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Abstract

Kernel matrix-vector multiplication (KMVM) is a foundational operation in ma-
chine learning and scientific computing. However, as KMVM tends to scale
quadratically in both memory and time, applications are often limited by these com-
putational constraints. In this paper, we propose a novel approximation procedure
coined Faster-Fast and Free Memory Method (F*M) to address these scaling issues
of KMVM for tall (108 ~ 10°) and skinny (D < 7) data. Extensive experiments
demonstrate that F>M has empirical linear time and memory complexity with a
relative error of order 10~ and can compute a full KMVM for a billion points in
under a minute on a high-end GPU, leading to a significant speed-up in comparison
to existing CPU methods. We demonstrate the utility of our procedure by applying
it as a drop-in for the state-of-the-art GPU-based linear solver FALKON, improving
speed 1.5-5.5 times at the cost of < 1% drop in accuracy. We further demon-
strate competitive results on Gaussian Process regression coupled with significant
speedups on a variety of real-world datasets.

1 Introduction

Kernel matrix-vector multiplication (KMVM) is one of the most important operations needed in
scientific computing with core applications in diffeomorphic registration, geometric learning [[11]],
[31]], numerical analysis [28]], fluid dynamics [6], and machine learning [27]. For a dataset of size
n, KMVM using direct computation has complexity and memory footprint O(n?), both unfeasible
for modern large scale applications where n =~ 10 is becoming increasingly common. Pioneering
contributions presented in the Fast Multipole Method (FMM) [10] amend the complexity of these
problems to O(nlog (¢~1)), where ¢ is the chosen error tolerance, with varying reductions in memory
footprint for data restricted to dimension D = 2. Subsequent developments in [8} [17]] mainly focused
on extending approximations for a broader set of kernels for a fixed dimensionality D < 3, tailored
for problems in physics with narrow data such as electrostatics, stellar dynamics, Stokes flow, and
acoustic problems, amongst others.

*Work mainly done while the authors were with the Department of Statistics, University of Oxford.
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Figure 1: A brief summary of the evolution of the FMM family. Our contributions in *.

+ Aussal et al. (2019) Introduced kernel
agnostic interpolation scheme

In this paper, we introduce Faster-Fast and Free Memory Method (F3M), a novel algorithm built
upon the FFM [3] framework to perform KMVM on a GPU for tall and skinny (D < 7) data of order
n ~ 10° in under a minute with user-specified error tolerance, providing between 2 — 8500 times
speed-up over existing methods. It should be noted that the constraints on D and n are not inherent
formal constraints, but a reflection of practical limits with typical current computational resources.

Notations. We use capital and lower case bold letters to represent matrices and vectors, respectively.
In this paper, we will work with matrices X € R"=*P Y € R™*P and vector b € R". For a
kernel k, the goal for KMVM is to compute v := Kb, where K := k(X,Y) = {k(x;,y;) 21"

i=1,j=1>
and x;, y; denote the i, j*" row of X,Y respectively.

2 Motivation and Related Work

Kernel methods are often limited by their O(n?) memory footprint and computational complexity for
KMVM. These constraints make scaling beyond n = 10° challenging. Many recent developments
have been made to improve both of these constraints, ranging from hardware acceleration using GPUs
in KeOps [11], to various approximation techniques proposed in [36} (33} 134} 3, 9]]. In this work, we
focus our attention on kernel independent KMVM methods.

KeOps. Charlier et al. [11] proposes a map-reduce scheme to compute kernels using exactly O(n)
memory and O(n?) complexity on GPU. This is achieved by computing the full KMVM product
on-the-fly by summing v; = Z?=1 k(x;,y;)b; directly, without ever storing the kernel matrix
K € R™*" explicitly. Extensive experiments show that this method is practical when n < 10, as
the GPU hardware acceleration allows the KMVM product to be computed in less than a second on a
conventional GPU. Moreover, the method places no constraint on the number of features D it can be
applied to, making it favourable for KM'VM on medium size datasets. In application contexts, KeOps
is currently adopted into conjugate gradient solver FALKON [24] 26] as part of the default pipeline.

a Table 1: Comparison between methods(* indicate ours).
The Fast and Free Memory Method (FFM). Method FMM KeOps FFM F*°M* FM*
While KeOps can theoretically scale to a bil- — Kernel Independent v v v 4

i ints. it b tically infeasibl Linear Time v v v v

ion pon; s, it becomes practically infeasible as ¢ Memory v v Y v
the O(n*) complexity would imply a computa-  Restriction in D <3 <3 <7 <7
tional time of 10® seconds, or roughly 11 days. PV N v v v

. 11e . . Scales to n = 10° v v

To overcome this billion points barrier, Aussal |, der 1 hour !

et al. [3]] deploys a geometric space partitioning  under I minute! ! v

scheme, and proposed the Fast and Free Mem-

ory Method (FFM), a KMVM approach that extends the FMM [[10] family of algorithms. In contrast
to traditional FMM methods, which require specific series expansion of the kernel, FFM deploys
Lagrange interpolations to approximate them instead. This allows FFM to be applied to almost any
conventional kernel and further enables the user to trade off accuracy with computational efficiencies
by controlling the order of the approximating polynomial [19]]. Compared to KeOps, FFM demon-
strates both linear memory and time complexity in experiments and scales to compute a billion-points
KMVM on a smaller CPU cluster under 4 hours, outscaling the GPU implementation of FMM [21]].
While 4 hours is a significant improvement compared to 11 days from KeOPS, it still renders many
machine learning techniques infeasible. Further, as recursive partitioning of the data space scales
poorly with D [5], both FMM and FFM can only be applied to D < 3 data, a price to pay for the
speed-up of KMVM operations when n = 10°. Furthermore, we show in our experiments that a direct
FFM port to GPU gives unstable results for n = 10, D = 3 for non-trivial data simulations (bottom
row in Appendix [I0).

2KMVM applied to 3D data for n = 10° on a Nvidia V100 GPU.



Our contribution. To surgass the billion point barrier while maintaining high-speed and stable
computation, we propose F2>M and our main algorithm F>M, the first pair of KMVM algorithms
that can reliably scale to n = 10° on skinny data using a single GPU. We build F%*M on top of
FFM by introducing non-trivial GPU parallelisation and low-level optimisations. We further stabilize
and improve the original geometric partitioning scheme in FFM to significantly reduce memory
constraints, leading to a relaxation of dimensionality constraints from 3 to 7. At last, we introduce an
adaptive far-field and smooth field approximation scheme for kernel interpolation, resulting in our
main algorithm F*M, which runs 2.0 — 33.3 times quicker and more stable than a direct port of FFM
on GPU. See Fig.|l|and Table|l|for an overview and comparisons of the methods. We summarise our
contribution as follows:

1. We propose Faster-Fast and Free Memory Method (F*M), a KMVM algorithm building on
top of FFM by applying multiple low-level enhancements, GPU parallelisation, and algorithmic
computational and memory enhancements, allowing for KMVM operations on n < 10? data in under
a minute. Codebase is released here [14]].

2. We characterize theoretical time and memory complexity of F>M.

3. We run extensive KMVM experiments of F°M on a variety of tall and skinny data with n < 10°,
demonstrating empirical linear time and memory scaling, and achieving speedups between 2—-8500
times when compared to FFM (GPU and CPU) and KeOps.

4. We run a practical application of F*M as a drop-in replacement for KeOps in conjugate gradient
solver FALKON [24] 26] for kernel ridge regression and classification (KRR) on giga-scale data,
obtaining a solution 3.4 times faster with <1% drop in accuracy. We further demonstrate competitive
results on Gaussian process regression against KISS-GP [35], SVGP [[18]] and SVGR [30] with
significant speed-ups.

3 Background

The FFM method considers KMVM for a kernel k evaluated on two data matrices X,Y and
b are weights associated with Y. The KMVM is expressed as v := k(X,Y)-b = K - b.
For example, b could be the weights in a KRR or the strength of electronic charges. As n,
and n, are taken to be very large, a full computation is unfeasible. In this section, we il-
lustrate and detail the main steps of FFM, before presenting our improvements in Section 4.
For illustration purposes, we first consider a simple 2D
KMVM. Our goal is to calculate £(X,Y) - b for X,Y in
Figure[2| The intuition behind FFM is to reduce the com-
plexity of calculating the full KMVM by partitioning X
and Y such that certain calculations can be approximated
in a fast manner, based on the pairwise distances between
partitions.

Enclosing and partitioning the data.  The first step is o ¥ 50
to partition the data. To begin, we find a large enough box Figure 2: Enclosing X and Y within a box,

Fhat can just enclose X or Y. The edge length of this box " marks the center of the box. Numbers un.
is calculated as

der the the boxes denotes edge length. In the
)) right plot, we have enclosed the blue points

with the largest box.

& 1= mae (mps(a{f, — a0, max(l — 2,

where mgﬁl;x? xﬁfi)n denotes the largest value and the smallest value along the d-dimension in X and

similarly for Y. Figure [2]illustrates this enclosing procedure.
Defining near and far-field In FMM, an octree [23]] is applied to recursively partition data into

smaller boxes Bg( C X, B;/ C Y, with p, q de-
noting box indices. Here each box corresponds
to a subset of rows in the data matrix. Let us -
also denote by as the partition of b;’s grouped
with the same indices as B,}/. To calculate the

KMVM between two boxes Bzf( , B(f with the v
- iy =

grouped vector by, for each x; € B g( , We com- ¢

BREE
wlo] [

=
w |
<

Figure 3: Recursive partitioning of X and Y for 2D

ata. Far-field interactions are colored green while near-
field interactions are colored orange and J denotes the
euclidean distance between the centers.
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with v = [v]*? .. v2:7]. Now the target v can be computed as v = o ([vP=!, ..., vP=F]T) where
vP = Zqul vP4, P,(@Q denote the total number of boxes and o (+) a permutation such that v? appear
in the same order as x; appears in X. Figure|3|shows how boxes are recursively partitioned.

Far and near-field interactions FFM relies on a divide-and-conquer strategy to effectively com-
pute a KMVM product; data is partitioned into boxes and then separated into far-field and near-field
interactions, where near-field interactions are computed exactly and far-field interactions are approxi-
mated using Lagrange interpolation for speed, explained in the paragraph below. The partitioning
procedure in FFM is recursive, where the recursion depth tree_depth controls the size of the edge
l= ﬁ of the box. An interaction is defined to be in the far-field if the distance between the two
center points of the boxes exceeds 2/, i.e. IsFarField := ||Xcenter — Ycenter|| = 2. While [ for each
box will decrease with the number of divisions, this rule ensures a fixed minimal distance for a given
depth for far-field interactions. Figure illustrates how far(green) and near(orange)-field interactions
arise between X and Y when tree_depth increases.

Lagrange interpolation We review Lagrange interpolation used for far-field approximations in
FFM. Given a function f(x) : [-1,1] — R and r+1 unique points s; € [-1,1], ¢=0,...,r, there
exists a unique polynomial p, () of degree < r that interpolates f at p,(s;) = f(s;). The Lagrange
polynomial is given by p,.(t) = >_._, f(s;)Li(t), where L;(t) = %, i=0,...,7
j=0,j#£i\Si—S5j

We are free to chose the degree r as well as the points s; to interpolate through. The choice of s; is
especially important in minimizing large oscillations around the edges of the interpolation interval
(Runge’s phenomenon [12]]). For this reason, Chebyshev nodes of the second kind are used [[7]
s; = costy, where ) = =, i =0,...,7.

Interpolating k(x,y) By noticing that k(x,y) is a bivariate function, we can apply Lagrange
interpolation twice, thus interpolating k(x,y) as k(x,y) ~ > .~ L£;(x) Z;il k(s?, sé’) L;i(y).
Here rx,ry denotes the number of the interpolation nodes and s, S‘? € RP denotes the

grid of interpolation nodes for B;X and BY. Note that since x € RP, we take £;(x) :=

| =0 @@y ¢ = 0,...,r. These operations can be vectorized and computed se-
B H;:o,#i(& =55 )
Vo
—
quentially on-the-fly with linear memory footprint v ~ L% - (K - (Ly - b)), which is done by first
——

Vi
computing v1, then v and lastly v. Here L x denotes a matrix with entries £;(x;), where 7 indexes
the rows and j the columns, with Ly following the same definition for y;’s instead. A far-field
KMVM between two boxes v, , = k(B;( , B;l) - by is then approximated by using double Lagrange
interpolation according to Figure [4]

1. Interpolate over ) and sum 2. Translate over interpolation nodes s, S{ 3. Interpolate over X’ and sum over uy

overb

us =1l o Ty =2 — g XY T Ld=1 . . pd=2 g
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Normalize data Interpolate and
sum

£

Normalize data Interpolate and
sum

Approximation complete!

Figure 4: Here we approximate a far-field interaction between two boxes. In 1. we first normalize the data
between [—1, 1] and conduct 2D interpolation of k(-, y) while summing over b. In 2., the interpolation for
k(x,-) will also be normalized and hence we need to translate the distance between the boxes by calculating
K - vi. Lastly in 3. we interpolate k(x, -) while we sum va.
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4 Faster-FFM (F*°M and F*M)

To fully leverage the port of FFM to GPU, we enhance FFM with novel approximation procedures for
improved complexity and memory optimizations to scale to n = 10°. We coin this improved version
Faster-FFM (F>M). The capabilities of F*M against previous methods are summarized in Table

4.1 CPU to GPU optimizations

In FFM, every computation is serial and on CPU. When moving to GPU, we have parallelized
all major computations. These parallelizations are non-trivial and require low-level algorithmic
optimizations, with challenges such as:

Box-to-threadblock alignment — A major challenge in the implementation of both the parallel
far-field and near-field computations was correctly aligning thread blocks to boxes. This aligning
requirement imposed non-trivial boundary conditions on data indexing when using shared memory.
To minimize memory usage of box and block indicators for our implementation, we represented the
box belonging of each point as index intervals (i.e. box 1 consists of points with ¢ € [1, ..., 500]
and box 2 with ¢ € [501,...,1337], etc.) and modulo arithmetic to infer the block belonging. This
clearly requires that the points are sorted or grouped according to their box belonging. However,
as we detail in the next paragraph, arranging the points could not be done straightforwardly with
native sorting methods. We further illustrate how parallelization is done for calculating near-field
interactions in Appendix [I}

No native sorting methods — We found that LibTorch [25]] sorting methods often led to out-of-
memory (OOM) due to allocation of large long-type vectors on GPU. When n = 10, this implies

allocating 8 GB of memory, 25% of the 32GB
card used, making it a necessity to avoid native Input: A sorted matrix of interactions Iy
sorting methods. Step 0 Step 1 Step2
Expand left Repeat

In-place grouping data on boxes — Due to in- 75
feasible LibTorch sorting methods, we addition- [, i o indices,

0
ally had to design an algorithm that finds a per- indicesinto | [ 1 within accorang
1

0 Expand
right
indices, by
dividing
each box
index into

0 Repeat left

[

new indices in new toright

mutation that would group X into its correspond- order indices  SXPansion
ing boxes in linear time and memory. We used a
count and increment-based strategy that would:
1. Count the number of points in each box dur-
ing the assignment operation (O(n)) and store
the count in a vector £&. Then run a cumulative
sum over &, starting from 0.

2. Initialize a n long permutation vector 7. Us-
ing the counting vector £, we would re-run the assignment operation and arrange a point with index ¢
as following m[atomicAdd (&' [box_index], 1) + £[box_index]] = i, where £’ is a running count of
points in each box. We specifically have to use the function atomicAdd to increment the count for
each box in parallelized GPU environments to avoid thread locks.

rlo|kr| o

new indices
in order

P|lR|P|k|ojo|o |0

WIN(P|o|w|N |k

Figure 5: Here we assume D = 1, hence we only
divide each box 2P = 2 times each time.

We refer to the box_division_cum_hash and box_division_assign_hash function in
n_tree. cu for exact details.

Ensuring interactions are sorted - To avoid any unneces-
sary sorting, we ensure that the matrix containing interactions
. . - . — 103 1Y

is always sorted by recursively dividing old in- n =10 n =10

500

teractions. We illustrate the procedure in Fig-
ure[5] We refer to the get_new_interactions a0
function in n_tree. cu for the exact implemen- =

5)

tation. 2
F 200
However, we found that these optimizations and "
porting alone were not enough to scale to n = =
10% on 3D datasets, as Figure E] demonstrates. “T\I—u"—lﬁﬁ“—‘f‘—"ﬁﬁ BN Clustered FEN Nom U N Unif
FFM doesn’t remove empty boxes or handle Datasets Datasets

boxes with few points in them and keeps expo- Figure 6: KMVM times on several datasets between

nentially creating new empty boxes and inter- FFM(GPU) vs M F*M. U&N was only run up to
actions, thus leading to out-of-memory (OOM) 5 =5.108

errors on non-uniform data (see Appendix [T0).



4.2 Scaling to n = 10° on GPU (F*°M)
In this section, we detail the memory enhancements that allow F*M to consistently scale to n = 10°.

Removing empty boxes with hash list indexing To ensure linear memory on GPU, we only keep
a reindexing vector o of size ng(resp. n,) in memory during the computation of the algorithm in
addition to a list of interactions and box centers. This reindexing vector rearranges the data points
so they appear in the order of the box they belong to. We optimize both the computation and the
memory footprint of these objects by avoiding recursive formulas and hash lists.

Naively, points can be assigned to boxes by direct comparison to all existing box centers. As

the number of centers grows exponentially with depth tree_depth, this method quickly becomes

pathological. To amend this, we propose a linear complexity formula to retrieve the box index 3; a
D

. (d— Tqg—«
point x € X C RY belongs to 3; = Z gtreedepth:(d—1) . LQtree-depth%J, where oy denotes
d=1

] . A €{0,1}, Denotes left or right
Summing over D dimensions of center of box edge

the minimum value of X in dimension D and x4 is the value of x in dimension D. To prevent
the number of boxes from growing exponentially, we remove empty boxes with each division. To
assign points to the corresponding boxes, we use a hash list to store 3; and the order . We can then
group points {X;};=1 to their respective ordering ¢ using the hash list in O(n) time in contrast to
O(n - 2P-tree-depth) by direct computation.

Handling boxes with few points with small field In cases when the number of points in each box
can vary greatly, we separately consider the interactions where the number of points in boxes is small.
Hence, we say that there is a small field interaction between boxes Bff , Bgf if both have a small
number of points, i.e. if

|B;¥|+|BX| < p, for some threshold number p. To minimize the computations

needed, p can be set to p = rx + ry. This intuitively allows F>M to directly
compute interactions that are too small to benefit from interpolation savings
(i.e. |B;(| + |B;1X\ < rx + ry), thus limiting memory usage by stopping
partitions from dividing further than necessary. In higher dimensions where  Figure 7: Full grid vs
the division rate is faster, p can be set to a higher value to limit memory usage sparse grid.

at the expense of more direct computations which are slower.

Sparse grids As the number of Lagrange polynomials increases exponentially with dimension, we
implement sparse grids [29]] to allow for a finer selection of interpolation nodes. With sparse grids,
the number of nodes needed grows slower [20], thus saving memory. We give an example of a sparse
grid versus a full grid in 2D in Figure

4.3 Speeding up F*°M (F*°M — F°M)

Smoothness criteria FFM speeds up its computations with minimal loss
in accuracy by selectively interpolating interactions that are far  apart.
To improve speed, we introduce
the smoothness criterion to widen of
the selection of interactions that b

can be interpolated with minimal
loss in accuracy. For a Gaussian

Kernel k(x,y) = ex Lyl
Y = ©&Xp ’ *  Abs Error *  Abs Error

272
. * 30 =3 - . * 30

Wlth lengthscale ’y, the Smoothness ]nnm 0.01 IL\ \1 23510 100 1000 ]nnm 0.01 IL\ \1 23510 100 1000
criteria is defined as is_smooth :=

.
-
.
&e
.

: f e
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Relative Error log,(z)

® Rl Error ®  Rel Error

Al

_ a) Dimension d = 3 b) Dimension d = 5
N Taieny TR ol a2 @ (®)
5 272 + Figure 8: Plotting relative and absolute error against squared
= Ty enY P Hyj(") —g(D 2 distance bf:twe_en boxes. "0" nodes mean we use the zero vector as
Bq v <y  anapproximation to the KMVM for a gaussian kernel. We observe

27? that its not beneficial to interpolate at all when the square distance
between an adjacent interaction of exceeds 5 and that is is sufficient to only use 3” nodes when square
boxes B)X, BY. The quantity com- distance is < 0.01.

puted can be understood as “Effective Variance” (EV), as it considers total variation in the exponent

of the Gaussian kernel. We justify the smoothness criteria with the following proposition.



Proposition 1. Consider x,y € X C R% such that d(x,y) := % = 2"11 f(x(i) — )2 <
n < 1 forall x,y. When interpolating k(x,y) = exp (—d(x,y)) using bivariate Lagrange interpo-
lation L,(x,y) := L% - K - (Ly - b) with degree r = 2p, for any p € N~ there exist nodes s*,sY
for L,.(x,y) such that the pointwise interpolation error is bounded by O(nP*1).

See Appendix |D|for proof. Hence for small 7 < 1, we see that the error becomes small for well
specified £,-(x,y). To avoid calculating the sample variance during computations which costs O(n),
we exploit that data is partitioned into hypercubes with a known edge £ and take the upper bound of

the variance in each cube as &~ - along a dimension. A proof for th1s bound is prov1ded in Appendix E
Adjacent interactions are then classified as smooth when 37 p m (EV of BX)+ E (EVof BY) =

(1) to compute.

Adaptive far-field approximation To further improve speed we introduce an adaptive rule to
select the number of interpolation nodes used when calculating far-field interactions. Error bounds
for multidimensional Lagrange interpolation have been proposed in [22], however, these bounds
cannot be directly used to create an adaptive interpolation rule. We thus simulate KMVM errors for
k(X,Y) - b where X, Y are uniformly distributed and b is normally distributed. We fix a distance
between X and Y and vary the squared of this distance between boxes against nodes in Figure |8} We

use a Gaussian Kernel with v = %

Based on Figure 8] we use the following rule for selecting the number of interpolation nodes for
far-field interactions

min(r,37) if (355)" - 55 <001
() =4 7 if 0.01 < (5 %Pm)Q gk <5
0 if5 < (5 (depmf -

272
where r is the number of nodes chosen to interpolate with in the general case.

Barycentric lagrange interpolation We slightly improve the complexity further by implementing
barycentric Lagrange interpolation [7]] evaluated at the Chebyshev nodes of the second kind. As this
is a well-known technique, we refer to the appendix for more details. It should be noted that the
above methods can straightforwardly be extended to any translation-invariant kernel by recalculating
the Taylor expansion for smoothness criteria and rerunning the simulation for adaptive far-field
approximation.

4.4 Complexity

The time complexity of FFM is O(n log (n)) [3] and we use a similar derivation strategy for F*M to
obtain a complexity that is dependent on the effective variance limit 1 (chosen parameter) and the
box width & (data). We first present two propositions needed to derive the complexity of F°M.

Proposition 2. A far-field interaction between two boxes containing n, and n, points respectively
has time complexity O(n), where n = max(ng, ny).
Proposition 3. Given n data points in dimension D, the maximum number of divisions
Treemaa: divisions is giVen by

Treemez divisions = IOgQD (n) (2)

With the above results, the complexity of FFM is taken as the maximum number of divisions
multiplied by the complexity of far-field interactions at each division which yields O(nlog (n)).
We remark that near-field interactions between boxes containing only 1 data point have linear time
complexity, hence the results hold.

Theorem 1. Given a KMVM with edge & (dependent on data X, ), lengthscale -, eﬁ‘ective variance
limit 0, n data points and data dimension D, F>*M has time complexity O(n - log, ( S )) which

can be taken as O(n - log, (7])) where C' < & 52.

Memory footprint As our implementation uses the same partitioning strategy as FFM, the the-
oretical memory complexity remains O(n) for F>M (see [3] for proof). However, this does not
accurately reflect the memory footprint of the actual implementations, whose memory mostly depends



on the number of interactions stored. We summarize these memory footprints for FFM and F*M in
Theorem 2] below.

Theorem 2. The number of interactions M; against tree depth i of FFM and F>M grows as
O (Mi,122'D — mzar) and

O (Mi7122'D _ (m:mPW)Q _ mfiar _ m;‘mooth _ m;mull)

respectively. Here M_, = 22% and mﬁ" = mf{”""”’ = mf)m”” = mgmp Y = 0 and

Trﬁ;‘”7 mimeoth small Y denotes the number of far-field, smooth field, small field interactions and
the number of empty boxes respectively at depth i > 0.

We see that the additional approximations presented in F*M also impacts memory footprint, as the
additional (m{™")2 mgmeoth small terms removes a substantial amount of interactions at each i,
significantly slowing down the growth of interactions, reducing memory growth. The efficacy of
(mS™PY)2, mgmooth psmall jg widely dependent on data. As an example, data with points very close to

each other would significantly benefit m$™°" more, as the closeness of points would imply more
smooth interactions. If points are sparsely spread out, (m{™™)2 m$™! would provide the most
benefit as they remove empty boxes and stops boxes with few points to divide unnecessarily. All

proofs can be found in Appendix [E]

5 Experiments

We demonstrate the utility of F°M over a variety of experiments using the Gaussian kernel k(x,y) =
2

exp —(%) We generate data such that the EV (see section i varies between 0.1, 1, 10 for

data of sizes n = 106,107,108, 10°. The parameters used for F°M are = 0.1,0.2,0.3,0.5 and
r = 2P 3P 4P with a cap at r = 2048. The error for the approximated KMVM product V is

calculated as Relative error := ”‘ﬁ;mj‘z , where the true KMVM product v is obtained by calculating

the full KMVM on a subset X' consisting of the first 5000 points in X against the entire dataset in
double precision, i.e. v = k(X', X) - b, where we fix b ~ A (0, I,,). All experiments were run on
NVIDIA V100-32GB cards, where the data is fitted entirely on the GPU. These cards were chosen
since the extra graphic memory is necessary to fit the data on one card when n = 10°. It should be
noted that n = 10 can only be run up to D = 3, as X and b itself cannot fit in memory for higher
dimensions with the GPUs we had available. For details on how F3M scales across multiple GPUs,
see Appendix [G]

Table 2: F*M (GPU) compared to results reported in [3] for FEM(CPU). F*M achieves a 90x speed up on a
billion data points. F*M used parameters 7 = 64 and ) = 0.5

FFM (12 CPU cores) F’M (GPU, Ours)
n Time (s) Error Memory | Time (s) Error Memory Speedup
105 334 1.35-10~% 100 MB | 0.08 £ 0.00 3-107*%£7-107° ~28MB  417x
107 169 1.98-107* 1GB 1.16 £ 0.04 3-107%4+£1.2-100% ~280MB 145x
108 1499 1.81-107* 10GB 12.454+0.06 2-107%*+5-107° ~28GB 120x
10° 11340 3.11-107% 100GB | 125.904+0.52 3-107*+£1.3-10° ~28GB 90 %

KMVM experiments We consider a wide variation of generated datasets to simulate different real-
world scenarios to test F*M on. For the k(X, X)-case we consider uniformly and normally distributed
data (D = 1,2, 3,4,5,6,7) together with data simulated from Brownian motion, fractional Brownian
motion, and Clustered data (D = 1, 2, 3). For the k(X, Y )-case we consider uniformly distributed
x and normal distributed y (D = 1,2, 3,4, 5,6, 7). See Appendix [I0]for visualizations of data. We
have to consider smaller n for the k(X, Y )-case when D > 3, as twice the amount of data needs to
be stored. For D = 3/(4,5)/(6,7) we instead consider at most n = 5 - 10%/2.5 - 108 /108. It should
be noted that D = 7 is a hard limit for geometric partitioning-based methods, since for D = 8, we
would have 282 . 282 x~ 4.3 . 10 interactions after only 2 divisions. This number of interactions
cannot even be represented by a 32-bit integer. We summarize the runs in Table [3|and plot the error
and time complexity in Figure@]for each dataset when D = 3. We find that F°M maintains sub-linear
empirical complexity up to D = 6, where we have to set small field limit p to a larger number to

3F3M is kernel agnostic, however we choose the Gaussian kernel for simplicity.



Table 3: Run time and relative error of all KMVM experiments for F*M. The slope is computed by regressing
log,,(Time (s)) against log;,(n). A slope of 1 implies O(n) scaling.

Time(s) Relative Error

n/D | 2 3 4 5 7 1 2 3 6 7
105 02 02 02 04 09 30 31 | 00018 00023 00005 00014 00032 00303  0.020

£0.1 +0.2 401 402 409  +£24  +21 | £0.0021 +0.0028 +0.0009 +0.0013 +£0.0022 +0.0314 =+0.0282
- 07 11 17 40 127 799 882 | 00016 00019  0.0006 00017  0.0057  0.0325  0.0273

£0.3 404 407 424 +100 +886  £90.2 | £0.0021 +0.0023 +0.0013 +0.0019 +£0.0032 +0.0261 +0.0179
08 35 74 171 406 760 5251 5129 | 0002  0.0025 00007  0.0023 00051  0.0376  0.0444

11 421 473 4287 4832 4109 +471.4 | £0.0026 +0.0032 +0.0013 +0.0021 +£0.0032 +£0.0230 +£0.017
25-10°  NA NA  NA o JoTo 30T ocom  oom | NiA N/A N/A e o NiA N/A

749 2894 6315 0.0012  0.0023  0.0041
5-10° NA - NIA - pog5 9928 9970 OOM  OOM | N/A N/A £0.0013  £0.0026 +0.003 VA N/A
, 204 738 174.0 0.0024  0.0025  0.0009
10° 189 4234 4766 OOM  OOM  OOM  OOM | 44004 400027 +0.0018 VA N/A N/A N/A
“Slope 078 0.85 099 098 099 106 102 | oo oo ToTTTmTTTTTTTTTTo
O(nlog(n)) 1.11
Table 4: FALKON using default KMVM vs FALKON with F*M.
FALKON with default KMVM FALKON with F°M

Dataset n D M | R? Time (s) R? Time (s) Error diff Speedup
Uniform 109 3 10° | 0.975 4+ 0.034 7631 + 2 0.976 + 0.038 2234 +429 | 0% 5.31
Normal 100 3 10° | 0.89340.118 7631 + 2 0.902 +0.114 2234 +429 | 1% 341
OSM 109 2 10° | 0.932 4 0.056 6752 + 13 | 0.943 +0.043 1670 £ 48 1.2% 4.04
NYC Taxi 10° 3 105 | 0.526 4+ 0.029 (AUC) 6963 & 69 | 0.526 + 0.030 (AUC) 4535+ 7 0% 1.53

not run out of memory. Further, the error increases in the higher dimensions since we use fewer
nodes per dimension when interpolating, owing to the sparse grid technique. We note that D = 7 has
faster run times than D = 6 which is explained by that for some values of EV, D = 7 doesn’t run
with acceptable errors which skew the run time to datasets where a larger portion of the data can be
interpolated.
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Figure 9: Relative error and time complexity for each 3D dataset.
We further replicate the data used in the first experiment in [3] and compare F*M against FFM (CPU)
in Table

Kernel Ridge Regression experiment We apply F>M to FALKON [24]], where we replace their
KMVM operation with F*M and compare performance and speed in solving Kernel Ridge Regression
(KRR). The KMVM operation currently used for smaller dimensions is KeOps [[11]]. Given some data
X € RV*? we want to find the solution v = (k(X, X) 4+ AI) ' b where X is the ridge parameter that
stabilizes the inverse. FALKON is a Nystrom approximation based solver that requires a subsample
X’ € RM*d of X to approximate the inverse computation. We focus the experiments on tall and
skinny data and take n = 10%, d < 3 with M = 10° for all experiments. We consider uniformly and
normally sampled data, the Open Street Map (OSM) dataset [[1] and a classification task on the NYC
Taxi dataset [2], where we predict whether the customer will tip based on trip distance, trip time and
fare cost. To construct b on synthetic problems, we first take a subset D € R1990%4 of X and sample
a ~ N (0, I1000x1000)- We then calculate b = k(X, D) - « + ¢, where ¢ ~ N(0,0.1). We run KRR
for EV = 0.1, 1, 10 on synthetic data, and report the average R? (AUC for NYC Taxi) and training
time in Table ] For the real world datasets OSM and NYC Taxi, we fix the lengthscale using the
median heuristic proposed in [16] averaged our results over the 3 runs.

Ablation study between FFM(GPU) and F°M  As much of the improved performance can be
attributed to our GPU implementation, we conduct an ablation study of FFM(GPU) against F°M and
KeOps in Table 5] We first present KMVM run times averaged over D = 3 and real-world datasets
OSM and NYC Taxi. For KeOps, we only computed the KMVM on uniform data. Since KeOps is
an exact method, the dataset distribution has no effect on computational time. Here, the smoothness



criteria and adaptive far-field technique improve computational time. We find that F*M achieves a
speed-up between 2.0 — 33.3x against FFM(GPU) and 8.0 — 8500 speed-up against KeOps.

Table 5: Comparison between F*M, FFM(GPU) and KeOps. It should be noted that KeOps is only run up to
n = 10® for all experiments (a run for n = 10° would take weeks). The times for n > 10® are extrapolated for
KeOps. FFM(GPU) could only run on uniform data for n = 10°.

F>M time (s) FFM(GPU) time (s) KeOps time (s) vsspf(ee‘g':s S"(eé‘:,‘{}’) vs
OsSM Taxi D=3 OSM Taxi D=3 D=: OSM  Taxi D=:
n (D=2) (D =3) (D=2 (D=3 (D=2 (D=3)
10° 01£00 05202 02201 | 07£02 12£02 04102 | 156 80 7.0 24 2.0
107 11404 33406 17407 | 101408 110.0+£19  37+£10 | 1486 87.0 92 333 22
108 108439 304469 171473 | OOM 760.54+27.9 43.7+12.2 | 1.49e4 873.0 N/A 25.3 26
10 101.8+£36.6 290.0+£69.4 174.0+76.6 | OOM 0OM 517.4460.8 | 1.49¢6 8583.0 N/A N/A 3.0
“Error | 0.0005" ~ 0.00127 ~ 0.0008" ~ [ 0.0005 ~ ~ 0.0002° " 0.0003" ~ | 00~~~
:

g;?s;?&ciii/ 9] (n - log, (*gin)) O (nlog(n)) ) (112)

Ablation study between F>°M and F*M  We provide and additional ablation study between F2°M
and F3M in Table @ The results are quite similar to the comparison between F>M and FFM(GPU).
Here, we see that smooth field and adaptive far-field approximation (F*M) both improve speed
and also memory usage as smooth field helps approximate more interactions. We can thus infer
empirically that the m$™*°™" term in Theorem [2| has a significant impact on reducing the memory
footprint of interactions.

Table 6: Comparison between F°M, F2-°M and KeOps. It should be noted that KeOps is only run up to n = 10%
for all experiments (a run for n = 10° would take weeks). The times for n > 10% are extrapolated for KeOps.

F*M time (s) F>5M time (s) KeOps time (s) vssple(ee‘(l;‘;’s S";ezdr,‘;\'/} vs
OSM Taxi D=3 OSM Taxi D=3 D=3 OSM  Taxi D=3
n (D=2 (D =3) (D=2 (D=3) (D=2 (D=3)
10° 01£00 05202 02£01 | LA£03 2003 0302 | 156 80 140 40 15
107 11404 33406 L7407 | 113404 1108420 45+21 | 1486 87.0 103 336 2.6
108 108439  304+69 171473 | OOM TITA+215 425+ 13.1 | 1.49e4 873.0 N/A 256 25
10° 101.8+£36.6 290.0£69.4 174.0+76.6 | OOM 0OM 488.4 +55.3 | 1.49e6 85830 | N/A N/A 2.8
“Error | 0.0005" 0.00127 ~ 0.0008" ~ [ 0.0004" ~ ~ 0.0002° " 0.0016~ ~ ~ | 00 "7

g’):’;f:;?; 9] (n -log, (%)) O (nlog(n)) 0 (n?)

Gaussian process regression experiments We further compare F*M as a drop-in KMVM operation
applied to Black-box Matrix Multiplication [15] for Gaussian Processes, compared to KISS-GP [335]],
an approximate Gaussian process using cubic interpolation for kernel approximation. We mimic the
setup in [32]] and consider the datasets 3DRoad, Song, Buzz and House Electric, where we apply
PCA to the last three datasets and take the 3 first principal components for a fair comparison against
KISS-GP, which is limited by D < 3. We demonstrate the results in Table As exact GP using F°M
demonstrates competitive results even when compared to SVGP [18]] and SGPR [30], we hygothesize
that many high-dimensional datasets conform to the manifold hypothesis [13]], allowing F°M to be
widely applicable out-of-the-box even in high-dimensional settings.

Table 7: Gaussian process regression results. Exact GP using F*M shows improved results and scaling compared
to KISS-GP. SGPR and KISS-GP could not scale to the HouseElectric dataset.

RMSE Training time (s)
Exact GP SGPR SVGP Exact GP SGPR SVGP
Dataset n d @v  KISSGP o s = 1029 @®w) KISS-GP (m = 512) (m = 1024)
3DRoad 778319 3 | 0297 £0.036 0314 £0.01 0.661 £ 0010 0.481 £ 0.002 | 27.8 £I80 3129108 7205 L3304  2045.0 £ 1014
Song 320820 90 | 0.369 £0.029 0.57£0.298 0.803 +0.002 0998 +0.000 | 72431  17052+115.6 4733+ 1875  2373.3 + 1849
Buzz 373280 77 | 0.967 £0.002 0997 £0.05 0300+ 0.004 0304 +0012 | 33.5+£9.0  542.7 £0.8 17548 + 1099.6  2780.8 + 175.6
HouseEletric 1,311,539 9 | 0.308 £0.006 OOM 00M 0.084 £ 0.005 | 79.8 £23.1 N/A N/A 22062.6 + 282.0

6 Limitations and Further Research

This work has introduced and implemented F*M on GPU, which enables fast KMVM for tall and
skinny data up to n = 10°. F*M has improved complexity which also is controllable through
7, and retains linear memory. Experiments in higher dimensions also exhibit linear complexity,
however requiring more nodes for lower errors. F>M can further be directly used as a drop-in KMVM
operation, as demonstrated with FALKON and Gaussian process regression, achieving significant
speedups and competitive performance on both tasks. As an interpolation based approximation
method, F>M is still limited by the exponential growth of interpolation nodes with respect to D,
although removing empty boxes, small field and sparse grids allow KMVM for D < 7. A fruitful
direction would be to extend ideas in F*M to accommodate higher-dimensional data by considering
randomized partitioning [4], decoupling the dependency on D in geometry based partitioning. Further,
an exact characterization of how mfr, mimeoth ppsmall MY orows is left to future work.
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