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Abstract

Follow-the-Regularized-Leader (FTRL) policies have achieved Best-of-Both-
Worlds (BOBW) results in various settings through hybrid regularizers, whereas
analogous results for Follow-the-Perturbed-Leader (FTPL) remain limited due to
inherent analytical challenges. To advance the analytical foundations of FTPL, we
revisit classical FTRL-FTPL duality for unbounded perturbations and establish
BOBW results for FTPL under a broad family of asymmetric unbounded Fréchet-
type perturbations, including hybrid perturbations combining Gumbel-type and
Fréchet-type tails. These results not only extend the BOBW results of FTPL but
also offer new insights into designing alternative FTPL policies competitive with
hybrid regularization approaches. Motivated by earlier observations in two-armed
bandits, we further investigate the connection between the 1/2-Tsallis entropy and
a Fréchet-type perturbation. Our numerical observations suggest that it corresponds
to a symmetric Fréchet-type perturbation, and based on this, we establish the first
BOBW guarantee for symmetric unbounded perturbations in the two-armed setting.
In contrast, in general multi-armed bandits, we find an instance in which symmetric
Fréchet-type perturbations violate the key condition for standard BOBW analysis,
which is a problem not observed with asymmetric or nonnegative Fréchet-type
perturbations. Although this example does not rule out alternative analyses achiev-
ing BOBW results, it suggests the limitations of directly applying the relationship
observed in two-armed cases to the general case and thus emphasizes the need for
further investigation to fully understand the behavior of FTPL in broader settings.

1 Introduction

In multi-armed bandit (MAB) problems, an agent plays an arm It from a set of K arms at each round
t ∈ [T ] := {1, . . . , T} over a time horizon T . After playing an arm, the agent observes only the loss
ℓt,It of the played arm, where the loss vectors ℓt = (ℓt,1, . . . , ℓt,K)

⊤ ∈ [0, 1]K are determined by the
environment. Given the constraints of partial feedback, the agent must handle the tradeoff between
gathering information about the arms and playing arms strategically to minimize total loss.

Although numerous policies have been developed for MAB, many of them can be largely classified
into two primary frameworks, namely Follow-the-Perturbed-Leader (FTPL) [32] and Follow-the-
Regularized-Leader (FTRL) [6]. While FTPL was inspired by a game theoretic approach [22, 25]
and FTRL emerged from the context of online optimization [26], both frameworks have analogs
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in discrete choice theory, a field in economics that models decision-making through probabilistic
frameworks to maximize utility over finite alternatives [51]. In particular, FTPL is known as the
additive random utility model [5, 50], while FTRL corresponds to the representative agent model [4].

Beyond these conceptual analogies, a line of work has formalized the relationship between FTPL and
FTRL in discrete choice theory [21, 27]. In particular, when the joint perturbation distribution has
a strictly positive density on RK , the existence of a corresponding regularizer, along with detailed
results on its properties, has been established [19, 44]. A classical example is the multinomial
logit model [40], known to be equivalent to both FTPL with Gumbel perturbations (also known as
Exp3 [7, 48]) and FTRL with a Shannon entropy regularizer [4]. In the context of online learning,
Abernethy et al. [3] discussed this relationship for general perturbations, where the formal theorem
was later established for the independent and identically distributed (i.i.d.) perturbations absolutely
continuous with respect to Lebesgue measure by Suggala and Netrapalli [49, Proposition 3.1].

While the above results mainly discuss the transformation of FTPL into FTRL, Abernethy et al.
[1, 3] demonstrated that (nearly) every instance of FTRL can be viewed as a special case of FTPL in
one-dimensional online optimization and more general equivalences are discussed by Feng et al. [19].
Nevertheless, when K ≥ 4, no FTPL counterpart exists for FTRL with log-barrier regularizer [27,
Proposition 2.2] and Tsallis entropy regularizer [33, Theorem 8]. These findings indicate that FTRL
strictly subsumes FTPL as a special case.

Despite this narrower coverage, FTPL has gained significant attention due to its computational
efficiency and simplicity, making it suitable for a variety of problems in online learning, including
combinatorial semi-bandits [43], online learning with non-linear losses [17], and MDP bandits [15].
Still, while FTRL policies have achieved optimal results in several problems such as graph bandits [16]
and partial monitoring [52], comparable progress for FTPL has been relatively underexplored.

This gap is primarily due to the complexity of expressing arm-selection probabilities of FTPL, which
poses significant analytical challenges despite its computational efficiency in practice. In the standard
analysis of FTRL and FTPL, a key factor in achieving the optimal adversarial regret is evaluating
the stability of the arm-selection probability against the changes in the estimated cumulative loss.
Abernethy et al. [2] tackled this challenge by leveraging the hazard function of perturbations, but it
only resulted in near-optimal regret of O(

√
KT logK). Later, motivated by the observation in two-

armed bandits that FTRL with β-Tsallis entropy roughly correspond to Fréchet-type perturbations
with tail index (1−β)−1, Kim and Tewari [33] conjectured that FTPL with Fréchet-type distributions
could achieve optimal O(

√
KT ) regret. Recently, this conjecture has been partially validated, as it

was shown that FTPL with nonngetative Fréchet-type distributions, under certain conditions, indeed
obtain the optimal O(

√
KT ) regret and even Best-of-Both-Worlds (BOBW) result [12, 28, 38].

Here, unfamiliar readers can think of a Fréchet-type as any distributions whose right tail decays
polynomially.

Contribution Since hybrid regularizers are typically constructed by summing distinct regulariz-
ers [29, 56], a natural analogue for FTPL is to construct hybrid perturbations, either by summing
perturbations drawn from different distributions or by specifying different behaviors for the left and
right parts of the density. This motivates the study of asymmetric or unbounded perturbations, where
“unbounded” distributions in this paper refers to distributions that are unbounded on both the positive
and negative sides and “semi-infinite” refers to those unbounded on only one side. However, the
requirement for existing results is easily violated when the perturbation has strictly positive density
on R since existing results require the ratio of density to cumulative distribution function, f/F , to be
monotonically decreasing over the entire support.

In this paper, we first relax these previous conditions for the BOBW guarantee by providing milder
conditions under which FTPL with unbounded perturbations achieves optimal O(

√
KT ) regret and

even logarithmic stochastic regret, thereby achieving the BOBW result. As shown below, the key
conditions are related to the difference in tail indices of right and left tails, where (right) tail index α
roughly corresponds to the order of polynomial decay, PrX∼D[X ≥ x] ≈ x−α.

Proposition 1.1 (asymmetric, informal). Let Dα denote the unimodal Fréchet-type distribution fully
supported on R under mild conditions, with right and left tails characterized by tail indices 2 and
α > 0, respectively. If α ∈ R≥4 ∪ {∞}, FTPL with Dα achieves BOBW guarantee for K ≥ 2.

Here, Fréchet-type perturbation with infinite index denotes the Gumbel-type family, which is of
exponential tail such as exponential distribution and Gamma distribution. Consequently, Dα with α =
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∞ can be seen as a hybrid perturbation, combining the Gumbel-type and Fréchet-type distributions,
analogous to the hybrid regularizers widely used in FTRL [11, 31]. While it remains unclear which
regularizers are associated with these hybrid perturbations, we expect that our findings can provide
insights into developing an FTPL policy that serves as an alternative to a hybrid regularizer for FTRL.
For example, we expect it can approximately reproduce the combination of Tsallis entropy with
Shannon entropy, −x log x, or Shannon entropy for the complement, −(1 − x) log(1− x), where
the latter has been used in FTRL policies [52, 56].

While asymmetry appears natural in the context of hybrid perturbations, one may wonder whether it is
essential or just a technical artifact. To explore this, we revisit the original motivation for using Fréchet-
type perturbation, specifically its equivalence to FTRL with Tsallis entropy in the two-armed bandit
setting [33], where the latter is a well-known BOBW policy [55]. Although the exact distribution is
not available in closed form, our numerical analysis suggests that the perturbation associated with
1/2-Tsallis entropy for K = 2 can be realized by a symmetric Fréchet-type distribution. Therefore, it
is natural to expect that the BOBW guarantee can be extended to symmetric Fréchet-type at least for
K = 2, and perhaps even K ≥ 3. However, our analysis reveals a limitation in the latter case.

Proposition 1.2 (symmetric, informal). For FTPL with Fréchet-type distributions with both left and
right tail indices equal to 2, the BOBW result holds when K = 2. However, for K ≥ 3, the key
conditions required by standard BOBW analyses are violated unlike the asymmetric tail indices.

Details on this key condition are provided in later sections. Here, it is worth noting that no perturbation
exactly reproduces Tsallis entropy for K ≥ 4 [33]. Yet, the regularizer induced by the symmetric
Pareto distribution, the simplest example of symmetric Fréchet-type with density f(x) = 1/(|x|+1)3,
behaves like the Tsallis entropy even in the counterexample for K ≥ 3. Although alternative, non-
standard techniques might be able to establish general BOBW guarantees for symmetric Fréchet
perturbations, our findings, together with the impossibility result in Kim and Tewari [33], highlights
the difficulty of extending the BOBW guarantees beyond K = 2. Further investigation is therefore
needed to develop a deeper and more comprehensive understanding of FTPL in broader settings.

2 Preliminaries

In bandit problems, the loss vectors ℓt are determined typically in either a stochastic or adversarial
manner. In the stochastic setting, the loss vector ℓt is i.i.d. from an unknown but fixed distribution
over [0, 1]K . Hence, one can define the expected losses of arms µi := E[ℓt,i] and the optimal arm
i∗ ∈ argmini∈[K] µi. The suboptimality gap of each arm is denoted by ∆i = µi − µi∗ and the
optimal problem-dependent regret bound is known to be

∑
i:∆i>0 O(log T/∆i) [36]. On the other

hand, in the adversarial setting, an (adaptive) adversary determines the loss vector based on the
history of the decisions, and thus no specific assumptions are made about the loss distribution. In this
environment, the optimal regret bound is O(

√
KT ) [8]. A policy is called a BOBW policy when the

policy achieves (near) optimal guarantee for both stochastic and adversarial setting [10].

2.1 Follow-the-Perturbed-Leader and Follow-the-Regularized-Leader policies

Since the agent only observes the loss of the played arm, ℓt,It , one uses the loss estimator ℓ̂t. Let
L̂t =

∑t−1
s=1 ℓ̂s denote the estimated cumulative loss up to round t, with Lt =

∑t−1
s=1 ℓs as the true

cumulative loss. Then FTPL is a policy that plays an arm

It ∈ argmin
i∈[K]

{
L̂t,i −

rt,i
ηt

}
, where rt ∼ DK , (FTPL)

where ηt is the learning rate specified later and rt = (rt,1, . . . , rt,K) denotes the random perturbation
vector drawn from the distribution DK over RK . In the case of i.i.d. perturbations, which are common
in the bandit literature, we denote the common distribution by D. The probability of playing an arm
i ∈ [K] by FTPL, given L̂t, is denoted by wt,i = ϕi(ηtL̂t;DK), where for λ ∈ RK

ϕi(λ;DK) := Pr
r∼DK

[
i = argmin

j∈[K]

{λj − rj}
]
. (1)

When the perturbations are i.i.d., we denote ϕi(λ;DK) by ϕi(λ;D). We denote the distribution
function and density function of D by F and f , respectively. Meanwhile, FTRL plays an arm
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according to the probability vector pt, i.e., It ∼ pt, defined as

pt = p(ηtL̂t;V ) := argmin
p∈PK−1

{〈
L̂t, p

〉
+
V (p)

ηt

}
, (FTRL)

where PK denotes K dimensional probability simplex and V : PK−1 → R≥0 denotes a regularizer
function. Therefore, FTPL and FTRL are equivalent if ϕi(λ;D) = pi(λ;V ) holds for any λ ∈ RK .
For example, it is known that p(λ;VS) = ϕ(λ; Gumbel), where VS(p) =

∑
i∈[K] pi log pi denotes

negative Shannon entropy [4].

For the unbiased loss estimator, both FTPL and FTRL policies often use an importance-weighted
(IW) estimator ℓ̂t = ℓteIt/Pr[It = i] of the loss vector ℓt, where ei is the i-th standard basis vector.
In general, ϕi does not have a closed form, making computations of ϕi and the IW estimator ℓ̂t
difficult. To address this, FTPL policies usually construct ℓ̂t with a geometric resampling estimator
of 1/wt,i, instead of explicitly computing wt,i [28, 43]. Unlike FTPL, FTRL can directly use pt,i to
construct ℓ̂t since it plays an arm according to pt obtained by solving an optimization problem.

2.2 Standard analysis techniques

The standard FTRL regret analysis proceeds by decomposing the regret (largely) into two pieces, (i) a
stability term, which is usually related to the pt itself, and (ii) a penalty term that is related to the value
of regularizer function V (pt) [30, 37, 45]. By choosing the regularizer and learning rate so that these
two terms are of the same order, several FTRL policies obtain the optimal performance [16, 29, 31, 55].
In this context, it is known that a uniform bound on −p′i(ηtL̂t)/p

3/2
t,i is a sufficient condition to

guarantee O(
√
KT ) regret, where p′i(λ) = ∂pi(λ)/∂λi [9], as this ensures the stability and penalty

terms remain of the same order. For FTRL with β-Tsallis entropy, defined as − 1
1−β

∑
pβi , refined

analysis showed that a uniform bound on p′i/p
2−β
i is sufficient to guarantee O(

√
KT ) regret for

β ∈ (0, 1) [2]. Zimmert and Seldin [55] further provided a unified analysis that covers β ∈ [0, 1],
achieving O(

√
KT logK) regret for β = 1, O(

√
KT log T ) regret for β = 0 and even BOBW

guarantee for β = 1/2.

While FTRL with Tsallis entropy has achieved the optimal O(
√
KT ) regret in MAB problems,

Kim and Tewari [33] showed that no corresponding FTPL policy exists for FTRL with the Tsallis
entropy regularizer when K ≥ 4. This makes it unclear how to apply the standard FTRL techniques
to FTPL to achieve the optimal results. As a result, only a near optimal O(

√
KT logK) regret

was obtained by considering a uniform bound on −ϕ′i/ϕi [2], rather than −ϕ′i/ϕ
2−β
i . To address

this challenge, Honda et al. [28] and Lee et al. [38] derived refined bounds on ϕ′i(ηtL̂t)/wt,i that
depends on 1/L̂t,i, which is indeed related to w1/α

t,i , rather than relying on a uniform constant. Here,
α denotes the index of Fréchet-type perturbations. The dependency of 1/α arises naturally from
observations in two-armed bandits, where FTRL with β-Tsallis entropy roughly corresponds to FTPL
with Fréchet-type perturbations with index α = (1− β)−1, which will be elaborated in Section 5.

This refined analysis enables the derivation of BOBW guarantees for FTPL policies, illustrating
optimal performance (up to multiplicative constant) in both stochastic and adversarial settings. In
particular, they derived that for adversarial regret, −ϕ′i(ηtL̂t)/wt,i = O(σ

−1/α
i ) when L̂t,i is the

σi-th smallest among the components of L̂t, and for stochastic regret, −ϕ′i(ηtL̂t)/wt,i = O(1/L̂t,i).
These bounds provide a more refined characterization of the sensitivity of arm-selection probabilities
to changes in estimated losses, leading to improved regret analyses for FTPL.

2.3 Previous assumptions on perturbations in FTPL literature

In econometrics, FTPL with i.i.d. Gumbel distribution has been extensively studied since its arm-
selection probability model can be written in the closed-form, known as the multinomial logit
model [4, 40]. On the other hand, in the online learning literature, Kalai and Vempala [32] introduced
FTPL with the exponential distribution. Following this work, FTPL policies for bandits have mainly
adopted exponential distributions [34, 35, 43, 46], where near-optimal results are established.

Beyond distribution-specific analysis, based on the relationship between FTRL and FTPL, Abernethy
et al. [2] provided unified analysis for perturbations with bounded hazard function f/(1− F ). How-
ever, using this result with best tuning of parameters always leads to near-optimal O(

√
KT logK)
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regret [33], which provokes to explore different approaches to achieve the minimax optimality. While
there is no corresponding FTPL for FTRL with Tsallis entropy in general, Honda et al. [28] showed
that FTPL with Fréchet perturbation with shape 2 can achieve optimal O(

√
KT ) regret and even

BOBW result, which is generalized to Fréchet-type perturbations satisfying certain conditions [38].
To avoid unnecessary technicalities, we state here a minimal, sufficient definition and the key relevant
conditions, where the full and precise statements appear in Appendix A for completeness.

Definition 2.1 (Informal). A distribution is said to be Fréchet-type with index α if the tail function
satisfies 1− F (x) = Õ(x−α) for x > 0, where Õ hides polylogarithmic factors.

Assumption 2.2. suppD ⊆ [0,∞) and the hazard function f/(1− F ) is bounded.

Assumption 2.3. f/F is monotonically decreasing in the whole support.

Let Dα denote the set of distributions satisfying all the conditions in Lee et al. [38] given in
Appendix A.1 including Assumptions 2.2 and 2.3, where index α > 0 represents the tail index. It
was shown that FTPL with D ∈ Dα can achieve O(

√
KT ) adversarial regret for any α > 1 and

further O(
∑
i ̸=i∗ log T/∆i) stochastic regret for α = 2. Although the nonnegativity assumption

was introduced for simplicity, it is worth noting that Assumption 2.3 can be easily violated when
suppD = R, which implicitly requires the use of semi-infinite perturbations.

3 Relationship between FTPL and FTRL

In this section, we revisit classical results in discrete choice theory under the assumption that the
density is strictly positive on RK . While the existence of a corresponding regularizer for FTPL has
been extended to general distributions [19, 49], unbounded perturbations remain the most thoroughly
analyzed and thus offer a solid foundation for understanding FTPL. We also note that, unlike the
bandit settings where FTPL typically uses i.i.d. perturbations, discrete choice models allow for
correlated perturbations.

3.1 Classical results in discrete choice theory

For perturbations fully supported on RK , the existence of a corresponding regularizer has been
established by classical results in discrete choice theory [27, 41]. Following the conventions in
discrete choice theory, where the objective is to maximize rewards (which is analogous to minimizing
losses), in this section, we redefine the arm-selection probability for arm i in terms of cumulative
rewards ν, which corresponds to the negative loss, instead of cumulative loss λ as

φi(ν) = Pr

[
i = argmax

j∈[K]

{νj + rj}
]
, (2)

where rjs are random perturbations. This definition relates to the loss-based definition ϕi(λ) = φi(ν)
as the gap of cumulative losses λi in (1) can be written in terms of the gap of cumulative rewards by
λi −minj λj = maxj νj − νi. It is known that for any given FTPL policy, a corresponding FTRL
always exists, although the associated regularizer may lack a closed-form.

Lemma 3.1 (Theorem 2.1 in Hofbauer and Sandholm [27]). For φ defined in (2), let the joint
distribution of random vector r be of finite mean and absolutely continuous, and fully supported on
RK . Then, there exists a regularization function V : Int (PK−1) → R such that

φ(ν) = argmax
p∈Int (PK−1)

{⟨p, ν⟩ − V (p)},

where Int denotes the interior. Moreover, V can be obtained as the Legendre transformation of the
potential function Φ of φ, i.e.,

V (p) = Φ∗(p) := sup
ν∈RK

⟨p, ν⟩ − Φ(ν), where ∇Φ(ν) = φ(ν). (3)

Here, potential function of φ(ν), denoted by Φ(ν), is known as surplus function of the discrete
choice model [42], which is defined as Φ(ν) = Er

[
maxi∈[K] νi + ri

]
so that ∂Φ(ν)/∂νi =

Er[argmaxi νi + ri] = φi(ν). By definition, the location normalization on reward ν does not
change the arm-selection probability. Therefore, we can assume νK = 0 without loss of generality.
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3.2 Perturbations on the real line: connection to generalized entropy

Lemma 3.1 requires DK to have strictly positive density on RK , which might appear somewhat
restrictive. For this reason, Lemma 3.1 was extended to general distributions with absolutely
continuous density in Feng et al. [19] and Suggala and Netrapalli [49]. Still, it is known that several
useful properties hold when we assume perturbations are fully supported on RK . For example, Norets
and Takahashi [44] showed that φ is a bijection between the space of reward vectors RK−1 × {0}
and that of arm-selection probabilities Int (PK−1), that is, for any p ∈ Int (PK−1), there exists a
unique ν ∈ RK−1×{0}, and vice versa. Furthermore, Fosgerau et al. [21] showed that the associated
regularizer can be expressed as a generalized entropy:

V (p) = p · logS(p), where S : RK≥0 → RK≥0 is the inverse function of ∇ν(e
Φ(ν)).

They also showed that the arm-selection probability φ can be expressed by using expected Bregman
divergence under some distribution associated with the negative generalized entropy. Investigating
unbounded perturbations is therefore natural for two reasons: (i) it reconnects FTPL theory with
the perturbations already studied thoroughly, and (ii) it enables the design of analogues to hybrid
regularizers in FTRL. The following sections formalize this intuition and shows that a broad class of
asymmetric Fréchet-type perturbations is sufficient to achieve BOBW guarantees.

4 BOBW guarantee with asymmetric perturbations
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0
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Figure 1: Density examples

We now consider a class of hybrid perturbations whose left and right
tails follow different types of distributions, a family of unimodal
asymmetric distributions Uα,β supported on R, defined by

F (x;Uα,β) =

{
1
2 + F (x;Dα)

2 , if x ≥ 0,
1
2 − F (−x;Dβ)

2 , if x < 0,

where Dα ∈ Dα and Dβ ∈ Dβ are Fréchet-type distributions over
[0,∞) with tail indices α > 0 and β > 0, respectively. For exam-
ple, one can consider Laplace-Pareto distribution with density and
distribution defined by

fLP(x) =

{
e2x, x < 0,

1
(x+1)3 , x ≥ 0,

and FLP(x) =

{
e2x

2 , x < 0,

1− 1
2(x+1)2 , x ≥ 0.

(4)

Although, strictly speaking, the Laplace distribution is Gumbel-type distribution, it can be seen as
a Fréchet-type distribution with α = ∞, that is, D∞. Another example is the asymmetric Pareto
distribution, which is equivalent to a generalized Pareto distribution with shape 3 on the negative side
and a Lomax distribution with shape 2 on the positive side, such that

faSP2,3
=

{
(3/2)4

(3/2−x)4 , x < 0,
1

(x+1)3 , x ≥ 0,
and FaSP2,3

(x) =

{
27
16

1
(3/2−x)3 , x < 0,

1− 1
2(x+1)2 , x ≥ 0.

(5)

For illustration, we provide the plot of density functions of fLP and faSP2,3 in Figure 1.

In the previous BOBW analysis of FTPL, Assumption 2.3, which requires the monotonic decrease
of f/F , played a crucial role in bounding −ϕ′i/ϕi. However, for Uα,β , the interval where f/F
increases can be unbounded, e.g., asymmetric Pareto distribution in (5), and so we cannot directly
apply the previous analysis. To address this issue, we derive a tighter evaluation of −ϕ′i by explicitly
accounting for the negative term induced by −f ′(x) for x < 0, which leads to the following result.
Theorem 4.1. Let σi be the rank of λi in the nondecreasing order of λ1, . . . , λK (ties are broken
arbitrarily). When α > 1 and β ≥ α+ 2, then FTPL with the unimodal distribution Uα,β satisfies
for any λ ∈ RK≥0 that

−ϕ′i(λ)
ϕi(λ)

≤ O
(
σ
−1/α
i

)
∧ O

(
1

λi − λσ1

)
.

Theorem 4.1 shows that when the left tail index β of the distribution (associated with negative
perturbations) is lighter than the right tail index α by two, the standard analysis techniques used in
Honda et al. [28] and Lee et al. [38] can be largely applied, leading to the following results.
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Corollary 4.2. If α > 1 and β ≥ α+2, then FTPL with Uα,β and a learning rate of orderK
1
α− 1

2 /
√
t

achieves O(
√
KT ) adversarial regret for all α > 1. Moreover, if α = 2, FTPL achieves a stochastic

regret of
∑
iO(log T/∆i) provided there is a unique optimal arm.

Similarly to Theorem 4.1, establishing Corollary 4.2 requires a more refined evaluation to address the
unbounded interval where f ′(x) > 0 in the regret decomposition. We can also derive explicit regret
bounds for specific distribution in U2,∞ by explicitly using the expression of the distributions, whose
example is given as follows.
Theorem 4.3. FTPL with learning rate ηt = m√

t
and the Laplace-Pareto distributions in (4) satisfies

Reg(T ) ≤
(
60m

√
π +

5.7

m

)√
KT +

(
2K

27
+ e2

)
log(T + 1) +

√
Kπ

2m
,

whose dominant term is optimized as Reg(T ) ≤ 49.25
√
KT +O(

√
K +K log T ) when m = 0.23.

Using the techniques from Theorem 4.1, which address additional terms due to negative perturbations,
we can also obtain logarithmic regret in the stochastic setting with unique optimal arm.
Theorem 4.4. Assume that i∗ = argmini∈[K] µi is unique and let ∆ = mini̸=i∗ ∆i. Then, FTPL
with learning rate ηt = m/

√
t for m > 0 and Laplace-Pareto perturbation in (4) satisfies

Reg(T ) ≤
∑
i ̸=i∗

(60m+m−1)2 log T

0.035∆i
+

(
2K

27
+ e2

)
log(T + 1) + Θ

(
(107m+ 3/m)2K

∆

)
.

Although the dominant term in Theorem 4.4 is larger compared to that of FTRL policies, it can be
further optimized by using the same arguments as in Honda et al. [28, Remark 12]. Theorems 4.3
and 4.4 highlight the potential of using hybrid perturbations, as Laplace-Pareto perturbations can be
roughly viewed as hybrid regularizers combining Shannon and Tsallis entropies. This is because the
Laplace distribution belongs to the Gumbel-type, which are associated with the Shannon entropy.
Remark 4.5. While we provided concrete results for asymmetric perturbations with different tails,
it is also natural to consider hybrid perturbations formed by summing perturbations generated
from different distributions. In many such cases, the density may not be available in simple form.
Nevertheless, our conditions are sufficiently general to be verified even in such settings.

5 FTPL with symmetric perturbations

While asymmetric unbounded perturbations would suffice for constructing hybrid perturbations, it is
important to examine whether the asymmetry is truly essential or merely technical artifact for better
understanding of FTPL. To this end, we revisit the original motivation for using Fréchet-type, namely,
its equivalence to FTRL with Tsallis entropy in the two-armed bandits [33]. Since FTRL with Tsallis
entropy is a well-established BOBW policy, this connection would provide a natural starting point for
investigating this question, even though such equivalence is established only for K = 2.

When K = 2, P1 becomes a line segment, where we can write p = (x, 1− x) for some x ∈ (0, 1).
In this case, there exists a unique reward vector ν(p) = (c(x), 0) for (c(x), 0) = φ−1(p) [44].
Accordingly, we can define a regularizer V̄ : R → R that coincides with V (p) in terms of x as

V̄ (x) := V ((x, 1− x)) = xc(x)− Φ((c(x), 0)), ∀x ∈ (0, 1),

which satisfies V̄ ′(x) = c(x). On the other hand, we have Pr[c(x) + r1 ≥ r2] = x in two-armed
bandits by definition, which implies that V̄ ′(x) is equivalent to the quantile function of r2 − r1.
When Vβ(p) = − 1

1−β
∑
i p
β
i denotes β-Tsallis entropy regularizer for β ∈ (0, 1), let D̄Ts

β denote the
distribution of r2 − r1 and F (·;D) be a CDF of D. Then, we have F (c(x); D̄Ts

β ) = x, that is

F

(
− β

1− β

(
xβ−1 − (1− x)β−1

)
; D̄Ts

β

)
= x, (6)

which shows that D̄Ts
β is symmetric. By letting z = c(x), we obtain for β ∈ (0, 1)

lim
z→∞

zf(z; D̄Ts
β )

1− F (z; D̄Ts
β )

= lim
x→1

− β
1−β (x

β−1 − (1− x)β−1) · 1
β(xβ−2+(1−x)β−2)

1− x
=

1

1− β
. (7)
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Figure 3: Output of IFT and densities.

Here, (7) is known as von Mises condition for Fréchet-type, which is a sufficient condition for a
distribution to be Fréchet-type [24]. This implies that D̄Ts

β , i.e., the distribution of a difference
between two random variables, is Fréchet-type with index (1− β)−1.

While a distribution (r1, r2) ∼ D2 satisfying (6) can be easily constructed by dependent perturbations
in Feng et al. [19] as explained in Appendix A.3, it remains unclear whether D̄Ts

β is realizable by two
i.i.d. perturbations r1, r2 ∼ Dβ . Kim and Tewari [33] simply conjectured that it can be realized by
i.i.d. Fréchet-type D. Though it is still difficult to show the existence of i.i.d. perturbation, we can
formally show that D, if it exists, is indeed Fréchet-type, as stated below.
Lemma 5.1. Let −D denote the distribution of −X for X ∼ D. Let (r1, r2) be i.i.d. from D and D̄
be distribution of r1 − r2. Then, if D̄ is Fréchet-type, then either D or −D is Fréchet-type.
The proof of this lemma is given in Appendix G.1, where we analyze the tail behavior of distributions
using results from extreme value theory and tail convolutions. Recall that all these observations are
made under the assumptions of Lemma 3.1, which implies that DTs

β is also fully supported on R and
absolutely continuous if it exists.

5.1 Perturbation associated with Tsallis entropy: numerical observation

In two-armed bandits, we can view FTRL with Tsallis entropy as FTPL with some Fréchet-type
perturbations. While the existence of i.i.d. perturbation reproducing Tsallis entropy is not formally
shown, numerical approximations suggest the following conjecture.
Conjecture 5.2. There exists a symmetric distribution such that the corresponding FTPL reproduces
FTRL with 1/2-Tsallis entropy regularizer.

To prove Conjecture 5.2, it suffices to consider the characteristic function of distributions. Let
ḡ(t) be the characteristic function of D̄Ts

β , i.e., E[eit(r1−r2)] and g be that of DTs
β . By definition of

D̄, we have ḡ(t) = g(t)g(−t). Since D̄Ts
β is symmetric by (6), ḡ(t) is real and positive function.

Therefore, proving Conjecture 5.2 is equivalent to showing that
√
ḡ is a characteristic function of

some probability distributions. We expect that this conjecture can be proved by showing that
√
ḡ is

positive definite, which is a necessary and sufficient condition, according to Bochner’s theorem [18].

Numerical validation By definition, ḡ can be expressed in terms of the quantile function c(·) as

ḡ(t) =

∫ ∞

−∞
eitxf(x; D̄Ts

1/2)dx =

∫ 1

0

eitc(p)dp =

∫ 1

0

exp
(
−it(p−1/2 − (1− p)−1/2)

)
dp,

which can be computed numerically for any t ∈ R. If
√
ḡ is a valid characteristic function, then

applying the inverse Fourier transform (IFT) to
√
ḡ should yield the appropriate density function.

Note that
√
ḡ is real-valued regardless of symmetry of DTs

1/2 as ḡ(t) itself is real and positive.

Figure 2 shows that the cumulative sum of the IFT numerically converges to 1, suggesting that√
ḡ would be a valid characteristic function. In Figure 3, the blue solid line represents the IFT of√
ḡ, while the red dashed and green dotted lines represent the density functions of the symmetric

Pareto with shape 2 (Fréchet-type) and standard Laplace (Gumbel-type) distributions, respectively.
As shown there, the IFT of

√
ḡ closely resembles the density of a symmetric Pareto distribution

with shape parameter 2, though minor fluctuations appear due to numerical approximations. This
behavior supports the conjecture that DTs

1/2 is symmetric and Fréchet-type with index 2. Details on
the numerical evaluation and further results including the imaginary part are provided in Appendix F.
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5.2 Two-armed bandits

The numerical observations indicate that FTRL with 1/2-Tsallis entropy, a BOBW policy, corresponds
to FTPL with a certain unimodal symmetric Fréchet-type distribution with index 2. While Theorem 4.1
and the previous analysis do not extend to the symmetric Fréchet-type perturbations, it is reasonable
to expect that FTPL with certain unimodal symmetric Fréchet distributions can achieve BOBW, at
least in two-armed bandits. One of the simplest examples of such distributions is the symmetric
Pareto distribution, illustrated in Figure 3, where we obtain the following positive result as expected.
Proposition 5.3. Let the perturbations be i.i.d. from the symmetric Pareto distribution with shape 2
whose density function and distribution function are respectively defined as

f(x) =
1

(|x|+ 1)3
and F (x) =

{
1

2(1−x)2 , x < 0,

1− 1
2(x+1)2 , x ≥ 0.

Then, −ϕ′i(λ)/ϕ
3/2
i (λ) is uniformly bounded for any λ ∈ R2

+ and i ∈ {1, 2}.

Corollary 5.4. FTPL with symmetric Pareto perturbations with shape 2 in Proposition 5.3 achieves
O(

√
KT ) adversarial regret and O(log T/∆i:i ̸=i∗) stochastic regret when K = 2.

Note that f(x)/F (x) = 1
2(1−x) for x < 0, which is increasing on R−. This observation demonstrates

that Assumption 2.3 and asymmetry of the perturbation are not necessary conditions, as far as K = 2.

5.3 Generalization to multi-armed bandits

While standard Fréchet and Pareto perturbations whose support is R+ do not correspond to FTRL
with Tsallis entropy, they can indeed attain optimal results for general K [28, 38]. Although there is
no perturbation associated with Tsallis entropy for K ≥ 4 [33], one may expect the optimality of
FTPL with symmetric Fréchet-type perturbations as achieved by asymmetric (Corollary 4.2) and
nonnegative perturbations [38]. One would guess the main difficulty for K ≥ 3 arises when ϕi or λi
are not identical to each other, a complexity that does not occur in K = 2. Surprisingly, however, we
find that the problem happens even when the losses of the currently suboptimal arms are identical,
i.e., when ϕ lies on the line segment as in K = 2.
Proposition 5.5. Let the perturbations be i.i.d. from a unimodal Fréchet-type Uα1,α2

with αj = 2,
satisfying xf(x;Dαj

)/(1 − F (x;Dαj
)) ≤ 2 for any x > 0 and j ∈ {1, 2}. If λ ∈ RK+ satisfies

λ = (0, c, . . . , c), then for i ̸= 1 and c ≥ 2
√
K,

−ϕ′i(λ)
ϕ
3/2
i (λ)

≥ Ω̃

(
c+ 2

K
√
K

)
and

−ϕ′i(λ)
ϕi(λ)

≥ Ω̃

(
1

K
√
K

)
. (8)

Although the condition in Proposition 5.5 may seem restrictive, it is known to hold for well-known
Fréchet-type distributions such as Fréchet, Pareto and Student-t [38]. The LHS of (8) means that
−ϕ′/ϕ3/2 = O(1) does not hold, which is the key tool to obtain O(

√
KT ) regret with simple learning

rate [9, 55]. In addition, while the RHS of (8) does not contradict another key tool −ϕ′/ϕ = O(1)
for O(

√
KT logK) regret [2], it violates the key property, −ϕ′/ϕ = O(1/λi), used for achieving

logarithmic regret in the stochastic setting [28, 38]. The proof of Proposition 5.5 and additional results
for K = 3 with any α > 1 and with symmetric Pareto distributions are given in Appendix G. These
results suggest that perturbations with equally heavy tails lose some essential properties preserved in
FTPL with asymmetric Fréchet-type perturbations and FTRL with Tsallis entropy.

Building on this result, it might be reasonable to expect that the corresponding regularizer for
symmetric Pareto distribution behaves differently from 1/2-Tsallis entropy when K ≥ 3. However,
we obtain similar results even in cases in Proposition 5.5 where the symmetric Pareto fails.
Proposition 5.6. When K = 3 and p =

(
x, 1−x2 , 1−x2

)
for x ∈ [1/3, 1), let V̄sP(x) be a correspond-

ing regularizer of the symmetric Pareto distribution with shape 2 considered in Proposition 5.3. Then,
it holds that

1

2
√
1− x

− 1 ≤ V̄ ′
sP(x) ≤

2
√
2√

1− x
− 1,

which implies limx↑1 V̄
′
sP(x) is of the same order up to multiplicative constant with the limit of

derivative of 1/2-Tsallis entropy regularizer since V̄ ′
1/2(x) =

√
2/
√
1− x− 1/

√
x.
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Proposition 5.6 shows that similar results to theK = 2 case can be obtained even when the probability
vector lies on the line segment in P2. Notably, the case considered in Proposition 5.6 is the same
as that in Proposition 5.5, which serves as a counterexample where the standard analysis cannot be
applied. This suggests that there are limitations to arguments based solely on analogies from the
equivalence in two-armed bandits.
Remark 5.7. These results do not rule out the possibility of FTPL with symmetric Fréchet-type
distributions achieving BOBW guarantees or optimal adversarial regret. Still, the ratio between
ϕ′ and ϕ have been believed to be the key for the regret bound. For example, it is conjectured
by Abernethy et al. [2, Conjecture 4.5] that FTPL with Gaussian perturbation suffers linear regret
because of the unbounded −ϕ′/ϕ. Although this conjecture was later shown to be false, the known
regret bound for FTPL with Gaussian perturbation still suffers the regret with additional log T factor,
i.e., O(

√
KT logK log T ) [39]. Our conjecture is in parallel to these observations when we try

to achieve the optimal O(
√
KT ) regret, instead of O(

√
KT logK) regret. We conjecture that the

behavior of −ϕ′/ϕ of symmetric perturbations may introduce additional factors depending on K or
T , thereby limiting the achievable regret to near-optimal rates.

6 Conclusion

In this paper, we first extended the BOBW guarantee of FTPL to asymmetric perturbations under
mild conditions, including a hybrid of Gumbel-type and Fréchet-type perturbations. Given the
development of several FTPL policies with hybrid regularizers, a promising direction for future work
is designing computationally efficient FTPL counterparts to FTRL policies by incorporating hybrid
perturbations in complicated settings. While FTRL with 1/2-Tsallis entropy regularizer (numerically)
corresponds to FTPL with symmetric Fréchet-type perturbations, and FTPL with its tail-equivalent
perturbations achieves BOBW guarantee in two-armed bandits, we found that this result does not
straightforwardly extend to general case. This finding highlights the limitations of directly extending
the relationship observed in two-armed bandits to the general case, emphasizing the need for further
investigation to better understand the behavior of FTPL in broader settings.
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Justification: In Remark 5.7, we explicitly acknowledge that our negative result is limited
in scope, as we do not formally prove impossibility. However, based on our analysis, we
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achieve the desired guarantees.
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Appendix A.1 to avoid unnecessary distractions in the main text. For completeness, all
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We provide the full codes in Appendix F.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: We provide the full codes in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We do not include experimental results that needs any kind of statistical
significance testing.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

16



Justification: Our code is very light and can be run on any recent computer or laptop without
special hardware requirements.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This is a theoretical work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theoretical work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly cite CharFunTool in Appendix F.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional details omitted in main paper

Here, we provide the details omitted in the main paper due to space constraints for completeness.

Notation Throughout the appendix, we define the gap of each vector element from its minimum
using underlines, i.e., λ = λ − 1mini∈[K] λi. Therefore, the arm-selection probability based on
the gap of the cumulative loss can be interchanged with that based on the cumulative rewards since
λi = maxj νj − νi holds. When D is absolutely continuous, ϕ(·;D) can be written as

ϕi(λ;D) = Pr
r1,...,rK∼D

[
i = argmin

j∈[K]

{λj − rj}
]
=

∫
R

∏
j ̸=i

F (z + λj) dF (z + λi).

Also, we denote the geometric resampling estimator of w−1
t,i by ŵ−1

t,i .

Definition of Fréchet-type perturbation Here, we readily follow the notation used in Lee et al.
[38]. To define the Fréchet-type perturbation, we first require the notion of regular variation defined
as below.
Definition A.1 (Regular variation [24]). An eventually positive function g, which becomes positive
after a certain point, is called regularly varying at infinity with index α, g ∈ RVα if

lim
x→∞

g(tx)

g(x)
= tα, ∀t > 0.

If g(x) is regularly varying with index 0, then g is called slowly varying.

Then, a necessary and sufficient condition for a distribution to be Fréchet-type is expressed in terms
of regular variation as below.
Proposition A.2. A distribution D is Fréchet-type with index α > 0 iff its right endpoint is infinite
and the tail function, 1− F , is regularly varying at infinity with index −α, i.e., 1− F ∈ RV−α. In
this case,

Fn(anx) →
{
exp(−x−α), x ≥ 0,

0, x < 0,
n→ ∞,

where an = inf {x : F (x) ≥ 1− 1/n}.

Moreover, if D is Fréchet-type, we can express the tail distribution with a slowly varying function
SF ∈ RV0 as

1− F (x) = x−αSF (x), ∀x > 0.

Note that by definition, a slowly varying function SF (x) grows at most polylogarithmically. For
further details on Fréchet-type distributions, see Haan and Ferreira [24] and Resnick [47].

A.1 Previous assumptions for BOBW guarantee

In the previous analysis, Lee et al. [38] showed the optimality of FTPL with perturbations satisfying
following assumptions.

Assumption 2.2 suppDα ⊆ [xmin,∞) for some xmin ≥ 0 and the hazard function f(x)
1−F (x) is

bounded.

Assumption 2.3 f(x)
F (x) is monotonically decreasing in x ≥ xmin.

Assumption A.3. F (x) has a density function f(x) that is decreasing in x ≥ x0 for some x0 > xmin.
Assumption A.4. There exist positive constants Mu =Mu(Dα) and Ml =Ml(Dα) satisfying

EX1,...,Xk∼Dα

[
max
i∈[k]

Xi/ak

]
≤Mu

EX1,...,Xk∼Dα

[
1

maxi∈[k]Xi/ak

]
≤Ml

for ak = inf {x : F (x) ≥ 1− 1/k} and it satisfies Alk
1
α ≤ ak ≤ Auk

1
α for some positive constants

Al, Au.
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With general support, correlated perturbations (discrete choice theory literature)

With general support, i.i.d. perturbations (online learning literature)

● Gumbel 
= Exp3
= MNL model
= FTRL with 
Shannon entropy

Bounded hazard function for right-tails (near-optimal) [2, 33]

● Gamma (Exponential)
– semi-infinite
– near-optimal adv. regret
                      

Fréchet-type perturbation (BOBW literature)

● Gaussian
– unbounded hazard
– near-optimal sto. 
regret [12]
– additional log T 
in adv. regret [39]

One-sided perturbations

● Symmetric Fréchet-type
– BOBW if 𝐾 = 2
– near-optimal adv. regret
(bounded hazard)
– our conjecture for 𝐾 ≥ 3:
 cannot be optimal
    (at most near-optimal)

● Fréchet, Pareto [12, 28, 38]
Sec. 5:

Unbounded, asymmetric (Sec. 4)

● Laplace-Pareto

– BOBW (Theorems 4.3 and 4.4)
– hybrid-type (Gumbel-type + Fréchet-type)

-> connection to discrete choice theory
-> connection to FTRL with hybrid regularizer 

Figure 4: Perturbation landscape summarizing distributions studied in the literature.

Assumption A.5. limx→∞
−xf ′(x)
f(x) = α+1 and −f ′(x)

f(x) is bounded almost everywhere on [xmin,∞).

To simplify the analysis and avoid technical complications related to the boundedness of the hazard
function, this paper focuses on a tail-equivalent distribution satisfying the assumption by considering
the truncated version F ∗ of F when we consider the general distributions. Specifically, we define the
truncated distribution function as

F ∗(x) = Pr[X ≥ 1 + x|X > 1] =
F (x+ 1)− F (1)

1− F (1)
, x > 0,

which is supported on R+. This truncation technique was also used to provide O(
√
KT logK)

regret [2]. Then, for any Dα ∈ Dα, its distribution function can be written as

1− F ∗(x;Dα) = Θ̃((x+ 1)−α), x > 0,

For simplicity, we denote F ∗ by F since we only consider truncated one in this paper.

Note that by Corollary 4.2, Assumption 2.3 can be relaxed to the existence of x0 > xmin such that
f/F is decreasing in x ≥ x0 unless the left tail is lighter than the right tail.

For a quick overview of the position of this paper, see Figure 4.

A.2 Derivation of potential function

For any i.i.d. perturbations under assumptions in Lemma 3.1, we can express the potential function as

Φ(ν) =
∑
i∈[K]

∫ ∞

−∞
zf(z − νi)

∏
j ̸=i

F (z − νj)dz, (9)

By definition of potential function Φ and its convex conjugate V , it holds Φ(ν)+V (p) =
∑
i∈[K] piνi

iff p ∈ ∂Φ(ν). Chiong et al. [13] showed that

V (p) = −
∑
i

piEr∼Dα

[
ri

∣∣∣∣∣i = argmax
j∈[K]

(νj + rj)

]
.

Let us assume ν is of decreasing order, i.e., ν1 ≥ ν2 ≥ · · · ≥ νK holds without loss of generality,
where λi = ν1 − νi holds. By definition, when we consider the perturbation distributions supported
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on R, we obtain

Φ(ν) =

∫ ∞

−∞
E
[
max
i

(ri + νi)
∣∣∣r1 = x

]
f(x)dx

=

∫ ∞

−∞
(x+ ν1)f(x)

∏
j ̸=1

F (x+ ν1 − νj)dx

+

∫ ∞

−∞
f(x)

∑
i ̸=1

∫ ∞

x+ν1−νi
(y + νi)f(y)

∏
j ̸=1,i

F (y + νi − νj)dydx

=

∫ ∞

−∞
xf(x− ν1)

∏
j ̸=1

F (x− νj)dx

+

∫ ∞

−∞
f(x)

∑
i ̸=1

∫ ∞

x+ν1

yf(y − νi)
∏
j ̸=1,i

F (y − νj)dydx

=

∫ ∞

−∞
xf(x− ν1)

∏
j ̸=1

F (x− νj)dx

+

∫ ∞

−∞
f(x− ν1)

∑
i̸=1

∫ ∞

x

yf(y − νi)
∏
j ̸=1,i

F (y − νj)dydx.

By changing the order of integral, we obtain that∫ ∞

−∞
f(x− ν1)

∑
i ̸=1

∫ ∞

x

yf(y − νi)
∏
j ̸=1,i

F (y − νj)dydx

=

∫ ∞

−∞

∑
i ̸=1

yf(y − νi)
∏
j ̸=1,i

F (y − νj)

∫ y

−∞
f(x− ν1)dxdy

=
∑
i̸=1

∫ ∞

−∞
yf(y − νi)

∏
j ̸=i

F (y − νj)dy.

Therefore,

Φ(ν) =
∑
i∈[K]

∫ ∞

−∞
zf(z − νi)

∏
j ̸=i

F (z − νj)dz.

Since p and ν are bijective, as discussed in Section 3.2, we have

V (p) =
∑
i∈[K]

piνi(p)− Φ(ν(p)), ∀p ∈ Int (PK−1). (10)

Therefore, by (10) and letting w = ϕ(λ) = φ(ν), it holds that

−V (w) =
∑
i

wi

(ν1 − νi) +
∑
j∈[K]

∫ ∞

−∞
zf(z + λj)

∏
l ̸=j

F (z + λj)

dz

=
∑
i

wi

λi + ∑
j∈[K]

∫ ∞

−∞
zf(z + λj)

∏
l ̸=j

F (z + λj)dz

.
Note that the above potential function and corresponding regularization function can be obtained for
any perturbations with density f and distribution F supported on R.
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Here, one can check that

∂Φ(ν)

∂νi
=

∫ ∞

−∞
−zf ′(z − νi)

∏
j ̸=i

F (z − νj)dz

+

∫ ∞

−∞
−
∑
j ̸=i

zf(z − νj)f(z − νi)
∏
l ̸=i,j

F (z − νj)dz

=

∫ ∞

−∞
f(z − νi)

∏
j ̸=i

F (z − νj)dz = φi(ν), (11)

where (11) holds by partial integral. To be precise, we have∫ ∞

−∞
−zf ′(z − νi)

∏
j ̸=i

F (z − νj)dz

= −zf(z − νi)
∏
j ̸=i

F (z − νj)

∣∣∣∣z=∞

z=−∞

+

∫ ∞

−∞
f(z − νi)

∏
j ̸=i

F (z − νj) +
∑
j ̸=i

zf(z − νi)
∏
l ̸=i,j

F (z − νl)dz

=

∫ ∞

−∞
f(z − νi)

∏
j ̸=i

F (z − νj) +
∑
j ̸=i

zf(z − νi)
∏
l ̸=i,j

F (z − νl)dz.

A.3 Equivalence results in two-armed bandits: the existence of correlated perturbations

In discrete choice theory, as the assumptions in Lemma 3.1 implies, the additive random utility
model (ARUM) admits correlated perturbations, whereas FTPL in bandit problems typically assumes
i.i.d. perturbations. The equivalence between ARUM and FTRL in two-dimensional case was
established as follows.
Lemma A.6 (Theorem 4 in Feng et al. [19]). For any differentiable choice welfare function C(ν1, ν2),
there exists a distribution D of {r1, r2} such that

C(ν1, ν2) = E(r1,r2)∼D[max {ν1 + r1, ν2 + r2}].

While the notation of choice welfare function in Feng et al. [19] is a general notion to define discrete
choice model, it suffices to interpret it as a type of potential function Φ in this section, such that the
choice model (arm-selection probability) is given by φ(ν) = ∇Φ(ν).

This lemma shows the equivalence between differentiable choice functions and ARUM. Furthermore,
Theorem 2 in Feng et al. [19] shows the equivalence between differentiable choice function and
FTRL with (essentially) strictly convex regularizer in general case, implying that for any FTRL with
strictly convex regularizer V , there exists a differentiable choice function such that p(ν;V ) = ∇C(ν),
and vice versa. Since β-Tsallis entropy regularizer is strictly convex function, this implies that there
exists a corresponding ARUM. It is important to note that this result does not necessarily imply the
independence of r1 and r2, as suggested by Lemma A.6. Specifically, one can define a distribution D
of (r1, r2) as

(r1, r2) = (C(0, 0)−max {ξ, 0}, C(0, 0)−max {−ξ, 0}),
where ξ is a random variable with distribution function Fξ(x) = c(x). In this case, whenever r1 is
observed, the value of r2 is determined by definition of D, which shows dependency. While this
example illustrates how strictly convex regularizers can be associated with correlated perturbations,
we expect that the β-Tsallis entropy regularizer corresponds to i.i.d. perturbations, as such constructed
examples appear artificial and were introduced to address a broad class of (essentially) strictly convex
regularizers.

B Proof of Theorem 4.1: asymmetric perturbations

Here, we assume λ1 ≤ . . . ≤ λK without loss of generality, where σi = i holds.
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By definition, for any i ∈ [K],

−ϕ′i(λ)
ϕi(λ)

=

∫∞
−∞ −f ′(z + λi)

∏
j ̸=i F (z + λj)dz∫∞

−∞ f(z + λi)
∏
j ̸=i F (z + λj)dz

≤

∫∞
−λi

−f ′(z + λi)
∏
j ̸=i F (z + λj)dz∫∞

−∞ f(z + λi)
∏
j ̸=i F (z + λj)dz

. (unimodality of f )

Then, we first show the existence of constant ζ > 0 satisfying∫ 0

−λi
−f ′(z + λi)

∏
j ̸=i F (z + λj)dz∫∞

0
−f ′(z + λi)

∏
j ̸=i F (z + λj)dz

≤ ζ (12)

for any λ. When i = 1, it holds trivially. Let us consider i ̸= 1. Define G(z) =
∏
j ̸=1,i F (z + λj),

which is increasing with respect to z. Then,∫ 0

−λi
−f ′(z + λi)

∏
j ̸=i F (z + λj)dz∫∞

0
−f ′(z + λi)

∏
j ̸=i F (z + λj)dz

=

∫ 0

−λi
−f ′(z + λi)F (z)G(z)dz∫∞

0
−f ′(z + λi)F (z)G(z)dz

≤

∫ 0

−λi
−f ′(z + λi)F (z)G(0)dz∫∞

0
−f ′(z + λi)F (z)G(0)dz

=

∫ 0

−λi
−f ′(z + λi)F (z)dz∫∞

0
−f ′(z + λi)F (z)dz

.

Since F (z) ≥ 1/2 and −f ′(z + λi) ≥ 0 hold on z ≥ 0, we have∫ ∞

0

−f ′(z + λi)F (z)dz ≥
1

2

∫ ∞

0

−f ′(z + λi)dz

=
f(λi)

2
.

Hence, ∫ 0

−λi
−f ′(z + λi)F (z)dz∫∞

0
−f ′(z + λi)F (z)dz

≤ 2

f(λi)

∫ 0

−λi

−f ′(z + λi)F (z)dz.

By Assumption A.5, it holds that for z ≥ 0

−f ′(z) = Θ

(
1

(z + 1)α+2

)
.

Also, by definition of F of Uα,β , we have

F (z;Uα,β) =
1− F (−z;Dβ)

2
= Θ

(
1

(1− z)β

)
, ∀z < 0.

Here,

max
z∈[−λi,0]

1

(z + λi + 1)α+2

1

(1− z)β
=

1

(λi + 1)α+2
∨ 1

(λi + 1)β
.

Therefore, whenever β ≥ α+ 2,

2

f(λi)

∫ 0

−λi

−f ′(z + λi)F (z)dz =
2

f(λi)
Θ

(∫ 0

−λi

1

(z + λi + 1)α+2(1− z)β
dz

)

≤ 2

f(λi)
Θ

(
λi

(1 + λi)
α+2

)
= Θ

(
λi(λi + 1)α+1

(1 + λi)
α+2

)
= Θ(1).
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Therefore, by applying (12), we obtain

−ϕ′i(λ)
ϕi(λ)

≤ (ζ + 1)

∫∞
0

−f ′(z + λi)
∏
j ̸=i F (z + λj)dz∫∞

−∞ f(z + λi)
∏
j ̸=i F (z + λj)dz

≤ (ζ + 1)

∫∞
0

−f ′(z + λi)
∏
j ̸=i F (z + λj)dz∫∞

0
f(z + λi)

∏
j ̸=i F (z + λj)dz

.

Since Uα,β is equivalent to Dα ∈ Dα on z ≥ 0, which satisfies all assumptions in Appendix A.1
(with xmin = 0), Lemmas 9 and 10 in Lee et al. [38] concludes the proof.

C Proof of Theorem 4.3: Laplace-Pareto perturbation

The proof given in this section readily follows those given by Honda et al. [28] and Lee et al. [38],
with the main distinction being terms related to the negative perturbations. For clarity, we omit
notation related to LP, as we focus solely on the Laplace-Pareto distribution defined in (4).

We begin by decomposing the regret. Using Lemma 7 from Lee et al. [38], the regret can be
decomposed as follows.

Reg(T ) ≤
T∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[rt+1,It+1 − rt+1,i∗ ] +

Er1∼LP[maxi∈[K] r1,i]

η1

≤
T∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[rt+1,It+1

− rt+1,i∗ ] +
Er1∼P2

[maxi∈[K] r1,i]

η1

≤
T∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
︸ ︷︷ ︸

stability

+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[rt+1,It+1 − rt+1,i∗ ]︸ ︷︷ ︸

penalty

+

√
Kπ

2η1
, (13)

where the second inequality follows that the block maxima of LP can be upper bounded by that of
the Pareto distribution with shape 2, P2.

Then, it remains to bound two terms, stability term and penalty term. For the stability term, we can
further decompose it into two terms.
Lemma C.1. It holds that
T∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
≤

T∑
t=1

E
[〈
ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))

〉]
+

(
4K

27
+ 2e2

)
log

(
η1
ηT+1

)
.

To prove this lemma, we must address certain terms that were ignored in previous approaches, which
considered only positive perturbations. This is necessary because, due to symmetry, there exists a
semi-infinite interval where f ′ > 0, resulting in a loose upper bound.

Then, the first term can be bounded as follows.

Lemma C.2. For any i ∈ [K], if L̂t,i is the σi-th smallest among
{
L̂t,j

}
, then

E

[
ℓ̂t,i(ϕi(ηtL̂t)− ϕi(ηt(L̂t + ℓ̂t)))

∣∣∣∣L̂t
]
≤ 30

√
π

√
σi

ηt ∧
10e

√
2

L̂t,i
.

In the proof of Lemma C.2, we apply the same techniques as in the proof of Theorem 4.1, which
ensures that the terms −ϕ′

i

ϕi
are of the desired order.

Finally, the penalty term can be bounded as follows.
Lemma C.3. It holds that

E
[
rt,It − rt,i∗

∣∣∣L̂t] ≤ 5.7
√
K ∧

∑
i ̸=i∗

1

ηtL̂t,i
.
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By applying Lemmas C.1–C.3 into (13) with ηt = m√
t
, we obtain

Reg(T )

≤
T∑
t=1

K∑
i=1

ηt
30
√
π√
i

+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
5.7

√
K +

(
4K

27
+ 2e2

)
log

(
η1
ηT+1

)
+

√
Kπ

2η1

≤
T∑
t=1

30ηt
√
π(1 + 2(

√
K − 1) +

T∑
t=1

(
1

ηt+1
− 1

ηt

)
+ 5.7

√
K

+

(
4K

27
+ 2e2

)
log

(
η1
ηT+1

)
+

√
Kπ

2η1

=

T∑
t=1

60m
√
Kπ√
t

+
5.7

√
K

m

T∑
t=1

(√
t+ 1−

√
t
)
+

(
2K

27
+ e2

)
log(T + 1) +

√
Kπ

2m

≤
(
120m

√
KπT +

5.7(
√
T + 1− 1)

m

)√
K +

(
2K

27
+ e2

)
log(T + 1) +

√
Kπ

2m

≤
(
120m

√
π +

5.7

m

)√
KT +

(
2K

27
+ e2

)
log(T + 1) +

√
Kπ

2m
.

C.1 Proof of Lemma C.1

For generic L ∈ RK , define L = L− 1mini Li. Then, by definition of ϕ, we have

∂

∂η
ϕi(ηL) =

∫ ∞

−∞
Lif

′(z + ηLi)
∏
j ̸=i

F (z + ηLj)dz

+

∫ ∞

−∞
f(z + ηLi)

∑
j ̸=i

Ljf(z + ηLj)

∏
l ̸=i,j

F (z + ηLl)

dz. (14)

By definition of f , one can see that f ′(x) > 0 for x < 0 and f ′(x) < 0 for x > 0. Therefore, we
have∫ ∞

−∞
Lif

′(z + ηLi)
∏
j ̸=i

F (z + ηLj)dz

≤
∫ 0

−∞
Lif

′(z + ηLi)
∏
j ̸=i

F (z + ηLj)dz

= Lif(z + ηLi)
∏
j ̸=i

F (z + ηLj)

∣∣∣∣z=0

z=−∞

−
∫ 0

−∞
Lif(z + ηLi)

∑
j ̸=i

f(z + ηLj)

∏
l ̸=i,j

F (z + ηLl)

dz

= Lif(ηLi)
∏
j ̸=i

F (ηLj)−
∫ 0

−∞
Lif(z + ηLi)

∑
j ̸=i

f(z + ηLj)

∏
l ̸=i,j

F (z + ηLl)

dz

≤ Li
(ηLi + 1)3

−
∫ 0

−∞
Lif(z + ηLi)

∑
j ̸=i

f(z + ηLj)

∏
l ̸=i,j

F (z + ηLl)

dz

≤ 4

27η
−
∫ 0

−∞
Lif(z + ηLi)

∑
j ̸=i

f(z + ηLj)

∏
l ̸=i,j

F (z + ηLl)

dz. (15)

27



By injecting the result of (15) into (14), we obtain for any i ∈ [K]

∂

∂η
ϕi(ηL) ≤

4

27η
+

∫ ∞

0

f(z + ηLi)
∑
j ̸=i

Ljf(z + ηLj)

∏
l ̸=i,j

F (z + ηLl)

dz

︸ ︷︷ ︸
(†i)

+

∫ 0

−∞
f(z + ηLi)

∑
j ̸=i

(Lj − Li)f(z + ηLj)

∏
l ̸=i,j

F (z + ηLl)

dz

︸ ︷︷ ︸
(‡i)

. (16)

Similarly to the proof of Lemma 8 in Lee et al. [38], we obtain for z ≥ 0 that∏
l ̸=i,j

F (z + ηLl) =
∏
l ̸=i,j

(1− (1− F (z + ηLl)))

≤ exp

−
∑
l ̸=i,j

(1− F (z + ηLl))


≤ e2 exp

−
∑
l∈[K]

(1− F (z + ηLl))

 = e2 exp

−
∑
l∈[K]

1

2(z + ηLl)
2

,
where the last inequality follows from F (x) ∈ [0, 1] for all x ∈ R, i.e., e1−F (x) ≤ e and the last
equality follows from the definition of F (x) for x ≥ 0. Therefore, we have

(†i) ≤ e2
∫ ∞

0

f(z + ηLi)

∑
j ̸=i

Ljf(z + ηLj)

 · exp

−
∑
l∈[K]

1

2(z + ηLl)
2

dz

≤ e2
∫ ∞

0

f(z + ηLi)

∑
j∈[K]

Ljf(z + ηLj)

 · exp

−
∑
l∈[K]

1

2(z + ηLl)
2

dz

= e2
∫ ∞

0

1

(z + ηLi)
3

∑
j∈[K]

Lj
(z + ηLj)

3

 · exp

−
∑
l∈[K]

1

2(z + ηLl)
2

dz

≤ e2
∫ ∞

0

1

(z + ηLi)
3

∑
j∈[K]

1

2(z + ηLj)
2

2

η

 · exp

−
∑
l∈[K]

1

2(z + ηLl)
2

dz, (17)

which implies

∑
i∈[K]

(†i) ≤
2e2

η

∫ ∞

0

∑
i∈[K]

1

(z + ηLi)
3

∑
j∈[K]

1

2(z + ηLj)
2

 · exp

−
∑
l∈[K]

1

2(z + ηLl)
2

dz

≤ 2e2

η

∫ K

0

we−wdw (by w =
∑
l∈[K]

1
2(z+ηLl)

2 =
∑
l∈[K] F (z + ηLl))

≤ 2e2

η
.

On the other hand, we have

∑
i∈[K]

(‡i) =
∫ 0

−∞

∑
i∈[K]

f(z + ηLi)
∑
j ̸=i

(Lj − Li)f(z + ηLj)

∏
l ̸=i,j

F (z + ηLl)

dz = 0. (18)

This is because the value of f(z + ηLi)f(z + ηLj)
(∏

l ̸=i,j F (z + ηLl)
)

remains unchanged when
i and j are swapped, which makes the integrand zero.
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Let L = L̂t + ℓ̂t. Then, we obtain

E
[〈
ℓ̂t, ϕ(ηt(L̂t + ℓ̂t))− ϕ(ηt+1(L̂t + ℓ̂t))

〉]
=
∑
i∈[K]

E
[
I[It = i]ℓt,iŵ

−1
t,i (ϕi(ηtL)− ϕi(ηt+1L))

]

=
∑
i∈[K]

E

[
I[It = i]ℓt,iŵ

−1
t,i

∫ ηt

ηt+1

∂

∂η
ϕi(ηL)dη

]

≤
∑
i∈[K]

E

[
ℓt,i

∫ ηt

ηt+1

∂

∂η
ϕi(ηL)dη

]

≤
∑
i∈[K]

E

[∫ ηt

ηt+1

∂

∂η
ϕi(ηL)dη

]
.

By combining the results in (17) and (18) with (16), we obtain

E
[〈
ℓ̂t, ϕ(ηt(L̂t + ℓ̂t))− ϕ(ηt+1(L̂t + ℓ̂t))

〉]
≤
∑
i∈[K]

E

[∫ ηt

ηt+1

4

27η
+ (†i) + (‡i)dη

]

≤ E

[∫ ηt

ηt+1

4K

27η
+

2e2

η
dη

]

=

(
4K

27
+ 2e2

)
log

(
ηt
ηt+1

)
.

Therefore,
T∑
t=1

E
[〈
ℓ̂t, ϕ(ηt(L̂t + ℓ̂t))− ϕ(ηt+1(L̂t + ℓ̂t))

〉]
≤
(
4K

27
+ 2e2

)
log

(
η1
ηT+1

)
.

C.2 Proof of Lemma C.2

By injecting f and F , it holds that

ϕi(λ) =

∫ −λi

−∞
e2(z+λi)

∏
j ̸=i

F (z + λj)dz +

∫ ∞

−λi

1

(z + λi + 1)3

∏
j ̸=i

F (z + λj)dz,

and

ϕ′i(λ) :=
∂

∂λi
ϕi(λ) =

∫ −λi

−∞
2e2(z+λi)

∏
j ̸=i

F (z + λj)dz +

∫ ∞

−λi

−3

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz.

Therefore, we obtain for any λ ∈ [0,∞)K

−ϕ′i(λ) = 3

∫ ∞

−λi

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz −
∫ −λi

−∞
2e2(z+λi)

∏
j ̸=i

F (z + λj)dz

≤ 3

∫ ∞

−λi

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz.

Moreover, we have for any x ≥ 0,

−ϕ′i(λ+ xei) ≤ 3

∫ ∞

−λi−x

1

(z + λi + x+ 1)4

∏
j ̸=i

F (z + λj)dz

≤ 3

∫ ∞

−λi

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj − x)dz

≤ 3

∫ ∞

−λi

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz. (19)
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Based on these results, we can derive the upper bounds on ϕ(λ)− ϕ(λ+ ηtℓ̂t)) for any λ ∈ [0,∞)K

as

ϕ(λ)− ϕ(λ+ ηtℓ̂t) =

∫ ηtℓt,iŵ
−1
t,i

0

(−ϕ′i(ηtL̂t + xei))dx

≤
∫ ηtℓt,iŵ

−1
t,i

0

3

∫ ∞

−λi

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dzdx (by (19))

≤ 3ηtℓt,iŵ
−1
t,i

∫ ∞

−λi

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz

= 3ηtℓt,iŵ
−1
t,i

∫ ∞

−λi

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz.

Here, let us decompose the integral above into two terms.

∫ ∞

−λi

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz

=

∫ 0

−λi

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz︸ ︷︷ ︸
I1,i

+

∫ ∞

0

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz︸ ︷︷ ︸
I2,i

.

By explicitly considering the formulation of distribution in Proposition 4.1, we can obtain for all
i ∈ [K] that

I1,i
I2,i

≤ 4, ∀λ ∈ [0,∞)K , (20)

whose detailed computation is given in Section C.5 for completeness.

By (20), we obtain

ϕ(λ)− ϕ(λ+ ηtℓ̂t) ≤ 15ηtℓt,iŵ
−1
t,i

∫ ∞

0

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz.

For notational simplicity, we define

ψi(λ) =

∫ ∞

0

1

(z + λi + 1)4

∏
j ̸=i

F (z + λj)dz.

Since ŵ−1
t,It

follows the geometric distributions with expectation w−1
t,It

given L̂t and It, it holds that

E
[
ŵ−1
t,It

2
∣∣∣∣L̂t, It] = 2

w2
t,It

− 1

wt,It
≤ 2

w2
t,It

. (21)
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Therefore, when It = i and {λj} are sorted, we obtain

E

[
ℓ̂t,i(ϕi(ηtL̂t)− ϕi(ηt(L̂t + ℓ̂t)))

∣∣∣∣L̂t
]

≤ E

1[It = i]ℓt,iŵ
−1
t,It

· 15ηtℓt,iŵ−1
t,i

∫ ∞

0

1

(z + ηtL̂t,i + 1)4

∏
j ̸=i

F (z + ηtL̂t,j)dz

∣∣∣∣∣∣L̂t


≤ 30ηtE

[
wt,i

ℓ2t,iψi(ηtL̂t)

w2
t,i

∣∣∣∣∣L̂t
]

≤ 30ηtE

[
ψi(ηtL̂t)

wt,i

∣∣∣∣∣L̂t
]

(by ℓt,i ∈ [0, 1])

= 30ηtE

[
ψi(ηtL̂t)∫∞

−∞ f(z + ηtL̂t,i)
∏
j ̸=i F (z + ηtL̂t,j)dz

∣∣∣∣∣L̂t
]

≤ 30ηtE

[
ψi(ηtL̂t)∫∞

0
f(z + ηtL̂t,i)

∏
j ̸=i F (z + ηtL̂t,j)dz

∣∣∣∣∣L̂t
]
= 30ηtE

[
ψi(ηtL̂t)

ϕ̄i(ηtL̂t)

∣∣∣∣∣L̂t
]
,

where ϕ̄i(λ) =
∫∞
0
f(z + λi)

∏
j ̸=i F (z + λj)dz. Then, the following lemma concludes the proof.

Lemma C.4. If λi is the σi-th smallest among {λj} (ties are broken arbitrarily), then

ψi(λ)

ϕ̄i(λ)
≤

√
π

√
σi

∧
√
2e

3

1

λi
.

C.3 Proof of Lemma C.3

Since EX∼LP[X] = 1
4 , it holds that

E
[
rt,It − rt,i∗

∣∣∣L̂t] ≤ ∑
i ̸=i∗

E
[
1[It = i]rt,It

∣∣∣L̂t]
≤
∑
i ̸=i∗

E
[
1[It = i]1[rt,It ≥ 0]rt,It

∣∣∣L̂t]

=

∫ ∞

0

∑
i ̸=i∗

 1

(z + ηtL̂t,i + 1)2

∏
j ̸=i

(
1− 1

2(z + ηtL̂t,j + 1)2

)dz (22)

≤
∫ ∞

0

∑
i ̸=i∗

1

(z + ηtL̂t,i + 1)2
dz

≤
∫ ∞

0

∑
i ̸=i∗

1

(z + ηtL̂t,i)
2
dz =

∑
i̸=i∗

1

ηtL̂t,i
.

31



Let f(z) =
∑
i

1
2(z+ηtL̂t,i+1)2

∈
(
0, K

2(z+1)2

]
. Then, we can also bound (22) by

∫ ∞

0

∑
i ̸=i∗

 1

(z + ηtL̂t,i + 1)2

∏
j ̸=i

(
1− 1

2(z + ηtL̂t,j + 1)2

)dz

≤ e

∫ ∞

0

∑
i ̸=i∗

(
1

(z + ηtL̂t,i + 1)2
e−f(z)

)
dz

≤ 2e

∫ ∞

0

f(z)e−f(z)dz

≤ 2e

∫ √
2(K−1)

0

e−1dz + 2e

∫ ∞

√
2(K−1)

K

2(z + 1)2
exp

(
− K

2(z + 1)2

)
dz

= 2
√
2
√
K − 1 +

e√
2

√
K

∫ 1

0

w−1/2e−wdw

≤ 5.7
√
K.

C.4 Proof of Lemma C.4

We first show that ψi(λ)

ϕ̄i(λ)
is monotonically increasing in λj for any j ̸= i and λ ∈ [0,∞)K .

By definition, it holds that

ψi(λ)

ϕ̄i(λ)
=

∫∞
0

1
(z+λi+1)4

∏
j ̸=i F (z + λj)dz∫∞

0
f(z + λi)

∏
j ̸=i F (z + λj)dz

=

∫∞
0

1
(z+λi+1)4

∏
j ̸=i

(
1− 1

2(z+λj+1)2

)
dz∫∞

0
1

(z+λi+1)3

∏
j ̸=i

(
1− 1

2(z+λj+1)2

)
dz

=

∫∞
1

1
(z+λi)4

∏
j ̸=i

(
1− 1

2(z+λj)2

)
dz∫∞

1
1

(z+λi)3

∏
j ̸=i

(
1− 1

2(z+λj)2

)
dz
.

Since 1
z3

1
1− 1

2z2
is monotonically decreasing for z ≥ 1, applying Lemma 9 in Lee et al. [38] implies

that ψi(λ)

ϕ̄i(λ)
is monotonically decreasing in λj .

By the monotonicity of ψi(λ)/ϕ̄i(λ), we have

ψi(λ)

ϕ̄i(λ)
≤ ψi(λ

∗)

ϕ̄i(λ∗)
, where λ∗j =

{
λi, j ≤ i,

∞, j > i.

By definition, we have

ψi(λ
∗) =

∫ ∞

0

1

(z + λi + 1)4

(
1− 1

2(z + λi + 1)2

)i−1

dz

=

∫ 1
2(λi+1)2

0

√
2w

1
2 (1− w)i−1dw (by w = 1

2(z+λi+1)2 )

=
√
2B

(
1

2(λi + 1)2
;
3

2
, i

)
,
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where B(x; a, b) =
∫ x
0
ta−1(1− t)b−1dt denotes the incomplete Beta function. Similarly, we obtain

ϕ̄i(λ
∗) =

∫ ∞

0

1

(z + λi + 1)3

(
1− 1

2(z + λi + 1)2

)i−1

dz

=

∫ 1
2(λi+1)2

0

√
2w0(1− w)i−1dw

=
√
2B

(
1

2(λi + 1)2
; 1, i

)
.

Therefore, we can directly apply the result in Lee et al. [38, Appendix C.2.2.] with α = 2 and
1

2(λi+1)2 instead of 1
(λi+1)2 , which gives

ψi(λ
∗)

ϕ̄i(λ∗)
≤

√
π

√
σi

∧
√
2e

3

1

λi
.

C.5 Proof of (20)

When i = 1, it holds trivially by I1,i = 0. Assume i > 1. Let Gi(z) =
∏
j ̸=1,i F (z + λj). Since

λ1 = 0 and Gi(z) is increasing, we have

I1,i =

∫ 0

−λi

1

(z + λi + 1)4
e2z

2
Gi(z)dz

≤
∫ 0

−λi

1

(z + λi + 1)4
e2z

2
Gi(0)dz,

I2,i =

∫ ∞

0

1

(z + λi + 1)4

(
1− 1

2(x+ 1)2

)
Gi(z)dz

≥
∫ ∞

0

1

(z + λi + 1)4

(
1− 1

2(x+ 1)2

)
Gi(0)dz.

Therefore,

I1,i
I2,i

≤

∫ 0

−λi

1
(z+λi+1)4

e2z

2 dz∫∞
0

1
(z+λi+1)4

(
1− 1

2(x+1)2

)
dz

≤ 2

∫ 0

−λi

1
(z+λi+1)4

e2z

2 dz∫∞
0

1
(z+λi+1)4 dz

= 3(λi + 1)3
∫ 0

−λi

1

(z + λi + 1)4
e2zdz.

Here, d
dz

1
(z+λi+1)4 e

2z =
2e2z(z+λi−1)
(z+λi+1)5 holds, whose maximum in the interval of integral occurs at

either z = −λi or z = 0. Therefore, we obtain that

3(λi + 1)3
∫ 0

−λi

1

(z + λi + 1)4
e2zdz ≤ 3(λi + 1)3λi

(
e−2λi ∨ 1

(λi + 1)4

)
,

where ∨ denotes the max operator. Since λi > 0, it is easy to see

3(λi + 1)3λi
(λi + 1)4

=
3λi
λi + 1

≤ 3.

On the other hand, by simple calculus, we obtain for x > 0

3(x+ 1)3xe−2x ≤ 9

4
(12 + 7

√
3)e−1−

√
3 < 4.

where equality holds when x = 1+
√
3

2 . This completes the proof.
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D Proofs of the stochastic regret for Laplace-Pareto perturbations

In this section, we provide the proof of Theorem 4.4 based on the self-bounding techniques, where
we adopt idea in Honda et al. [28] and Lee et al. [38]. Firstly, define a event Dt by

Dt :=

∑
i ̸=i∗

1

(1 + ηtL̂t,i)
2
≤ 1

4

, (23)

where on Dt

L̂t,i∗ = 0 and ηtL̂t,j ≥ 1, ∀j ̸= i∗. (24)

D.1 Regret lower bounds

Here, we provide the regret lower bounds, which are used for the self-bound technique.

Lemma D.1. Let ∆ := mini ̸=i∗ ∆i. Then, it holds that

(i) On Dt,
∑
i ̸=i∗ ∆iwt,i ≥ 1

8e5/4

∑
i ̸=i∗

∆i

(ηtL̂t,i)
2

and wt,i∗ ≥ e−1/4

2 .

(ii) On Dc
t ,
∑
i ̸=i∗ ∆iwt,i ≥ ∆ e−1

2 (1− e−1/4).

Although the proof is largely the same as in Lemma 22 of Lee et al. [38], we include the details here
for completeness.

Proof. Let L̂
′
= mini ̸=i∗ L̂t,i. Then, by definition of w, we have

∑
i ̸=i∗

∆iwt,i =

∫ ∞

−∞

∑
i ̸=i∗

∆if(z + ηtL̂t,i)
∏
j ̸=i

F (z + ηtL̂t,j)

dz

≥
∫ ∞

−∞

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 ∏
j∈[K]

F (z + ηtL̂t,j)dz

≥
∫ ∞

−∞

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 exp

−
∑
j∈[K]

1− F (z + ηtL̂t,i)

F (z + ηtL̂t,i)

dz (25)

≥
∫ ∞

−∞

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 exp

−
∑
j ̸=i∗

1− F (z + ηtL̂t,i)

F (z + ηtL̂t,i)

 exp

(
−1− F (z)

F (z)

)
dz,

(26)

where (25) holds since e−
x

1−x < 1− x holds for x < 1.
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(i) On Dt, we obtain

∫ ∞

−∞

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 exp

−
∑
j ̸=i∗

1− F (z + ηtL̂t,i)

F (z + ηtL̂t,i)

 exp

(
−1− F (z)

F (z)

)
dz

≥ e−1

∫ ∞

0

∑
i̸=i∗

∆if(z + ηtL̂t,i)

 exp

−2
∑
j ̸=i∗

(1− F (z + ηtL̂t,i))

dz

= e−1

∫ ∞

0

∑
i̸=i∗

∆if(z + ηtL̂t,i)

 exp

−
∑
j ̸=i∗

1

(1 + ηtL̂t,j)
2

dz

≥ e−5/4

∫ ∞

0

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

dz (by definition of Dt in (23))

= e−5/4
∑
i ̸=i∗

∆i

(
1− F

(
ηtL̂t,i

))
= e−5/4

∑
i ̸=i∗

∆i

2(1 + ηtL̂t,i)
2
≥ 1

8e5/4

∑
i̸=i∗

∆i

(ηtL̂t,i)
2
. (ηtL̂t,j ≥ 1 for j ̸= i∗ on Dt)

On the other hand, on Dt, we have

wt,i∗ =

∫ ∞

−∞

1

(|z|+ 1)3

∏
j ̸=i∗

F (z + ηtL̂t,j)dz

≥
∫ ∞

0

1

(z + 1)3

∏
j ̸=i∗

F (z + ηtL̂t,j)dz

≥
∫ ∞

0

1

(z + 1)3
exp

−
∑
j ̸=i∗

1− F (z + ηtL̂t,j)

F (z + ηtL̂t,j)

dz

≥
∫ ∞

0

1

(z + 1)3
exp

−2
∑
j ̸=i∗

(1− F (z + ηtL̂t,j))

dz

=

∫ ∞

0

1

(z + 1)3
exp

−
∑
j ̸=i∗

1

(1 + ηtL̂t,j)
2

dz

≥ e−
1
4

∫ ∞

0

1

(z + 1)3
dz (by definition of Dt in (23))

=
e−1/4

2
≈ 0.3894,

which concludes the proof of the case (i).
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(ii) From (26), on Dc
t , we have

∫ ∞

−∞

∑
i ̸=i∗

∆if(z + ηtL̂t,i)

 exp

−
∑
j ̸=i∗

1− F (z + ηtL̂t,i)

F (z + ηtL̂t,i)

 exp

(
−1− F (z)

F (z)

)
dz

≥ ∆

∫ ∞

0

∑
i ̸=i∗

f(z + ηtL̂t,i)

 exp

−
∑
j ̸=i∗

1− F (z + ηtL̂t,i)

F (z + ηtL̂t,i)

 exp

(
−1− F (z)

F (z)

)
dz

≥ ∆e−1

∫ ∞

0

∑
i̸=i∗

f(z + ηtL̂t,i)

 exp

−2
∑
j ̸=i∗

(1− F (z + ηtL̂t,i))

dz

= ∆
e−1

2

1− exp

−2
∑
j ̸=i∗

(1− F (ηtL̂t,j))


= ∆

e−1

2

1− exp

−
∑
j ̸=i∗

1

(1 + ηtL̂t,j)
2


≥ ∆

e−1

2
(1− e−1/4), (

∑
j ̸=i∗

1
(1+ηtL̂t,j)

2
≥ 1

4 on Dc
t )

which concludes the proof.

D.2 Regret for the optimal arm

To apply the self-bounding technique, we need to express the regret of the optimal arm using the
statistics of the other arms. Although the proof is largely the same as in Lemma 11 of Honda et al.
[28], we include the details here for completeness, accounting for some additional terms due to
negative perturbations.

Similarly to the proof in Lee et al. [38], we begin by introducing the following lemma.

Lemma D.2 (Partial result of Lemma 11 in Honda et al. [28]). For any L̂t and ζ ∈ (0, 1), it holds
that

E
[
1

[
ℓ̂t,i∗ >

ζ

ηt

]
ℓ̂t,i∗

∣∣∣∣L̂t] ≤ 1

1− e−1
(1− e−1)

ζ
ηt

(
ζ

ηt
+ e

)
and when ηt = m√

t
and ζ = 1− (4e/21)1/3, it holds that

∞∑
t=1

1

1− e−1
(1− e−1)

ζ
ηt

(
ζ

ηt
+ e

)
≤ 2743m2 + 77m.

Based on this result, we obtain the following lemma.

Lemma D.3. On Dt, for any ζ ∈ (0, 1), it holds that

E
[
ℓ̂t,i∗

(
ϕi∗(ηtL̂t)− ϕi∗(ηt(L̂t + ℓ̂t))

)∣∣∣∣L̂t] ≤ 13e1/4

(1− ζ)

∑
j ̸=i∗

1

L̂t,j
+

1

1− e−1
(1−e−1)

ζ
ηt

(
ζ

ηt
+ e

)
.

Proof. Recall that L̂t,i∗ = 0 and L̂t,j > 0 for all j ̸= i∗ on Dt. Moreover, from (24), L̂t,j ≥ 1/ηt

holds for all j ̸= i∗ on Dt. Then, we consider two cases separately: (i) ŵ−1
t,i∗ ≤ ζ

ηt
and (ii) ŵ−1

t,i∗ >
ζ
ηt

.
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(i) When ŵ−1
t,i∗ ≤ ζ

ηt
, we have ℓ̂t,i∗ ≤ ζ

ηt
by definition. For any x ≤ ζ

ηt
and i ̸= i∗, we have

ϕi

(
ηt(L̂t + xei∗)

)
=

∫ ∞

−∞
f(z + ηtL̂t,i)

∏
j ̸=i

F
(
z + ηtL̂t,j + x1[j = i∗]

)
dz

=

∫ ∞

−∞
f(z + ηtL̂t,i)

∏
j ̸=i

F
(
z + ηtL̂t,j + x1[j = i∗]

)
dz

=

∫ ∞

−∞
f(z + ηtL̂t,i)F (z + ηtx)

∏
j ̸=i,i∗

F
(
z + ηtL̂t,j

)
dz.

Here, note that whenever x ≤ ζ
ηt

, L̂t,i − x ≥ (1 − ζ)L̂t,i holds for all i ̸= i∗ on Dt. Then, by
differentiating with respect to x, we obtain
d

dx
ϕi

(
ηt(L̂t + xei∗)

)
= ηt

∫ ∞

−∞
f
(
z + ηtL̂t,i

)
f(z + ηtx)

∏
j ̸=i,i∗

F
(
z + ηtL̂t,j

)
dz

= ηt

∫ ∞

−∞
f
(
z + ηt(L̂t,i − x)

)
f(z)

∏
j ̸=i,i∗

F
(
z + ηt(L̂t,j − x)

)
dz

≤ ηt

∫ 0

−∞
f
(
z + ηt(L̂t,i − x)

)
f(z)dz︸ ︷︷ ︸

†i

+ ηt

∫ ∞

0

f
(
z + ηt(L̂t,i − x)

)
f(z)dz︸ ︷︷ ︸

‡i

.

(27)

For ‡i term, since ηt(L̂t,i − x) ≥ 0 in case (i), we obtain for any i ̸= i∗ that

‡i ≤ηt
∫ ∞

0

1

(z + ηt(L̂t,i − x) + 1)3
1

(z + 1)3
dz

≤ ηt
1

(1 + (1− ζ)ηtL̂t,i)
3

∫ ∞

0

1

(z + 1)3
dz

≤ ηt

6(1− ζ)ηtL̂t,i
=

1

6(1− ζ)L̂t,i
.

On the other hand, †i term can be decomposed into two terms by

†i = ηt

∫ −ηt(L̂t,i−x)

−∞
f
(
z + ηt(L̂t,i − x)

)
f(z)dz︸ ︷︷ ︸

†i,1

+ ηt

∫ 0

−ηt(L̂t,i−x)
f
(
z + ηt(L̂t,i − x)

)
f(z)dz︸ ︷︷ ︸

†i,2

.

Since f(x) = e2x on x < 0, it holds that

†i,1 = ηt

∫ −ηt(L̂t,i−x)

−∞
exp
(
4z + ηt(L̂t,i − x)

)
dz

=
ηte

−3ηt(L̂t,i−x)

4

≤ ηte
−3ηt(1−ζ)L̂t,i

4

≤ ηt
4

1

3(1− ζ)ηtL̂t,i + 1
(by e−x < 1

1+x for x > −1)

≤ 1

12(1− ζ)L̂t,i
.

For the second term, we have

†i,2 = ηt

∫ 0

−ηt(L̂t,i−x)

e2z

(z + ηt(L̂t,i − x) + 1)3
dz,
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where the maximum of e2z

(z+c+1)3 on z ∈ [−c, 0] occurs at either z = −c or z = 0 since its minimum
is achieved at z = −c+ 1

2 . This implies that

e2z

(z + ηt(L̂t,i − x) + 1)3
≤ 1

(ηt(L̂t,i − x) + 1)3
∨ exp

(
−2ηt(L̂t,i − x)

)
(28)

Here, since 1
(y+1)3 ≥ e−2y for all y ≥ 1.15, we obtain

1

[
ηt(L̂t,i − x) ≥ 1.15

]
†i,2 ≤ ηt

ηt(L̂t,i − x)

(ηt(L̂t,i − x) + 1)3

≤ ηt

(ηtL̂t,i(1− ζ) + 1)2

≤ 1

2(1− ζ)L̂t,i
. (29)

On the other hand, when ηt(L̂t,i − x) ∈ (0, 1.15), we need more careful approach to provide a tight

bound. Similarly to (20), we first evaluate ‡i,2
†i on Dt ∩

{
ηt(L̂t,i − x) ≤ 1.15

}
, which satisfies

∫ 0

−ηt(L̂t,i−x)
e2z

(z+ηt(L̂t,i−x)+1)3
dz∫∞

0
1

(z+ηt(L̂t,i−x)+1)3
1

(z+1)3 dz
≤ 1/2∫∞

0
1

(z+ηt(L̂t,i−x)+1)3
1

(z+1)3 dz
.

When ηt(L̂t,i − x) ≤ 1.15, the denominator can be evaluated as

∫ ∞

0

1

(z + ηt(L̂t,i − x) + 1)3
1

(z + 1)3
dz ≥

∫ ∞

0

1

(z + 2.15)3
1

(z + 1)3
dz

≥ 0.028.

Therefore, on Dt ∩
{
ηt(L̂t,i − x) ≤ 1.15

}
, we obtain

†i,2 ≤ 0.5

0.028
‡i ≤ 18‡i ≤

3

(1− ζ)L̂t,i
.

Combining this result with (29), on Dt, it holds that

†i,2 ≤ 3

(1− ζ)L̂t,i
.

Therefore, for any i ̸= i∗, we obtain

d

dx
ϕi

(
ηt(L̂t + xei∗)

)
≤ 3 + 1/4

(1− ζ)L̂t,i
.
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Combining this with
∑
i ϕi(λ) = 1, we have

E
[
1[ℓ̂t,i∗ ≤ ζ/ηt]ℓ̂t,i∗

(
ϕi∗(ηtL̂t)− ϕi∗(ηt(L̂t + ℓ̂t))

)∣∣∣L̂t]
= E

[
1[It = i∗, ℓ̂t,i∗ ≤ ζ/ηt]ℓ̂t,i∗

(
ϕi∗(ηtL̂t)− ϕi∗(ηt(L̂t + ℓ̂t))

)∣∣∣L̂t]
= E

[
1[It = i∗, ℓ̂t,i∗ ≤ ζ/ηt]ℓ̂t,i∗

(
ϕi∗(ηtL̂t)− ϕi∗(ηt(L̂t + ℓ̂t))

)∣∣∣L̂t]
= E

1[It = i∗, ℓ̂t,i∗ ≤ ζ/ηt]ℓ̂t,i∗
∑
i ̸=i∗

(
ϕi(ηtL̂t)− ϕi(ηt(L̂t + ℓ̂t))

)∣∣∣∣∣∣L̂t


≤ E

1[It = i∗]ℓ̂2t,i∗
∑
i̸=i∗

3 + 1/4

(1− ζ)L̂t,i

∣∣∣∣∣∣L̂t


≤ E

2ℓ2t,i∗
wt,i∗

∑
i ̸=i∗

3 + 1/4

(1− ζ)L̂t,i

∣∣∣∣∣∣L̂t
 (by (21))

≤ 4e1/4(3 + 1/4)
∑
i ̸=i∗

1

(1− ζ)L̂t,i
. (by (i) of Lemma D.1)

For the case where x ≥ ζ/ηt, we can directly apply Lemma D.2, which concludes the proof.

D.3 Proof of Theorem 4.4

We begin by revisiting the regret decomposition in (13) and Lemma C.1, where we obtain

Reg(T ) ≤
T∑
t=1

E
[〈
ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[rt+1,It+1

− rt+1,i∗ ] + C1

=

T∑
t=1

E
[
E
[〈
ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))

〉
+

(
1

ηt+1
− 1

ηt

)
(rt+1,It+1 − rt+1,i∗)

∣∣∣∣L̂t]]+ C1

≤
T∑
t=1

E
[
E
[〈
ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))

〉
+
rt+1,It+1

− rt+1,i∗

2m
√
t

∣∣∣∣L̂t]]+ C1 (30)

for C1 =
√
Kπ
2m +

(
2K
27 + e2

)
log(T + 1) and ηt = m/

√
t.

If L̂t satisfies Dt defined in (23), then the inner expectation is bounded by

E
[〈
ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))

〉
+
rt+1,It+1

− rt+1,i∗

2m
√
t

∣∣∣∣L̂t]
≤
∑
i ̸=i∗

(
10e

√
2

L̂t,i
+

13e1/4

(1− ζ)

1

L̂t,i
+

1

m2L̂t,i

)
+

1

1− e−1
(1− e−1)

ζ
ηt

(
ζ

ηt
+ e

)
(by Lemmas C.2, C.3, and D.3)

=
∑
i ̸=i∗

60 +m−2

L̂t,i
+

1

1− e−1
(1− e−1)

ζ
ηt

(
ζ

ηt
+ e

)
, (31)

where we set ζ = 1− (4e/21)1/3 following Honda et al. [28].

On the other hand, on Dc
t , the inner expectation can be bounded by

E
[〈
ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt(L̂t + ℓ̂t))

〉
+
rt+1,It+1

− rt+1,i∗

2m
√
t

∣∣∣∣L̂t]
≤ 60m

√
Kπ

t
+

5.7

2m

√
K

t
(by Lemmas C.2 and C.3)

≤ (107m+ 3/m)

√
K

t
. (32)
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By combining (31), (32) and Lemma D.2 with (30) and ζ = 1− (4e/21)1/3, we obtain

Reg(T ) ≤
T∑
t=1

E

[
1[Dt]

60 +m−2

L̂t,i
+ 1[Dc

t ](107m+ 3/m)

√
K

t

]
+ C1 + 2743m2 + 77m. (33)

On the other hand, by the lower bound given in Lemma D.1, we have

Reg(T ) ≥
T∑
t=1

E

1[Dt]
1

8e5/4

∑
i̸=i∗

t∆i

m2L̂
2

t,i

+ 1[Dc
t ]
(1− e−1/4)

2e
∆

. (34)

From (33)− (34)/2, we obtain

Reg(T )

2

≤
T∑
t=1

1[Dt]
∑
i ̸=i∗

60 +m−2

L̂t,i
− tm−2∆i

16e5/4L̂
2

t,i

+ 1[Dc
t ]

(
(107m+ 3/m)

√
K

t
− 1− e−1/4

2e
∆

)
+ C1 + 2743m2 + 77m

≤
T∑
t=1

1[Dt]
∑
i ̸=i∗

(60m+m−1)2

t∆i/(4e5/4)
+ 1[Dc

t ]

(
(107m+ 3/m)

√
K

t
− 1− e−1/4

2e
∆

)
+ C1 + 2743m2 + 77m (by ax− bx2 ≤ a2/4b for b > 0)

≤
T∑
t=1

∑
i ̸=i∗

(60m+m−1)2

0.07t∆i
+

T∑
t=1

max
{
(107m+ 3/m)

√
K/t− 0.04∆, 0

}
+ C1 + 2743m2 + 77m

≤
∑
i ̸=i∗

(60m+m−1)2(1 + log T )

0.07∆i
+

(107m+ 3/m)2K

0.04∆
+ C1 + 2743m2 + 77m

= Θ

∑
i ̸=i∗

log T

∆i
+K log T +K

,
which concludes the proof.

E Proofs of Corollary 4.2

Here, we provide the proof of Corollary 4.2, based on the discussion given in Appendices C and D.
The main idea is to recast our arguments in the form analyzed in previous works [28, 38].

Firstly, as in (13), we can decompose the regret as follows:

Reg(T )

≤
T∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[rt+1,It+1 − rt+1,i∗ ] +

Er1∼Uα,β
[maxi∈[K] r1,i]

η1

≤
T∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[rt+1,It+1

− rt+1,i∗ ] +
Er1∼Dα [maxi∈[K] r1,i]

η1

≤
T∑
t=1

E
[〈
ℓ̂t, wt − wt+1

〉]
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[rt+1,It+1

− rt+1,i∗ ] +
MuAu

√
K

m
,

where the last inequality directly follows from Lemma 7 in Lee et al. [38] since Dα is assumed to
satisfy all the conditions.
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E.1 Adversarial regret analysis

As shown in Appendix C, it suffices to generalize Lemmas C.1–C.3. Here, the generalization of
Lemma C.2 can be obtained by Theorem 4.1.

The generalization of Lemma C.1 is straightforward by discussion after (16), where the main
difference comes from the additional (‡i) term induced by the negative parts. Specifically, the first
two terms in (16) can be directly bounded by using Lemma 8 in Lee et al. [38], and as shown in (18),
the sum of ‡i terms over all i is zero for any distribution.

Similarly, the generalization of Lemma C.3 follows directly from Lemma 13 in Lee et al. [38]. The
introduction of negative parts only decreases the expected value of perturbations, which in turn
reduces the penalty term unless the expected value is positive, as shown in Appendix C.3.

E.2 Stochastic regret analysis

To obtain BOBW guarantee, we further need to generalize Lemmas D.1 and D.3. For Lemma D.1, we
can directly apply Lemma 22 in Lee et al. [38], since the lower bound can be obtained by restricting
the integral interval to the positive side.

To generalize Lemma D.3, one can see that it suffices to bound the term

†i = ηt

∫ 0

−∞
f
(
z + ηt(L̂t,i − x)

)
f(z)dz,

when x ≤ ζ/ηt since the induced part by ‡i term in (27) can be analyzed by Lemma 25 in Lee et al.
[38]. Then, we can decompose †i into two terms by

†i = ηt

∫ −ηt(L̂t,i−x)

−∞
f
(
z + ηt(L̂t,i − x)

)
f(z)dz︸ ︷︷ ︸

†i,1

+ ηt

∫ 0

−ηt(L̂t,i−x)
f
(
z + ηt(L̂t,i − x)

)
f(z)dz︸ ︷︷ ︸

†i,2

.

Since f(x) is the density of Dβ on x < 0, we have

ηt

∫ −ηt(L̂t,i−x)

−∞
f
(
z + ηt(L̂t,i − x)

)
f(z)dz ≤ ηtf(0)

∫ −ηt(L̂t,i−x)

−∞
f(z)dz

= ηtf(0)F (−ηt(L̂t,i − x))

≤ ηtf(0)F (−ηt(1− ζ)L̂t,i)

= ηtf(0)Θ

(
1

(1− ζ)β(ηtL̂t,i)
β

)

= f(0)Θ

(
1

(1− ζ)βL̂t,i

)
as desired. For the second term, we can do the similar derivations in (28) by considering the maximum
of 1

(z+c+1)β
1

(z+1)α .
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Figure 5: Imaginary part after IFT.
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Figure 6: Sanity check with normal distribution.

F Details on numerical validation

In this section, we provide the Matlab code for the inverse Fourier transform (IFT) and additional
plots to confirm whether the obtained IFT is real-valued. The code is implemented based on the code
of cf2DistFFT in CharFunTool [53, 54].

1 % Generate IFT given quantile function c(x).
2 x_min = -20.0; x_max = 20.0; % x-axis
3 N= 2^11; k = (0:(N-1))'; % number of samples
4 w = (0.5-N/2+k) * (2*pi / (x_max -x_min)); % frequency axis
5 quantile_func = @(p) -(p^( -1/2) -(1-p)^( -1/2)); % given c(x)
6 % compute characteristic function g
7 fun = @(w, p) exp(1i * w .* quantile_func(p));
8 cffun = @(w) arrayfun (@( w_val) sqrt(integral (@(p) fun(w_val , p)

, 0.0001 , 0.9999 , 'ArrayValued ', true)), w);
9 cf = cffun(w(N/2+1: end));

10 cf = [conj(cf(end :-1:1));cf]; % for the negative side
11 % Do inverse Fourier Transform
12 dx = (x_max -x_min)/N;
13 C = (-1).^((1 -1/N)*(x_min/dx+k))/(x_max -x_min);
14 D = (-1).^( -2*( x_min /(x_max -x_min))*k);
15 ifft = C.*fft(D.*cf);
16 pdf = real(ifft); img_part = imag(ifft); cdf = cumsum(pdf*dx)

;

Note that in line 8, we compute the square root of the integral, i.e., the square root of the characteristic
function ḡ. As illustrated in Figure 5, the imaginary part resulting from the IFT is negligible, with the
y-axis scale on the order of 10−16, which can be attributed to numerical errors.

To validate the correctness of our code, we perform a sanity check by modifying the quantile function
in the Matlab code to that of the standard normal distribution, given by c(x) =

√
2erf−1(2x− 1),

where erf−1 denotes the inverse error function. Since the characteristic function of N (0, σ) is
exp
(
−σ2t2/2

)
, the characteristic function of N (0, 1) is ḡ(t) = exp

(
−t2/2

)
. Therefore, applying

the IFT to
√
ḡ should yield the density of N (0, 1/

√
2). As shown in Figure 6, the result confirms the

correctness of our implementation.

G Proofs of results under symmetric perturbations

Here, we provide proofs for results in Section 5.

G.1 Proof of Lemma 5.1

Lemma 5.1 (restated) Let −D denote the distribution of −X . Let (r1, r2) be i.i.d. from continuous
D and D̄ be distribution of r1 − r2. Then, if D̄ is Fréchet-type, then either D or −D is Fréchet-type.
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Proof. According to the Fisher-Tippett-Gnedenko (FTG) theorem [20, 23], if the distribution of
normalized maximum converges, such limit distributions must belong to one of three types of
extreme value distributions: Fréchet, Gumbel, and Weibull. Distributions with polynomial tails (i.e.,
heavy tails) are classified as Fréchet-type distributions, while distributions with exponential tails are
Gumbel-type, and bounded tails (i.e., bounded maximum) belong to either the Gumbel-type or the
Weibull-type [47].

Whenever the tails of distribution of X are either exponential or bounded, the distribution of X − Y
also has either an exponential right tail or a bounded right tail. It is straightforward to verify this
when the distributions have bounded tails. In the case where both distributions have exponential tails,
classical results on convolution tails indicate that their convolution also exhibits an exponential tail,
where the general proof can be found in Cline [14] and references therein. This implies that if tails of
DTs
β are either Gumbel-type or Weibul-type, D̄Ts

β does not have a heavy-tail, meaning that it is not
Fréchet-type.

G.2 Proof of Proposition 5.3

Here, we assume λ1 ≤ λ2, so that λ1 = 0 and λ2 = c for some constants c > 0 without loss of
generality. For i = 1, by the unimodality of symmetric Pareto distribution, we have

−ϕ′1(λ)
(ϕ1(λ))3/2

=

∫∞
−∞ −f ′(z)F (z + c)dz(∫∞
−∞ f(z)F (z + c)dz

)3/2
≤

∫∞
0

−f ′(z)F (z + c)dz(∫∞
−∞ f(z)F (z + c)dz

)3/2 (unimodality of f )

≤ 2
√
2

∫ ∞

0

−f ′(z)F (z + c)dz (ϕ1(λ) ≥ 1/2)

= 2
√
2

∫ ∞

0

3

(z + 1)4

(
1− 1

2(z + c+ 1)2

)
dz

≤ 2
√
2. (35)

For i = 2, we have

−ϕ′2(λ)
(ϕ2(λ))3/2

=

∫∞
−∞ −f ′(z + c)F (z)dz(∫∞
−∞ f(z + c)F (z)dz

)3/2 .
For the denominator term, we have∫ ∞

−∞
f(z + c)F (z)dz ≥

∫ ∞

0

f(z + c)F (z)dz

≥ 1

2

∫ ∞

0

1

(z + c+ 1)3
dz

=
1

4(c+ 1)2
. (36)

For the numerator term, we consider two cases separately, where (i) c ∈ (0, 1.5) and (ii) c ≥ 1.5.
When c ∈ (0, 1.5), we have ∫ ∞

−∞
f(z + c)F (z)dz ≥ 1

22(2.5)2

and ∫ ∞

−∞
−f ′(z + c)F (z)dz =

∫ ∞

−∞
−f ′(z)F (z − c)dz

≤
∫ ∞

0

−f ′(z)F (z − c)dz

≤
∫ ∞

0

−f ′(z)F (z + c)dz ≤ 1. (by (35))
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Therefore, we have
−ϕ′2(λ)

(ϕ2(λ))3/2
≤ 125.

When c ≥ 1.5, we decompose the numerator into three terms.∫ ∞

−∞
−f ′(z + c)F (z)dz =

∫ −c

−∞

−3

2(1− z − c)4(1− z)2
dz︸ ︷︷ ︸

†1

+

∫ 0

−c

3

2(z + c+ 1)4(1− z)2
dz︸ ︷︷ ︸

†2

+

∫ ∞

0

3

(z + c+ 1)4

(
1− 1

2(z + 1)2

)
dz︸ ︷︷ ︸

†3

For the last term, we have

†3 ≤
∫ ∞

0

3

(c+ z + 1)4
dz =

1

(c+ 1)3
. (37)

For the first term, by partial fraction decomposition, we obtain

1

(1− z − c)4(1− z)2
=

1/c2

(1− z − c)4
+

−2/c3

(1− z − c)3
+

3/c4

(1− z − c)2
+

−4/c5

1− z − c
+

4/c5

1− z
+

1/c4

(1− z)2
.

Therefore, we have

−2

3
†1 =

∫ −c

−∞

1/c2

(1− z − c)4
+

−2/c3

(1− z − c)3
+

3/c4

(1− z − c)2
+

−4/c5

1− z − c
+

4/c5

1− z
+

1/c4

(1− z)2
dz

=
1/c2

3(1− z − c)3
+

−1/c3

(1− z − c)2
+

3/c4

(1− z − c)
+

4

c5
log

(
1− z − c

1− z

)
+

1/c4

1− z

∣∣∣∣z=−c

z=−∞

=
1

3c2
− 1

c3
+

3

c4
− 4

c5
log(c+ 1) +

1

c4(c+ 1)
,

which implies

†1 = − 1

2c2
+

3

2c3
− 9

2c4
+

6

c5
log(c+ 1)− 3

2c4(c+ 1)

≤ − 1

2c2
+

3

2

(
1

c3
+

1

c4

)
. (by log(c+ 1) ≤ c)

Similarly, for the second term, partial fraction decomposition gives

1

(z + c+ 1)4(1− z)2
=

1/(c+ 2)2

(z + c+ 1)4
+

2/(c+ 2)3

(z + c+ 1)3
+

3/(c+ 2)4

(z + c+ 1)2
+
4/(c+ 2)5

z + c+ 1
+
4/(c+ 2)5

1− z
+
1/(c+ 2)4

(1− z)2
.

Therefore, we have

2

3
†2 =

−1/(c+ 2)2

3(z + c+ 1)3
+

−1/(c+ 2)3

(z + c+ 1)2
+

−3/(c+ 2)4

z + c+ 1
+

4

(c+ 2)5
log

(
z + c+ 1

1− z

)
+

1/(c+ 2)4

1− z

∣∣∣∣z=0

z=−c

=
1

3(c+ 2)2
+

1

(c+ 2)3
+

4

(c+ 2)4
+

8 log(c+ 1)

(c+ 2)5

−
(

1

3(c+ 1)3(c+ 2)2
+

1

(c+ 1)2(c+ 2)3
+

4

(c+ 1)(c+ 2)4

)
,

which implies for c > 0

†2 =
1

2(c+ 2)2
+

3

2(c+ 2)3
+

6

(c+ 2)4
+

12 log(c+ 1)

(c+ 2)5

− 3

2

(
1

3(c+ 1)3(c+ 2)2
+

1

(c+ 1)2(c+ 2)3
+

4

(c+ 1)(c+ 2)4

)
≤ 1

2c2
+

3

2(c+ 2)3
+

18

(c+ 2)4
− 3

2

(
1

3(c+ 1)3(c+ 2)2
+

1

(c+ 1)2(c+ 2)3
+

4

(c+ 1)(c+ 2)4

)
.
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Therefore,

†1 + †2 ≤ 3

2c3
+

3

2(c+ 2)3
+

3

2c4
+

18

(c+ 2)4

− 3

2

(
1

3(c+ 1)3(c+ 2)2
+

1

(c+ 1)2(c+ 2)3
+

4

(c+ 1)(c+ 2)4

)
(38)

By combining (36) and (37) with (38), we have for any c > 0 that

−ϕ′2(λ)
(ϕ2(λ))3/2

≤ 12

((
c+ 1

c

)3

+

(
c+ 1

c+ 2

)3

+
(c+ 1)3

c4

)

+
144(c+ 1)3

(c+ 2)4
− 4

(c+ 2)2
+

12(c+ 1)

(c+ 2)2
− 48(c+ 1)2

(c+ 2)4
+ 8.

Then, for c ≥ 1.5, we have
−ϕ′2(λ)

(ϕ2(λ))3/2
≤ 121,

which concludes the proof.

G.3 Proof of Proposition 5.5

Consider symmetric perturbation distributions U2,2, whose tails of both sides are Fréchet-type with
index 2. Let D2,l and D2,r denote the distribution of left and right sides, respectively. Here, we
assume that for all x > 0

xf(x;D2,l)

1− F (x;D2,l)
≤ 2 and

xf(x;D2,r)

1− F (x;D2,r)
.

This condition is known as a sufficient condition to satisfy Assumption 2.3. Also, it is not that
restrictive conditions as several well-known Fréchet-type distributions, such as Fréchet, Pareto, and
Student-t distributions, satisfy this condition [38, see Appendix A]. Under this assumption, we have
for x > 0

F (−x;U2,2) =
SFl

(x)

2(x+ 1)2
and 1− F (x;U2,2) =

SFr (x)

2(x+ 1)2
,

where the corresponding slowly varying function SF·(x) is an increasing function for x > 0. Here, a
slowly varying function g(x) satisfies limx→∞

g(x)
xa = 0 for any a > 0, so that it is asymptotically

negligible compared to any polynomial function.

By definition of ϕ, we have for i ̸= 1

ϕi(λ) =

∫ ∞

−∞
f(z + λi)F (z)

∏
j ̸=i,1

F (z + λj)dz.

Then, we obtain for K ≥ 3 and λ = (0, c . . . , c) with c > 0 that

−ϕ′i(λ) =
∫ ∞

−∞
−f ′(z + c)F (z)FK−2(z + c)dz

=

∫ ∞

−∞
−f ′(z)F (z − c)FK−2(z)dz

=

∫ ∞

−∞
(K − 2)F (z − c)f2(z)FK−3(z)dz +

∫ ∞

−∞
f(z − c)f(z)FK−2(z)dz

≥
∫ ∞

−∞
(K − 2)F (z − c)f2(z)FK−3(z)dz

≥ K − 2

K − 1

∫ ∞

−∞
F (z − c)

f(z)

F (z)
· (K − 1)f(z)FK−2(z)dz

≥ K − 2

K − 1

∫ 2
√
K−1

√
K−1

F (z − c)
f(z)

F (z)
· (K − 1)f(z)FK−2(z)dz.
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Then, since SF is increasing, we have for c ≥ 2
√
K

F (z − c) ≥ F (
√
K − 1− c) =

SFl
(c+ 1−

√
K)

2(c−
√
K)2

≥ SFl
(c+ 1−

√
K)

2c2
≥ SFl

(
√
K + 1)

2c2

uniformly over z ∈ [
√
K − 1, 2

√
K − 1].

By Assumption 2.3, f/F is decreasing for x > 0. Therefore, we have for x ∈ [
√
K − 1, 2

√
K − 1]

that
f(x)

F (x)
≥ f(2

√
K − 1)

F (2
√
K − 1)

≥ Sfr (2
√
K − 1)

4K
√
K

since F (2
√
K − 1) ≥ 1/2 and f(x) = Sfr (x)/(x+ 1)3. Therefore, we obtain

K − 2

K − 1

∫ 2
√
K−1

√
K−1

F (z − c)
f(z)

F (z)
· (K − 1)f(z)FK−2(z)dz

≥ (K − 2)SFl
(
√
K + 1)

2(K − 1)c2

∫ 2
√
K−1

√
K−1

f(z)

F (z)
· (K − 1)f(z)FK−2(z)dz

≥ (K − 2)SFl
(
√
K + 1)Sfr (2

√
K − 1)

8K
√
K(K − 1)c2

∫ 2
√
K−1

√
K−1

(K − 1)f(z)FK−2(z)dz

≥ (K − 2)SFl
(
√
K + 1)Sfr (2

√
K − 1)

8K
√
K(K − 1)c2

FK−1(2
√
K − 1)

≥ SFl
(
√
K + 1)Sfr (2

√
K − 1)

16K
√
Kc2

FK−1(2
√
K − 1). (∵ K ≥ 3)

Here, for y = 2
√
K − 1, we obtain

FK−1(y) = (1− (1− F (y)))
K−1

= exp((K − 1) log(1− (1− F (y))))

≥ exp

(
−(K − 1)

1− F (y)

F (y)

)
(39)

≥ exp(−2(K − 1)(1− F (y))) (∵ F (x) ≥ 1/2 for x ≥ 0)

= exp

(
−2(K − 1)

SF (y)

(y + 1)2

)
≥ exp

(
−SF (2

√
K − 1)/2

)
, (∵ y = 2

√
K − 1)

where (39) follows from log(1− x) > −x
1−x for x ∈ (0, 1]. This implies

−ϕ′i(λ) ≥
SFl

(
√
K + 1)Sfr (2

√
K − 1)

16K
√
Kc2

exp
(
−SFr (2

√
K − 1)/2

)
=:

C(D,K)

16K
√
Kc2

. (40)

Here, C(D,K) is a constant that only depends on the distribution and K. Even though C(D,K)
depends on K, it is important to note that its dependency is at most logarithmic order since both
SF and Sf are slowly varying functions. For example, C(D,K) = 2 exp(−1/2) holds when D is a
symmetric Pareto with shape 2.

Next, we have

ϕi(λ) =

∫ ∞

−∞
f(z + c)F (z)FK−2(z + c)dz

=

∫ −c

−∞
f(z + c)F (z)FK−2(z + c)dz︸ ︷︷ ︸

‡1

+

∫ 0

−c
f(z + c)F (z)FK−2(z + c)dz︸ ︷︷ ︸

‡2

+

∫ ∞

0

f(z + c)F (z)FK−2(z + c)dz︸ ︷︷ ︸
‡3

.
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Then, we have

‡1 ≤ F (−c)
∫ −c

−∞
f(z + c)FK−2(z + c)dz =

F (−c)
K − 1

1

2K−1
.

For the second term, we obtain

‡2 =

∫ c

0

f(z)F (z − c)FK−2(z)dz

=

∫ c/2

0

f(z)F (z − c)FK−2(z)dz +

∫ c

c/2

f(z)F (z − c)FK−2(z)dz

≤ F (−c/2)
∫ c/2

0

f(z)FK−2(z)dz +

∫ ∞

c/2

f(z)dz ≤ 2F (−c/2),

where the last inequality follows from symmetry so that 1− F (z) = F (−z) for z > 0. For the last
term, we have

‡3 ≤
∫ ∞

0

f(z + c)F (z)FK−2(z + c)dz ≤
∫ ∞

0

f(z + c) ≤ 1− F (c) = F (−c).

Therefore, we have for K ≥ 3 that

ϕi(λ) ≤
F (−c)

8
+ 2F (−c/2) + F (−c) ≤ 25

8
F (−c/2)

=
25

8

SFl
(c/2)

(c/2 + 1)2
=

25

2

SFl
(c/2)

(c+ 2)2
. (41)

By combining (40) and (41), we have for c ≥ 2
√
K that

−ϕ′i(λ)
ϕi(λ)

≥ 2(c+ 2)2

25SFl
(c/2)

C(D,K)

16K
√
Kc2

= Ω̃

(
1

K
√
K

)
,

where Ω̃ hides any logarithmic dependency. Note that Assumption 2.3 implies lim supx→∞ SF (x) <
∞. Moreover,

−ϕ′i(λ)
ϕ
3/2
i (λ)

≥ Ω̃

(
c+ 2

K
√
K

)
,

which concludes the proof.

G.4 Proof of Proposition 5.6

Since φ(ν) is a bijective function, there exists a unique c(x) satisfying

φ((c(x), 0, 0)) =

(
x,

1− x

2
,
1− x

2

)
for any x ∈ [ 13 , 1). When x < 1

3 , there exists a unique c(x) satisfying

φ((0, c(x), c(x))) =

(
x,

1− x

2
,
1− x

2

)
Note that c(1/3) = 0 holds since the perturbations are independently identically distributed. Let us
define another function V̄ : (0, 1) → R≤0 satisfying V̄ (x) = V ((x, (1 − x)/2, (1 − x)/2). From
(3), it holds that

V̄ (x) =

{
xc(x)− Φ((c(x), 0, 0)), if x ≥ 1/3

(1− x)c(x)− Φ((0, c(x), c(x))) if x ≤ 1/3
.

Let us consider x ≥ 1/3 case, where argmaxi νi = 1 as Proposition 5.3. By explicitly considering
the potential function in (9), we have

Φ((c(x), 0, 0)) =

∫ ∞

−∞
zf(z − c(x))F 2(z)dz + 2

∫ ∞

−∞
zf(z)F (z)F (z − c(x))dz.
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Therefore, by relationship between regularization function and potential function given in (10), for
x ≥ 1/3, we have

V̄ ′(x) = c(x) + xc′(x)− c′(x)

(∫ ∞

−∞
zf ′(z − c(x))F 2(z)dz +

∫ ∞

−∞
zf(z)f(z − c(x))F (z)dz

)
= c(x) + xc′(x)− c′(x)φ1((c(x), 0, 0)) (by (11))
= c(x).

Thus, the derivative of V̄ (x) depends on c(x), which is related to the inverse function of φ.

Fix c ≥ 0. Then, it holds that

φ1((c, 0, 0)) = 1− 2φ2((c, 0, 0)).

From (42), it holds that

φ2((c, 0, 0)) = ϕ2((0, c, c))

≤ 3 + 1/16

(c+ 1)2
≤ 4

(c+ 1)2
.

On the other hand,

ϕ2((0, c, c)) =

∫ ∞

−∞
f(z + c)F (z)F (z + c)dz

≥
∫ 0

−c
f(z + c)F (z)F (z + c)dz +

∫ ∞

0

f(z + c)F (z)F (z + c)dz

≥ F (−c)
∫ 0

−c
f(z + c)F (z + c)dz + F (0)

∫ ∞

0

f(z + c)F (z + c)dz

=
1

2

(
F 2(c)F (−c)− F (−c)

4
+

1

2

(
1− F 2(c)

))
≥ 1

2

(
F 2(c)F (−c)− F (−c)

4
+

1

2
(1− F (c))

)
(F (c) ≤ 1)

=
1

2

(
F 2(c)F (−c)− F (−c)

4
+
F (−c)

2

)
≥ F (−c)

4
. (F (c) ∈ (1/2, 1])

Therefore, we obtain
1

8(c+ 1)2
≤ φ2((c, 0, 0)) ≤

4

(c+ 1)2
,

which implies that for x ∈ [1/3, 1)

1− 8

(c(x) + 1)2
≤ x ≤ 1− 1

4(c(x) + 1)2
.

Hence, we obtain

c(x) = Θ

(
1√
1− x

)
− 1.

Note that the derivative of 1
2 -Tsallis entropy at p =

(
x, 1−x2 , 1−x2

)
is

V ′
1/2(p) = − 1√

x
+

√
2√

1− x
,

which implies that the derivative of V (p) roughly coincides with that of 1
2 -Tsallis entropy when

x→ 1.
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G.5 Counterexample for general index in three-armed bandits

Proposition G.1. Let the unimodal symmetric Fréchet-type perturbation Dα with index α > 1
defined on R, which is equivalent to a distribution in Dα on R+, and

f ′(z;Dα) ≤ 0, ∀z ≥ 0, (Unimodality)

F (−z;Dα) = 1− F (z;Dα) = Θ

(
1

(z + 1)α

)
, ∀z ≥ 0 (Symmetric Fréchet-type)∫ 0

−c
f(z + c;Dα)F (z;Dα)F (z + c;Dα)dz ≤ C(Dα)F (−c;Dα), ∀c > 0. (Condition)

for a constant C(Dα) that depends only on the distribution and is independent of c. When K = 3
and λ ∈ R3

+ satisfies λ = (0, c, c) for some c > 0, then for i ̸= 1, it holds that

−ϕ′i(λ)
ϕi(λ)

≥ Ω

(
1

(α+ 1)C(Dα)

)
, and

−ϕ′i(λ)
ϕ
3/2
i (λ)

≥ Ω

(
(c+ 1)α/2

(α+ 1)C(Dα)3/2

)
.

Proof. By definition of ϕ, for any λ ∈ [0,∞)K , we have

−ϕ′i(λ)
ϕi(λ)

=

∫∞
−∞ −f ′(z + λi)

∏
j ̸=i F (z + λj)dz∫∞

−∞ f(z + λi)
∏
j ̸=i F (z + λj)dz

.

Let us consider K = 3 and λ = (0, c, c) for some c > 0. Then, for i ̸= 1, the numerator is written as∫ ∞

−∞
−f ′(z + λi)

∏
j ̸=i

F (z + λj)dz

=

∫ ∞

−∞
−f ′(z + c)F (z)F (z + c)dz

=

∫ −c

−∞
−f ′(z + c)F (z)F (z + c)dz︸ ︷︷ ︸

†1

+

∫ 0

−c
−f ′(z + c)F (z)F (z + c)dz︸ ︷︷ ︸

†2

+

∫ ∞

0

−f ′(z + c)F (z)F (z + c)dz︸ ︷︷ ︸
†3

.

For the first term, since f ′(z + c) ≥ 0 for z ≤ −c, we have

†1 =

∫ −c

−∞
−f ′(z + c)F (z)F (z + c)dz

≥ F (−c)
∫ −c

−∞
−f ′(z + c)F (z + c)dz = F (−c)

∫ 0

−∞
−f ′(z)F (z)dz.

For the second term, since f ′(z + c) ≤ 0 for z ≥ −c, we have

†2 =

∫ 0

−c
−f ′(z + c)F (z)F (z + c)dz

≥ F (−c)
∫ 0

−c
−f ′(z + c)F (z + c)dz = F (−c)

∫ c

0

−f ′(z)F (z)dz.

For the third term, we have

†3 =

∫ ∞

0

−f ′(z + c)F (z)F (z + c)dz

≥ F (−c)
∫ ∞

0

−f ′(z + c)F (z + c)dz = F (−c)
∫ ∞

c

−f ′(z)F (z)dz.
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Therefore, we obtain∫ ∞

−∞
−f ′(z + λi)

∏
j ̸=i

F (z + λj)dz ≥ F (−c)
∫ ∞

−∞
−f ′(z)F (z)dz

= F (−c)
∫ ∞

−∞
f2(z)dz

= 2F (−c)
∫ ∞

0

f2(z)dz (symmetry)

= 2F (−c)
∫ ∞

0

(
Sf (z)

(z + 1)α+1

)2

dz,

where Sf (z) denotes the corresponding slowly varying function. Note that the slowly varying
function is a function g satisfying

lim
x→∞

g(tx)

g(x)
= 1, ∀t > 0,

which implies Sf (z) = o(za) for any a > 0. Moreover, by Assumption A.5, lim infz→∞ Sf (z) > 0
holds (refer to Lee et al. [38, Appendix A] for more details). Here, Sf (z) > 0 holds for all z ≥ 0
since we consider the unimodal symmetric distribution. Therefore, there exists a constant cf > 0
such that Sf (z) ≥ cf for all z ≥ 0. Hence, we have

2F (−c)
∫ ∞

0

(
Sf (z)

(z + 1)α+1

)2

dz ≥ 2F (−c)
∫ ∞

0

(
cf

(z + 1)α+1

)2

dz

=
2c2fF (−c)
2α+ 1

= Θ

(
1

(α+ 1)(c+ 1)α

)
,

since F is the distribution function of symmetric Fréchet-type with F (−z) = 1−F (z) = Θ
(

1
(z+1)α

)
for z > 0.

For the denominator, for i ̸= 1, we have∫ ∞

−∞
f(z + λi)

∏
j ̸=i

F (z + λj)dz

=

∫ ∞

−∞
f(z + c)F (z)F (z + c)dz

=

∫ −c

−∞
f(z + c)F (z)F (z + c)dz︸ ︷︷ ︸

‡1

+

∫ 0

−c
f(z + c)F (z)F (z + c)dz︸ ︷︷ ︸

‡2

+

∫ ∞

0

f(z + c)F (z)F (z + c)dz︸ ︷︷ ︸
‡3

.

For the first term, we obtain

‡1 =

∫ −c

−∞
f(z + c)F (z)F (z + c)dz

≤ F (−c)
∫ −c

−∞
f(z + c)F (z + c)dz

≤ F (−c)
2

∫ −c

−∞
f(z + c)dz =

F (−c)
4

.
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The second term is directly bounded by condition, i.e., ‡2 ≤ C(Dα)F (−c). For the third term, we
obtain

‡3 =

∫ ∞

0

f(z + c)F (z)F (z + c)dz

≤
∫ ∞

0

f(z + c)dz = 1− F (c) = F (−c).

Therefore, ∫ ∞

−∞
f(z + λi)

∏
j ̸=i

F (z + λj)dz ≤ F (−c)(C(Dα) + 5/4).

Therefore, we obtain

−ϕ′i(λ)
ϕi(λ)

=
†1 + †2 + †3
‡1 + ‡2 + ‡3

≥
2c2f

(2α+ 1)(C(Dα) + 5/4)
= Ω(1)

and

−ϕ′i(λ)
ϕ
3/2
i (λ)

=
†1 + †2 + †3
‡1 + ‡2 + ‡3

≥
2c2f

(2α+ 1)(C(Dα) + 5/4)3/2
√
F (−c)

= Ω
(
(c+ 1)α/2

)
.

G.6 Specific results for symmetric Pareto distribution

Here, we explicitly substitute the density function and distribution function of symmetric Pareto
distribution.

Proposition G.2. Let the perturbations be i.i.d. from the symmetric Pareto distribution with shape 2
considered in Proposition 5.3. When K = 3 and λ ∈ R3

+ satisfies λ = (0, c, c) for some c > 0, then
for i ̸= 1, it holds that

−ϕ′i(λ)
ϕi(λ)

≥ 1

31
and

−ϕ′i(λ)
ϕ
3/2
i (λ)

≥ c+ 1

11
.

Proof. Let us use the same notation used in the proof of Proposition G.1 For the first term of the
numerator, we obtain

†1 =

∫ −c

−∞

−3

(1− z − c)4
1

2(1− z)2
1

2(1− z − c)2
dz

=
3

4

∫ −c

−∞

−1

(1− z − c)6(1− z)2
dz

≥ 3

4(c+ 1)2

∫ −c

−∞

−1

(1− z − c)6
dz =

−3

20(c+ 1)2
.

For the second term, we obtain

†2 =

∫ 0

−c

3

(z + c+ 1)4
1

2(1− z)2

(
1− 1

2(z + c+ 1)2

)
dz

=
3

4

∫ 0

−c

2

(z + c+ 1)4(1− z)2
− 1

(z + c+ 1)6(1− z)2
dz

≥ 3

4

∫ 0

−c

1

(z + c+ 1)4(1− z)2
dz (∵ 1

(z+c+1)2 ≤ 1, ∀z ∈ [−c, 0])

≥ 3

4(c+ 1)2

∫ 0

−c

1

(z + c+ 1)4
dz =

1

4(c+ 1)2
− 1

4(c+ 1)5
.
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For the third term, we obtain

†3 =

∫ ∞

0

3

(z + c+ 1)4

(
1− 1

2(z + 1)2

)(
1− 1

2(z + c+ 1)2

)
dz

≥
∫ ∞

0

3/2

(z + c+ 1)4

(
1− 1

2(z + c+ 1)2

)
dz

=
1

2(c+ 1)3
− 3

20(c+ 1)5
.

Therefore,∫ ∞

−∞
−f ′(z + λi)

∏
j ̸=i

F (z + λj)dz ≥
1

10(c+ 1)2
+

1

2(c+ 1)3
− 8

20(c+ 1)5

≥ 1

10(c+ 1)2
.

For the denominator term, we obtain

‡1 =

∫ −c

−∞

1

(1− z − c)3
1

2(1− z)2
1

2(1− z − c)2
dz

≤ 1

4(c+ 1)2

∫ −c

−∞

1

(1− z − c)5
dz =

1

16(c+ 1)2
.

For the second term, we obtain

‡2 =

∫ 0

−c

1

(z + c+ 1)3
1

2(1− z)2

(
1− 1

2(z + c+ 1)2

)
dz

≤
∫ 0

−c

1

(z + c+ 1)3
1

2(1− z)2
dz.

By partial fractional decomposition, one can obtain

1

(z + c+ 1)3
1

(1− z)2
=

1/(c+ 2)2

(z + c+ 1)3
+

2/(c+ 2)3

(z + c+ 1)2
+

3/(c+ 2)4

z + c+ 1
+

1/(c+ 2)3

(1− z)2
+

3/(c+ 2)4

1− z
.

Therefore, ∫ 0

−c

1

(z + c+ 1)3
1

2(1− z)2
dz

=
1

4(c+ 2)2

(
1− 1

(c+ 1)2

)
+

1

(c+ 2)3

(
1− 1

c+ 1

)
+

3 log(c+ 1)

2(c+ 2)4

+
1

2(c+ 2)3

(
1− 1

c+ 1

)
+

3 log(c+ 1)

2(c+ 2)4

≤ 1

4(c+ 2)2
+

3

2(c+ 2)3
+

3c

(c+ 2)4

≤ 1

4(c+ 2)2
+

9

2(c+ 2)3

≤ 10

4(c+ 2)2
≤ 5

2(c+ 1)2
.

For the third term, we obtain

‡3 =

∫ ∞

0

1

(z + c+ 1)3

(
1− 1

2(z + 1)2

)(
1− 1

2(z + c+ 1)2

)
dz

≤
∫ ∞

0

1

(z + c+ 1)3
dz

≤ 1

2(c+ 1)2
.
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Therefore, for K = 3, when λ = (0, c, c)∫ ∞

−∞
f(z + λi)

∏
j ̸=i

F (z + λj)dz ≤
3 + 1/16

(c+ 1)2
. (42)

In sum, for K = 3, when λ = (0, c, c), we obtain

−ϕ′i(λ)
ϕi(λ)

≥ 1

10

1

3 + 1/16
≥ 1

31
.

Moreover, we obtain

−ϕ′i(λ)
ϕ
3/2
i (λ)

≥ 1/10

73/(43 · 3
√
3)

(c+ 1) =
96

√
3

1715
(c+ 1) ≥ c+ 1

11
.
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