2022))

its threat to reproducibility. Simmons, Nelson, and Simon-
sohn (2011) termed researcher degrees of freedom as the
flexibility researchers possess in data collection, analysis,
and reporting, which can unintentionally skew results to-
ward desired outcomes. Subsequent studies (Nosek, Spies,
and Motyl 2012; Gellman and Lokem 2014) have shown
how such flexibility, often motivated by disciplinary norms
rather than misconduct, leads to what is known as the gar-
den of forking paths. This refers to a multitude of plausible
yet unacknowledged analytical pipelines that lead to inflated
false-positive findings and undermine the reliability of both
scientific and algorithmic inference. In response to the re-
producibility crisis, specification curve analysis (SCA), as
developed by Simonsohn, Simmons, and Nelson (2020), vi-
sualizes the robustness of research findings across multiple
analytical choices. SCA consists of two aligned panels (Fig-
ure 2): The top panel is the specification curve, where each
point represents the outcome of interest (e.g., effect size or
p-value) from a different model specification. The bottom
panel is the specification grid, which details the analytical
decisions (e.g., model types, sample restrictions) underlying
each point. The panels are aligned on the x-axis, allowing
readers to trace any result on the curve down to the exact
combination of choices in the grid. The colors show the sta-
tistical outcome: red is statistically significant and gray is
statistically insignificant. Specifications, also known as uni-
verses, are generated by systematically testing all combina-
tions of feasible analytical options (e.g. 3 outcome measures
x 3 treatment types x 2 models x 4 offense types = 72 speci-
fications), revealing the sensitivity of the findings to method-
ological variation.

Greene et al. (2022) suggested adapting SCA for predic-
tion rather than statistical inference by focusing on predicted
scores for a single individual. However, they did not pro-

vide practical tools for decision-makers to navigate predic-
tive inconsistencies. While their work makes visible the typi-
cally hidden modeling pipeline choices that affect individual
outcomes, significant gaps remain in translating multiverse
analysis into actionable insights for non-technical stakehold-
ers in real-world settings. Judges determining bail, loan offi-
cers evaluating credit applications, or insurers making cov-
erage decisions, are typically presented with simplified out-
puts: a numerical probability score and a categorical recom-
mendation. They remain unaware of the numerous model-
ing pipeline decisions made throughout the process, lack in-
sight into which choices most influence outcomes, and have
no way to evaluate whether alternative pipeline approaches
might yield different conclusions for the individuals whose
lives hang in the balance.

This study addresses these limitations by developing an
interactive multiverse visualization dashboard that translates
complex analytical variability into interpretable insights for
decision-makers without technical expertise. In contrast to
conventional approaches that analyze statistical relation-
ships or existing explainability tools —such as SHAP- that
elucidate how a single model produces different predictions
across individuals, our framework shifts focus to individual-
level predictions, exploring how one individual could have
multiple algorithmic versions of themselves across reason-
able modeling pipeline choices. The dashboard allows com-
parative analysis between a focal profile (the actual individ-
ual) and counterfactual profiles (the same individual with
modified characteristics such as gender or race), revealing
not only prediction variability but also interactions between
processing pipelines and demographic features. Through
three innovations: interactive specification curves adapted
for probability outcomes, regression trees that identify key
pipeline decisions that drive prediction differences, and pro-



file counterfactual manipulation and comparison capabili-
ties, we make the forking paths of algorithmic decision-
making both visible and comprehensible to stakeholders
who must act on these predictions.

Related Work
Rashomon Effect

The Rashomon effect refers to situations where multi-
ple models achieve similarly high predictive performance
(Breiman 2001). Building on this idea, Semenova, Rudin,
and Parr (2019) introduced the concept of Rashomon sets:
the collection of models within a given function class that
perform approximately as well as the best model. Tools such
as TimberTrek (Wang et al. 2022) have been developed to
help users examine these sets and select tree model variants
that align with their interpretive or analytical preferences.
However, these tools primarily focus on model-level differ-
ences and do not account for variability introduced in ear-
lier data-processing stages, such as missing-value handling
or class imbalance, which can also contribute to predictive
inconsistency.

Rather than applying trees solely for variable selec-
tion, we use regression trees to analyze the entire mod-
eling pipeline. Within Greene et al. (2022)’s framework,
Rashomon sets can be seen as a subset of our dashboard’s
exploration space, focusing mainly on variations in model
type and configuration.

Multiverse Visualization Tools

Multiverse analysis emerged in response to the reproducibil-
ity crisis, encouraging researchers to examine all plausible
modeling decisions to ensure robustness. Liu et al. (2020)
developed Boba Visualizer, which simplifies this workflow
by letting users define analysis code once and explore each
feature’s effect on the coefficient estimations interactively,
but their work remains as statistical analysis rather than a
predictive one. Simson, Pfisterer, and Kern (2024) applied
multiverse fairness to public health insurance data revealing
how certain processing methods influence fairness. How-
ever, in his interactive tool, we are unable to tell how each
decision impacted the fairness metrics without reviewing
each universe individually.

Both the Rashomon effect and multiverse analysis have
advanced our understanding of model variability, yet they
remain limited in scope. Rashomon sets primarily capture
variation across model architectures and parameters, over-
looking data preprocessing choices that can equally affect
predictions. Similarly, current multiverse analysis tools em-
phasize statistical robustness or fairness assessment but lack
integration with predictive modeling workflows and do not
provide a unified view of how preprocessing, modeling, and
evaluation decisions interact. Our proposed dashboard ad-
dresses these shortcomings by bridging the two perspec-
tives: enabling systematic exploration of model, variable,
and preprocessing combinations within a single predictive
framework. This innovation provides not only transparency
into how modeling choices shape outcomes but also action-
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Figure 2: Specification Curve Analysis Demonstration

able insight for selecting models aligned with interpretabil-
ity goals.

Decision-Making Setup

We consider three datasets of individuals who returned to
jail (“recidivators”) across different time periods and con-
texts. This allows us to compare how data practices and
modeling choices influence predictions. The Correctional
Offender Management Profiling for Alternative Sanctions
(COMPAS) dataset (Angwin et al. 2016) is widely used
in fairness research for its controversial algorithmic risk
scores, containing demographic and criminal history data
for over 7,000 defendants. The North Carolina (NC) pris-
oners dataset (Schmidt and Witte 2012) reflects an earlier
data collection era, emphasizing survival analysis of 4,618
released prisoners with simpler race and offense categoriza-
tions, offering historical contrast in methodological norms.
The Georgia State (GA) prisoners dataset (2013-2015), re-
leased by the National Institute of Justice’s Recidivism Fore-
casting Challenge, includes over 25,000 parolees with rich
documentation and modern predictive modeling approaches.
Together, these datasets span nearly four decades of criminal
justice data, allowing systematic exploration of how defini-
tional, measurement, and methodological choices shape re-
cidivism prediction outcomes. To ensure consistent analysis
across datasets, we designed data processing and modeling
pipelines that standardize variable definitions, handle miss-
ing or inconsistent measures, and automate multiverse gen-
eration. Each pipeline integrates stages such as data clean-
ing, feature engineering, recidivism definition, model spec-
ification, and performance evaluation. This allows flexible
combinations of modeling decisions to form distinct “uni-
verses”. This structure enables systematic comparison of
how variations in predictors, preprocessing, and modeling
methods influence outcomes within and across datasets with
differing levels of completeness and preprocessing.
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Figure 3: Multiverse Dashboard Components

Predictive Inconsistency: Dashboard Design

To demonstrate how decision-makers can engage with our
multiverse dashboard, consider the scenario of a judge, who
must decide whether to grant bail to an individual: a 30-
year-old Black male. The judge wants to understand how
different pipeline modeling choices such as variable selec-
tion, resampling strategy, and model type affect the individ-
ual’s predicted risk of recidivism. Using universes built from
three datasets (COMPAS, NC, and GA), the judge turns to
the dashboard to explore prediction variability and identify
the methodological conditions under which the individual
might be assessed as high or low risk.

Focal Profile and Pipeline Decisions Overview

Figure 3(a) shows the focal profile of the individual the
judge is examining. The focal profile lists out the demo-
graphic characteristics of the individual. For this 30-year-old
Black male, he is recorded as a 30 year-old African Ameri-
can male in the dashboard. The judge proceeds to check the
Pipeline Decisions Overview (Figure 3(b)), giving him/her
a high-level snapshot of how the pipelines were constructed.
The judge can immediately see the total number of universes
produced, along with the pipeline modeling decisions that
define them such as resampling strategies, feature selection
methods, and model types. Each decision point lists how
many alternative options were tested, revealing the full range
of methodological variability behind the results.

Specification Curve Analysis

The judge then reviews the specification curve (Figure 3(c)).
Specification curves visualize the distribution of predicted
probabilities across all universes, where the y-axis repre-
sents predicted probabilities (ranging from O to 1), and the
x-axis lists universes sorted in ascending order by these pre-
dicted probabilities. Below the specification curve, the spec-
ification grid (Figure 3(d)) follows the same order, ensuring
that each grid column corresponds directly to a point on the

curve. Along the y-axis, the grid lists the available pipeline
options such as whether the sample includes only females
or males, whether demographic predictors are excluded, and
whether survival models are used. Each column represents a
unique combination of these options, forming one universe
within the multiverse. For example, a column labeled over
indicates that male participants were oversampled in that
universe.

The judge can interactively select specific probability
ranges on the curves to filter the universes displayed in the
grid. This filtering feature allows the judge to focus on sub-
sets of universes that produce similar predictions and exam-
ine the modeling pipeline decisions that lead to those out-
comes. For example, if the judge wants to find the pipeline
decisions that lead to lower predicted recidivism probabili-
ties compared with higher probabilities, s/he can select two
probability ranges (e.g. 0-0.2 and 0.6-1) to see the process-
ing choices that may have led to this difference. The judge
here notices from the grid that most low recidivism pre-
dictions are due to shorter recidivism definitions (one year
follow-up period). However, visual inspection alone may not
reveal the key differences between the two profiles’ specifi-
cations. To address this challenge, we make use of a trans-
parent machine learning tool by running a regression tree
with the predicted probabilities as the outcome, and the mul-
titude of universe pipeline modeling decisions as predictors.
The result is displayed in a regression tree-driven universe
card that identifies the most influential pipeline decisions
and options distinguishing the selected probability regions.

Universe Cards

The universe cards use regression tree analysis to identify
which pipeline modeling decisions have the greatest impact
on outcome variability. The cards present this information
through two components: (1) bar charts that display the rel-
ative importance of each modeling decision (derived from
impurity reduction), and (2) detailed breakdowns of the spe-
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cific options that create splits in the regression tree. ! To-
gether, these visualizations help users understand the key
factors driving differences in predictions across analytical
approaches.

Continuing from the previous scenario, the judge consults
the universe card to explore why prediction results differ.
From the bar charts (see Figure 3(e)), the judge observes
that data collection, predictors, and model selection most af-
fected the predictions. To investigate further, the judge ex-
amines the tree split rules underneath the bar chart, which
also reveal that data collection affects predictions the most.

Incorporating counterfactual profiles

During dashboard development, we created several proto-
types that varied based on the type of profile being ana-
lyzed and the number of datasets displayed. One extension
of the basic design is a version that incorporates a coun-
terfactual profile (see Figure 4), allowing users to exam-
ine how predictions change when a specific feature, such
as race, is altered. For example, we compare a 30-year-old
African American individual with a counterfactual version
of the same person labeled as Caucasian (White). In ad-
dition to adding the counterfactual specification curve and
grid, this prototype introduces another regression tree that
analyzes the selected region of universes across both the fo-
cal and counterfactual profiles, enabling cross-profile deci-
sion analysis. For this prototype, we used the GA dataset
exclusively. As shown in Figure 4, the specification curve
for the African American profile becomes markedly steeper

!The regression tree is implemented using R’s rpart () func-
tion, where inputs are all the pipeline decisions in the multiverse
and the outcome is their respective predicted probabilities.

than the Caucasian curve in the 0.8-1 range. To understand
this divergence, we inspected the specification grid and the
corresponding universe cards and found that differences in
splitting methods and recidivism definitions were key con-
tributors, especially the absence of shorter follow-up periods
in the African American profile. This highlights how even
small variations in the profile, despite sharing the exact same
pipelines, can affect predictions.

Discussion

The system’s interactive visualizations and traceability fea-
tures reveal patterns of instability across universes, im-
proving transparency in high-stakes settings. Our study
contributes three innovations: (1) interactive specification
curves for predictive outcomes, (2) a regression tree—driven
engine to identify influential pipeline modeling choices, and
(3) profile comparison tools for visual counterfactual explo-
ration.

Despite these advances, development surfaced challenges,
including balancing transparency with usability, integrat-
ing heterogeneous datasets with missing inputs and unequal
sizes, and constructing coherent individual profiles amid
dataset inconsistencies. In this section, we outline these
challenges and their implications for deploying predictive
multiverse analysis in real-world applications.

Information overload and transparency

The addition of counterfactual features rapidly increases
complexity and crowding of the visualization. Research
shows that people can only hold three to nine chunks of vi-
sual information in short-term memory and excessive com-
plexity can hinder comprehension (Few 2006). We do not



Table 1: Sample data for Figure 3

Collect Data | Age Category | Define Recid | Split | Gender Imbalancing | Model | Predictor | Recidivism Prob
compas propubica 2yr 6:4 under logistic | propubica | 0.675148496
compas propubica 2yr 6:4 under logistic | propubica | 0.589255221
compas year 2yr 6:4 under logistic | propubica | 0.688810423
compas year 2yr 6:4 under logistic | propubica | 0.603105608
compas nij 2yr 6:4 under logistic | propubica | 0.684402419
compas nij 2yr 6:4 under logistic | propubica | 0.589500402

yet know whether decision-makers prefer richer counterfac-
tual information or the simplicity of a single focal profile.
Our dashboard attempts to provide as much relevant infor-
mation as possible, but the current design introduces sev-
eral layers of visual complexity. The counterfactual profile,
method overview, and specification grid show what and how
data are used and processed. The specification curves visu-
alize how pipeline choices influence predictions, while the
universe cards offer interpretable summaries of the specifi-
cation grid. These components collectively risk overwhelm-
ing users. As Wilke (2019) notes, a visualization may be
memorable yet still confusing if it overloads cognitive ca-
pacity.

Hence, we must assess whether increased transparency
of pipeline modeling decisions actually promotes more in-
formed judgments in practice. Prior work has shown that
clarity does not necessarily improve fairness. Lee et al.
(2019) found that increased transparency did not lead to
fairer decisions, which raises the possibility that our dash-
board may exhibit similar limitations. Some components in
the dashboard contain overlapping information. The specifi-
cation grid, universe cards, and method overview all com-
municate details about pipeline processing. One option is
to consolidate the grid and method overview into a single
panel by making the grid’s y-axis more intuitive, such as by
color-coding parameter categories and values. Another ap-
proach is removing the specification grid entirely. Display-
ing all universes simultaneously in the grid may also over-
whelm viewers, who tend to focus on the relationship be-
tween curves and a few universe characteristics rather than
carefully examining the full set of specifications. Relying
solely on universe cards would reduce cognitive load, but at
the cost of transparency. This creates an inherent tension be-
tween simplifying the interface and preserving full visibility
of pipeline decisions, suggesting a need for adaptive inter-
faces that present information most relevant to the decision-
maker while allowing deeper inspection on demand.

An alternative solution is to remove the specification grid,
and instead dedicate more space to enlarging the universe
card. Users often interpret scrollable content as less im-
portant (Few 2006), so larger cards may increase visibility
and highlight regression tree insights without scrolling. User
studies can determine whether the dashboard supports fairer
decision-making, rather than simply improving visual clar-
ity.

We also acknowledge that the current labels for pipeline
modeling choices in the method overview may be insuffi-
cient for technical stakeholders. For example, terms like over

do not specify the exact processing methodology used. In fu-
ture designs, we plan to improve clarity by allowing hover-
over explanations or providing a terminology dictionary.

Generalizability across datasets

As described earlier, we designed different prototypes de-
pending on whether the dashboard includes a counterfac-
tual profile and how many datasets need to be visualized.
Figure 3 shows that data collection has the strongest im-
pact on predicted probabilities. The dataset underlying this
dashboard was created by three multiverse analyses (COM-
PAS, NC, and GA) each generated from universe designs
tailored to the variables available in that dataset. After gen-
erating these multiverse predictions independently, we com-
bined them into a single unified dataset for visualization.

In this combined dataset, each column represents a pro-
cessing step (e.g., data collection, data splitting, gender re-
balancing, predictor selection, and more), while each row
corresponds to a single universe (see Table 1). The data col-
lection column contains three possible values (COMPAS,
NC, and GA) indicating which dataset was used. Some pro-
cedures, such as gender imbalancing, are shared across all
datasets; therefore, each dataset includes universes oversam-
pling females, undersampling males, weighting cases to bal-
ance male and female representation, female-only samples,
and male-only samples. Other procedures apply only to spe-
cific datasets. For example, time partitioning is available
only for COMPAS, so its corresponding entries for NC and
GA are marked as N/A.

Multiverse analysis is effective when conducted on COM-
PAS, NC, and GA separately, but it becomes significantly
more complex when we attempt to integrate the datasets into
a single multiverse. We initially tried to standardize the uni-
verse designs across all three datasets, but even seemingly
simple variables revealed deep incompatibilities. Take prior
offenses, for example: GA provides a detailed breakdown of
different types of prior offenses, whereas COMPAS and NC
report only a total count. There is no reliable way to deter-
mine whether aggregating GA’s detailed categories produces
a measure comparable to the single-number priors used in
COMPAS and NC.

Race categorization introduces an additional complica-
tion. COMPAS reports race using multiple granular cate-
gories (Caucasian, African American, Hispanic, Asian, Na-
tive American, and Others). NC, in contrast, collapses race
into a binary indicator in which WHITE distinguishes Black
individuals from everyone else (i.e., Caucasian, Hispanic,
Asian, and Other). GA is even more restrictive: its authors




explicitly state that they only provide data for Black and
White individuals. These inconsistencies make it difficult
to meaningfully align universe designs across datasets and
highlight the inherent risks of attempting cross-dataset stan-
dardization in multiverse workflows.

Profile Creation

These inconsistencies become even more problematic when
using the system’s predictions for a new profile, as would oc-
cur in practice. Imagine a new case: a 30-year-old Hispanic
male charged with a misdemeanor and reported to have five
prior offenses. This person cannot be represented in GA be-
cause GA does not include Hispanic as a racial category, nor
can we map his total number of priors to GA’s detailed prior-
type structure. In real-world systems, we often do not know
how data scientists handle these gaps. They might substitute
a person with a similar criminal history but a different race,
or they might impute missing information using the mean
or some other aggregation. We experimented with a similar
strategy to approximate missing information. First, we iden-
tified variables that were consistently present and semanti-
cally comparable across datasets such as age, gender, and
race when race was measured in a compatible way. We then
constructed an individual’s profile using only these consis-
tent variables. For variables that were not comparable across
datasets, we searched within each dataset’s test set to find
individuals who matched the target person on the consistent
variables and used their values to fill in the remaining fields
needed for prediction. Under Greene et al. (2022) frame-
work, profile creation itself becomes a new source of pre-
dictive inconsistency. The same person may be represented
with different values depending on how variables are de-
fined, how incompatible attributes are reconstructed, or how
the system adapts once deployed. All of these factors con-
tribute to additional layers of variation in the final predic-
tions.

Self-consistency over accuracy

Multiverse analysis usually provides transparency in sta-
tistical inference rather than supporting predictive model-
ing. This difference matters because statistical and predic-
tive analyses have different goals and constraints. In statisti-
cal analysis, researchers examine effect sizes and statistical
significance (e.g. p-values) using complete datasets where
outcomes are already known. Predictive modeling operates
differently, where we attempt to predict unknown outcomes
using only available predictor information (input variables,
or features). Since predictions involve inherent uncertainty,
we cannot verify their accuracy until future outcomes oc-
cur. This uncertainty allows for more pipeline variability.
Researchers make numerous decisions such as which fea-
tures to include, how to preprocess data, which algorithms to
use, and how to tune parameters. Each researcher may pur-
sue different strategies they believe will optimize prediction
performance (e.g. accuracy), leading to researcher degrees
of freedom. By creating many simulated universes, we can
systematically vary factors that may influence the outcome.
Exploring different combinations of these factors across uni-
verses allows us to observe which configurations produce

better performance. However, multiverse analysis also re-
veals the worst outcome for the individual across these uni-
verses. Their best and worst outcomes, whether expressed
as scores, probabilities, or labels, can differ dramatically.
This variation illustrates why traditional model-level accu-
racy metrics are often uninformative in this context. A model
might achieve 99% accuracy overall, yet the particular tar-
get individual might be in the 1%. From the individual’s per-
spective, the high accuracy offers no comfort: their predic-
tion is simply wrong. Conversely, a best universe might yield
a model with only 20% overall accuracy, yet correctly pre-
dict the individual’s outcome. For this reason, our multiverse
does not emphasize conventional accuracy metrics. Instead,
we focus on self-consistency measures that better capture
the multiplicity of an individual’s outcomes by examining
how much their predictions vary across universes. This vari-
ance provides a more meaningful assessment of stability and
reliability at the individual level.

Adaptability to other high stakes domains

While beyond the scope of this paper, we expect that apply-
ing multiverse analysis to high-stakes domains like credit
scoring and healthcare will reveal how predictive variability
is shaped not only by technical choices but also by regu-
latory, ethical, and institutional constraints. In credit scor-
ing, design decisions about variables, proxies, and fairness
constraints can reinforce inequities despite appearing legally
neutral, raising questions about which universes are permis-
sible under antidiscrimination laws. Healthcare introduces a
different complexity: risk itself is multidimensional and con-
tested, with universes varying in how they handle missing
clinical data, population stratification, and competing clin-
ical and financial priorities. Such considerations imply that
extending predictive multiverse analysis requires not only
technical adjustments, but also careful design choices and
domain knowledge to ensure the results remain interpretable
and relevant. It demands domain-specific governance, ethi-
cal consideration, and stakeholder input to determine which
decisions during the process are meaningful, acceptable, and
fair. Applying our dashboard to other high-stakes domains is
therefore an important future step.

Conclusion

By generating multiple universe pipelines and visualizing
their outcomes through an interactive dashboard, our study
reveals that even seemingly minor pipeline modeling de-
cisions can alter predictions for the same individual. Be-
yond methodological contributions, our study proposes a
visualization framework to make these dependencies inter-
pretable to non-technical stakeholders. We also identified
tensions between transparency and fairness that require ex-
ploration through user studies and collaborative design with
real-world stakeholders. In doing so, our work lays the
groundwork for systems that not only reveal how predictions
are produced, but also support more thoughtful and holistic
decision-making across high-stakes environments.
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